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Preface

From the Preface to the Third Edition, by Russell K.
Hobbie:

Between 1971 and 1973 I audited all the
courses medical students take in their first two
years at the University of Minnesota. I was
amazed at the amount of physics I found in these
courses and how little of it is discussed in the
general physics course.

I found a great discrepancy between the
physics in some papers in the biological research
literature and what I knew to be the level of un-
derstanding of most biology majors or premed
students who have taken a year of physics. It was
clear that an intermediate-level physics course
would help these students. It would provide the
physics they need and would relate it directly to
the biological problems where it is useful.

This book is the result of my having taught
such a course since 1973. It is intended to serve
as a text for an intermediate course taught in
a physics department and taken by a variety of
majors. Since its primary content is physics, I
hope that physics faculty who might shy away
from teaching a conventional biophysics course
will consider teaching it. I also hope that re-
search workers in biology and medicine will find
it a useful reference to brush up on the physics
they need or to find a few pointers to the cur-
rent literature in a number of areas of bio-
physics. (The bibliography in each chapter is
by no means exhaustive; however, the references
should lead you quickly into a field.) The course
offered at the University of Minnesota is taken
by undergraduates in a number of majors who
want to see more physics with biological applica-
tions and by graduate students in physics, bio-

physical sciences, biomedical engineering, phys-
iology, and cell biology.

Because the book is intended primarily for
students who have taken only one year of
physics, I have tried to adhere to the following
principles in writing it:

1. Calculus is used without apology. When an impor-
tant idea in calculus is used for the first time, it is
reviewed in detail. These reviews are found in the
appendices.

2. The reader is assumed to have taken physics and to
know the basic vocabulary. However, I have tried to
present a logical development from first principles,
but shorter than what would be found in an intro-
ductory course. An exception is found in Chapters
14–18, where some results from quantum mechanics
are used without deriving them from first principles.
(My students have often expressed surprise at this
change of pace.)

3. I have not intentionally left out steps in most deriva-
tions. Some readers may feel that the pace could be
faster, particularly after a few chapters. My students
have objected strongly when I have suggested step-
ping up the pace in class.

4. Each subject is approached in as simple a fashion as
possible. I feel that sophisticated mathematics, such
as vector analysis or complex exponential notation,
often hides physical reality from the student. I have
seen electrical engineering students who could not
tell me what is happening in an RC circuit but could
solve the equations with Laplace transforms.

The Fourth Edition follows the tradition of earlier
editions. The book now has a second author: Bradley
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J. Roth of Oakland University. Both of us have en-
joyed this collaboration immensely. We have added a
chapter on sound and ultrasound, deleting or shorten-
ing topics elsewhere, in order to keep the book only
slightly longer than the Third Edition. Some of the
deleted material is available at the book’s website:
http://www.oakland.edu/˜roth/hobbie.htm.

The Fourth Edition has 44% more end-of-chapter prob-
lems than the Third Edition; most highlight biological
applications of the physical principles. Many of the prob-
lems extend the material in the text. A solutions manual
is available to those teaching the course. Instructors can
use it as a reference or provide selected solutions to their
students. The solutions manual makes it much easier for
an instructor to guide an independent-study student. In-
formation about the Solutions manual is available at the
book’s website.

Chapter 1 reviews mechanics. Translational and ro-
tational equilibrium are introduced, with the forces in
the heel and hip joint as clinical examples. Stress and
strain, hydrostatics, incompressible viscous flow, and the
Poiseuille–Bernoulli equation are discussed, with exam-
ples from the circulatory system. The chapter concludes
with a discussion of Reynolds number.

Chapter 2 is essential to nearly every other chapter
in the book. It discusses exponential growth and decay
and gives examples from pharmacology and physiology
(including clearance). The logistic equation is discussed.
Students are also shown how to use semilog and log-log
graph plots and to determine power-law coefficients using
a spreadsheet. The chapter concludes with a brief discus-
sion of scaling.

Chapter 3 is a condensed treatment of statistical
physics: average quantities, probability, thermal equilib-
rium, entropy, and the first and second laws of thermody-
namics. Topics treated include the following: the Boltz-
mann factor and its corollary, the Nernst equation; the
principle of equipartition of energy; the chemical poten-
tial; the general thermodynamic relationship; the Gibbs
free energy; and the chemical potential of a solution. You
can plow through this chapter if you are a slave to thor-
oughness, touch on the highlights, or use it as a reference
as the topics are needed in later chapters.

Chapter 4 treats diffusion and transport of solute in
an infinite medium. Fick’s first and second laws of dif-
fusion are developed. Steady-state solutions in one, two
and three dimensions are described. An important model
is a spherical cell with pores providing transport through
the cell membrane. It is shown that only a small number
of pores are required to keep up with the rate of diffusion
toward or away from the cell, so there is plenty of room
on the cell surface for many different kinds of pores and
receptor sites. The combination of diffusion and drift (or
solvent drag) is also discussed. Finally, a simple random-
walk model of diffusion is introduced.

Chapter 5 discusses transport of fluid and neutral
solutes through a membrane. This might be a cell mem-

brane, the basement membrane in the glomerulus of the
kidney, or a capillary wall. The phenomenological trans-
port equations including osmotic pressure are introduced
as the first (linear) approximation to describe these flows.
Countercurrent transport is described. Finally, a hydro-
dynamic model is developed for right-cylindrical pores.
This model provides expressions for the phenomenologi-
cal coefficients in terms of the pore radius and length. It
is also used to calculate the net force on the membrane
when there is flow.

After reviewing the electric field, electric potential, and
circuits, Chapter 6 describes the electrochemical changes
that cause an impulse to travel along a nerve axon or
along a muscle fiber before contraction. Two models
are considered: electrotonus (when the membrane obeys
Ohm’s law) and the Hodgkin–Huxley model (when the
membrane is nonlinear). Saltatory conduction in myeli-
nated fibers is described. The dielectric properties of the
membrane are modeled in terms of its molecular struc-
ture. Some simple changes to the membrane conductiv-
ity give rise to a periodically repeating action potential.
Finally, a general relationship is developed between dif-
fusive transport, resistance and capacitance for a given
geometry.

Chapter 7 shows how an electric potential is generated
in the medium surrounding a nerve or muscle cell. This
leads to the current dipole model for the electrocardio-
gram. The model is refined to account for the anisotropy
of the electrical conductivity of the heart. We then discuss
electrical stimulation, which is important for pacemakers,
stimulating nerve and muscle cells, and defibrillation. Fi-
nally, the model is extended to the electroencephalogram.

Chapter 8 shows how the currents in a conducting
nerve or muscle cell generate a magnetic field, leading to
the magnetocardiogram and the magnetoencephalogram.
Some bacteria (and probably some higher organisms)
contain magnetic particles used for determining spatial
orientation in the earth’s magnetic field. The mechanism
by which these bacteria are oriented is described. The de-
tection of weak magnetic fields and the use of changing
magnetic fields to stimulate nerve or muscle cells are also
discussed.

Chapter 9 covers a number of topics at the cellu-
lar and membrane level. It begins with Donnan equilib-
rium, where the presence of an impermeant ion on only
one side of a membrane leads to the buildup of a po-
tential difference across the membrane, and the Gouy–
Chapman model for how ions redistribute near the mem-
brane to generate this potential difference. The Debye–
Hückel model is a simple description of the neutralization
of ions by surrounding counterions. The Nernst–Planck
equation provides the basic model for describing com-
bined diffusion and drift in an applied electric field. It also
forms the basis for the Goldman–Hodgkin–Katz model
for zero total current in a membrane with a constant elec-
tric field. Gated membrane channels are then discussed.
Noise is inescapable in all signalling situations. After
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developing the basic properties of shot noise and John-
son noise, we show how a properly adapted shark can
detect very weak electric fields with a reasonable signal-
to-noise ratio. The chapter concludes with a discussion of
the basic physical principles that must be kept in mind
when assessing the possibility of biological effects of weak
electric and magnetic fields.

Chapter 10 describes feedback systems in the body. It
starts with the regulation of breathing rate to stabilize
the carbon dioxide level in the blood, moves to linear
feedback systems with one and two time constants, and
then to nonlinear models. We show how nonlinear sys-
tems described by simple difference equations can exhibit
chaotic behavior, and how chaotic behavior can arise in
continuous systems as well. Examples of feedback systems
include Cheyne-Stokes respiration, heat stroke, pupil size,
oscillating white-blood-cell counts, waves in excitable me-
dia, and period doubling and chaos in the heart.

Chapter 11 shows how the method of least squares un-
derlies several important techniques for analyzing data.
These range from simple curve fitting to discrete and con-
tinuous Fourier series, power spectra, correlation func-
tions, and the Fourier transform. We then describe the
frequency response of a linear system and the frequency
spectrum of noise. We conclude with a brief discussion
of testing data for chaotic behavior and the important
concept of stochastic resonance.

Armed with the tools of the previous chapter, we turn
to images in Chapter 12. Images are analyzed from the
standpoint of linear systems and convolution. This leads
to the use of Fourier analysis to describe the spatial fre-
quencies in an image and the reconstruction of an image
from its projections. Both Fourier techniques and filtered
backprojection are discussed.

Chapter 13 is new in the Fourth Edition. It discusses
acoustics, hearing, and medical ultrasound.

Chapter 14 discusses the visible, infrared, and ultravi-
olet regions of the electromagnetic spectrum. The scat-
tering and absorption cross sections are introduced and
are used here and in the next three chapters. We then de-
scribe the diffusion model for photon transport in turbid
media. Biological examples of infrared scattering include
the near infrared, optical coherence tomography, Raman
scattering, and the far infrared. Thermal radiation emit-
ted by the body can be detected; the emission of infrared
radiation by the sun includes ultraviolet light, which in-
jures skin. Protection from ultraviolet light is both pos-
sible and prudent. The definitions of various radiomet-
ric quantities have varied from one field of research to
another. We present a coherent description of radiomet-
ric, photometric and actinometric definitions. We then
turn to the eye, showing how spectacle lenses are used
to correct errors of refraction. The chapter closes with a
description of the quantum limitations to dark-adapted
vision.

Chapter 15, like Chapter 3, has few biological examples
but sets the stage for later work. It describes how photons
and ionizing charged particles such as electrons lose en-
ergy in traversing matter. These interaction mechanisms,
both in the body and in the detector, are fundamental to
the formation of a radiographic image and to the use of
radiation to treat cancer.

Chapter 16 describes the use of x rays for medical di-
agnosis and treatment. It moves from production to de-
tection, to the diagnostic radiograph. We discuss image
quality and noise, followed by angiography, mammogra-
phy, fluoroscopy, and computed tomography. After briefly
reviewing radiobiology, we discuss therapy and dose mea-
surement. The chapter closes with a section on the risks
from radiation.

Chapter 17 introduces nuclear physics and nuclear
medicine. The different kinds of radioactive decay are de-
scribed. Dose calculations are made using the fractional
absorbed dose method recommended by the Medical In-
ternal Radiation Dose committee of the Society of Nu-
clear Medicine. Auger electrons can magnify the dose de-
livered to a cell or to DNA. This can potentially provide
new methods of treatment. Diagnostic imaging includes
single photon emission tomography and positron emis-
sion tomography. Therapies include brachytherapy and
internal radiotherapy. A section on the nuclear physics of
radon closes the chapter.

Chapter 18 develops the physics of magnetic resonance
imaging. We show how the basic pulse sequences are
formed and used for slice selection, readout, image re-
construction and to manipulate image contrast. We close
with chemical shift imaging, flow effects, functional MRI,
and diffusion and diffusion tensor MRI.

Biophysics is a very broad subject. Nearly every branch
of physics has something to contribute, and the bound-
aries between physics and engineering are blurred. Each
chapter could be much longer; we have attempted to pro-
vide the essential physical tools. Molecular biophysics has
been almost completely ignored: excellent texts already
exist, and this is not our area of expertise. This book has
become long enough.

We would appreciate receiving any corrections or sug-
gestions for improving the book.

Finally, thanks to our long-suffering families. We never
understood what these common words really mean,
nor the depth of our indebtedness, until we wrote the
book.

Russell K. Hobbie
Professor of Physics Emeritus, University of Minnesota

(hobbie@umn.edu)
Bradley J. Roth

Associate Professor of Physics, Oakland University
(roth@oakland.edu)



1
Mechanics

This chapter introduces some concepts from mechanics
that are of biological or medical interest. We begin with
a discussion of sizes important in biology. Then we turn
to the forces on an object that is in equilibrium and cal-
culate the forces experienced by various bones and mus-
cles. In Sec. 1.8 we introduce the concept of mechanical
work, which will recur throughout the book. The next
two sections describe how materials deform when forces
act on them. Sections 1.11 through 1.14 discuss the forces
in stationary and moving fluids. These concepts are then
applied to laminar viscous flow in a pipe, which is a model
for the flow of blood and the flow of fluid through pores
in cell membranes. The chapter ends with a discussion of
the circulatory system.

1.1 Distances and Sizes

In biology and medicine, we study objects than span a
wide range of sizes: from giant redwood trees to individ-
ual molecules. Therefore, we begin with a brief discussion
of length scales. The basic unit of length in the metric sys-
tem is the meter (m): about the height of a three-year-old
child. For objects much larger or smaller than a meter,
we add a prefix as shown in Table 1.1. For example, a
kilometer is formed by adding the prefix “kilo”, which
means times one thousand (103 m = 1 km). Living or-
ganisms rarely if ever reach a size of 1 km; the tallest trees
are about 0.1 km (100 m) high. A few animals (whales,
dinosaurs) reach the size of tens of meters, but most or-
ganisms are a few meters or less in size.

The diversity of life becomes more obvious as we move
down to smaller length scales. One one-hundredth of a
meter is called a centimeter (1 cm = 10−2 m). The cen-
timeter is still common in the medical literature, although
it is going out of style among metric purists who prefer

TABLE 1.1. Common prefixes used in the metric system.

Prefix Abbreviation Multiply by

giga G 109

mega M 106

kilo k 103

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

to use only prefixes that are factors of one thousand.1

One one-thousandth of a meter is a millimeter (1 mm =
10−3 m), about the thickness of a dime. We can still
see objects of this size, but we can’t study their detailed
structure with the unaided eye.

The microscope enables us to study objects many times
smaller than 1 mm. The natural unit for measuring such
objects is 10−6 m or 10−3 mm, called a micrometer
(1µm = 10−6 m). The nickname for the micrometer is
the “micron.”Figure 1.1 shows the relative sizes of ob-
jects in the range of 1 mm to 1 µm and encompasses
the length scale of cell biology. Many small structures
of our body are this size. For instance, our lungs con-
sist of a branching network of tubes through which air
flows. These tubes end in small, nearly spherical air sacs
called alveoli [Fig. 1.1(b)]. Each alveolus has a diameter
of about 250 µm, and this size is set by the diffusion prop-
erties of air (Chapter 4). Protozoans are a type of small
one-celled animal. A paramecium is a protozoan about

1We find that restricting ourselves to prefixes that are a multiple
of 1000 makes it easier to remember relative sizes.
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100 µm

a)

b)

c)

d)

e)

FIGURE 1.1. Objects ranging in size from 1 mm down to 1
µm. (a) A paramecium, (b) an alveolus (air sac in the lung),
(c) a cardiac cell, (d) red blood cells, and (e) Escherichia coli
bacteria.

250 µm long [Fig. 1.1(a)]. The cells in multicellular ani-
mals tend to be somewhat smaller than protozoans. For
instance, the mammalian cardiac cell (a muscle cell found
in the heart, Chapter 7) shown in Fig. 1.1(c) is about 100
µm long and 20 µm in diameter. Nerve cells have a long
fiber-like extension called an axon. Axons come in a va-
riety of sizes, from 1 µm diameter up to tens of microns.
The squid contains a giant axon nearly one millimeter
in diameter. This axon played an important role in our
understanding of how nerves work (Chapter 6).

Our red blood cells (erythrocytes) carry oxygen to all
parts of our body. (Actually, red blood cells are not true
cells at all, but rather “corpuscles”). Red blood cells are
disk-shaped, with a diameter of about 8 µm and a thick-
ness of 2 µm [Fig. 1.1(d)]. Blood flows through a branch-
ing network of vessels (Section 1.17), the smallest of which
are capillaries. Each capillary has a diameter of about 8
µm, meaning that the red blood cells can barely pass
through it single-file.

One valuable skill in physics is the ability to
make order-of-magnitude estimates, meaning to calculate
something approximately right. For instance, suppose we
want to calculate the number of cells in the body. This is
a difficult calculation, because cells come in all sizes and
shapes. But for some purposes we only need an approx-
imate answer (say, within a factor of ten). For example:
cells are roughly 10 µm in size, so their volume is about
(10 µm)3, or (10×10−6)3 = 10−15 m3. An adult is roughly
2 m tall and about 0.3 m wide, so our volume is about 2 m
× 0.3 m × 0.3 m, or 0.18 m3. We are made up almost en-
tirely of cells, so the number of cells in our body is about(
0.18 m3

)
/
(
10−15 m3

)
, or roughly 2 × 1014. Some prob-

lems at the end of the chapter ask you to make similar
order-of-magnitude calculations.

100 nm

a) b)

c)

d)

e)

FIGURE 1.2. Objects ranging in size from 1 µm down to 1 nm.
(a) the human immunodeficiency virus (HIV), (b) hemoglobin
molecules, (c) a cell membrane, (d) a DNA molecule, (e) glu-
cose molecules.

Most cells are larger than a few microns. But many
cells (called eukaryotes) are complex structures that con-
tain organelles about this size. Mitochondria, organelles
where many of the chemical processes providing cells with
energy take place, are typically about 2 µm long. Proto-
plasts, organelles found in plant cells where photosynthe-
sis changes light energy to chemical energy, are also about
2 µm long.

The simplest cells are called prokaryotes and contain
no subcellular structures. Bacteria are the most common
prokaryotic cells. The bacterium Escherichia coli, or E.
coli, is about 2 µm long [Fig. 1.1(e)], and has been studied
extensively.

To examine structures smaller than bacteria, we must
measure lengths that are smaller than a micron. One-
thousandth of a micron is called a nanometer (1 nm =
10−9 m). Figure 1.2 shows objects having lengths from 1
nm to 1 µm. E. coli bacteria, which seemed so tiny com-
pared to cells in Fig. 1.1, are giants on the nanometer
length scale, being 20 times longer than the 100 nm scale
bar in Fig. 1.2. Viruses are tiny packets of genetic mater-
ial encased in protein. On their own they are incapable of
metabolism or reproduction, so some scientist don’t even
consider them as living organisms. Yet, they can infect
a cell and take control of its metabolic and reproductive
functions. The length scale of viruses is one-tenth of a mi-
cron, or 100 nm. For instance, HIV (the virus that causes
AIDS) is roughly spherical with a diameter of about 120
nm [Fig. 1.2(a)]. Some viruses, called bacteriophages, in-
fect and destroy bacteria. Most viruses are too small to
see in a light microscope. The resolution of a microscope
is limited by the wavelength of light, which is about 500
nm (Chapter 14). Thus, with a microscope we can study
cells in detail, we can see bacteria without much resolu-
tion, and we can barely see viruses, if we can see them at
all.

Below 100 nm, we enter the world of individual mole-
cules. Proteins are large, complex macromolecules that
are vitally important for life. For example, hemoglobin is
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the protein in red blood cells that binds to and carries
oxygen. Hemoglobin is roughly spherical, about 6 nm in
diameter [Fig. 1.2(b)]. Many biological functions occur in
the cell membrane (see Chapter 5). Membranes are made
up of layers of lipid (fat), often with proteins and other
molecules embedded in them [Fig. 1.2(c)]. A typical cell
membrane is about 10 nm thick. The molecule adeno-
sine triphosphate (ATP), crucial for energy production
and distribution in cells, is about 2 nm long (Chapter 3).
Chemical energy is stored in molecules called carbohy-
drates. A common (and relatively small) carbohydrate is
glucose (C6H12O6), which is about 1 nm long [Fig. 1.2(e)].
Genetic information is stored in long, helical strands of
deoxyribonucleic acid (DNA). DNA is about 2.5 nm wide,
and the helix completes a turn every 3.4 nm along its
length [Fig. 1.2(d)].

At the 1-nm scale and below, we reach the world of
small molecules and individual atoms. Water is the most
common molecule in our body. It consists of two atoms
of hydrogen and one of oxygen. The distance between
adjacent atoms in water is about 0.1 nm. The distance 0.1
nm (100 pm) is used so much at atomic length scales that
it has earned a nickname: the angstrom (Å). Like the cm,
this unit is going out of fashion as the use of nanometer
becomes more common. Individual atoms have diameters
of 100 or 200 pm.

Below the level of 100 pm, we leave the realm of biology
and enter the world of subatomic physics. The nuclei of
atoms (Chapter 17) are very small, and their sizes are
measured in femtometers (1 fm = 10−15 m).

One cannot possibly memorize the size of all biological
objects: there are simply too many. The best one can do
is remember a few mileposts along the way. Table 1.2 con-
tains a rough guide to how large a few important biolog-
ical objects are. Think of these as rules of thumb. Given
the diversity of life, one can certainly find exceptions to
these rules, but if you memorize Table 1.2 you will have
a rough framework to organize your thinking about size.
To examine the relative sizes of objects in more detail,
see Morrison et al. (1994) or Goodsell (1998).

1.2 Forces and Translational
Equilibrium

There are several ways that we can introduce the idea of
force, depending on the problem at hand and our philo-
sophical bent. For our present purposes it will suffice to
say that a force is a push or a pull, that forces have both
a magnitude and a direction, and that they give rise to
accelerations through Newton’s second law, F = ma. Ex-
periments show that forces add like displacements, so they
can be represented by vectors. (Some of the properties
of vectors are reviewed in Appendix B; others are intro-
duced as needed.) Vectors will be denoted by boldfaced
characters.

TABLE 1.2. Approximate sizes of biological objects.

Object Size

Protozoa 100 µm
Cells 10 µm
Bacteria 1 µm
Viruses 100 nm
Macromolecules 10 nm
Molecules 1 nm
Atoms 100 pm

One finds experimentally that an object is in transla-
tional equilibrium if the vector sum of all the forces acting
on the body is zero. Equilibrium means that the object
either remains at rest or continues to move with a con-
stant velocity. That is, it is not accelerated. Translational
means that only changes of position are being considered;
changes of orientation of the object with respect to the
axes are ignored.

We must consider all the forces that act on the object.
If the object is a person standing on both feet, the forces
are the upward force of the floor on each foot and the
downward force of gravity on the person (more accurately,
the vector sum of the gravitational force on every cell in
the person). We do not consider the downward force that
the person’s feet exert on the floor. It is also possible to
replace the sum of the gravitational force on each cell
of the body with a single downward gravitational force
acting at one point, the center of gravity of the body.

The forces that add to zero to give translational equi-
librium need not all act at one point on the object. If the
object is a person’s leg and the leg is at rest, there are
three forces exerted on the leg by other objects (Fig. 1.3).
Force F1 is the push of the floor up on the bottom of the
foot. The various pushes and pulls of the rest of the body

FIGURE 1.3. Forces on the leg in equilibrium. Each force is
exerted by some other object. (a) The points of application
are widely separated. (b) The sum of the forces is zero.
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on the leg through the hip joint and surrounding muscles
have been added together to give F2. The gravitational
pull of the earth downward on the leg is F3. Force F1

acts on the bottom of the leg, F2 acts on the top, and F3

acts somewhere in between. If the leg is in equilibrium
the sum of these forces is zero, as shown in Fig. 1.3(b).
Although the points of application of the forces can be
ignored in considering translational equilibrium, they are
important in determining whether or not the object is in
rotational equilibrium. This is discussed shortly.

The Greek letter Σ (capital sigma) is usually used to
mean a sum of things. With this notation, the condition
for translational equilibrium can be written

∑

i

Fi = 0. (1.1)

The subscript i is used to label the different forces acting
on the body. A notation this compact has a lot hidden in
it. This is a vector equation, standing for three equations:

∑

i

Fix = 0,

∑

i

Fiy = 0, (1.2)

∑

i

Fiz = 0.

Often the subscript i is omitted and the equations are
written as

∑
Fx = 0,

∑
Fy = 0,

∑
Fz = 0. In this nota-

tion, a component is positive if it points along the positive
axis and negative if it points the other way.

Sometimes, as in the next example, we draw forces in
particular directions and assume that these directions are
positive. If the subsequent algebra happens to give a so-
lution that is negative, the force points opposite the di-
rection assumed.

As an example, consider the person standing on both
feet as in Fig. 1.4. The earth pulls down at some point
with force W. The floor pushes up on the right foot with
force F1 and on the left foot with force F2. To determine
what the condition for translational equilibrium tells us

FIGURE 1.4. A person standing. (a) The forces on the person.
(b) A free-body or force diagram.

about the forces, draw the force diagram or free-body di-
agram of Fig. 1.4(b). This diagram is an abstraction that
ignores the points at which the forces are applied to the
body. We can get away with this abstraction because we
are considering only translation. When we consider rota-
tional equilibrium, we will have to redraw the diagram
showing the points at which the various forces act on the
person. If all the forces are vertical, then there is only one
component of each force to worry about, and the equilib-
rium condition gives F1 + F2 − W = 0, or F1 + F2 = W .
The total force of the floor pushing up on both feet is
equal to the pull of the earth down.

If there is a sideways force on each foot, translational
equilibrium provides two conditions: F1x + F2x = 0, and
F1y + F2y − W = 0.

This is all that can be learned from the condition for
translational equilibrium. If the person stands on one
foot, then F1 = 0 and F2 = W . If the person stands
with equal force on each foot, then F1 = F2 = W/2.

1.3 Rotational Equilibrium

If the object is in rotational equilibrium, then another
condition must be placed upon the forces. Rotational
equilibrium means that the object either does not rotate
or continues to rotate at a constant rate (with a constant
number of rotations per second). Consider the object of
Fig. 1.5, which is a rigid rod pivoted at point X so that it
can rotate in the plane of the paper. Forces F1 and F2 are
applied to the rod in the plane of the paper at distances r1

and r2 from the pivot and perpendicular to the rod. The
pivot exerts the force F3 on the rod needed to maintain
translational equilibrium. If both F1 and F2 are perpen-
dicular to the rod, they are parallel. They must also be
parallel to F3, and translational equilibrium requires that
F3 = F1 + F2.

Experiment shows that there is no rotation of the rod
if F1r1 = F2r2. The condition for rotational equilibrium
can be stated in a form analogous to that for translational
equilibrium if we define the torque, τ , to be

τi = riFi. (1.3)

With this definition goes an algebraic sign convention:
the torque is positive if it tends to produce a counter-
clockwise rotation. The rod is in rotational equilibrium if

FIGURE 1.5. A rigid rod free to rotate about a pivot at point
X.
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FIGURE 1.6. A force F is applied to an object at point P . The
object can rotate about point O. Vectors r and F determine
the plane of the paper.

the algebraic sum of all the torques is zero:
∑

i

τi =
∑

i

riFi = 0. (1.4)

Note that F3 contributes nothing to the torque because
r3 is zero.

The torque is defined about a certain point, X. It de-
pends on the distance from the point of application of
each force to X.2 As long as the object is in transla-
tional equilibrium, the torque can be evaluated around
any point. This theorem, which we will not prove, of-
ten allows calculations to be simplified, because taking
torques about certain points can cause some forces not
to contribute to the torque equation.

The torque can also be calculated if the force is not at
right angles to the rod. Imagine an object free to rotate
about point O in Fig. 1.6. Force F lies in the plane of the
paper but is applied in some arbitrary direction at point
P . The vectors r and F determine the plane of the paper
if they are not parallel. Force F can be resolved into two
components: one parallel to r, F‖ = F cos θ, and the other
perpendicular to r, F⊥ = F sin θ. The component parallel
to r will not cause any rotation about point O. (Pull on
an open door parallel to the plane of the door; there is
no rotation.) The torque is therefore

τ = rF⊥ = rF sin θ. (1.5)

The perpendicular distance from the line along which the
force acts to point X is r sin θ. It is often called the mo-
ment arm, and the torque is the magnitude of the force
multiplied by the moment arm.

The angle θ is the angle of rotation from the direction
of r to the direction of F. It is called positive if the ro-
tation is counterclockwise. For the angle shown in Fig.
1.6 sin θ has a positive value, and the torque is positive.
Figure 1.7(a) shows an angle between 90 ◦ and 180 ◦ for
which the torque and sin θ are still positive. Figure 1.7(b)
shows an angle between 180 ◦ and 360 ◦, for which both

2The discussion associated with Fig. 1.5 suggests that torque is
taken about an axis, rather than a point. In a three-dimensional
problem the torque is taken about a point.

FIGURE 1.7. (a) When θ is between 0 ◦ and 180 ◦, both sin θ
and the torque are positive. (b) When θ is between 180 ◦ and
360 ◦, both sin θ and the torque are negative.

the torque and sin θ are negative. In all cases, Eq. 1.5
gives the correct sign for the torque.

To summarize: the torque due to force F applied to a
body at point P must be calculated about some point O.
If r is the vector from O to P , the magnitude of the torque
is equal to the magnitude of r times the magnitude of F,
times the sine of the angle between r and F. The angle
is measured counterclockwise from r to F.

1.4 Vector Product

Torque can be thought of as a vector, τ . Its magnitude
is Fr sin θ. The only direction uniquely defined by vec-
tors r and F is perpendicular to the plane in which they
lie. This is also the direction of an axis about which the
torque would cause a rotation. However, there is ambigu-
ity about which direction along this line to assign to the
torque. The convention is to say that a positive torque
points in the direction of the thumb of the right hand
when the fingers curl in the direction of positive rotation
from r to F.3 When r and F point in the same direction,
so that no plane is defined, the magnitude of the torque
is zero.

The product of two vectors according to the foregoing
rules is called the cross product or vector product of the
two vectors. One can use a shorthand notation

τ = r × F. (1.6)

There is another way to write the cross product. If
both r and F are resolved into components, as shown in
Fig. 1.8, then the cross product can be calculated by ap-
plying the rules above to the components. Since Fy is per-
pendicular to rx and parallel to ry, its only contribution
is a counterclockwise torque rxFy. The only contribution
from Fx is a clockwise torque, −ryFx. The magnitude of
the cross product is therefore

τ = rxFy − ryFx. (1.7)

3This arbitrariness in assigning the sense of τ means that it

does not have quite all the properties that vectors usually have. It

is called an axial vector or a pseudovector. It will not be necessary

in this book to worry about the difference between a real vector

and an axial vector.
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FIGURE 1.8. The cross product r×F is calculated by resolv-
ing r and F into components.

Note that this is the (signed) sum of each component of
the force multiplied by its moment arm.

The equivalence of this result to Eq. 1.5 can be verified
by writing Eq. 1.7 as

τ = (r cos β)(F sinα) − (r sin β)(F cos α),

τ = rF (sin α cos β − cos α sin β) .

There is a trigonometric identity that

sin (α − β) = sin α cos β − cos α sinβ.

Since θ = α − β (from Fig. 1.8), this is equivalent to
τ = rF sin θ.

When vectors r and F lie in the xy plane, τ points
along the z axis. If r and F point in arbitrary directions,
Eq. 1.7 gives the z component of τ . One can apply the
same reasoning for other components and show that

τx = ryFz − rzFy,

τy = rzFx − rxFz, (1.8)

τz = rxFy − ryFx.

If you are familiar with the rules for evaluating determi-
nants, you will see that this is equivalent to the notation

τ =

∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ
rx ry rz

Fx Fy Fz

∣
∣
∣
∣
∣
∣
. (1.9)

1.5 Force in the Achilles Tendon

The equilibrium conditions can be used to understand
many problems in clinical orthopedics. Two are discussed
in this book: forces that sometimes cause the Achilles
tendon at the back of the heel to break, and forces in the
hip joint.

The Achilles tendon connects the calf muscles (the gas-
trocnemius and the soleus) to the calcaneus at the back
of the heel (Fig. 1.9). To calculate the force exerted by

FIGURE 1.9. Simplified anatomy of the foot.

this tendon on the calcaneus when a person is standing
on the ball of one foot, assume that the entire foot can
be regarded as a rigid body. This is our first example of
creating a model of the actual situation. We try to sim-
plify the real situation to make the calculation possible
while keeping the features that are important to what is
happening. In this model the internal forces within the
foot are being ignored.

Figure 1.10 shows the force exerted by the tendon on
the foot (FT ), the force of the leg bones (tibia and fibula)
on the foot (FB), and the force of the floor upward, which
is equal to the weight of the body (W). The weight of
the foot is small compared to these forces and will be
neglected. Measurements on a few people suggest that
the angle the Achilles tendon makes with the vertical is
about 7 ◦.

Translational equilibrium requires that

FT cos(7 ◦) + W − FB cos θ = 0, (1.10)

FT sin(7 ◦) − FB sin θ = 0.

7°

F

W

T

FB θ

r
W

10 cm
rT

5.6 cm

FIGURE 1.10. Forces on the foot, neglecting its own weight.
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To write the condition for rotational equilibrium, we need
to know the lengths of the appropriate vectors rT and
rW , assuming that the torques are taken about the point
where FB is applied to the foot. In our simple model we
ignore the contributions of the horizontal components of
any forces to the torque equation. This is not essential (if
we are willing to make more detailed measurements), but
it simplifies the equations and thereby makes the process
clearer. The horizontal distances measured on one of the
authors are rT = 5.6 cm and rW = 10 cm, as shown in
Fig. 1.10. The torque equation is

10W − 5.6FT cos 7 ◦ = 0. (1.11)

This equation can be solved for the tension in the tendon:

FT =
10W

5.6 cos 7 ◦ = 1.8W. (1.12)

This result can now be used in Eq. 1.10 to find FBy =
FB cos θ:

(1.8)(W )(0.993) + W = FB cos θ,

2.8W = FB cos θ. (1.13)

From Eqs. 1.10 and 1.12, we get

(1.8)(W )(0.122) = FB sin θ,

0.22W = FB sin θ. (1.14)

Equations 1.13 and 1.14 are squared and summed and
the square root taken to give FB = 2.8W , while they can
be divided to give

tan θ =
0.22
2.8

= 0.079,

θ = 4.5 ◦ .

The tension in the Achilles tendon is nearly twice the
person’s weight, while the force exerted on the leg by
the talus is nearly three times the body weight. One can
understand why the tendon might rupture.

1.6 Forces on the Hip

The forces in the hip joint can be several times the per-
son’s weight, and the use of a cane can be very effective
in reducing them.

As a person walks, there are moments when only one
foot is on the ground. There are then two forces acting on
the body as a whole: the downward pull of the earth W
and the upward push of the ground on the foot N . The
pull of the earth may be regarded as acting at the center
of gravity of the body [Halliday et al. (1992, Chap. 13)].
The center of gravity is located on the midline (if the
limbs are placed symmetrically), usually in the lower ab-
domen [Williams and Lissner (1962), Chap. 5.] If torques
are taken about the foot, then the center of gravity must

FIGURE 1.11. A person standing on one foot must place the
foot under the center of gravity, which is on or near the mid-
line.

be directly over the foot so that there will be no torque
from either force. This situation is shown in Fig. 1.11.
The condition for translational equilibrium requires that
N = W .

The anatomy of the pelvis, hips, and leg is shown
schematically in Fig. 1.12. Fourteen muscles and several
ligaments connect the pelvis to the femur. Extensive mea-
surements of the forces exerted by the abductor4 muscles
in the hip have been made by Inman (1947). If the leg is
considered an isolated system as in Fig. 1.12, the follow-
ing forces act:

F: The net force of the abductor muscles, acting on the
greater trochanter. These muscles are primarily the
gluteus medius and gluteus minimus, shown as a sin-
gle band of muscle in Fig. 1.12.

R: The force of the acetabulum (the socket of the pelvis)
on the head of the femur.

N: The upward force of the floor on the bottom of the
foot (in this case, equal to W ).

WL: The weight of the leg, acting vertically down-
ward at the center of gravity of the leg. WL ≈ W/7
[Williams and Lissner (1962), Chap. 5].

Inman found that F acts at about a 70 ◦ angle to
the horizontal. In a typical adult, the distance from the
greater trochanter to the midline is about 18 cm, the hor-
izontal distance from the greater trochanter to the center
of gravity of the leg is about 10 cm, and the distance from
the greater trochanter to the middle of the head of the
femur is about 7 cm.

A free-body diagram is shown in Fig. 1.13. The middle
of the head of the femur will turn out to be very close
to the intersection of the line along which R acts and a
horizontal line drawn from the point where F acts. This
means that if torques are taken about this intersection
point (point O), there will be no contributions from R or
from the horizontal component of F. The intersection is

4To abduct means to move away from the midline of the body.
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FIGURE 1.12. Pertinent features of the anatomy of the leg.

about 7 cm toward the midline from the point of applica-
tion of F. Since N = W and WL ≈ W/7, the equilibrium
equations are

∑
Fy = F sin(70 ◦) − Ry − W/7 + W = 0, (1.15)

∑
Fx = F cos(70 ◦) − Rx = 0, (1.16)

∑
τ = −F sin(70 ◦)(7)− (W/7)(10−7)+W (18−7) = 0.

The last of these equations can be written as 11W− 3
7W−

6.6F = 0, from which F = 1.6W . The magnitude of the
force in the abductor muscles is about 1.6 times the body
weight.

Equations 1.15 and 1.16 can now be used to find Rx

and Ry:

Rx = F cos(70 ◦) = (1.6)(W )(0.342) = 0.55W,

Ry =F sin(70 ◦)+
6
7
W = (1.6)(W )(0.94)+0.86W = 2.36W.

F

70° O

R

 11 

10
W     W/7 

N = W

L

 18 

≅

φ

FIGURE 1.13. A free-body diagram of the forces acting on the
leg. Torques are taken about point O, which is the intersection
of a line along which R acts and a horizontal line through the
point at which F is applied. This point is 7 cm toward the
midline (medially) from the greater trochanter.

The angle that R makes with the vertical is given by

tan φ =
Rx

Ry
= 0.23,

φ = 13 ◦ .

The magnitude of R is R = (R2
x + R2

y)1/2 = 2.4W .
If the patient had not had to put the foot under the

center of gravity of the body, the moment arm of the
only positive torque, 11W , could have been much less,
and this would have been balanced by a smaller value of
F . This can be done by having the patient use a cane
on the opposite side, so that the foot need not be right
under the center of gravity. This will be explored in the
next section. Conversely, if the patient were carrying a
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FIGURE 1.14. The femoral epiphysis and the direction of R.

suitcase in the opposite hand, the center of mass would
be moved away from the midline, the foot would still have
to be placed under the center of mass, and the moment
arm, and hence F , would be even larger (Problem 11).

One very interesting conclusion of Inman’s study was
that the force R always acts along the neck of the femur in
such a direction that the femoral epiphysis has very little
sideways force on it. The epiphysis is the growing portion
of the bone (Fig. 1.14) and is not very well attached to
the rest of the bone. If there were an appreciable sideways
force, the epiphysis would slip sideways, and indeed it
sometimes does (Fig. 1.15). This is a serious problem,
since if the blood supply to the epiphysis is compromised,
there will be no more bone growth.

Suppose that, for some reason, the gluteal muscles are
severed. The patient can no longer apply force F to the
greater trochanter; Eq. 1.16 shows that then Rx must be
zero. This change in the direction of R causes a rotation

FIGURE 1.15. X-ray of a slipped femoral epiphysis in an ado-
lescent male. (Courtesy of the Department of Diagnostic Ra-
diology, University of Minnesota.)

FIGURE 1.16. A person using a cane on the left side (front
view) to favor the right hip.

of the epiphyseal plate and a gradual reshaping of the
femur.

1.7 The Use of a Cane

A cane is beneficial if used on the side opposite to the
affected hip (Fig. 1.16). We ignore the fact that the arm
holding the cane has moved, thereby shifting slightly the
center of mass, and we assume that the force of the
ground on the cane is vertical. If we assume that the tip
of the cane is about 30 cm (12 in.) from the midline and
supports one-sixth of the body weight, then we can apply
the equilibrium conditions to learn that N+ 1

6W−W = 0,
so N = 5

6W . Torques taken about the center of mass give
(30)(W

6 ) − x( 5
6 )W = 0, x = 6 cm. (Figure 1.16 is not to

scale.)
Having the foot 6 cm from the midline reduces the force

in the muscle and the joint. To find out how much, con-
sider the force diagram in Fig. 1.17. The most difficult
part of the problem is working out the various moment
arms. Assume that the slight movement of the leg has not
changed the point about which we take torques (point O).
Again, R contributes no torque about this point. The
horizontal distance of F from this point is still 7 cm.
The force of the ground on the leg is now 5W/6, and its
moment arm is 18 − 6 − 7 = 5 cm. The weight of the
leg, W/7, acts at the center of mass of the leg, which is
still 10

18 of the distance from the greater trochanter to
the foot. Its horizontal position is therefore 10

18 of the
horizontal distance from the greater trochanter to the
foot: (10)(12)/18 = 6.67 cm. The moment arm is 7−6.67
cm= 0.33 cm. The torque equation is

−F sin(70 ◦)(7) +
(

W

7

)
(0.33) +

(
5W

6

)
(5) = 0.

It is solved by writing it as

−6.58F + 0.047W + 4.17W = 0,

F = 0.64W.



10 1. Mechanics

F

70°
O

R

x = 6.67
y= 7 - 6.67
  = 0.33

W/7

5W/6

 12  6 
 18 

 7 

FIGURE 1.17. A force diagram for the leg when a cane is
being used and the leg is 6 cm from the midline.

Even though the cane supports only one-sixth of the body
weight, F has been reduced from 1.6W to 0.64W by the
change in the moment arm.

The force of the acetabulum on the head of the femur
can be determined from the conditions for translational
equilibrium:

F cos(70 ◦) − Rx = 0,

Rx = 0.22W,

F sin(70 ◦) − Ry − W

7
+

5
6
W = 0,

Ry = 1.29W.

The resultant force R has magnitude (R2
x + R2

y)1/2 =
1.3W . This compares to the value 2.4W without the cane.
The force in the joint has been reduced by slightly more
than the body weight. It is interesting to read what an
orthopedic surgeon had to say about the use of a cane.
The following is from the presidential address of W. P.

Blount, M.D., to the Annual Meeting of the American
Academy of Orthopedic Surgeons, January 30, 1956:

The patient with a wise orthopedic surgeon
walks with crutches for six months after a frac-
ture of the neck of the femur. He uses a stick for
a longer time—the wiser the doctor, the longer
the time. If his medical adviser, his physical
therapist, his friends, and his pride finally drive
him to abandon the cane while he still needs one,
he limps. He limps in a subconscious effort to
reduce the strain on the weakened hip. If there
is restricted motion, he cannot shift his body
weight, but he hurries to remove the weight from
the painful hip joint when his pride makes him
reduce the limp to a minimum. The excessive
force pressing on the aging hip takes its toll in
producing degenerative changes. He should not
have thrown away the stick.5

1.8 Work

So far this chapter has considered only situations in which
an object is in equilibrium. If the total force on the object
is not zero, the object experiences an acceleration a given
by Newton’s second law:

F = ma.

The study of how forces produce accelerations is called
dynamics. It is an extensive field that will be discussed
only briefly here.

Suppose an object moves along the x axis with veloc-
ity vx. If it is subject to a force in the x direction Fx,
it will be accelerated, and the velocity will change ac-
cording to Fx = max = m (dvx/dt). If Fx is known as
a function of time, then this equation can be written as
dvx = (1/m) Fx(t)dt, and it can be integrated, at least
numerically.

In this context it is useful to define the kinetic energy

Ek =
1
2
mv2

x. (1.17)

As long as Fx acts, the object is accelerated and the ki-
netic energy changes. We can gain some understanding
of how it changes by noting that

d

dt

(
1
2
mv2

x

)
= mvx

dvx

dt
= Fxvx. (1.18)

5Quoted with permission from W. P. Blount. Don’t throw away
the cane. J. Bone Joint Surg. 38A: 695–708. Copyright c© 1956

J. Bone Joint Surg. This article was first quoted to the physics
community by G. B. Benedek and F.M.H. Villars. Physics with Il-
lustrative Examples from Medicine and Biology. Vol. 1. Mechanics.
Reading, MA, Addison-Wesley, 1973, pp. 3–8.
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Therefore Fxvx is the rate at which the kinetic energy is
changing with time. It is called the power due to force
Fx. The units of kinetic energy are kg m2 s−2 or joules
(J); the units of power are J s−1 or watts (W).

If vx and Fx are both positive, the acceleration in-
creases the object’s velocity, the kinetic energy increases,
and the power is positive. If vx and Fx are both negative,
vx decreases—becomes more negative—but the magni-
tude of the velocity increases. The kinetic energy in-
creases with time, and the power is positive. If vx and
Fx point in opposite directions, then the effect of the ac-
celeration is to reduce the magnitude of vx, the kinetic
energy decreases, and the power is negative.

Equation 1.18 can be written as

d

dt

(
1
2
mv2

x

)
= Fx

dx

dt
.

Both sides of this equation can be integrated with respect
to t: ∫ t2

t1

d

dt

(
1
2
mv2

x

)
dt =

∫ t2

t1

Fx (t)
dx

dt
dt.

The indefinite integral corresponding to the left-hand side
is the integral with respect to time of the derivative of
1
2mv2

x and is therefore 1
2mv2

x. If Fx is known not as a
function of t but as a function of x, it is convenient to
write the right-hand side as

∫ x2

x1

Fx(x) dx = W.

This quantity is called the work done by force Fx on the
object as it moves from x1 to x2. The complete equation
is therefore
[
1
2
mv2

x

]

2

−
[
1
2
mv2

x

]

1

=
∫ x2

x1

Fx(x) dx = W. (1.19)

The increase in kinetic energy of the body as it moves
from position 1 (at time 1) to position 2 (at time 2) is
equal to the work done on the body by the force Fx. The
work done on the body by force Fx is the area under the
curve of Fx vs x, between points x1 and x2. This is shown
in Fig. 1.18.

If several forces act on the body, then the acceleration
is given by Newton’s second law, where F is the total force
on the body. The change in kinetic energy is therefore the
work done by the total force or the sum of the work done
by each individual force.

When the force and displacement vectors point in any
direction, the kinetic energy is defined to be

Ek =
1
2
mv2 =

1
2
m(v2

x + v2
y + v2

z). (1.20)

Differentiating this expression with respect to time shows
that the power is given by an extension of Eq. 1.18:

dEk

dt
= Fxvx + Fyvy + Fzvz.

FIGURE 1.18. The work done by Fx is the shaded area under
the curve between x1 and x2.

y

x

vθ

F

FIGURE 1.19. Aligning the axes so that v is along the x axis
and F is in the xy plane shows that an alternative expression
for F · v is Fv cos θ.

This particular combination of vectors F and v is called
the scalar product or dot product. It is written as F · v.

There is another way to write the scalar product. If
F and v are not parallel, they define a plane. Align the
x axis with v so that vy and vz are zero, and choose
the direction of y so that F is in the xy plane (Fig. 1.19).
Then it is easy to see that F · v = Fxvx = Fv cos θ, where
is θ the angle between F and v.

To summarize, the power is

P =
dEk

dt
= F · v = Fv cos θ = Fxvx + Fyvy

+ Fzvz. (1.21)

Equation 1.21 can be integrated in the same manner as
above to obtain

∆Ek =
∫

Fx dx +
∫

Fy dy +
∫

Fz dz =
∫

F·ds. (1.22)

This is the general expression for the work done by force
F on a point mass that undergoes displacement s.
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FIGURE 1.20. A rod subject to a force F along it.

1.9 Stress and Strain

Whenever a force acts on an object, it undergoes a change
of shape or deformation. Often these deformations can be
ignored, as they were in the previous sections. In other
cases, such as the contraction of a muscle, the expan-
sion of the lungs, or the propagation of a sound wave,
the deformation is central to the problem and must be
considered. This book will not develop the properties of
deformable bodies extensively; nevertheless deformable
body mechanics is important in many areas of biology
[Fung (1993)]. We will develop the subject only enough
to be able to consider viscous forces in fluids.

Consider a rod of cross-sectional area S. One end is an-
chored, and a force F is exerted on the other end parallel
to the rod (Fig. 1.20). Effects of weight will be ignored.
A surface force is transmitted across any surface defined
by an imaginary cut perpendicular to the axis of the rod.
A surface force is exerted by the substance to the right
of the cut on the substance to the left (and vice versa,
in accordance with Newton’s third law: when object A
exerts a force on object B, object B exerts an equal and
opposite force on object A). The surface force per unit
area is called the stress. In this case, when the surface is
perpendicular to the axis of the rod and the force is along
the axis of the rod, it is called a normal stress:

sn =
F

S
. (1.23)

In the general case there can also be a component of stress
parallel to the surface.

The strain εn is the fractional change in the length of
the rod:

εn =
∆l

l
. (1.24)

If increasing stress is applied to a typical substance, the
strain increases linearly with the stress for small stresses.
Then it increases even more rapidly. At higher strains it
may be necessary to reduce the stress to maintain the
same strain. Finally, at a high enough strain, the sample
breaks. This is plotted in Fig. 1.21. Because of the double-
valuedness of the strain as a function of stress, the strain
is usually plotted as the independent variable, as on the
right in Fig. 1.21.

FIGURE 1.21. A typical stress–strain relationship. On the
left, stress is the independent variable. On the right, strain is
the independent variable. Strain is usually used as the inde-
pendent variable because it is often a double-valued function
of the stress.

In the linear region, the relationship between stress and
strain is written as

sn = Eεn. (1.25)

The proportionality constant E is called Young’s mod-
ulus. Since the strain is dimensionless, E has the di-
mensions of stress. Various units are N m−2 or pascal
(Pa), dyn cm−2, psi (pound per square inch), and bar
(1 bar = 14.5 psi= 105 Pa= 106 dyn cm−2).

If the stress is increased enough, the bar breaks. The
value of the stress when the bar breaks under tension
is called the tensile strength. The material will also
rupture under compressive stress; the rupture value is
called the compressive strength. Table 1.3 gives values of
Young’s modulus, the tensile strength, and the compres-
sive strength for steel, long bone (femur), and wood (wal-
nut).

In some materials, the stress depends not only on the
strain, but on the rate at which the strain is produced.
It may take more stress to stretch the material rapidly
than to stretch it slowly, and more stress to stretch it than

TABLE 1.3. Young’s modulus, tensile strength, and compres-
sive strength of various materials in Pa.

Material E Tensile
strength

Compressive
strength

Steel (ap-
prox.) a

20 × 1010 50 × 107

Femur
(wet) b

1.4 × 1010 8.3 × 107 1.8 × 107

Walnut c 0.8 × 1010 4.1 × 107 5.2 × 107

aAmerican Institute of Physics Handbook (1957). New York,
McGraw-Hill, pp. 2-70.

bB. K. F. Kummer (1972), Biomechanics of bone. In Y. C.
Fung, et al. eds., Biomechanics—Its Foundations and Objec-

tives. Englewood Cliffs, NJ, Prentice-Hall, p. 237.
cU.S. Department of Agriculture (1955). Wood Handbook,

Handbook No. 72. Washington, D.C., U.S. Government Printing

Office, p. 74.
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FIGURE 1.22. A pressure–volume curve for a normal lung,
showing hysteresis. The elastic recoil pressure is the difference
between the pressure in the alveoli (air sacs) of the lung and
the thorax just outside the lung. From P. T. Macklem.Tests
of lung mechanics. N. Engl. J. Med. 293: 339–342. Copyright
c© 1975 Massachusetts Medical Society. All rights reserved.
Drawing courtesy of Prof. Macklem.

to maintain a fixed strain. Such materials are called vis-
coelastic. They are often important biologically but will
not be discussed here [Fung (1993)].

Still other materials exhibit hysteresis. The stress–
strain relationship is different when the material is be-
ing stretched than when it is allowed to return to its
unstretched state. This difference is observed even if the
strain is changed so slowly that viscoelastic effects are
unimportant. Figure 1.22 shows a pressure–volume curve
for the lung. It is related to the stress–strain relationship
for the lung tissue and shows hysteresis.

1.10 Shear

In a shear stress, the force is parallel to the surface across
which it is transmitted.6 In a shear strain, the deforma-
tion increases as one moves in a direction perpendicular
to the deformation. Examples of shear stress and strain
are shown in Fig. 1.23. The shear stress is

ss =
F

S
, (1.26)

and the shear strain is

εs =
δ

h
. (1.27)

6This discussion of stress and strain has been made simpler than
is often the case. In general, the force F across any surface is a vec-
tor. It can be resolved into a component perpendicular to the sur-
face and two components parallel to the surface. One can speak of
nine components of stress: sxx, sxy , sxz , syx, syy , syz , szx, szy , szz .

The first subscript denotes the direction of the force and the sec-

ond denotes the normal to the surface across which the force acts.

Components sxx, syy and szz are normal stresses; the others are
shear stresses. It can be shown that sxy = syx, and so forth.

FIGURE 1.23. Shear stress and strain.

b

p1ab sinθ

b
co

s θ

θ

p3ab

θ
p3ab cosθ

p3ab sinθp2ab cosθ

b sinθ

FIGURE 1.24. A volume element of fluid used to show that
the pressure in a fluid at rest is the same in all directions.

It is possible to define a shear modulus G analogous to
Young’s modulus when the shear strain is small:

ss = Gεs. (1.28)

1.11 Hydrostatics

We now turn to some topics in the mechanics of fluids
that will be useful for understanding several phenomena,
including the circulation and fluid movement through
membranes in Chapter 5. Hydrostatics is the description
of fluids at rest. A fluid is a substance that will not sup-
port a shear when it is at rest. When the fluid is in motion,
there can be a shear force called viscosity.

An immediate consequence of the definition of a fluid is
that when the fluid is at rest, all the stress is normal. The
normal stress is called the pressure. The pressure at any
point in the fluid is the same in all directions. This can be
demonstrated experimentally, and it can be derived from
the conditions for equilibrium. Consider the small volume
of fluid shown in Fig. 1.24. It has a length a perpendicu-
lar to the page. This volume is in equilibrium. Since the
fluid at rest cannot support a shear, the pressure is per-
pendicular to each face, and there is no other force across
each face. To prove this, assume that the pressures per-
pendicular to the three faces can be different, and call
them p1, p2, and p3. The force exerted across face 1 is
p1ab sin θ, acting downward. The force across face 2 is
p2ab cos θ acting to the right. Across face 3 it is p3ab,
with vertical component p3ab sin θ and horizontal com-
ponent p3ab cos θ. The vertical components sum to zero
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FIGURE 1.25. The fluid in volume dxdydz is in equilibrium.

only if p1 = p3, while the horizontal components sum to
zero only if p3 = p2. Since this result is independent of
the value of θ, the pressure must be the same in every
direction.

Next, consider how the pressure changes with posi-
tion. Suppose that p depends on the coordinates p =
p(x, y, z) and that the density of the fluid is ρ kg m−3.
The only external force acting is gravity in the direc-
tion of the −z axis. The fluid in the volume dxdydz of
Fig. 1.25 is in equilibrium. In the y direction there is
a force to the right across the left-hand face equal to
p(x, y, z)dxdz and to the left across the right-hand face
equal to −p(x, y+dy, z)dxdz. These are the only forces in
the y direction, and their magnitudes must be the same.
Therefore p does not change in the y direction. A similar
argument shows that p does not change in the x direc-
tion. In the z direction there are three terms: the upward
force across the bottom face, the downward force across
the top face, and the pull of gravity. The weight of the
fluid is its mass (ρ dxdydz) times the gravitational accel-
eration g (g = 9.8 m s−2). The three forces must add to
zero:

p(x, y, z) dxdy − p(x, y, z + dz) dxdy − ρg dxdydz = 0.

For small changes in height, dz, it is possible to approxi-
mate7 p(x, y, z + dz) by p(x, y, z) + (dp/dz) dz. With this
approximation, the equilibrium equation is

dxdydz

(
−dp

dz
− ρg

)
= 0.

This equation can be satisfied only if

dp

dz
= −ρg. (1.29)

This is a differential equation for p(z). It is a particularly
simple one, since the right-hand side is constant if ρ and

7See Appendix D on Taylor’s series for a more complete discus-
sion of this approximation.

g are constant: dp = −ρgdz. Integrating this gives
∫

dp = −ρg

∫
dz,

p = −ρgz + c.

The constant of integration is determined by knowing the
value of p for some value of z. If p = p0 when z = 0, then
p0 = c and

p = p0 − ρgz. (1.30)

With a constant gravitational force per unit volume act-
ing on the fluid, the pressure decreases linearly with in-
creasing height. The SI unit of pressure is N m−2 or pascal
(Pa). The density is expressed in kg m−3, so that ρg has
units of N m−3 and ρgz is in N m−2. Pressures are of-
ten given as equivalent values of z in some substance, for
example, in millimeters of mercury (torr) or centimeters
of water. In such cases, the value of z must be converted
to an equivalent value of ρgz before calculations involv-
ing anything besides pressure are done. The density of
water is 1 g cm−3 or 103 kg m−3. The density of mer-
cury is 13.6 × 103 kg m−3, so 1 torr = 133 Pa. Another
common unit for pressure is the atmosphere (atm), equal
to 1.01 × 105 Pa. One atmosphere is approximately the
atmospheric pressure at sea level.

1.12 Buoyancy

Buoyancy effects are important when an object is im-
mersed in a fluid. We are all familiar with buoyant effects
when swimming; they are also important in instruments
such as the centrifuge. Consider an object of density ρ
immersed in a fluid of density ρfluid. The net force on
such an object is the sum of the gravitational force and
a force arising from the pressure gradient in the fluid. To
visualize this, consider a small object with sides dx, dy,
dz. We have just seen that the pressure on the bottom
face is greater than the pressure on the top face. There-
fore there is an upward force on the cube. The total force
on the object is then

F =
(
−dp

dz
− ρg

)
dx dy dz.

Since the pressure gradient in the fluid is −ρfluidg, the
total force is

F = (ρfluid − ρ) gV, (1.31)

where V is the volume of the object. The second term
is the object’s weight, directed downward. The first term
is called the buoyant force and is directed upward. The
buoyant force reduces the “effective weight” of the object
and depends on the difference of densities of the object
and the surrounding fluid.

Animals are made up primarily of water, so their den-
sity is approximately 103 kg m−3. The buoyant force de-
pends on the animal’s environment. Terrestrial animals
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live in air, which has a density of 1.2 kg m−3. The buoy-
ant force on terrestrial animals is very small compared
to their weight. Aquatic animals live in water, and their
density is almost the same as the surrounding fluid. The
buoyant force almost cancels the weight, so the animal
is essentially “weightless.” Gravity plays a major role in
the life of terrestrial animals, but only a minor role for
aquatic animals. Denny (1993) explores the differences
between terrestrial and aquatic animals in more detail.

1.13 Compressibility

Increasing the pressure on a fluid causes a deformation
and a decrease in volume. The compressibility κ is defined
as

∆V

V
= −κ∆p. (1.32)

Since ∆V/V is dimensionless, κ has the units of inverse
pressure, N−1 m2 or Pa−1. In many liquids the compress-
ibility is quite small (e.g., 5×10−10 Pa−1 for water), and
for many purposes, such as flow through pipes, compress-
ibility can be ignored. Other effects, such as the transmis-
sion of sound through a fluid, depend on deformation, and
compressibility cannot be ignored.

1.14 Viscosity

A fluid at rest does not support a shear. If the fluid is
moving, a shear force can exist. At large velocities the
flow of the fluid is turbulent and may be difficult or im-
possible to calculate. We will consider only cases in which
the velocity is low enough so that the flow is smooth. This
means that particles of dye introduced into the fluid to
monitor its motion flow along smooth lines called stream-
lines. A streamline is tangent to the velocity vector of the
fluid at every point along its path. There is no mixing of
fluid across streamlines; the flow is laminar (in layers).
Laminar flow is often used in rooms where dirt or bac-
terial contamination is to be avoided, such as operating
rooms or manufacturing clean rooms. Clean air enters
and passes through the room without mixing. Any con-
taminants picked up are carried out in the air.

A fluid can support a viscous shear stress if the shear
strain is changing. One way to create such a situation
is to immerse two parallel plates, each of area S, in the
fluid, and to move one parallel to the other as in Fig.
1.26. If the fluid in contact with each plate sticks to the
plate,8 the fluid in contact with the lower plate is at rest
and that in contact with the upper plate moves with the
same velocity as the plate. Between the plates the fluid
flows parallel to the plates, with a speed that depends

8This is called the “no-slip” boundary condition. There are ex-
ceptions.

x

y

v x = 0

v x = v
F

F

FIGURE 1.26. Forces F and −F are needed to make the top
plate move in a viscous fluid while the bottom plate remains
stationary. The velocity profile is also shown.

on position as shown in Fig. 1.26. The variation of ve-
locity between the plates gives rise to a velocity gradient
dvx/dy. Note that this is the rate of change of the shear
strain.

In order to keep the top plate moving and the bottom
plate stationary, it is necessary to exert a force of magni-
tude F on each plate: to the right on the upper plate and
to the left on the lower plate. The resulting shear stress
or force per unit area is in many cases proportional to
the velocity gradient:

F

S
= η

dvx

dy
. (1.33)

The constant η is called the coefficient of viscosity. Often
this equation is written with a minus sign, in which case
F is the force of the fluid on the plate rather than the
plate on the fluid. The units of η are N s m−2 or kg m−1

s−1 or Pa s. Older units are the dyn s cm−2 or poise,
the centipoise, and the micropoise. 1 poise = 0.1 Pa s.
Equation 1.33 gives the force exerted by fluid above the
plane at height y on the fluid below the plane. In the case
of the parallel plates, the force from above on fluid in the
slab between y and y + dy is the same in magnitude as
(and opposite in direction to) the force exerted by the
fluid below the slab. Therefore there is no net force on
the fluid in the slab, and the fluid moves with constant
velocity. Fluids that are described by Eq. 1.33 are called
Newtonian fluids. Many fluids are not Newtonian.

Since dvx/dy is the rate of change of the shear strain,
Eq. 1.27, Eq. 1.33 can be written

ss =
F

S
= η

dεs

dt
.

The rate of change of the shear strain is also called the
shear rate.

1.15 Viscous Flow in a Tube

Biological fluid dynamics is a well-developed area of
study [Lighthill (1975); Mazumdar (1992); Vogel (1994)].
External biological fluid dynamics is concerned with
locomotion—from single-celled organisms to swimming
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2πr ∆x η dv /dr
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FIGURE 1.27. Longitudinal and transverse cross sections of
the tube. Newton’s first law is applied to the shaded volume.

fish and flying birds. Internal biological fluid dynamics
deals with mass transport within the organism. Two ob-
vious examples are flow in the airways and the flow of
blood.

Consider laminar viscous flow of fluid through a pipe
of constant radius Rp and length ∆x. Ignore for now the
gravitational force. The pressure at the left end of a seg-
ment of pipe is p(x); at the right end it is p(x + ∆x). For
now consider the special case in which none of the fluid is
accelerated, so the total force on any volume element of
the fluid is zero. The velocity profile must be as shown in
Fig. 1.27: zero at the walls and a maximum at the center.
Our problem is to determine v(r).

Let us determine the forces acting on the shaded cylin-
der of fluid of radius r shown in Fig. 1.27. Since gravity
is ignored, there are only three forces acting on the vol-
ume. The fluid on the left exerts a force πr2p(x) acting
to the right in the direction of the positive x axis. The
fluid on the right exerts a force −πr2p(x + ∆x) (the mi-
nus sign because it points to the left). The slower-moving
fluid outside the shaded region exerts a viscous drag force
across the cylindrical surface at radius r. The area of the
surface is 2πr∆x. The force points to the left. Its mag-
nitude is 2πr∆x η |dv/dr|. Since dv/dr is negative, we
obtain the correct sign by writing it as 2πr ∆x η (dv/dr).
Since the fluid is not accelerating, the forces sum to zero:

πr2 [p(x) − p(x + ∆x)] + 2πr ∆x η (dv/dr) = 0, (1.34)

which can be rearranged to give

dv

dr
=

r

2η

(
p(x + ∆x) − p(x)

∆x

)
=

dp

dx

r

2η
. (1.35)

This can be integrated:
∫

dv =
1
2η

(
dp

dx

)∫
r dr,

v(r) =
1
4η

(
dp

dx

)
r2 + A. (1.36)

For flow to the right dp/dx is negative. Therefore it is
convenient to write ∆p as the pressure drop from x to x+
dx: ∆p = p(x)−p(x+∆x). Then the first term in Eq. 1.36
is −(1/4η)(∆p/∆x)r2. The constant of integration can be

FIGURE 1.28. Flow of fluid across the plane at B.

determined assuming the “no-slip” boundary condition:
that the velocity of the fluid immediately adjacent to a
solid is the same as the velocity of the solid itself. Because
the wall is at rest, the velocity of the fluid is zero at the
wall (r = Rp). The final result is

v(r) =
1
4η

∆p

∆x
(R2

p − r2). (1.37)

The total flow rate or volume flux or volume current i
is the volume of fluid per second moving through a cross
section of the tube. Its units are m3 s−1. The volume
fluence rate or volume flux density9 or current density jv

is the volume per unit area per unit time across some
small area in the tube. The units of jv are m3 s−1 m−2

or m s−1.
In fact, jv is just the velocity of the fluid at that point.

To see this, consider the flow of an incompressible fluid
during time ∆t. In Fig. 1.28 the fluid moves to the right
with velocity v. At t = 0, the fluid just to the left of plane
B crosses the plane; at t = ∆t, that fluid that was at A
at t = 0 crosses plane B. All the fluid between plane A
and plane B crosses plane B during the time interval ∆t.
The volume fluence rate is

jv =
(volume transported)

(area)(time)
=

Sv∆t

S∆t
= v. (1.38)

It may seem unnecessarily confusing to call the fluence
rate or flux density jv instead of v; however, this notation
corresponds to a more general notation in which j means
the fluence rate or flux density of anything per unit area
per unit time, and the subscript v, s, or q tells us whether
it is the fluence rate of volume, solute particles, or electric
charge.

To find the volume current i, jv must be integrated
over the cross-sectional area of the pipe. The volume of
fluid crossing the washer-shaped area 2πrdr is jv2πrdr =
v2πrdr. The total flux through the tube is therefore

i =
∫ Rp

0

jv(r)2πr dr,

i =
2π

4η

∆p

∆x

∫ Rp

0

(
R2

p − r2
)
r dr. (1.39)

9Some authors call jv the flux. The nomenclature used here is
consistent throughout the book.
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To integrate this, let u = R2
p − r2. Then du = −2rdr and

the integral is R4
p/4. Therefore

i =
πR4

p

8η

∆p

∆x
(1.40)

is the flux of a viscous fluid through a pipe of radius
Rp due to a pressure gradient (∆p/∆x) along the pipe.
The dependence of i on R4

p means that small changes in
diameter cause large changes in flow.

This relationship was determined experimentally in
painstaking detail by a French physician, Jean Leonard
Marie Poiseuille, in 1835. He wanted to understand the
flow of blood through capillaries. His work and knowledge
of blood circulation at that time have been described by
Herrick (1942).

As an example of the use of Eq. 1.40, consider a pore of
the following size, which might be found in the basement
membrane of the glomerulus of the kidney:

Rp = 5 nm,
∆p = 15.4 torr,

η = 1.4 × 10−3 kg m−1 s−1,
∆x = 50 nm.

(1.41)

It is first necessary to convert 15.4 torr to Pa using Eq.
1.30 and the value of ρ for mercury, 13.55×103 kg m−3:

∆p = ρg∆z = (13.55 × 103)(9.8)(15.4 × 10−3)

= 2.04 × 103 N m−2.

Then Eq. 1.40 can be used:

i =
(3.14)(5 × 10−9)4(2.04 × 103)
(8)(1.4 × 10−3)(50 × 10−9)

= 7.2 × 10−21 m3 s−1.

Now consider the general case in which we have not
only viscosity, but the fluid may be accelerated and grav-
ity is important. We continue to write ∆p as the pressure
drop and consider four contributions, each of which will
be discussed:

∆p =
∫ x2

x1

(dp/dx) dx (1.42)

= ∆pvisc + ∆pgrav + ∆paccel1 + ∆paccel2.

For simplicity, we restrict the derivation to an incom-
pressible fluid and a pipe of circular cross section where
the radius can change. The distance along the pipe is x
and the radius of the pipe is Rp(x). Gravitational force
acts on the fluid, and the height of the axis of the pipe
above some reference plane is z, as shown in Fig. 1.29.

Because the fluid is incompressible, the total current i
is independent of x. If the pipe narrows, the velocity in-
creases. Assume that changes in pipe radius occur slowly
enough so that the velocity profile remains parabolic at
every point in the pipe and we can treat x as though it

FIGURE 1.29. A pipe of circular cross section with radius and
height varying along the pipe.

were a distance along the axis of the cylinder. If we define
the average velocity as

v(x) =
i

πR2
p(x)

, (1.43)

we can use Eq. 1.37 to rewrite the velocity profile as

v(r, x) = 2v
[
1 − r2

R2
p(x)

]
=

2i

πR2
p(x)

[
1 − r2

R2
p(x)

]
.

(1.44)
The first term in Eq. 1.42 is the pressure to overcome
viscous drag. We can rewrite Eq. 1.35 as

dpvisc

dx
=

2η

r

dv

dr
.

Using Eq. 1.44 we can write

dpvisc

dx
= − 8η i

πR4
p(x)

. (1.45)

We saw this earlier, solved for i in a pipe of constant
radius, as Eq. 1.40. The pressure drop is obtained by in-
tegration:

∆pvisc = −
∫ x2

x1

dpvisc = −
∫ x2

x1

(
dpvisc

dx

)
dx (1.46)

= +
8ηi

π

∫ x2

x1

dx

R4
p(x)

.

To go further requires knowing Rp(x).
The next term pgrav is the hydrostatic pressure change

that we saw in Eq. 1.30:

∆pgrav = −
∫ x2

x1

dpgrav = −
∫

dpgrav

dz
dz = ρg(z2 − z1).

(1.47)
The last two terms of Eq. 1.42 are pressure differences

required to accelerate the fluid. When the flow is steady—
that is, the velocity depends only on position, and the
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velocity at a fixed position does not change with time—
there can still be an acceleration if the cross section of
the pipe changes. The third term, ∆paccel1, provides the
force for this acceleration. It can be derived as follows.
Imagine a streamline in the fluid. No fluid crosses the
streamline. Consider a small length of streamline ds and
a small area dA perpendicular to it. Note that ds is a
small displacement along a streamline, while dx is along
the axis of the pipe. The edge of dA defines another set
of streamlines that form a tube of flow, and dAds defines
a small volume of fluid. Make ds and dA small enough so
that v is nearly the same at all points within the volume.
The mass of fluid in the volume is dm = ρdAds. We ignore
viscosity and gravity, so the only pressure difference is due
to acceleration. The net force on the volume is

dF = −dp

ds
ds dA. (1.48)

This is equal to the mass times the acceleration dv/dt.
The acceleration of the fluid in the element is then

dv

dt
=

dF

dm
=

−
(

dp
ds

)
dsdA

ρdsdA
= −1

ρ

(
dp

ds

)
. (1.49)

We are considering only velocity changes that occur be-
cause the fluid moves along a streamline to a different
position. We use the chain rule to write

dv

dt
=
(

dv

ds

)(
ds

dt

)
= v

(
dv

ds

)
.

Combining these gives

dpaccel1

ds
= −ρv

(
dv

ds

)
. (1.50)

This can be integrated along the streamline to give

∆paccel1 = −
∫ s2

s1

(
dpaccel1

ds

)
ds = +ρ

∫ x2

x1

v

(
dv

ds

)
ds

=
ρv2

2

2
− ρv2

1

2
. (1.51)

The final term ∆paccel2 is the pressure change required
to accelerate the fluid between points 1 and 2 if the veloc-
ity of the fluid at a fixed position is changing with time.
This happens, for example, to blood that is accelerated
as it is ejected from the heart during systole, or to fluid
that is sloshing back and forth in a U tube. To derive this
term, again imagine a small length of streamline ds and
a small area dA perpendicular to it. In addition to ignor-
ing gravity and viscosity, we ignore changes in velocity
because of changes in cross section. There is acceleration
only if the velocity at a fixed location is changing. The
acceleration is ∂v/∂t. The derivative is written with ∂’s
to signify the fact that we are considering only changes
in the velocity with time that occur at a fixed position.

The net force required to accelerate this mass is provided
by the pressure difference Eq. 1.48:

dF = −dAdpaccel2 = dm

(
∂v

∂t

)
= ρ

(
∂v

∂t

)
dAds,

dpaccel2 = −ρ

(
∂v

∂t

)
ds,

∆paccel2 = −
∫ s2

s1

dpaccel2 = ρ

∫ s2

s1

(
∂v

∂t

)
ds. (1.52)

All of these effects can be summarized in the generalized
Bernoulli equation:

p1 − p2 = ∆p = ρ

∫ s2

s1

∂v

∂t
ds

︸ ︷︷ ︸
∆paccel2

+
∫ s2

s1

(
−dpvisc

ds

)
ds

︸ ︷︷ ︸
∆pvisc

(1.53)

+
ρv2

2

2
− ρv2

1

2︸ ︷︷ ︸
∆paccel1

+ ρg (z2 − z1)︸ ︷︷ ︸
∆pgrav

Equation 1.53 is valid for nonuniform viscous flow that
may be laminar or turbulent if the integral is taken along
a streamline [see, for example, Synolakis and Badeer
(1989)].

1.16 Pressure–Volume Work

An important example of work is that done in a biological
system when the volume of a container (such as the lungs
or the heart or a blood vessel) changes while the fluid
within the container is exerting a force on the walls.

To deduce an expression for pressure–volume work,
consider a cylinder of gas fitted with a piston, Fig.
1.30(a). If the piston has area S, the gas exerts a force
Fg = pS on the piston. If no other force is exerted on the

Fg

Fg

(a)

(b)

S

Fe

FIGURE 1.30. (a) A cylinder containing gas has a piston of
area S at one end. (b) The force exerted on the piston by the
gas is balanced by an external force if the piston is at rest.
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FIGURE 1.31. A plot of p vs V , showing the work done by
the gas as it expands.

piston to restrain it, it will be accelerated to the right
and gain kinetic energy as the gas does work on it:

(work done by gas) = Fgdx = pSdx = pdV. (1.54)

If the piston is prevented from accelerating by an external
force Fe equal and opposite to that exerted by the gas
[Fig. 1.28(b)], then the external force does work on the
piston:

(work done by external force) = −Fedx (1.55)
= −pSdx = −pdV,

which is the negative of the work done on the piston by
the expanding gas. The result is that the kinetic energy of
the piston does not change. The gas does work on the sur-
roundings as it expands, increasing the energy of the sur-
roundings; the surroundings, through the external force,
do negative work on the gas; that is, they decrease the
energy of the gas. (The meaning of “energy of the gas”
and “energy of the surroundings” is discussed in Chap-
ter 3.) If the gas is compressed, the situation is reversed:
the surroundings do positive work on the gas and the gas
does negative work on the surroundings.

For a large change in volume from V1 to V2, the pressure
may change as the volume changes. In that case the work
done by the gas on the surroundings is

Wby gas =
∫ V2

V1

p dV. (1.56)

This work is the shaded area in Fig. 1.31. If the gas is
compressed, the change in volume is negative and the
work done by the gas is negative.

Let us apply this model to the heart. Suppose that the
left ventricle of the heart contracts at constant pressure,
so that it changes volume by ∆V = V2 − V1. (Since V2 <
V1 the quantity ∆V is negative. A volume of blood −∆V
is ejected into the aorta.) The work done by the heart
wall on the blood is −p∆V and is positive, since ∆V is
negative.

As another example of pressure–volume work, we can
develop a model to estimate the work necessary to
breathe. Consider the model of the lungs and airways
shown in Fig. 1.32. The pressure at the nose is the at-
mospheric pressure p. In the alveoli (air sacs) the pressure

FIGURE 1.32. A model of the thorax, lungs, and airways that
can be used to understand some features of breathing.

is pa. If there is no flow taking place, pa = p. For air to
flow in, pa must be less than p; for it to flow out, pa must
be greater than atmospheric. The work done by the walls
of the alveoli on the gas in them is −

∫
pa dV . The net

value of this integral for a respiratory cycle is positive.
Perhaps the easiest way to see this is to imagine an inspi-
ration, in which the alveolar pressure is pa = p−∆p and
the volume change is ∆V . The work done on the gas is
−(p−∆p)∆V . This is followed by an expiration at pres-
sure pa = p + δp, for which the work is −(p + δp)(∆V ).
The net work done on the gas is (∆p+δp)∆V . The energy
imparted to the gas shows up as a mixture of heating be-
cause of frictional losses and kinetic energy of the exhaled
air.

There is another mechanism by which work is done
in breathing. Refer again to Fig. 1.32. The pressure in
the chest cavity (thorax) is pt. (The pressure measured
in mid-esophagus is a good estimate of pt.) Because of
contractile forces in the lung tissue, pa > pt. The quantity
pa − pt is the “elastic recoil pressure” of Fig. 1.22. The
gas in the alveoli and the fluid in the thorax both do work
on the lung tissue. The latter has opposite sign, since a
positive displacement dx of a portion of the alveolar wall
is in the direction of the force exerted by the alveolar gas
but is opposite to the direction of the force exerted by
the thoracic fluid. The elastic recoil pressure, multiplied
by dV , gives the net work done by both forces on the wall
of the lung.

Figure 1.22 shows elastic recoil pressure versus lung
volume. It is redrawn in Fig. 1.33. During inspiration
(curve AB), the elastic recoil pressure pa − pt is greater
than that during expiration (curve BC). The net work
done on the lung wall during the respiratory cycle goes
into frictional heating of the lung tissue.

1.17 The Human Circulatory System

The human circulatory system is responsible for pump-
ing blood and its life-sustaining nutrients to all parts of
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FIGURE 1.33. A hypothetical plot of the pressure–volume
relationship for inhalation and exhalation.

the body [Vogel (1992)]. The circulatory system has two
parts: the systemic circulation and the pulmonary circu-
lation, as shown in Fig. 1.34. The left heart pumps blood
into the systemic circulation: organs, muscles, etc. The
right heart pumps blood through the lungs. As the heart
beats, the pressure in the blood leaving the heart rises
and falls. The maximum pressure during the cardiac cy-
cle is the systolic pressure. The minimum is the diastolic
pressure. (A blood pressure reading is in the form sys-
tolic/diastolic, measured in torr.) The blood flows from
the aorta to several large arteries, to medium-sized arter-
ies, to small arteries, to arterioles, and finally to the capil-
laries, where exchange with the tissues of oxygen, carbon
dioxide, and nutrients takes place. The blood emerging
from the capillaries is collected by venules, flows into in-
creasingly larger veins, and finally returns to the heart
through the vena cava.

At any given time, blood is flowing in only a fraction
of the capillaries. The state of flow in the capillaries is
continually changing to provide the amount of oxygen
required by each organ. In skeletal muscle, terminal arte-
rioles constrict and dilate to control distribution of blood
to groups of capillaries. In smooth muscle and skin, a
precapillary sphincter muscle controls the flow to each
capillary [Patton et al. (1989), p. 860]. Since the blood is
incompressible and is conserved,10 the total volume flow
i remains the same at all generations of branching in the
vascular tree. Table 1.4 shows average values for the pres-
sure and vessel sizes at different generations of branching.
Most of the pressure drop occurs in the arterioles.

We define the vascular resistance R in a pipe or a seg-
ment of the circulatory system as the ratio of pressure
difference across the pipe or segment to the flow through
it:

R =
∆p

i
. (1.57)

The units are Pa m−3 s. Physiologists use the periph-
eral resistance unit (PRU), which is torr ml−1 min.
For Poiseuille flow the resistance can be calculated

10This is not strictly true. Some fluid leaves the capillaries and
returns to the heart through the lymphatic system instead of the
venous system. See Chapter 5.

FIGURE 1.34. The human circulatory system. The subject
is facing you, so the left chambers of the heart are on the
right in the picture. The left heart pumps oxygenated blood
(gray), and the right heart pumps deoxygenated blood (black).
Reprinted from A.C. Guyton. Textbook of Medical Physiology,
8th ed. p. 151. c© 1991 Elsevier, Inc. Used with permission of
Elsevier.

from Eq. 1.40:

R =
8η∆x

πR4
p

. (1.58)

The resistance decreases rapidly as the radius of the vessel
increases.

If vessels of different diameters are connected in series
so that the flow i is the same through each one and the
total pressure drop is the sum of the drops across each
vessel, then the total resistance is the sum of the resis-
tances of each vessel:

Rtot = R1 + R2 + R3 + · · · . (1.59)

If there is branching so that several vessels are in parallel
with the same pressure drop across each one, the total
flow through all the branches equals the flow in the vessel
feeding them. The total resistance is then given by

1
Rtot

=
1

R1
+

1
R2

+
1

R3
+ · · · . (1.60)

For the most part, the capillaries are arranged in parallel.
Even though the resistance of an individual capillary is
large because of its small radius (Eq. 1.58), the resistance
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TABLE 1.4. Typical values for the average pressure at the entrance to each generation of the major branches of the cardio-
vascular tree, the average blood volume in certain branches, and typical dimensions of the vessels.

Location Average
pressure

Blood
volumea

Diameterb

(mm)
Lengthb

(mm)
Wall
thicknessb

Avg.
velocityb

Reynolds number at
maximum flow c

(torr) (ml) (mm) (m s−1)

Systemic circulation
Left atrium 5
Left ventricle 100
Aorta 100 156 20 500 2.00 4.80×10−1 9 400
Arteries 95 608 4 500 1.00 4.50×10−1 1 300
Arterioles 86 94 0.05 10 0.2 5.00×10−2

Capillaries 30 260 0.008 1 0.001 1.00×10−3

Venules 10 470 0.02 2 0.002 2.00×10−3

Veins 4 2682 5 25 0.5 1.00×10−2

Vena cava 3 125 30 500 1.5 3.80×10−1 3 000
Right atrium 3

Pulmonary Circulation
Right atrium 3
Right ventricle 25
Pulmonary artery 25 52
Arteries 20 91 7 800
Arterioles 15 6
Capillaries 10 104
Veins 5 215 2 200
Left atrium 5

aFrom R. Plonsey (1995). Physiologic Systems. In J. R. Bronzino, ed. The Biomedical Engineering Handbook, Boca Raton, CRC
Press, pp. 9–10.

bFrom J. N. Mazumdar (1992). Biofluid Mechanics. Singapore, World Scientific, p. 38.
cFrom W. R. Milnor (1989). Hemodynamics, 2nd. ed. Baltimore, Williams & Wilkins, p. 148.

of the capillaries as a whole is relatively small because
there are so many of them (see Problem 41).

The average flow from the heart is the stroke volume—
the volume of blood ejected in each beat—multiplied
by the number of beats per second. A typical value
might be

i = (60 ml beat−1)(80 beat min−1) = 4800 ml min−1

= 80 × 10−6 m3 s−1.

The total resistance would then be the average pressure
divided by the flow:

R =
(100 torr)(133 Pa torr−1)

80 × 10−6 m3 s−1
= 1.66 × 108 Pa m−3 s.

The pressure in the left ventricle changes during the
cardiac cycle. It can be plotted vs time. It can also be
plotted vs ventricular volume, as in Fig. 1.35. The p–
V relationship moves counterclockwise around the curve
during the cycle. Filling occurs at nearly zero pressure
until the ventricle begins to distend when the volume
exceeds 60 ml. There is then a period of contraction at

nearly constant volume that causes the ventricular pres-
sure to rise until it exceeds the (diastolic) pressure in
the aorta, and the aortic valve opens. The contraction
continues, and the pressure rises further, but the ventric-
ular volume decreases as blood flows into the aorta. The
ventricle then relaxes. The aortic valve closes when the
ventricular pressure drops below that in the aorta. The
work done in one cycle is the area enclosed by the curve.
For the curve shown, it is 6600 torr ml = 0.88 J. At 80
beats per minute the power is 1.2 W. In this drawing the
stroke volume is 100−35 = 65 ml, and the cardiac output
is

i = (65 ml beat−1)(80 beats/60 s) = 87 × 106m3s−1.

1.18 Turbulent Flow and the Reynolds
Number

Many features of the circulation can be modeled by
Poiseuille flow. However, at least four effects—in addition
to those in Eq. 1.42—cause departures from Poiseuille
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FIGURE 1.35. Pressure–volume relationship in the left ven-
tricle. The curve is traversed counterclockwise with increasing
time. The stroke volume is 100−35 = 65 ml. Systolic pressure
is 118 torr, and diastolic pressure is 70 torr. The ventricular
pressure drops below diastolic while the pressure in the arter-
ies remains about 70 torr because the aortic valve has closed
and prevents back flow

flow: (1) there may be turbulence; (2) there are depar-
tures from a parabolic velocity profile; (3) the vessel walls
are elastic; and (4) the apparent viscosity depends on the
both fraction of the blood volume occupied by red cells
and on the size of the vessel.

The importance of turbulence (nonlaminar) flow is de-
termined by a dimensionless number characteristic of the
system called the Reynolds number NR. It is defined by

NR =
LV ρ

η
, (1.61)

where L is a length characteristic of the problem, V a
velocity characteristic of the problem, ρ the density, and
η the viscosity of the fluid. When NR is greater than a
few thousand, turbulence usually occurs.

The Reynolds number arises in the following way. If
we were to write Newton’s second law for a fluid (which
we have not done) in terms of dimensionless primed vari-
ables such as r′ = r/L, v′ = v/V , and t′ = t/(L/V ), we
would find that the equations depend on the properties
of the fluid only through the combination NR [Mazum-
dar (1992), p. 14]. With appropriate scaling of dimen-
sions and times, flows with the same Reynolds number
are identical.

There is ambiguity in defining the characteristic length
and the characteristic velocity. Should one use the ra-
dius or the diameter of a tube? The maximum velocity
or the average velocity? If one is solving the equations
of motion, one knows what values of L and V were used
to transform the equations. They are used to transform
the solution back to “real world” coordinates. However,
if one is making a statement such as “turbulence usually
occurs for values of NR greater than a few thousand,”
there is ambiguity. On the other hand, the statement is

not very precise. Sometimes an additional subscript is
used to specify how NR was determined.

When NR is large, inertial effects are important. Ex-
ternal forces accelerate the fluid. This happens when the
mass is large and the viscosity is small. As the viscosity
increases (for fixed L, V , and ρ) the Reynolds number
decreases. When the Reynolds number is small, viscous
effects are important. The fluid is not accelerated, and
external forces that cause the flow are balanced by vis-
cous forces. Since viscosity is a form of internal friction in
the fluid, work done on the system by the external forces
is transformed into thermal energy. The low-Reynolds-
number regime is so different from our everyday experi-
ence that the effects often seem counterintuitive. They
are nicely described by Purcell (1977).

Here is an example of an estimate expressed in terms of
the Reynolds number. A pressure difference ∆p acts on a
segment of fluid of length ∆x undergoing Poiseuille flow.
The difference between the force exerted on the segment
of fluid by the fluid “upstream” and that exerted by the
fluid “downstream” is πR2

p∆p. If the average speed of the
fluid is v, then the net work done on the segment by the
fluid upstream and downstream in time ∆t is Wvisc =
πR2

p∆pv∆t. Since the fluid is not accelerated, this work
is converted into thermal energy. We can solve Eq. 1.40
for ∆p and use Eq. 1.43 to write

Wvisc = πR2
p ∆p v∆t = 8ηπv2 ∆x∆t.

The kinetic energy of the moving fluid in a cylinder of
length v∆t is

Ek =
mv2

2
=

ρ πR2
p (v∆t)v2

2
=

ρ πR2
p v3 ∆t

2
,

and the ratio of the kinetic energy to the work done is

Ek

Wvisc
=

ρ v R2
p

16η ∆x
=

1
16ξ

ρ v Rp

η
=

1
16ξ

NR.

(The last step was done by writing the ∆x as ξRp.) This
result shows that the ratio of kinetic energy to viscous
work is proportional to the Reynolds number. Another
example is given in the problems.

A large range of values of NR occurs in the circulatory
system. Typical values corresponding to the peak flow
are given in Table 1.4. Blood flow is laminar except in
the ascending aorta and main pulmonary artery, where
turbulence may occur during peak flow.

There are two main causes of departures from the par-
abolic velocity profile. First, a red cell is about the same
diameter as a capillary. Red cells in capillaries line up
single file, each nearly blocking the capillary. The plasma
flows in small volumes between each red cell, with a ve-
locity profile that is nearly independent of radius. Second,
the entry region causes deviations from Poiseuille flow in
larger vessels.
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FIGURE 1.36. Velocity profiles in steady laminar flow at the
entrance to a tube, showing the development of the parabolic
velocity profile. The velocity is given as v/v. At the entrance
v/v = 1. When the Poiseuille flow is fully developed, v/v is 2
at the center of the tube. These curves are calculated from a
graph by Cebeci and Bradshaw (1977) for laminar flow in a
tube of radius 2 mm and a pressure gradient of 20 torr m−1,
carrying a fluid with a viscosity of 3 × 10−3 N s m−2 and
a density of 103 kg m−3. The scales are different along the
axis and radius of the tube; the tube radius is 2 mm and the
entrance region is 240 mm long.

Suppose that blood flowing with a nearly flat velocity
profile enters a vessel, as might happen when blood flow-
ing in a large vessel enters the vessel of interest, which has
a smaller radius. At the wall of the smaller vessel the flow
is zero. Since the blood is incompressible, the average ve-
locity is the same at all values of x, the distance along the
vessel. (We assume the vessel has constant cross-sectional
area.) However, the velocity profile v(r) changes with dis-
tance x along the vessel. At the entrance to the vessel
(x = 0) there is a very abrupt velocity change near the
walls. As x increases a parabolic velocity profile is at-
tained. The transition or entry region, is shown in Fig.
1.36. In the entry region the pressure gradient is differ-
ent from the value for Poiseuille flow. The velocity pro-
file cannot be calculated analytically in the entry region.
Various numerical calculations have been made, and the
results can be expressed in terms of scaled variables [see,
for example, Cebeci and Bradshaw (1977)]. The Reynolds
number used in these calculations was based on the di-
ameter of the pipe, D = 2Rp, and the average velocity.
The length of the entry region is

L = 0.05DNR,D = 0.1RpNR,D = 0.2RpNR,Rp
. (1.62)

Blood pressure is, of course, pulsatile. This means that
the average velocity and v(r) are changing with time and
also departing from the parabolic profile. Also, at the
peak pressure during systole, the aorta and arteries ex-
pand, storing some of the blood and releasing it gradually
during the rest of the cardiac cycle. Pulsatile flow and the
elasticity of vessel walls are discussed extensively by Caro
et al. (1978) and by Milnor (1989).

Blood is not a Newtonian fluid. The viscosity depends
strongly on the fraction of volume occupied by red cells
(the hematocrit). In blood vessels of less than 100 µm ra-
dius, the apparent viscosity decreases with tube radius.

Since a red cell barely fits in a capillary, the velocity
profile in capillaries is not parabolic. Flow in arterioles
and arteries is often modeled as individual particles sur-
rounded by plasma and transported by laminar flow, each
red cell staying at its own distance from the central axis.
However, high-speed motion pictures show that the red
cells often collide with other red cells and with the wall.
[See the articles by Trowbridge (1982, 1983) and Trow-
bridge and Meadowcroft (1983), and also the Caro et al.
and Milnor articles.]

Symbols Used in Chapter 1

Symbol Use Units First

used on

page

a, a Acceleration m s−2 3

a, b Small distances m 13

c Constant of integration 14

g Acceleration due to gravity m s−2 14

h Small distance m 13

i Total volume flux or flow

rate or current

m3 s−1 16

jv Volume fluence rate or flux

density (flow of volume per

unit area per second)

m s−1 16

l Length of rod m 12

m Mass kg 3

p Pressure Pa 13

pt Pressure in thorax Pa 19

pa Pressure in alveoli Pa 19

r Position m 5

r Distance from origin

(radius) in polar

coordinates

m 4

s Displacement m 11

sn Normal stress Pa 12

ss Shear stress Pa 13

s Distance along a streamline m 18

t Time s 10

v, v Velocity m s−1 10

x, y, z Coordinates m 4

x̂, ŷ, ẑ Unit vectors along the x, y,

and z axes

6

A Constant of integration 16

dA Small area perpendicular

to a streamline

m2 18

D Pipe diameter m 23

E Young’s modulus Pa 12

Ek Kinetic energy J 10

F,F Force N 3

G Shear modulus Pa 13

L Characteristic length m 23

N,N Force N 7

NR Reynolds number 22

NR,D Reynolds number based on

diameter

23

NR,Rp Reynolds number based on

pipe radius

23

P Power W 11

R,R Force N 7
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Symbol Use Units First

used on

page

Rp Radius of pipe m 16

R Vascular resistance Pa m−3 s 20

S Cross-sectional area m2 12

V Volume m3 15

V Velocity m s−1 22

W,W Weight N 4

W Work J 19

δ A small distance m 13

εn Normal strain 12

εs Shear strain 13

η Viscosity Pa s 15

α, β, θ, φ Angle 5

κ Compressibility Pa−1 15

ρ Mass density kg m−3 14

τ ,τ Torque N m 4

ξ Dimensionless ratio 22

Problems

Section 1.1

Problem 1 Estimate the number of hemoglobin mole-
cules in a red blood cell. Red blood cells are little more
than bags of hemoglobin, so it is reasonable to assume
that the hemoglobin takes up all the volume of the cell.

Problem 2 Our genetic information or genome is stored
in the parts of the DNA molecule called base pairs. Our
genome contains about 3 billion

(
3 × 109

)
base pairs, and

there are two copies in each cell. Along the DNA mole-
cule, there is one base pair every one-third of a nanome-
ter. How long would the DNA helix from one cell be if
it were stretched out in a line? If the entire DNA mole-
cule were wrapped up into a sphere, what would be the
diameter of that sphere?

Problem 3 Estimate the size of a box containing one air
molecule. (Hint: What is the volume of one mole of gas
at standard temperature and pressure?) Compare the size
of the box to the size of an air molecule (about 0.1 nm).

Problem 4 Estimate the density of water (H2O) in kg
m−3. Useful information: an oxygen atom contains 8 pro-
tons and 8 neutrons. A hydrogen atom contains 1 proton
and no neutrons. The mass of the electron is negligible.

Section 1.3

Problem 5 A person with mass m = 70 kg has a weight
(mg) of about 700 N. If the person is doing push-ups as
shown, what are the vertical components of the forces ex-
erted by the floor on the hands and feet?

Problem 6 A person with upper arm vertical and fore-
arm horizontal holds a mass of 4 kg. The mass of the
forearm is 1.5 kg. Consider four forces acting on the fore-
arm: F by the bones and ligaments of the upper arm at
the elbow, T by the biceps, 40 N by the mass, and 15 N
as the weight of the arm. The points of application are
shown in the drawing. Calculate the vertical components
of F and T.

Problem 7 When the arm is stretched out horizontally,
it is held by the deltoid muscle. The situation is shown
schematically. Determine T and F.

Section 1.5

Problem 8 When a person crouches, the geometry of
the heel is as shown. Determine T and F. Assume all the
forces act in the plane of the drawing.

Problem 9 A person of weight W is suspended by both
hands from a high bar as shown. The center of mass is
directly below the bar.

(a) Find the horizontal and vertical components Fx and
Fy, where F is the force exerted by the bar on each of the
two hands.

(b) Given the additional information about the arm
shown in the second drawing, calculate the components
of R, the force exerted by the humerus on the forearm
through the elbow, and the tension T in the biceps ten-
don. Neglect the weight of the arm, and assume that T
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and R are the only forces exerted on the forearm by the
upper arm.

Problem 10 Consider the forces on the spine when lift-
ing. Approximate the spinal column as a stiff bar of length
L that has three forces acting on it. W is the downward
force acting at the top of the spinal column (via the arms
and shoulders), and equals the weight of the object being
lifted. F is the force applied by the erector spinae mus-
cle, which attaches to the spine about one-third of the
way from the top of the column. Assume this muscle acts
at an angle of 12 ◦ to the spinal column. R is the force
the pelvis exerts on the spinal column. The weight of the
trunk is neglected. Assume the spinal column makes an
angle θ with the horizontal.

L/3

F

R W

Pelvis

Spine

θ
12°

φ

(a) Determine R and F in terms of W and θ.
(b) The spinal column may be injured if R is too large.

Compare R when θ is 0 ◦ and 90 ◦. This problem explains
why people say to “lift with your legs, not with your back.”

(c) Compare the angle φ when θ is 0 ◦ and 90 ◦ . If φ
is not close to zero, there will be considerable transverse
force at the disks in the lower back, which is not a good
situation.

Section 1.7

Problem 11 Suppose that instead of using a cane, a per-
son holds a suitcase of weight W/4 in one hand, 0.4 m
from the midline. The person is standing on the oppo-
site leg. Calculate the force exerted by the hip abductor
muscles and by the acetabulum on that leg.

Section 1.9

Problem 12 Young’s modulus for a spider’s thread is
about 0.2×1010 Pa, and the thread breaks when it under-
goes a strain of about 50% [Köhler and Vollrath (1995)].

(a) Calculate the tensile strength of the thread and com-
pare it to the tensile strength of steel.

(b) Calculate the strain that steel undergoes when it
breaks. (Assume that a linear relationship between stress
and strain holds until it breaks.) Compare the breaking
strain to the spider’s thread.

Problem 13 Assume an object undergoes a normal
strain in all three directions: εx = ∆x/lx, εy = ∆y/ly,
εz = ∆z/lz. Relate the three strains to the change in vol-
ume of the object. Assume the strains are small.

Section 1.10

Problem 14 Relate the shear strain to angle θ in Fig.
1.23. How does this relationship simplify if θ is small?

Section 1.11

Problem 15 The inspirational pressure difference pin

that the lung can generate is about 86 torr. What would
be the absolute maximum depth at which a person could
breathe through a snorkel device? (A safe depth is only
about half this maximum, since the lung ventilation be-
comes very small at the maximum depth. Assume the
lungs are 30 cm below the mouth.)

Problem 16 A person standing erect can in some cases
be modeled by a column of water.

(a) Calculate the hydrostatic pressure difference be-
tween a person’s head and foot in torr.

(b) Explain why blood pressure is measured in the arm
at the same vertical height as the heart.

(c) Our body has adapted to having a larger hydrostatic
pressure in our feet than in our head. Speculate on why
you feel uncomfortable when you “stand on your head.”

Problem 17 A medication dissolved in a saline solution
is infused into a vein in the patients arm (IV infusion).
The density of saline is the same as water. The pressure
of the blood inside the vein is 5 torr above atmospheric
pressure. How high above the insertion point must the
container be hung so that there is sufficient hydrostatic
pressure to force fluid into the vein?
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Problem 18 The walls of a cylindrical pipe that has an
excess pressure p inside are subject to a tension force per
unit length T . (Consider only the force per unit length in
the walls of the cylinder, not the force in any end caps
of the pipe.) The force per unit length in the walls can be
calculated by considering a different pipe made up of two
parts as shown in the figure: a semicircular half-cylinder
of radius R and length L attached to a flat plate of width
2R and length L. What is the force that the excess pres-
sure exerts on the flat plate? Show that the tension force
per unit length in the wall of the tube is f = pR. This
is called the Law of Laplace. (Do not worry about any
deformation.)

See if you can obtain the same answer by direct inte-
gration of the horizontal and vertical components of the
force due to the excess pressure.

Sometimes a patient will have an aneurysm in which a
portion of an artery will balloon out and possibly rupture.
Comment on this phenomenon in light of the R depen-
dence of the force per unit length [Hademenos (1995)].

Problem 19 Find a relationship among the tension per
unit length T across any element of the wall of a soap
bubble, the excess pressure inside the bubble, ∆p, and the
radius of the bubble, R. (Hint: Use the same technique as
for the previous problem.)

Section 1.12

Problem 20 Suppose a fish has an average density of
1030 kg m−3, compared to the density of the surround-
ing water, 1000 kg m−3. One way the fish can keep from
slowly sinking is by using an air bladder (the density of
air is 1.2 kg m−3). What fraction of the fish’s total volume
must be air in order for the fish to be neutrally buoyant
(the buoyant force is equal and opposite to the weight).
Assume that the volume V of the fish’s tissue is fixed, so
in order to increase the volume U of the air bladder, the
total volume of the fish V + U must increase.

Problem 21 This problem explores the physics of a cen-
trifuge. A cylinder of fluid of density ρfluid and length L
is rotated at an angular velocity ω (rad s−1) in a hori-
zontal plane about a vertical axis through one end of the
tube. Neglect gravity. An object moving in a circle with

constant angular velocity has an acceleration a = −rω2

toward the center of the circle. Find the pressure in the
fluid as a function of distance from the axis of rotation,
assuming the pressure is p0 at r = 0.

Problem 22 Buoyancy plays an important role in the
centrifuge. Consider a small cubic particle of density ρ
immersed in a fluid of density ρfluid.

(a) Write Newton’s second law for the particle, consid-
ering only the centripetal acceleration and the pressure
exerted by the fluid (Problem 21). Find an expression for
the “effective weight” of the particle (analogous to Eq.
1.31) in terms of ρ, ρfluid, ω, r, and the particle volume
V . Your result is more general than you might expect: it is
true for a particle of any shape [Wick and Tooby (1977)].

(b) Find the ratio of the “effective weight” derived in
(a) to the “effective weight” due to gravity (Eq. 1.31).

(c) If the particle is 10 cm from the axis of a centrifuge
spinning at 40 000 revolutions per minute, evaluate the
ratio obtained in (b).

(d) The “density gradient” technique uses a sucrose so-
lution of varying concentration to produce a fluid density
that varies with r, ρfluid(r). Explain how in this case the
centrifuge can be used to separate particles of different
densities.

Problem 23 For the centrifuge of Problem 22 assume
there is one additional force: a viscous force proportional
to the speed u of the particle relative to the fluid.

(a) Derive an expression for u, the “sedimentation ve-
locity” assuming the particle is not accelerating relative
to the fluid.

(b) The sedimentation velocity per unit acceleration, S,
is a parameter commonly used in centrifuge work. Divide
the expression obtained in (a) by the centripetal accelera-
tion to obtain an expression for S. The common unit for
S is the svedberg (1 Sv = 10−13 s).

(c) Consider two particles with S = 50 and 70 Sv. For
the centrifuge of Problem 22(c), how long will it take for
the particles to separate by 3 mm if they were initially at
the same position? How long would this separation take
if gravity were used instead of a centrifuge?

Section 1.13

Problem 24 What is the compressibility of a gas for
which pV =const? Compare the compressibility of water
to that of air at atmospheric pressure. What are the im-
plications of this for the volume of the lungs of a swimmer
diving deep below the water surface?

Problem 25 Figure 1.20, showing a rod subject to a
force along its length, is a simplification. Actually, the
cross-sectional area of the rod shrinks as the rod length-
ens. Let the axial strain and stress be along the z axis.
They are related by Eq. 1.25, sz = Eεz. The lateral
strains εx and εy are related to sz by sz = −(E/ν)εx =
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−(E/ν)εy,where ν is called the “Poisson’s ratio” of the
material.

(a) Use the result of Problem 13 to relate E and ν to
the fractional change in volume ∆V/V .

(b) The change in volume caused by hydrostatic pres-
sure is the sum of the volume changes caused by axial
stresses in all three directions. Relate Poisson’s ratio to
the compressibility.

(c) What value of ν corresponds to an incompressible
material?

(d) For an isotropic material, −1 < ν < 0.5. How
would a material with negative ν behave?

Elliott et al. (2002) measured Poisson’s ratio for ar-
ticular (joint) cartilage under tension and found 1 <
ν < 2. This large value is possible because cartilage in
anisotropic: its properties depend on direction.

Section 1.14

Problem 26 A sphere of radius R moving with speed v
in laminar flow through a viscous fluid experiences a drag
force Fvisc = 6πηRv. At higher speeds inertial effects (the
acceleration of the fluid displaced by the sphere) become
important, and the drag becomes proportional to v2 and
to ρ, the density of the fluid. The force also depends on
the radius of the sphere to some unknown power: Fdrag =
Kρv2Ra, where K is a dimensionless constant.

(a) Make a dimensional analysis to find the power a.
(b) Find the critical velocity at which Fvisc = Fdrag.

Problem 27 Consider fluid flowing between two slabs as
shown in Fig. 1.26. Since the work done by the external
force on the system in time dt is dW = Fvdt, the rate
of doing work is P = dW/dt = Fv, where v is the speed
of the moving plate. Find the power dissipated per unit
volume of the fluid in terms of the velocity gradient.

Problem 28 Consider a fluid that is flowing in the x
direction, but with the velocity vx changing in the y di-
rection.

(a) Start with Newton’s second law. Analyze the forces
on a small cube of fluid and derive the equation

ρ
∂vx

∂t
+ ρvx

∂vx

∂x
= −∂p

∂x
+ η

∂2vx

∂y2
.

This is a simplified version of the Navier-Stokes equation
that governs fluid flow.

(b) Which term in the equation is nonlinear (that is,
if p and vx are doubled, which term does not double)? A
nonlinear equation is needed to describe complicated flows
such as turbulence.

Problem 29 Consider the simplified version of the
Navier-Stokes equation in Problem 28. Assume the fluid
speed is approximately V and all spatial changes occur
over distances of order L. Take the ratio of the “inertial
term” ρvx(∂vx/∂x) to the “viscous term” η(∂2vx/∂y2)
and show that you get the Reynolds number, Eq. 1.61.

Section 1.15

Problem 30 Consider laminar flow in a pipe of length
∆x and radius Rp. Find the total viscous drag exerted by
the pipe on the fluid.

Problem 31 The maximum flow rate from the heart is
500 ml s−1. If the aorta has a diameter of 2.5 cm and the
flow is Poiseuille, what are the average velocity, the maxi-
mum velocity at the center of the vessel, and the pressure
gradient along the vessel? Plot the velocity vs distance
from the center of the vessel. As an approximation to the
viscosity of blood, use η = 10−3 kg m−1 s−1.

Problem 32 The glomerular pore described in Eq. 1.41
has a flow i = 7.2 × 10−21 m3 s−1. How many molecules
of water per second flow through it? What is their average
speed?

Problem 33 A parent vessel of radius Rp branches into
two daughter vessels of radii Rd1 and Rd2. Find a re-
lationship between the radii such that the shear stress on
the vessel wall is the same in each vessel. (Hint: Use con-
servation of the volume flow.) This relationship is called
“Murray’s Law”. Organisms may use shear stress to de-
termine the appropriate size of vessels for fluid transport
[LaBarbera (1990)].

Problem 34 Sap flows up a tree at a speed of about 1
mm s−1 through its vascular system (xylem), which con-
sists of cylindrical pores of 20 µm radius. Assume the vis-
cosity of sap is the same as the viscosity of water. What
pressure difference between the bottom and top of a 100
m tall tree is needed to generate this flow? How does it
compare to the hydrostatic pressure difference caused by
gravity?

Problem 35 Consider a small cube of incompressible
fluid. Analyze the volume fluence rate for each face of
the cube and show that the divergence of v is zero. (The
divergence is defined in Chapter 4.)

Section 1.16

Problem 36 The accompanying figure shows the neg-
ative pressure (below atmospheric) that must be main-
tained in the thorax during the respiratory cycle by a pa-
tient with airway obstruction in order to breathe. Viscous
effects are included. Estimate the work in joules done by
the body during a breath.
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Section 1.17

Problem 37 The volume of blood in a typical person is
5 liters, and the volume current through the aorta is about
5 liter min−1.

(a) What is the total volume current through all the
systemic capillaries?

(b) What is the total volume current through all the
pulmonary capillaries?

(c) How long does the blood take to make one complete
circuit through the circulatory system?

Problem 38 Find the conversion factor between PRU
and Pa m−3 s.

Problem 39 Equation 1.58 relates the resistance of a
vessel to its radius. In the circulatory system, the resis-
tance of an arteriole increases when the smooth muscle
surrounding the arteriole contracts, thereby decreasing its
radius. By what factor does the resistance increase if the
radius decreases by 10%?

Problem 40 Derive the equations for resistance in a col-
lection of vessels in series and in parallel. Remember that
when several vessels are in series, the current is constant
and the total pressure change is the sum of the pressure
changes along the length of each vessel. When vessels are
in parallel, each has the same pressure drop, but the cur-
rent before the vessels branch is the sum of the currents
in each branch.

Problem 41 The velocity of the blood in the aorta is
about 0.5 m s−1, and the velocity of the blood in a capil-
lary is about 0.001 m s−1. We have only one aorta, with a
diameter of 20 mm, but many capillaries in parallel, each
with a diameter of 8 µm. Estimate how many capillaries
are typically open at any one time.

Problem 42 Suppose a student asked you, “How can
blood be moving more slowly in a capillary than in

the aorta? For an incompressible fluid, when the cross-
sectional area along a pipe decreases, the velocity in-
creases, so that the volume current i is the same. The
capillary has a much smaller cross-sectional area than
the aorta. Therefore, the blood should move faster in the
capillary than in the aorta!” How would you respond to
this student?

Problem 43 For Poiseuille flow, find an expression for
the maximum shear rate in each vessel from Eq. 1.44.
Where in the vessel does it occur? Typical maximum shear
rates are 50 s−1 in the aorta, 150 s−1 in the femoral
artery, and 400 s−1 in an arteriole.

Problem 44 A sphere of radius a moving through a fluid
with speed v is subject to a viscous drag Fdrag = 6πηav.
Make an argument similar to that in the text to show that
the ratio of kinetic energy of a sphere of fluid of the same
size moving at the same speed to the viscous work done
to displace the sphere by its own diameter is NR/18.

Problem 45 Find an expression for the entry length in
terms of the tube size, the pressure gradient, and the prop-
erties of the fluid. Estimate the length of the entry region
in the aorta, in an artery, and in an arteriole of radius
20 µm. Use η = 10−3 kg m−1 s−1.

Problem 46 Estimate the tension per unit length and
the stress in the walls of various blood vessels using the
data in Table 1.4.

Problem 47 Consider laminar viscous flow in the fol-
lowing situation, which models flow in the bronchi or a
network of branching blood vessels. A vessel of radius R
connects to N smaller vessels, each of radius xR.

(a) What is the relationship between total cross-
sectional area of the smaller vessels and that of the larger
vessel if the pressure gradient is the same in both sets of
vessels?

(b) How do the pressure gradients compare if the total
cross-sectional area is the same in both sets of vessels?
(Neither assumption is realistic.)

Problem 48 Compare the magnitude of the four terms
in Eq. 1.42 in the following two cases. Ignore branching.
Assume the vessels are vertical. Use ρ = 103 kg m−3 and
η = 10−3 Pa s.

(a) The descending aorta. Assume the length is 35 cm,
the radius is 1 cm (independent of distance along the
aorta), the peak acceleration of the blood is 1800 cm s−2,
and the peak velocity (during the cardiac cycle) is 70 cm
s−1 at the entrance and 60 cm s−1 at the exit. (These ve-
locities are different because some of the blood leaves the
aorta in major arteries.)

(b) An arteriole of radius 50 µm, length 1 mm, and
constant velocity of 5 mm s−1 at both entrance and exit.

Problem 49 The viscosity of water (and therefore of
blood) is a rapidly decreasing function of temperature.
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Water at 5 ◦C is twice as viscous as water at 35 ◦C. Spec-
ulate on the implications of this extreme temperature de-
pendence for the circulatory system of cold-blooded ani-
mals. [For a further discussion see Vogel (1994), pp. 27–
31.]

Section 1.18

Problem 50 Estimate the Reynolds number for the
following flows. In each case, determine whether the
Reynolds number is high (� 1) or low (� 1).

(a) E. coli bacteria (length 2 microns) swim in water
at speeds of about 0.01 mm s−1.

(b) An Olympic swimmer (length 2 m) swims in water
at speeds of up to 2 m s−1.

(c) A bald eagle (wingspan = 2 m) flies in air
(density = 1.2 kg m−3, viscosity = 1.8 × 10−5 Pa s) at
speeds of 20 km hr−1.

Problem 51 Estimate the Reynolds number of blood
flow in a capillary, using the data in Table 1.4. How does
this compare to that in the aorta?
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2
Exponential Growth and Decay

The exponential function is one of the most important
and widely occurring functions in physics and biology. In
biology, it may describe the growth of bacteria or ani-
mal populations, the decrease of the number of bacteria
in response to a sterilization process, the growth of a
tumor, or the absorption or excretion of a drug. (Expo-
nential growth cannot continue forever because of limi-
tations of nutrients, etc.) Knowledge of the exponential
function makes it easier to understand birth and death
rates, even when they are not constant. In physics, the
exponential function describes the decay of radioactive
nuclei, the emission of light by atoms, the absorption of
light as it passes through matter, the change of voltage or
current in some electrical circuits, the variation of tem-
perature with time as a warm object cools, and the rate
of some chemical reactions.

In this book, the exponential function will be needed
to describe certain probability distributions, the concen-
tration ratio of ions across a cell membrane, the flow of
solute particles through membranes, the decay of a sig-
nal traveling along a nerve axon, and the return of some
physiologic variables to their equilibrium values after they
have been disturbed.

Because the exponential function is so important, and
because we have seen many students who did not under-
stand it even after having been exposed to it, the chapter
starts with a gentle introduction to exponential growth
(Sec. 2.1) and decay (Sec. 2.2). Section 2.3 shows how to
analyze exponential data using semilogarithmic graph pa-
per. The next section shows how to use semilogarithmic
graph paper to find instantaneous growth or decay rates
when the rate varies. Some would argue that the avail-
ability of computer programs that automatically produce
logarithmic scales for plots makes these sections unneces-
sary. We feel that intelligent use of semilogarithmic and
logarithmic (log-log) plots requires an understanding of
the basic principles.

Variable rates are described in Sec. 2.4. Clearance, dis-
cussed in Sec. 2.5, is an exponential decay process that is
important in physiology. Sometimes there are competing
paths for exponential removal of a substance: multiple
decay paths are introduced in Sec. 2.6. A very basic and
simple model for many processes is the combination of
input at a fixed rate accompanied by exponential decay,
described in Sec. 2.7. Sometimes a substance exists in two
forms, each with its own decay rate. One then must fit
two or more exponentials to the set of data, as shown in
Sec. 2.8.

Section 2.9 discusses the logistic equation, one possible
model for a situation in which the growth rate decreases
as the amount of substance increases. The chapter closes
with a section on power-law relationships. While not ex-
ponential, they are included because data analysis can
be done with log–log graph paper, a technique similar to
that for semilog paper. If you feel mathematically secure,
you may wish to skim the first four sections, but you will
probably find the rest of the chapter worth reading.

2.1 Exponential Growth

An exponential growth process is one in which the rate
of increase of a quantity is proportional to the present
value of that quantity. The simplest example is a savings
account. If the interest rate is 5% and if the interest is
credited to the account once a year, the account increases
in value by 5% of its present value each year. If the ac-
count starts out with $100, then at the end of the first
year, $5 is credited to the account and the value becomes
$105. At the end of the second year, 5 percent of $105
is credited to the account and the value grows by $5.25
to $110.25. The growth of such an account is shown in
Table 2.1 and Fig. 2.1. These amounts can be calcu-
lated as follows. At the end of the first year, the original
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TABLE 2.1. Growth of a savings account earning 5% interest
compounded annually, when the initial investment is $100.

Year Amount Year Amount Year Amount

1 $105.00 10 $162.88 100 $13,150.13
2 110.25 20 265.33 200 1,729,258.09
3 115.76 30 432.19 300 2.27 × 108

4 121.55 40 704.00 400 2.99 × 1010

5 127.63 50 1146.74 500 3.93 × 1012

6 134.01 60 1867.92 600 5.17 × 1014

7 140.71 70 3042.64 700 6.80 × 1016

8 147.75 80 4956.14 800 8.94 × 1018

9 155.13 90 8073.04 900 1.18 × 1021

amount, y0, has been augmented by (0.05)y0:

y1 = y0(1 + 0.5).

During the second year, the amount y1 increases by 5%,
so

y2 = y1(1.05) = y0(1.05)(1.05) = y0(1.05)2.

After t years, the amount in the account is

yt = y0(1.05)t.

In general, if the growth rate is b per compounding period,
the amount after t periods is

yt = y0(1 + b)t. (2.1)

It is possible to keep the same annual growth (interest)
rate, but to compound more often than once a year. Table
2.2 shows the effect of different compounding intervals
on the amount, when the interest rate is 5%. The last
two columns, for monthly compounding and for “instant
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FIGURE 2.1. The amount in a savings account after t years,
when the amount is compounded annually at 5% interest.

TABLE 2.2. Amount of an initial investment of $100 at 5%
annual interest, with different methods of compounding.

Month Annual Semiannual Quarterly Monthly Instant

0 $100.00 $100.00 $100.00 $100.000 $100.000
1 100.00 100.00 100.00 100.417 100.418
2 100.00 100.00 100.00 100.835 100.837
3 100.00 100.00 101.25 101.255 101.258
4 100.00 100.00 101.25 101.677 101.681
5 100.00 100.00 101.25 102.101 102.105
6 100.00 102.50 102.52 102.526 102.532
7 100.00 102.50 102.52 102.953 102.960
8 100.00 102.50 102.52 103.382 103.390
9 100.00 102.50 103.80 103.813 103.821
10 100.00 102.50 103.80 104.246 104.255
11 100.00 102.50 103.80 104.680 104.690
12 105.00 105.06 105.09 105.116 105.127

interest,” are listed to the nearest tenth of a cent to show
the slight difference between them.

The table entries were calculated in the following way.
Suppose that compounding is done N times a year. In t
years, the number of compoundings is Nt. If the annual
fractional rate of increase is b, the increase per compound-
ing is b/N . For six months at 5% (b = 0.05) the increase
is 2.5, for three months it is 1.25, etc. The amount after
t units of time (years) is, in analogy with Eq. 2.1,

y = y0 (1 + b/N)Nt . (2.2)

Recall (refer to Appendix C) that (a)bc = (ab)c. The
expression for y can be written as

y = y0

[
(1 + b/N)N

]t
. (2.3)

Most calculus textbooks show that the quantity

(1 + b/N)N → eb

as N becomes very large. (Rather than prove this fact
here, we give numerical examples in Table 2.3 for two
different values of b.) Therefore, Eq. 2.3 can be rewritten
as

y = y0e
bt = y0 exp(bt). (2.4)

(The exp notation is used when the argument is compli-
cated.) To calculate the amount for instant interest, it is
necessary only to multiply the fractional growth rate per
unit time b by the length of the time interval and then

TABLE 2.3. Numerical examples of the convergence of
(1 + b/N)N to eb as N becomes large.

N b = 1 b = 0.5

10 2.594 1.0511
100 2.705 1.0513

1000 2.717 1.0513
eb 2.718 1.0513
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FIGURE 2.2. A graph of the exponential function y = et.

look up the exponential function of this amount in a table
or evaluate it with a computer or calculator. The number
e is approximately equal to 2.71828 . . . and is called the
“base of the natural logarithms.” Like π (3.14159 . . . ) e
has a long history [Maor (1994)].

The exponential function is plotted in Fig. 2.2. (The
meaning of negative values of t will be considered in
the next section.) This function increases more and more
rapidly as t increases. This is expected, since the rate
of growth is always proportional to the present amount.
This is also reflected in the following property of the ex-
ponential function:

d

dt

(
ebt
)

= bebt. (2.5)

This means that the function y = y0e
bx has the property

that
dy

dt
= by. (2.6)

Any constant multiple of the exponential function ebt has
the property that its rate of growth is b times the function
itself. Whenever we see the exponential function, we know
that it satisfies Eq. 2.6. Equation 2.6 is an example of a
differential equation. If you learn how to solve only one
differential equation, let it be Eq. 2.6. Whenever we have
a problem in which the growth rate of something is pro-
portional to the present amount, we can expect to have
an exponential solution. Notice that for time intervals t
that are not too large, Eq. 2.6 implies that ∆y = (b∆t)y.
This again says that the increase in y is proportional to
y itself.

The independent variable in this discussion has been
t. It can represent time, in which case b is the fractional

growth rate per unit time; distance, in which case b is the
fractional growth per unit distance; or something else.
We could, of course, use another symbol such as x for
the independent variable, in which case we would have
dy/dx = by, y = y0e

bx.

2.2 Exponential Decay

Figure 2.2 shows the exponential function for negative
values of t as well as positive ones. (Remember that e−t =
1/et.) To see what this means, consider a bank account
in which no interest is credited, but from which 5% of
what remains is taken each year. If the initial balance
is $100, $5 is removed the first year to leave $95.00. In
the second year, 5% of $95 or $4.75 is removed. In the
third year, 5% of $90.25 or $4.65 is removed. The annual
decrease in y becomes less and less as y becomes less and
less. The equations developed in the preceding section
also describe this situation. It is only necessary to call b
the fractional decay and allow it to have a negative value,
− |b|. Equation 2.1 then has the form y = y0(1−|b|)t and
Eq. 2.4 is

y = y0e
−|b|t. (2.7)

Often b is regarded as being intrinsically positive, and Eq.
2.7 is written as

y = y0e
−bt. (2.8)

One could equally well write y = y0e
bt and regard b as

being negative.
The radioactive isotope 99mTc (read as technetium-99)

has a fractional decay rate b = 0.1155 h−1. If the number
of atoms at t = 0 is y0, the fraction f = y/y0 remaining at
later times decreases as shown in Fig. 2.3. The equation
that describes this curve is

f =
y

y0
= e−bt, (2.9)

where t is the elapsed time in hours and b = 0.1155 h−1.
The product bt must be dimensionless, since it is in the
exponent.
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FIGURE 2.3. A plot of the fraction of nuclei of 99mTc surviv-
ing at time t.
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People often talk about the half-life T1/2, which is the
length of time required for f to decrease to one-half. From
inspection of Fig. 2.3, the half-life is 6 h. This can also
be determined from Eq. 2.9:

0.5 = e−bT1/2 .

From a table of exponentials, one finds that e−x = 0.5
when x = 0.69315. This leads to the very useful relation-
ship bT1/2 = 0.693 or

T1/2 =
0.693

b
. (2.10)

For the case of 99mTc, the half-life is T1/2 =
0.693/0.1155 = 6 h.

One can also speak of a doubling time if the exponent
is positive. In that case 2 = ebT2 , from which

T2 =
0.693

b
. (2.11)

2.3 Semilog Paper

A special kind of graph paper, called semilog paper, makes
the analysis of exponential growth and decay problems
much simpler. If one takes logarithms (to any base) of
Eq. 2.4 one has

log y = log y0 + bt log e. (2.12)

If the dependent variable is considered to be u = log y,
and since log y0 and log e are constants, this equation is
of the form

u = c1 + c2t. (2.13)

The graph of u vs. t is a straight line with positive slope
if b is positive and negative slope if b is negative.

On semilog paper the vertical axis is marked in a log-
arithmic fashion. The graph can be plotted without hav-
ing to calculate any logarithms. Figure 2.4 shows a plot of
the exponential function of Fig. 2.2, for both positive and
negative values of t. First, note how to read the vertical
axis. A given distance along the axis always corresponds
to the same multiplicative factor. Each cycle represents
a factor of 10. To use the paper, it is necessary first to
mark off the decades with the desired values. In Fig. 2.4
the decades have been marked 0.1, 1, 10, 100. The 6 that
lies between 0.1 and 1 is 0.6; the 6 between 1 and 10 is
6.0; the 6 between 10 and 100 represents 60; and so forth.
The paper can be imagined to go vertically forever in ei-
ther direction; one never reaches zero. Figure 2.4 has two
examples marked on it with dashed lines. The first shows
that for t = −1.0, y = 0.36; the second shows that for
t = +1.5, y = 4.5.

Semilog paper is most useful for plotting data that you
suspect may have an exponential relationship. If the data
plot as a straight line, your suspicions are confirmed.
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FIGURE 2.4. A plot of the exponential function on semilog
paper.

From the straight line, you can determine the value of
b. Figure 2.5 is a plot of the intensity of light that passed
through an absorber in a hypothetical example. The in-
dependent variable is absorber thickness x. The decay is
exponential, except for the last few points, which may
be high because of experimental error. (As the intensity
of the light decreases, it becomes harder to measure ac-
curately.) We wish to determine the decay constant in
y = y0e

−bx. One way to do it would be to note (dashed
line A in Fig. 2.5) that the half-distance is 0.145 cm, so
that, from Eq. 2.10,

b =
0.693
0.145

= 4.8 cm−1.

This technique can be inaccurate because it is difficult to
read the graph accurately. It is more accurate to use a
portion of the curve for which y changes by a factor of
10 or 100. The general relationship is y = y0e

bx, where
the value of b can be positive or negative. If two different
values of x are selected, one can write

y2

y1
=

y0e
bx2

y0ebx1
= eb(x2−x1).

If y2/y1 = 10, then this equation has the form 10 = ebX10

where X10 = x2 − x1 when y2/y1 = 10. From a table of
exponentials, bX10 = 2.303, so that

b =
2.303
X10

. (2.14)
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FIGURE 2.5. A semilogarithmic plot of the intensity of light
after it has passed through an absorber of thickness x.

The same procedure can be used to find b using a factor
of 100 change in y:

b =
4.605
X100

. (2.15)

If the curve represents a decaying exponential, then
y2/y1 = 10 when x2 < x1, so that X10 = x2 − x1 is
negative. Equation 2.14 then gives the negative value
of b.

As an example, consider the exponential decay in Fig.
2.5. Using points B and C, we have x1 = 0.97, y1 = 10−2,
x2 = 0.48, y2 = 10−1, X10 = 0.480 − 0.97 = −0.49.
Therefore b = 2.303/(−0.49) = −4.7 cm−1, which is a
more accurate determination than the one we made using
the half-life.

2.4 Variable Rates

The equation dy/dx = by (or dy/dt = by) says that y
grows or decays at a rate that is proportional to y. The
constant b is the fractional rate of growth or decay. It is
possible to define the fractional rate of growth or decay
even if it is not constant but is a function of x:

b(x) =
1
y

dy

dx
. (2.16)

Semilogarithmic graph paper can be used to analyze the
curve even if b is not constant. Since d(ln y)/dy = 1/y,

FIGURE 2.6. A semilogarithmic plot of y vs x when the decay
rate is not constant. Each tangent line represents the instan-
taneous decay rate for that value of x.

the chain rule for evaluating derivatives gives

d

dx
(ln y) =

1
y

dy

dx
= b.

This means that b(x) is the slope of a plot of ln y vs. x. A
semilogarithmic plot of y vs x is shown in Fig. 2.6. The
straight line is tangent to the curve and decays with a
constant rate equal to b(x) at the point of tangency. The
value of b for the tangent line can be determined using
the methods in the previous section. A second tangent
line at a larger value of x in Fig. 2.6 has a smaller value
of the decay rate.

If finite changes ∆x and ∆y have been measured, they
may be used to estimate b(x) directly from Eq. 2.16. For
example, suppose that y = 100, 000 people and that in
∆x = 1 year there is a change ∆y = −37. In this case
∆y is very small compared to y, so we can say that b =
(1/y)(∆y/∆x) = −37×10−5. If the only cause of change
in this population is deaths, the absolute value of b is
called the death rate.

A plot of the number of people surviving in a popula-
tion, all of whom have the same disease, can provide in-
formation about the prognosis for that disease. The death
rate is equivalent to the decay constant. An example of
such a plot is shown in Fig. 2.7. Curve A shows a disease
for which the death rate is constant. Curve B shows a
disease with an initially high death rate which decreases
with time; if the patient survives the initial period, the
prognosis is much better. Curve C shows a disease for
which the death rate increases with time.

Surprisingly, there are a few diseases that have
death rates independent of the duration of the disease
(Zumoff 1966). Any discussion of mortality should be
made in terms of the surviving population, since any fur-
ther deaths must come from that group. Nonetheless, one
often finds results in the literature reported in terms of
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FIGURE 2.7. Semilogarithmic plots of the fraction of a pop-
ulation surviving in three different diseases. The death rates
(decay constants) depend on the duration of the disease.

the cumulative fraction of patients who have died. Figure
2.8 shows the survival of patients with congestive heart
failure for a period of nine years. The data are taken from
the Framingham study [McKee et al. (1971)]; the death
rate is constant during this period. For a more detailed
discussion of various possible survival distributions, see
Clark (1975).

As long as b has a constant value, it makes no difference
what time is selected to be t = 0. To see this, suppose that
the value of y decays exponentially with constant rate:
y = y0e

−bt. Consider two different time scales, shifted
with respect to each other so that t′ = t0 + t. In terms of
the shifted time t′, the value of y is

y = y0e
−bt = y0e

−b(t′−t0) =
(
y0e

bt0
)
e−bt′ .
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FIGURE 2.8. Survival of patients with congestive heart fail-
ure. Data are from McKee et al. (1971).

This has the same form as the original expression for y(t).
The value of y′

0 is y0e
bt0 , which reflects the fact that t′ = 0

occurs at an earlier time than t = 0, so y′
0 > y0.

If the decay rate is not constant, then the origin of
time becomes quite important. Usually there is something
about the problem that allows t = 0 to be determined.
Figure 2.9 shows survival after a heart attack (myocardial
infarct). The time of the initial infarct defines t = 0; if
the origin had been started two or three years after the
infarct, the large initial death rate would not have been
seen.

As long as the rate of increase can be written as a func-
tion of the independent variable, Eq. 2.16 can be rewrit-
ten as dy/y = b(x)dx. This can be integrated:

∫ y2

y1

dy

y
=
∫ x2

x1

b(x) dx,

ln(y2/y1) =
∫ x2

x1

b(x) dx,

y2

y1
= exp

(∫ x2

x1

b(x) dx

)
. (2.17)

If we can integrate the right-hand side analytically, nu-
merically, or graphically, we can determine the ratio
y2/y1.

2.5 Clearance

In some cases in physiology, the amount of a substance
may decay exponentially because the rate of removal
is proportional to the concentration of the substance
(amount per unit volume) instead of to the total amount.
For example, the rate at which the kidneys excrete a sub-
stance may be proportional to the concentration in the

FIGURE 2.9. The fraction of patients surviving after a my-
ocardial infarction (heart attack) at t = 0. The curve labeled
“Fast Component” plots 10 times the difference between the
survival curve and the extrapolated “Slow Component.” From
B. Zumoff, H. Hart, and L. Hellman (1966). Considerations
of mortality in certain chronic diseases. Ann. Intern. Med.
64: 595–601. Reproduced by permission of Annals of Internal
Medicine. Drawing courtesy of Prof. Zumoff.
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FIGURE 2.10. A case in which the rate of removal of a sub-
stance from the a fluid compartment depends on the concen-
tration, not on the total amount of substance in the com-
partment. Increasing the compartment volume with the same
concentration of the substance would not change the rate of
removal.

blood that passes through the kidneys, while the total
amount depends on the total fluid volume in which the
substance is distributed. This is shown schematically in
Fig. 2.10. The large box on the left represents the total
fluid volume V . It contains a total amount of some sub-
stance, y. If the fluid is well mixed, the concentration is
C = y/V . The removal process takes place only at the
dashed line, at a rate proportional to C. The equation
describing the change of y is

dy

dt
= −KC = −K

( y

V

)
. (2.18)

The proportionality constant K is called the clearance.
Its units are m3 s−1. The equation is the same as Eq. 2.6
if K/V is substituted for b. The solution is

y = y0e
−(K/V )t. (2.19)

The basic concept of clearance is best remembered in
terms of Fig. 2.10. Other definitions are found in the lit-
erature. It sometimes takes considerable thought to show
that the definitions are equivalent. A common definition
in physiology books is “clearance is the volume of plasma
from which y is completely removed per unit time.” To
see that this definition is equivalent, imagine that y is
removed from the body by removing a volume V of the
plasma in which the concentration of y is C. The rate
of loss of y is the concentration times the rate of volume
removal:

dy

dt
= −

∣
∣
∣
∣
dV

dt

∣
∣
∣
∣C. (2.20)

(dV/dt is negative for removal.) Comparison with Eq.
2.18 shows that |dV/dt| = K.

As long as the compartment containing the substance
is well mixed, the concentration will decrease uniformly
throughout the compartment as y is removed. The con-
centration also decreases exponentially:

C = C0e
−(K/V )t. (2.21)

An example may help to clarify the distinction between
b and K. Suppose that the substance is distributed in

a fluid volume V = 18 l. The substance has an initial
concentration C0 = 3 mg l−1 and the clearance is K = 2
l h−1. The total amount is y0 = C0V = 3 × 18 = 54
mg. The fractional decay rate is b = K/V = 1/9 h−1.
The equations for C and y are C = (3 mg l−1)e−t/9,
y = (54 mg)e−t/9. At t = 0 the initial rate of removal is
−dy/dt = 54/9 = 6 mg h−1.

Now double the fluid volume to V = 36 l without
adding any more of the substance. The concentration falls
to 1.5 mg l−1 although y0 is unchanged. The rate of re-
moval is also cut in half, since it is proportional to K/V
and the clearance is unchanged. The concentration and
amount are now C = 1.5e−t/18, y = 54e−t/18. The initial
rate of removal is dy/dt = 54/18 = 3 mg h−1. It is half
as large as above, because C is now half as large.

If more of the substance were added along with the
additional fluid, the initial concentration would be un-
changed, but y0 would be doubled. The fractional decay
rate would still be K/V = 1/18 h−1: C = 3.0e−t/18,
y = 108e−t/18. The initial rate of disappearance would
be dy/dt = 108/18 = 6 mg h−1. It is the same as in the
first case, because the initial concentration is the same.

2.6 Multiple Decay Paths

It is possible to have several independent paths by which
y can disappear. For example, there may be several com-
peting ways by which a radioactive nucleus can decay; a
radioactive isotope given to a patient may decay radioac-
tively and be excreted biologically at the same time; a
substance in the body can be excreted in the urine and
metabolized by the liver; or patients may die of several
different diseases.

In such situations the total decay rate b is the sum
of the individual rates for each process, as long as the
processes act independently and the rate of each is pro-
portional to the present amount (or concentration) of y:

dy

dt
= −b1y − b2y − b3y − · · · (2.22)

= −(b1 + b2 + b3 + · · · )y = −by.

The equation for the disappearance of y is the same as
before, with the total decay rate being the sum of the
individual rates. The rate of disappearance of y by the
ith process is not dy/dt but is −biy. Instead of decay
rates, one can use half-lives. Since b = b1 + b2 + b3 + · · · ,
the total half-life T is given by

0.693
T

=
0.693
T1

+
0.693
T2

+
0.693
T3

+ · · ·

or
1
T

=
1
T1

+
1
T2

+
1
T3

+ · · · . (2.23)
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FIGURE 2.11. Sketch of the initial slope a and final value a/b
of y when y(0) = 0.

2.7 Decay Plus Input at a Constant
Rate

Suppose that in addition to the removal of y from the
system at a rate −by, y enters the system at a constant
rate a, independent of y and t. The net rate of change of
y is given by

dy

dt
= a − by. (2.24)

It is often easier to write down a differential equa-
tion describing a problem than it is to solve it. In this
case the solution to the equation and the techniques for
solving it are well known. However, a good deal can be
learned about the solution by examining the equation it-
self. Suppose that y(0) = 0. Then the equation at t = 0 is
dy/dt = a, and y initially grows at a constant rate a. As
y builds up, the rate of growth decreases from this value
because of the −by term. Finally, when a− by = 0, dy/dt
is zero and y stops growing. This is enough information
to make the sketch in Fig. 2.11.

The equation is solved in Appendix F. The solution is

y =
a

b

(
1 − e−bt

)
. (2.25)

The derivative of y is dy/dt =
(

a
b

)
(−1)(−b)e−bt = ae−bt.

You can verify by substitution that Eq. 2.25 satisfies
Eq. 2.24. The solution does have the properties sketched
in Fig. 2.11, as you can see from Fig. 2.12. The initial
value of dy/dt is a, and it decreases exponentially to zero.
When t is large, the exponential term in y vanishes, leav-
ing y = a/b.

2.8 Decay with Multiple Half-Lives
and Fitting Exponentials

Sometimes y is a mixture of two or more quantities, each
decaying at a constant rate. It might represent a mixture
of radioactive isotopes, each decaying at its own rate. A
biological example is the survival of patients after a my-
ocardial infarct (Fig. 2.9). The death rate is not constant,
and many models can be proposed to explain why. One
possible model is that there are two distinct classes of

FIGURE 2.12. (a) Plot of y(t). (b) Plot of dy/dt.

patients immediately after the infarct. Each class has an
associated death rate that is constant. After three years,
virtually none of the subgroup with the higher death rate
remains. Another model is that the death rate is higher
right after the infarct for all patients. This higher death
rate is due to causes associated with the myocardial in-
jury: irritability of the muscle, arrhythmias in the heart-
beat, the weakening of the heart wall at the site of the
infarct, and so forth. After many months, the heart has
healed, scar tissue has replaced the necrotic (dead) mus-
cle, and deaths from these causes no longer occur.

Whatever the cause, it is sometimes useful to fit a set of
experimental data with a sum of exponentials. It should
be clear from the discussion of survival after myocardial
infarction that simply fitting with an exponential or a
sum of exponentials does not prove anything about the
decay mechanism.

If y consists of two quantities, y1 and y2, each with its
own decay rate, then

y = y1 + y2 = A1e
−b1t + A2e

−b2t. (2.26)

Suppose that b1 > b2, so that y1 decays more rapidly than
y2. After enough time has elapsed, y1 will be much less
than y2, and its effect on a semilog plot will be negligible.
A typical plot of y is curve A in Fig. 2.13. Line B can
then be drawn through the data and used to determine
A2 and b2. This line is extrapolated back to earlier times,
so that y2 can be subtracted from y to give an estimate
for y1. For example, at point C (t = 4), y = 400, y2 =
300, and y1 = 100. At t = 0, y1 = 1500 − 500 = 1000.
For times greater than 5 s, the curves for y and y2 are
close together, and error in reading the graph produces
considerable scatter in y1. When several values of y1 have
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FIGURE 2.13. Fitting a curve with two exponentials.

been determined, line D is drawn, and parameters A1 and
b1 are estimated.

This technique can be extended to several exponen-
tials. However, it becomes increasingly difficult to extract
meaningful parameters as more exponentials are used, be-
cause the estimated parameters for the short-lived terms
are very sensitive to the initial guess for the parameters of
the longest-lived term. For a discussion of this problem,
see Riggs (1970), pp. 146–163.

2.9 The Logistic Equation

Exponential growth cannot go on forever. [This fact is of-
ten ignored by economists and politicians. Albert Bartlett
has written extensively on this subject. You can find
several references in The American Journal of Physics
and The Physics Teacher. See the summary in Bartlett
(2004).]

Sometimes a growing population will level off at some
constant value. Other times the population will grow and
then crash. One model that exhibits leveling off is the
logistic model, described by the differential equation

dy

dt
= b0y

(
1 − y

y∞

)
, (2.27)

where b0 and y∞ are constants. This equation has con-
stant solutions y = 0 and y = y∞. If y � y∞, then the
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120100806040200
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Exponential

Logistic

FIGURE 2.14. Plot of the solution of the logistic equation
when y0 = 0.1, y∞ = 1.0, b0 = 0.0667. Exponential growth
with the same values of y0 and b0 is also shown.

equation is approximately dy/dt = b0y and y grows ex-
ponentially. As y becomes larger, the term in parentheses
reduces the rate of increase of y, until y reaches the sat-
uration value y∞. This might happen, for example, as
the population begins to consume a significant fraction
of the food supply, causing the birth rate to decrease or
the mortality rate to increase.

If the initial value of y is y0, the solution of Eq. 2.27 is

y(t) =
1

1
y∞

+
(

1
y0

− 1
y∞

)
e−b0t

(2.28)

=
y0y∞

y0 + (y∞ − y0)e−b0t
.

You can easily verify that y(0) = y0 and y(∞) = y∞.
A plot of the solution is given in Fig. 2.14, along with
exponential growth with the same value of b0.

Another way to think of Eq. 2.27 is that it has the
form dy/dt = b(y)y, where b(y) = b0(1 − y/y∞) is now
a function of the dependent variable y instead of the in-
dependent variable t. As y grows toward the asymptotic
value, the growth rate b(y) decreases linearly to zero. The
logistic model was an early and very important model for
population growth. It provides good fits in a few cases,
but there are now many more sophisticated models in
population biology [Murray (2001)].

2.10 Log–log Plots, Power Laws, and
Scaling

2.10.1 Log-log Plots and Power Laws

This section considers the use of plots in which both
scales are logarithmic: log–log plots. They are useful when
x and y are related by the function

y = Bxn. (2.29)
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FIGURE 2.15. Log-log plots of y = xn for different values of
n. When x = 1, y = 1 in every case.

Notice the difference between this and the exponential
function: here the independent variable x is raised to a
constant power, while in the exponential case x (or t)
is in the exponent. It also leads to a discussion of scal-
ing, whereby simple physical arguments lead to impor-
tant conclusions about the variations between species in
size, shape, metabolic rate, and the like.

By taking logarithms of both sides of Eq. 2.29, we get

log y = log B + n log x. (2.30)

This is a linear relationship between u = log y and v =
log x:

u = const + nv. (2.31)

Therefore a plot of u vs v is a straight line with slope
n. The slope can be positive or negative and need not
be an integer. Figure 2.15 shows plots of y = x, y = x2,
y = x1/2, and y = x−1. The slope can be determined from
the graph by taking ∆u/∆v. The value of B is determined
either by substituting particular values of y and x in Eq.
2.29 after n is known, or by determining the value of y
when x = 1, in which case xn = 1 for any value of n, so
n need not be known.

Figure 2.16 shows how the curves change when B is
changed while n = 1. The curves are all parallel to one
another. Multiplying by B is equivalent to adding a con-
stant to log y.

If the expression is not of the form y = Bxn but has an
added term, it will not plot as a straight line on log–log
paper. Figure 2.16 also shows a plot of y = x + 1, which
is not a straight line. (Of course, for very large values of
x, log(x+1) becomes nearly indistinguishable from log x,
and the line appears straight.)

When the slope is constant, n can be determined from
the slope ∆u/∆v measured with a ruler on the log–log
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FIGURE 2.16. Log–log plots of y = Bx, showing how the
curves shift on the paper as B changes. Since n = 1 for all
the curves, they all have the same slope. There is also a plot
of y = x + 1, to show that a polynomial does not plot as a
straight line.

paper. When determining the slope in this way one must
be sure that the length of a cycle is the same in each di-
rection on the graph paper. To repeat the warning: it is
easy to get a rough idea of the exponent from inspection
of the slope of the log–log plot in Fig. 2.15 because on
commercial log–log graph paper the distance spanned by
a decade or cycle is the same on both axes. Some maga-
zines routinely show log–log plots in which the distance
spanned by a decade is not the same on both axes. More-
over, commercial graphing software does not impose this
constraint on log–log plots, so it is becoming less and less
likely that you can determine the exponent by glancing
at the plot. Be careful!

When using a spreadsheet or other graphing software,
it is often useful to make an extra column that contains
the calculated variable ycalc = Axm with the values for
A and m stored in two cells of the spreadsheet. If you
plot this column as a line, and your real data as points
without a line, then you can change the parameters while
inspecting the graph to find the values that give the best
fit.

An example of the use of a log–log plot is Poiseuille
flow of fluid through a tube versus tube radius when the
pressure gradient along the tube is constant (Problem
35). It was shown in Chapter 1 that an r4 dependence is
expected.

2.10.2 Food Consumption, Basal Metabolic
Rate, and Scaling

Consider the relation of daily food consumption to body
mass. This will introduce us to simple scaling arguments.
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FIGURE 2.17. Plot of daily food requirement F and height H
vs mass M for growing children. Data are from Kempe et al.
(1970), p. 90.

As a first model, we might suppose that each kilogram
of tissue has the same metabolic requirement, so that
food consumption should be proportional to body mass.
However, there is a problem with this argument. Most of
the food that we consume is converted to heat. The var-
ious mechanisms to lose heat—radiation, convection and
perspiration—are all roughly proportional to the surface
area of the body rather than its mass. (This statement ne-
glects the fact that considerable evaporation takes place
through the lungs and that the body can control the rate
of heat loss through sweating and shivering.) If all per-
sons were the same shape, then the total surface area
would be proportional to H2, where H is the height. The
total volume and mass would be proportional to H3, so
H would be proportional to M1/3. Therefore the sur-
face area would be proportional to (M1/3)2 or M2/3. (See
Problem 40 for a discussion of other possible dependences
of surface area on mass.) Figure 2.17 plots H and the to-
tal daily food requirement F vs body mass M for growing
children [Kempe, Silver, and O’Brien (1970), p. 90].

Neither of the models proposed above fits the data very
well. At early ages H is more nearly proportional to M0.62

than to M1/3. For older children, when the shape of the
body has stopped changing, an M0.33 dependence does
fit better. This better fit occurs for masses greater than
23 kg, which correspond to ages over 6 years. The slope
of the F (M) curve is 0.75. This is less than the 1.0 of
the model that food consumption is proportional to the
mass and greater than the 0.67 of the model that food
consumption is proportional to surface area.

This 3/4-power dependence is remarkable because it is
seen across many species, from one-celled organisms to
large mammals. It is called Kleiber’s law. Peters (1983)
quotes work by Hemmingsen (1960) that shows the stan-

FIGURE 2.18. Plot of resting metabolic rate vs. body mass for
many different organisms. Graph is from R. H. Peters (1983).
The Ecological Implications of Body Size. Cambridge, Cam-
bridge University Press. Modified from A. M. Hemmingsen
(1960). Energy metabolism as related to body size and respi-
ratory surfaces, and its evolution. Reports of the Steno Memo-
rial Hospital and Nordisk Insulin Laboratorium. 9 (Part II):
6–110. Used with permission.

dard metabolic rates for many species can be fitted by the
following. The standard metabolic rate is in watts and
mass in kilograms. (Standard means as close to resting
or basal as possible.) For unicellular organisms at 20◦C,

Runicellular = 0.018M0.751. (2.32a)

The range of masses extended from 10−15 to 10−6 kg.
For poikilotherms (organisms such as fish whose body
temperature is the same as the surroundings) at 20 ◦C
(masses from 10−8 to 102 kg),

Rpoikilotherm = 0.14M0.751, (2.32b)

and for homeotherms (animals that can maintain their
body temperature independent of the surroundings) at
39◦C (masses from 10−2 to 103 kg),

Rhomeotherm = 4.1M0.751. (2.32c)

Peters’s graph is shown in Fig. 2.18.
The 3/4-power dependence has been widely accepted;

however, some recent analyses of the data, such as White
and Seymour (2003), support a 2/3 power dependence.
Even more recent studies affirm a 3/4 power [Savage et
al. (2004)].

A number of models have been proposed to explain a
3/4-power dependence [McMahon (1973); Peters (1983);
West et al. (1999); Banavar et al. (1999)]. West et al.
argue that the 3/4-power dependence is universal: they
derive it from a model that supplies nutrients through
a branching network that reaches all parts of the or-
ganism, minimizes the energy required for distribution,
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and ends in capillaries (or terminal xylem in plants) that
are all the same size. Whether it is universal is still de-
bated [Kozlowski and Konarzewski (2004)]. West and
Brown (2004) review quarter-power scaling in a variety of
circumstances.

We will discuss temperature dependence in Chapter 3.

Symbols Used in Chapter 2

Symbol Use Units First

used on

page

a Rate of input of a

substance

s−1 38

b, b0 Rate of growth or decay s−1,h−1 31

c1, c2 Constants 34

f Fraction 33

m, n Exponent in power law

relationship

39

t Time s 32

u Logarithm of dependent

variable

34

v Logarithm of independent

variable

40

x General independent

variable

33

y General dependent

variable

32

y Amount of substance in

plasma

kg, mg 37

x0,y0 Initial value of x or y 32

y∞ Saturation value of y 39

A Constant 38

B Constant 39

C Concentration kg m−3, etc. 37

F Food requirement kcal day−1 41

H Body height m 41

K Clearance m3 s−1 37

M Body mass kg 41

N Number of compoundings

per year

32

R Standard metabolic rate W 41

T1/2 Half-life s, etc. 34

T2 Doubling time s 34

V Volume m3 37

X10 Change in x for a

factor-of-10 change in y

34

X100 Change in x for a

factor-of-100 change in y

35

Problems

Section 2.1

Problem 1 Suppose that you are 20 years old and have
an annual income of $20,000. You plan to work for 40
years. If inflation takes place at a rate of 3% per year,
what income would you need at age 60 to have the same

buying power you have now? Ignore taxes. Make the cal-
culation assuming that (a) inflation is 3% and occurs
once a year and (b) inflation is continuous but at a 3%
annual rate.

Problem 2 The number e is defined by limn→∞(1 +
1/n)n.

(a) Calculate values of (1+1/n)n for n = 1, 2, 4, 8, and
16.

(b) Use the binomial formula (1 + a)n = 1 + na +
n(n−1)

2! a2+ n(n−1)(n−2)
3! a3+ · · · to obtain a series for ex =

limn→∞(1 + x/n)n. [See also Appendix D, Eq. D.3.]

Problem 3 A child with acute lymphocytic leukemia
(ALL) has approximately 1012 leukemic cells when the
disease is clinically apparent.

(a) If a cell is about 8 µm in diameter, estimate the
total mass of leukemic cells.

(b) Curing the disease requires killing every single cell.
The doubling time for the cells is about 5 days. If all cells
were killed except for one, how long would it take for the
disease to become apparent again?

(c) Suppose that chemotherapy reduces the number of
cells to 109 and there are no changes of ALL cell prop-
erties (no mutations). How long a remission would you
expect? What if the number were reduced to 106?

Problem 4 Suppose that tumor cells within the body re-
produce at rate r, so that the number is given by y =
y0e

rt. Each time a chemotherapeutic agent is given it
destroys a fraction f of the cells then existing. Make a
semilog plot showing y as a function of time for several
administrations of the drug, separated by time T . What
different cases must you consider for the relation among
f , T , and r?

Problem 5 An exponentially growing culture of bacteria
increases from 106 to 5 × 108 cells in 6 h. What is the
time between successive cell divisions if there is no cell
mortality?

Problem 6 The following data on railroad tracks were
obtained from R. H. Romer [(1991). The mathematics of
exponential growth—keep it simple, Phys. Teach. 9: 344–
345]:

Year Miles of track
1860 30, 626
1870 52, 922
1880 93, 262
1890 166, 703

(a) What is the doubling time?
(b) Estimate the surface area of the contiguous United

States. Assume that a railroad roadbed is 7 m wide. In
what year would an extrapolation predict that the surface
of the United States would be completely covered with rail-
road track?
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Section 2.2

Problem 7 A dose D of drug is given that causes the
plasma concentration to rise from 0 to C0. The concen-
tration then falls according to C = C0e

−bt. At time T ,
what dose must be given to raise the concentration to C0

again? What will happen if the original dose is adminis-
tered over and over again at intervals of T?

Problem 8 Consider the atmosphere to be at constant
temperature but to have a pressure p that varies with
height y. A slab between y and y+dy has a different pres-
sure on the top than on the bottom because of the weight
of the air in the slab. (The weight of the air is the num-
ber of molecules N times mg, where m is the mass of a
molecule and g is the gravitational acceleration.) Use the
ideal gas law, pV = NkBT (where kB is the Boltzmann
constant and T , the absolute temperature, is constant),
and the fact that the air is in equilibrium to write a dif-
ferential equation for p as a function of y. The equation
should be familiar. Show that p(y) = Ce−mgy/kBT .

Problem 9 The mean life of a radioactive substance is
defined by the equation

τ =
−
∫∞
0

t (dy/dt) dt

−
∫∞
0

(dy/dt) dt
.

Show that if y = y0e
−bt, then τ = 1/b.

Section 2.3

Problem 10 R. Guttman [(1996). J. Gen. Physiol. 49:
1007] measured the temperature dependence of the cur-
rent pulse necessary to excite the squid axon. He found
that for pulses shorter than a certain length τ , a fixed
amount of electric charge was necessary to make the nerve
fire; for longer pulses the current was fixed. This suggests
that the axon integrates the current for a time τ but not
longer. The following data are for the integrating time
τ vs temperature T (◦C). Find an empirical exponential
relationship between T and τ .

T (◦C) τ (ms)
5 4.1
10 3.4
15 1.9
20 1.4
25 0.7
30 0.6
35 0.4

Problem 11 A normal rabbit was injected with 1 cm3 of
staphylococcus aureus culture containing 108 organisms.
At various later times, 0.2 cm3 of blood was taken from
the rabbit’s ear. The number of organisms per cm3 was
calculated by diluting the material, smearing it on cul-
ture plates, and counting the number of colonies formed.
The results are shown below. Plot these data and see if

they can be fitted by a single exponential. Can you also
estimate the blood volume of the rabbit?

t (min) Bacteria (per cm3)
0 5 × 105

3 2 × 105

6 5 × 104

10 7 × 103

20 3 × 102

30 1.7 × 102

Section 2.4

Problem 12 All members of a certain population are
born at t = 0. The death rate in this population (deaths
per unit population per unit time) is found to increase
linearly with age t: (death rate) = a + bt. Find the pop-
ulation as a function of time if the initial population is
y0.

Problem 13 The accompanying table gives death rates
(in yr−1) as a function of age. Plot these data on linear
graph paper and on semilog paper. Find a region over
which the death rate rises approximately exponentially
with age, and determine parameters to describe that re-
gion.

Age Death Rate Age Death Rate
0 0.000 863 45 0.005 776
5 0.000 421 50 0.008 986
10 0.000 147 55 0.013 748
15 0.001 027 60 0.020 281
20 0.001 341 65 0.030 705
25 0.001 368 70 0.046 031
30 0.001 697 75 0.066 196
35 0.002 467 80 0.101 443
40 0.003 702 85 0.194 197

Problem 14 Suppose that the amount of a resource at
time t is y(t). At t = 0 the amount is y0. The rate at
which it is consumed is r = −dy/dt. Let r = r0e

bt, that
is, the rate of use increases exponentially with time. (For
example, the world use of crude oil has been increasing
about 7% per year since 1890.)

(a) Show that the amount remaining at time t is y(t) =
y0 − (r0/b)(ebt − 1).

(b) If the present supply of the resource were used up
at constant rate r0, it would last for a time Tc. Show that
when the rate of consumption grows exponentially at rate
b, the resource lasts a time Tb = (1/b) ln(1 + bTc).

(c) An advertisement in Scientific American, Septem-
ber 1978, p. 181, said, “There’s still twice as much gas
underground as we’ve used in the past 50 years—at our
present rate of use, that’s enough to last about 60 years.”
Calculate how long the gas would last if it were used at a
rate that increases 7% per year.

(d) If the supply of gas were doubled, how would the
answer to part (c) change?

(e) Repeat parts (c) and (d) if the growth rate is 3%
per year.
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Problem 15 When we are dealing with death or compo-
nent failure, we often write Eq. 2.17 in the form y(t) =
y0 exp

[
−
∫ t

0
m(t′)dt′

]
and call m(t) the mortality func-

tion. Various forms for the mortality function can rep-
resent failure of computer components, batteries in pace-
makers, or the death of organisms. (This is not the most
general possible mortality model. For example, it ignores
any interaction between organisms, so it cannot account
for effects such as overcrowding or a limited supply of
nutrients.)

(a) For human populations the mortality function is
often written as m(t) = m1e

−b1t + m2 + m3e
+b3t. What

sort of processes does each of these terms represent?
(b) Assume that m1 and m2 are zero. Then m(t) is

called the Gompertz mortality function. Obtain an expres-
sion for y(t) with the Gompertz mortality function. Time
tmax is sometimes defined to be the time when y(t) = 1.
It depends on y0. Obtain an expression for tmax.

Problem 16 The incidence of a disease is the number
of new cases per unit time per unit population (or per
100,000). The prevalence of the disease is the number of
cases per unit population. For each situation below, the
size of the general population remains fixed at the con-
stant value y, and the disease has been present for many
years.

(a) The incidence of the disease is a constant, i cases
per year. Each person has the disease for a fixed time
of T years, after which the person is either cured or dies.
What is the prevalence p? Hint: The number who are sick
at time t is the total number who became sick between t−T
and t.

(b) The patients in part (a) who are sick die with a
constant death rate b. What is the prevalence?

(c) A new epidemic begins at t = 0, and the incidence
increases exponentially with time: i = i0e

kt. What is the
prevalence if each person has the disease for T years?

Section 2.5

Problem 17 The creatinine clearance test measures a
patient’s kidney function. Creatinine is produced by mus-
cle at a rate p g h−1. The concentration in the blood is C
g l−1. The volume of urine collected in time T (usually
24 h) is V l. The creatinine concentration in the urine is
U g l−1. The clearance is K. The plasma volume is Vp.
Assume that creatinine is stored only in the plasma.

(a) Draw a block diagram for the process and write a
differential equation for C.

(b) Find an expression for the creatinine clearance K
in terms of p and C when C is not changing with time.

(c) If C is constant all creatinine produced in time T
appears in the urine. Find K in terms of C, V , U , and
T .

(d) If p were somehow doubled, what would be the new
steady-state value of C? What would be the time constant
for change to the new value?

Problem 18 A liquid is injected in muscle and spreads
throughout a spherical volume V = 4πr3/3. The volume is
well supplied with blood, so that the liquid is removed at a
rate proportional to the remaining mass per unit volume.
Let the mass be m and assume that r remains fixed. Find
a differential equation for m(t) and show that m decays
exponentially.

Problem 19 A liquid is injected as in Problem 18, but
this time a cyst is formed. The rate of removal of mass
is proportional to both the pressure of liquid within the
cyst, and to the surface area of the cyst, which is 4πr2.
Assume that the cyst shrinks so that the pressure of liquid
within the cyst remains constant. Find a differential equa-
tion for the rate of mass removal and show that dm/dt is
proportional to m2/3.

Problem 20 The following data showing ethanol con-
centration in the blood vs time after ethanol ingestion are
from L. J. Bennison and T. K. Li [(1976). New Engl. J.
Med. 294: 9–13]. Plot the data and discuss the process
by which alcohol is metabolized.

t (min) Ethanol concentration(mg dl−1)
90 134
120 120
150 106
180 93
210 79
240 65
270 50

Problem 21 Consider the following two-compartment
model. Compartment 1 is damaged myocardium (heart
muscle). Compartment 2 is the blood of volume V . At
t = 0 the patient has a heart attack and compartment 1
is created. It contains q molecules of some chemical which
was released by the dead cells. Over the next several days
the chemical moves from compartment 1 to compartment
2 at a rate i(t), such that q =

∫∞
0

i(t)dt. The amount of
substance in compartment 2 is y(t) and the concentration
is C(t). The only mode of removal from compartment 2
is clearance with clearance constant K.

(a) Write a differential equation for C(t) that may also
involve i(t).

(b) Integrate the equation and show that q can be deter-
mined by numerical integration if C(t) and K are known.

(c) Show that volume V need not be known if C(0) =
C(∞).

Section 2.6

Problem 22 The radioactive nucleus 64Cu decays inde-
pendently by three different paths. The relative decay rates
of these three modes are in the ratio 2:2:1. The half-life
is 12.8 h. Calculate the total decay rate b, and the three
partial decay rates b1, b2, and b3.

Problem 23 The following data were taken from Berg et
al. (1982). At t = 0, a 70-kg subject was given an intra-
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venous injection of 200 mg of phenobarbital. The initial
concentration in the blood was 6 mg l−1. The concentra-
tion decayed exponentially with a half-life of 110 h. The
experiment was repeated, but this time the subject was fed
200 g of activated charcoal every 6 h. The concentration of
phenobarbital again fell exponentially, but with a half-life
of 45 h.

(a) What was the volume in which the phenobarbital
was distributed?

(b) What was the clearance in the first experiment?
(c) What was the clearance due to charcoal?

Section 2.7

Problem 24 You are treating a severely ill patient with
an intravenous antibiotic. You give a loading dose D mg,
which distributes immediately through blood volume V to
give a concentration C mg dl−1 (1 deciliter = 0.1 liter).
The half-life of this antibiotic in the blood is T h. If you
are giving an intravenous glucose solution at a rate R ml
h−1, what concentration of antibiotic should be in the glu-
cose solution to maintain the concentration in the blood
at the desired value?

Problem 25 The solution to the differential equation
dy/dt = a − by for the initial condition y(0) = 0 is
y = (a/b)(1 − e−bt). Plot the solution for a = 5 g min−1

and for b = 0.1, 0.5, and 1.0 min−1. Discuss why the final
value and the time to reach the final value change as they
do. Also make a plot for b = 0.1 and a = 10 to see how
that changes the situation.

Problem 26 Derive an approximate expression for
(a/b)

(
1 − e−bt

)
which is accurate for small times (t �

1/b). Use the Taylor expansion for an exponential given
in Appendix D.

Problem 27 We can model the repayment of a mort-
gage with a differential equation. Suppose that y(t) is
the amount still owed on the mortgage at time t, the
rate of repayment per unit time is a, b is the inter-
est rate, and that the initial amount of the mortgage
is y0.

(a) Find the differential equation for y(t).
(b) Try a solution of the form y(t) = a/b+Cebt, where

C is a constant to be determined from the initial condi-
tions. Find C, plot the solution, and determine the time
required to pay off the mortgage.

Problem 28 When an animal of mass m falls in air,
two forces act on it: gravity, mg, and a force due to air
friction. Assume that the frictional force is proportional
to the speed v.

(a) Write a differential equation for v based on New-
ton’s second law, F = m(dv/dt).

(b) Solve this differential equation. (Hint: Compare
your equation to Eq. 2.24.)

(c) Assume that the animal is spherical, with radius a
and density ρ. Also, assume that the frictional force is
proportional to the surface area of the animal. Determine
the terminal speed (speed of descent in steady state) as a
function of a.

(d) Use your result in part (c) to interpret the follow-
ing quote by J. B. S. Haldane [1985]: “You can drop a
mouse down a thousand-yard mine shaft; and arriving at
the bottom, it gets a slight shock and walks away. A rat
is killed, a man is broken, a horse splashes.”

Problem 29 In Problem 28, we assumed that the force
of air friction is proportional to the speed v. For flow at
high Reynolds numbers, a better approximation is that the
force is proportional to v2.

(a) Write the differential equation for v as a function
of t.

(b) This differential equation is nonlinear because of the
v2 term and thus difficult to solve analytically. However,
the terminal speed can easily be obtained directly from
the differential equation by setting dv/dt = 0. Find the
terminal speed as a function of a (defined in Problem 28).

Problem 30 A drug is infused into the body through
an intravenous drip at a rate of 100 mg h−1. The to-
tal amount of drug in the body is y. The drug distributes
uniformly and instantaneously throughout the body in a
compartment of volume V = 18 l. It is cleared from the
body by a single exponential process. In the steady state
the total amount in the body is 200 mg.

(a) At noon (t = 0) the intravenous line is removed.
What is y(t) for t > 0?

(b) What is the clearance of the drug?

Section 2.8

Problem 31 You are given the following data:
x y x y
0 1.000 5 0.444
1 0.800 6 0.400
2 0.667 7 0.364
3 0.571 8 0.333
4 0.500 9 0.308

10 0.286
Plot these data on semilog graph paper. Is this a single

exponential? Is it two exponentials? Plot 1/y vs x. Does
this alter your answer?

Section 2.9

Problem 32 Suppose that the rate of consumption of a
resource increases exponentially. (This might be petro-
leum, or the nutrient in a bacterial culture.) During the
first doubling time the amount used is 1 unit. During the
second doubling time it is 2 units, the next 4, etc. How
does the amount consumed during a doubling time com-
pare to the total amount consumed during all previous
doubling times?
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Problem 33 Suppose that the rate of growth of y is de-
scribed by dy/dt = b(y)y. Expand b(y) in a Taylor’s se-
ries and relate the coefficients to the terms in the logistic
equation.

Problem 34 Consider a classic predator-prey problem.
Let the number of foxes be F and the number of rabbits
be R. The rabbits eat grass, which is plentiful. The foxes
eat only rabbits. The number of foxes and rabbits can be
modelled by the Lotka-Volterra equations

dR

dt
= aR − bRF

dF

dt
= −cF + dRF.

(a) Describe the physical meaning of each term on the
right-hand side of each equation. What does each of the
constants a, b, c, and d denote?

(b) Solve for the steady-state values of F and R.
These differential equations are difficult to solve be-

cause they are nonlinear (see Chapter 10). Typically, R
and F oscillate about the steady-state solutions found in
part (b). For more information, see Murray (2001).

Section 2.10

Problem 35 Plot the following data for Poiseuille flow
on log-log graph paper. Fit the equation i = CRn

p to the
data by eye (or by trial and error using a spread sheet),
and determine C and n.

Rp(µm) i(µm3 s−1)
5 0.000 10
7 0.000 38
10 0.001 6
15 0.008 1
20 0.026
30 0.13
50 1.0

Problem 36 Below are the molecular weights and radii
of some molecules. Use log-log graph paper to develop an
empirical relationship between them.

Substance M R (nm)
Water 18 0.15
Oxygen 32 0.20
Glucose 180 0.39
Mannitol 180 0.36
Sucrose 390 0.48
Raffinose 580 0.56
Inulin 5, 000 1.25
Ribonuclease 13, 500 1.8
β-lactoglobin 35, 000 2.7
Hemoglobin 68, 000 3.1
Albumin 68, 000 3.7
Catalase 250, 000 5.2

Problem 37 How well does Eq. 2.32c explain the data
of Fig. 2.17? Discuss any differences.

Problem 38 Compare the mass and metabolic require-
ments (and hence waste output, including water vapor)
of 180 people each weighing 70 kg with 12,600 chickens
of average mass 1 kg.

Problem 39 Figure 2.17 shows that in young children,
height is more nearly proportional to M0.62 than to M1/3.
Find pictures of children and adults and compare ratios
of height to width, to see what the differences are.

Problem 40 Consider three models of an organism. The
first is a sphere of radius R. The second is a cube of length
L. These are crude models for animals. The third is a
broad leaf of surface area A on each side and thickness t.
Assume all have density ρ. In each case, calculate the sur-
face area S as a function of mass, M . Ignore the surface
area of the edge of the leaf. [For a comparison of scaling
in leaves and animals, see Reich (2001). He shows that
for broad leaves S ∝ M1.1.]

Problem 41 If food consumption is proportional to
M3/4 across species, how does the food consumption per
unit mass scale with mass? Qualitatively compare the eat-
ing habits of hummingbirds to eagles and mice to ele-
phants. [See Schmidt-Nielsen (1984), pp. 52–64.]

Problem 42 In problem 41, you found how the specific
metabolic rate (food consumption per unit mass) varies
with mass. If all animal heart volumes and blood volumes
are proportional to M , then the only way for the heart to
increase the oxygen delivery to the body is by increasing
the frequency of the heart rate. [Schmidt-Nielsen (1984),
pp. 126–150.]

(a) Using the result from problem 41, if a 70 kg man
has a heart rate of 80 beats min−1, determine the heart
rate of a guinea pig (M = 0.5 kg).

(b) To a first approximation, all hearts beat about
800,000,000 times in a lifetime. A 30 g mouse lives about
3 years. Estimate the life span of a 3000 kg elephant.

(c) Humans live longer than their mass would indicate.
Calculate the life span of a 70 kg human based on scaling,
and compare it to a typical human life span.

Problem 43 Let’s examine how high animals can jump
[Schmidt-Nielsen (1984), pp. 176–179]. Assume that the
energy output of the jumping muscle is proportional to the
body mass, M . The gravitational potential energy gained
upon jumping to a height h is Mgh (g = 9.8 m s−2). If a
3 g locust can jump 60 cm, how high can a 70 kg human
jump? Use scaling arguments.

Problem 44 In problem 43, you should have found that
all animals can jump to about the same height (approxi-
mately 0.6 m), independent of their mass M .

(a) Equate the kinetic energy at the bottom of the jump
(Mv2/2, where v is the“take-off speed”) to the potential
energy Mgh at the top of the jump to find how the take-off
speed scales with mass.

(b) Calculate the take-off speed.
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(c) In order to reach this speed, the animal must accel-
erate upward over a distance L. If we assume a constant
acceleration a, then a = v2/(2L). Assume L scales as the
linear size of the animal (and assume all animals are ba-
sically the same shape but different size). How does the
acceleration a scale with mass?

(d) For a 70 kg human, L is about 1/3 m. Calculate
the acceleration (express your answer in terms of g).

(e) Use your result from part (c) to estimate the accel-
eration for a 0.5 mg flea (again, express your answer in
terms of g).

(f) Speculate on the biological significance of the result
in part (e) [See Schmidt-Nielsen (1984), pp. 180–181].
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3
Systems of Many Particles

It is possible to identify all the external forces acting on
a simple system and use Newton’s second law (F = ma)
to calculate how the system moves. (Applying this tech-
nique in a complicated case such as the femur may re-
quire the development of a simplified model, because so
many muscles, other bones, and ligaments apply forces
at so many different points.) In an atomic-size system
consisting of a single atom or molecule, it is possible
to use the quantum-mechanical equivalent of F = ma,
the Schrödinger equation, to do the same thing. (The
Schrödinger equation takes into account the wave prop-
erties that are important in small systems.)

In systems of many particles, such calculations become
impossible. Consider, for example, how many particles
there are in a cubic millimeter of blood. Table 3.1 shows
some of the constituents of such a sample. To calculate
the translational motion in three dimensions, it would
be necessary to write three equations for each particle
using Newton’s second law. Suppose that at time t the
force on a molecule is F. Between t and t + ∆t, the
velocity of the particle changes according to the three
equations

vi(t + ∆t) = vi(t) + Fi∆t/m, (i = x, y, z).

The three equations for the change of position of the
particle are of the form x(t + ∆t) = x(t) + vx(t)∆t +
Fx(t)(∆t)2/(2m). If ∆t is small enough the last term can
be neglected. Solving these equations requires at least six
multiplications and six additions for each particle. For
1019 particles, this means about 1020 arithmetic opera-
tions per time interval. If a computer can do 1012 op-
erations per second, then the complete calculation for a
single time interval will require 108 seconds or three years!
Another limitation arises in the physics of the processes.
It is now known that relatively simple systems can exhibit
deterministic chaos: a collection of identical systems dif-
fering in their initial conditions by an infinitesimally small

TABLE 3.1. Some constituents of 1 mm3 of blood.

Constituent Concentration
in customary
units

Number in 1
mm3 (= 10−9

m3 = 10−3 cm3)

Water 1 g cm−3 3.3 × 1019

Sodium 3.2 mg cm−3 8.3 × 1016

Albumin 4.5 g dl−1 3.9 × 1014

Cholesterol 200 mg dl−1 3.1 × 1015

Glucose 100 mg dl−1 3.3 × 1015

Hemoglobin 15 g dl−1 1.4 × 1015

Erythrocytes 5×106 mm−3 5 × 106

amount can become completely different in their subse-
quent behavior in a surprisingly short period of time. It is
impossible to trace the behavior of this many molecules
on an individual basis.

Nor is it necessary. We do not care which water mole-
cule is where. The properties of a system that are of in-
terest are averages over many molecules: pressure, con-
centration, average speed, and so forth. These average
macroscopic properties are studied in statistical or ther-
mal physics or statistical mechanics.

Unfortunately, this chapter relies heavily on your abil-
ity to accept delayed gratification. It has only a few bio-
logical examples, but the material developed here is nec-
essary for understanding some topics in most of the later
chapters, especially Chapters 4–9 and 14–18. In addi-
tion to developing a statistical understanding of pressure,
temperature, and concentration, this chapter derives four
quantities or concepts that are used later:

1. The Boltzmann factor, which tells how concentra-
tions of particles vary with potential energy (Sec.
3.7).
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2. The principle of equipartition of energy, which un-
derlies the diffusion process that is so important in
the body (Sec. 3.10).

3. The chemical potential, which describes the condi-
tion for equilibrium of two systems for the exchange
of particles, and how the particles flow when the sys-
tems are not in equilibrium (Secs. 3.12, 3.13, and
3.18).

4. The Gibbs free energy, which tells the direction in
which a chemical reaction proceeds and allows us to
understand how the cells in the body use energy (Sec.
3.17).

The first six sections form the basis for the rest of
the chapter, developing the concepts of microstates, heat
flow, temperature, and entropy. Sections 3.7 and 3.8 de-
velop the Boltzmann factor and its corollary, the Nernst
equation. Section 3.9 applies the Boltzmann factor to the
air molecules in the atmosphere. Section 3.10 discusses
the very important equipartition of energy theorem. Sec-
tion 3.11 discusses heat capacity—the energy required to
increase the temperature of a system.

The transport of particles between two systems is de-
scribed most efficiently using the chemical potential. The
chemical potential is introduced in Sec. 3.12, and an ex-
ample of its use is shown in Sec. 3.13.

Section 3.14 considers systems that can exchange vol-
ume. An idealized example is two systems separated by
a flexible membrane or a movable piston. The next two
sections extend the idea of systems that exchange energy,
particles, or volume to the exchange of other variables
such as electric charge.

The Gibbs free energy, introduced in Sec. 3.17, is used
to describe chemical reactions that take place at con-
stant temperature and pressure. It is closely related to
the chemical potential. The chemical potential of an ideal
solution is derived in Sec. 3.18 and is used extensively in
Chapter 5.

3.1 Gas Molecules in a Box

Statistical physics or statistical mechanics deals with av-
erage quantities such as pressure, temperature, and par-
ticle concentration and with probability distributions of
variables such as velocity. Some of the properties of these
averages can be illustrated by considering a simple exam-
ple: the number of particles in each half of a box contain-
ing a fixed number of gas molecules. (This is a simple ana-
log for the concentration.) We will not be concerned with
the position and velocity of each molecule, since we have
already decided not to use Newtonian mechanics. Nor
will we ask for the velocity distribution at this time. This
simplified example will describe only how many molecules
are in the volume of interest. The number will fluctuate

FIGURE 3.1. An ensemble of boxes, each divided in half by
an imaginary partition.

with time. We will deal with probabilities:1 if the number
of particles in the volume is measured repeatedly, what
values are obtained, and with what relative frequency?

If we were willing to use Newtonian mechanics, we
could count periodically how many molecules are in the
volume of interest. [This has actually been done for small
numbers of particles. See Reif (1964), pp. 8–9.] For larger
numbers of particles, it is easier to use statistical argu-
ments to obtain the probabilities. The particles travel
back and forth, colliding with the walls of the box and oc-
casionally with one another. After some time has elapsed,
all memory of the particles’ original positions and veloc-
ities has been lost because of collisions with the walls of
the box, which have microscopic inhomogeneities. There-
fore, the result can be obtained by imagining a whole suc-
cession of completely different boxes, in which the parti-
cles have been placed at random. We can count the num-
ber of molecules in the volume of interest in each box.
Such a collection of similar boxes is called an ensemble.
Ensembles of similar systems will be central to the ideas
of this chapter.

Imagine an ensemble of boxes, each divided in half as
in Fig. 3.1. We want to know how often a certain number
of particles is found in the left half. If one particle is in a
box (N = 1), two cases can be distinguished, depending
on which half the particle is in. Call them L and R. Each
case is equally likely to occur, since nothing distinguishes
one half of a box from the other. If n is the number of
particles in the left half, then case L corresponds to n = 1
and case R corresponds to n = 0.

The probability of having a particular value of n is
defined to be

P (n) =
(number of systems in the ensemble in which n is found)

(total number of systems)
(3.1)

in the limit as the number of systems becomes very large.
Because there are only two possible values of n, 0 or

1, and because each corresponds to one of the equally
likely configurations, P (0) = 0.5, P (1) = 0.5. The sum
of the probabilities is 1. A histogram of P (n) for N = 1
is given in Fig. 3.2(a). To recapitulate: n is the number
of molecules in the left half of the box, and N is the

1A good book on probability is Weaver (1963).
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FIGURE 3.2. Histograms of P (n; N) for different values of N .

total number of molecules in the entire box. Since N will
change in the discussion below, we will call the proba-
bility P (n;N). (The fixed parameters that determine the
probability distribution are located after the semicolon.)

Now let N = 2. Each molecule can be on the left or the
right with equal probability. The possible outcomes are
listed in the following table, along with the corresponding
values of n and P (n; 2).

Molecule 1 Molecule 2 n P (n; 2)

R
R
L
L

R
L
R
L

0
1
1
2

1
4

1
2

1
4

Each of the four outcomes is equally probable. To see this,
note that L or R is equally likely for each molecule. In half
of the boxes in the ensemble, the first molecule is found on
the left. In half of these, the second molecule is also on the
left. Therefore LL occurs in one-fourth of the systems in
the ensemble. (This is not strictly true, because there can
be fluctuations. If we throw a coin six times, we cannot
say that heads will always occur three times. If we repeat
the experiment many times, the average number of heads
will be three.)

If three molecules are placed in each box, there are
two possible locations for the first particle, two for the
second, and two for the third. If the three particles are
all independent, then there are 23 = 8 different ways to
locate the particles in a box. If a box is divided in half,
each of these ways has a probability of 1/8.

Molecule 1 Molecule 2 Molecule 3 n P (n; 3)

R R R 0 1
8

R R L 1
R L R 1 3

8
L R R 1
L L R 2
L R L 2 3

8
R L L 2
L L L 3 1

8

The cases of two and three molecules in the box are also
plotted in Fig. 3.2.

In each case, P (n;N) has been determined by listing
all the ways that the N particles can go into a box. This
can become tedious if the number of particles is large.
Furthermore, it does not provide a way to calculate P if
the two volumes of the box are not equal. We will now
introduce a more general technique that can be used for
any number of particles and for any fractional volume of
the box.

Each box is divided into two volumes, v and v′, with
total volume V = v + v′. Call p the probability that a
single particle is in volume v. The probability that the
particle is in the remainder of the box, v′, is q:

p + q = 1. (3.2)

As long as there is nothing to distinguish one part of a
box from the other, p is the ratio of v to the total volume:

p =
v

V
. (3.3)

By the same argument, q = v′/V . These values satisfy
Eq. 3.2. If N particles are distributed between the two
volumes of the box, the number in v is n and the number
in v′ is n′ = N − n. The probability that n of the N
particles are found in volume v is given by the binomial
probability distribution (Appendix H):

P (n;N) = P (n;N, p) =
N !

n! (N − n)!
pn (1 − p)N−n

.

(3.4)
Table 3.2 shows the calculation of P (n; 10) using this
equation. Histograms for N = 4 and 10 are also plotted in
Fig. 3.2. In each case there is a value of n for which P is a
maximum. When N is even, this value is N/2; when N is
odd, the values on either side of N/2 share the maximum
value. The probability is significantly different from zero
only for a few values of n on either side of the maximum.

A probability distribution, in the form of an expression,
a table of values, or a histogram, usually gives all the in-
formation that is needed about the number of molecules
in v; it is not necessary to ask which molecules are in v.
The number of molecules in v is not fixed but fluctuates
about the number for which P is a maximum. For exam-
ple, if N = 10, and we measure the number of molecules
in the left half many times, we find n = 5 only about 25%
of the time. On the other hand, we find that n = 4, 5, or
6 about 65% of the time, while n = 3, 4, 5, 6, or 7 about
90% of the time.

3.2 Microstates and Macrostates

If we know “enough” about the detailed properties
(such as position and momentum) of every particle in a
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TABLE 3.2. Calculation of P (n; 10) using the binomial prob-
ability distribution. Note that 0!=1.

P (0; 10) =
10!

0!10!
(

1
2

)0 ( 1
2

)10 =
(

1
2

)10 = 0.001

P (1; 10) =
10!
1!9!

(
1
2

)1 ( 1
2

)9 = 10
(

1
2

)10 = 0.010

P (2; 10) =
10!
2!8!

(
1
2

)2 ( 1
2

)8 = 45
(

1
2

)10 = 0.044

P (3; 10) =
10!
3!7!

(
1
2

)3 ( 1
2

)7 = 120
(

1
2

)10 = 0.117

P (4; 10) =
10!
4!6!

(
1
2

)4 ( 1
2

)6 = 210
(

1
2

)10 = 0.205

P (5; 10) =
10!
5!5!

(
1
2

)5 ( 1
2

)5 = 252
(

1
2

)10 = 0.246

P (6; 10) =
10!
6!4!

(
1
2

)6 ( 1
2

)4 = 210
(

1
2

)10 = 0.205

P (7; 10) =
10!
7!3!

(
1
2

)7 ( 1
2

)3 = 120
(

1
2

)10 = 0.117

P (8; 10) =
10!
8!2!

(
1
2

)8 ( 1
2

)2 = 45
(

1
2

)10 = 0.044

P (9; 10) =
10!
9!1!

(
1
2

)9 ( 1
2

)1 = 10
(

1
2

)10 = 0.010

P (10; 10) =
10!

10!0!
(

1
2

)10 ( 1
2

)0 =
(

1
2

)10 = 0.001

system,2 then we say that the microstate of the sys-
tem is specified. (The criterion for “enough” will be dis-
cussed shortly.) We may know less than this but know the
macrostate of the system. (In an ideal gas, for example,
the macrostate would be defined by knowing the number
of molecules and volume, and the pressure, temperature,
or total energy.) Usually there are many microstates cor-
responding to each macrostate. The large-scale average
properties (such as pressure and number of particles per
unit volume in the ideal gas) fluctuate slightly about well-
defined mean values.

In the problem of how many molecules are in half of
a box, the macrostate is specified if we know how many
molecules there are, while a microstate would specify the
position and momentum of every molecule. In other cases,
internal motions of the molecule may be important, and
it will be necessary to know more than just the position
and momentum of each particle.

The relation between microstates and macrostates may
be clarified by the following example, which contains the
essential features, although it is oversimplified and some-
what artificial. A room is empty except for some toys on
the floor. Specifying the location of each of the toys on the
floor would specify the microstate of the system. If the
toys are in the shaded corner in Fig. 3.3, the macrostate is
“picked up”. If the toys are any place else in the room, the
macrostate is “mess”. There are many more microstates

2A system is that part of the universe that we choose to examine.
The surroundings are the rest of the universe. The system may or
may not be isolated from the surroundings.

FIGURE 3.3. A room with toys. If all the toys are in the
shaded area, the macrostate is “picked up.” Otherwise, the
macrostate is “mess.”

corresponding to the macrostate “mess” than there are
corresponding to the macrostate “picked up.” We know
from experience that children tend to regard any mi-
crostate as equally satisfactory; the chances of sponta-
neously finding the macrostate “picked up” are relatively
small.

A situation in which P is small is called ordered or
nonrandom. A situation in which P is large is called dis-
ordered or random. Macrostate “mess” is more probable
than macrostate “picked up” and is disordered or ran-
dom.

The same idea can be applied to a box of gas molecules.
Initially, the molecules are all kept in the left half of the
box by a partition. If the partition is suddenly removed, a
large number of additional microstates are suddenly avail-
able to the molecules. The macrostate in which they find
themselves—all in the left half of the box, even though
the partition has been removed—is very improbable or
highly ordered. The molecules soon fill the entire box; it
is quite unlikely that they will all be in the left half again
if the number of molecules is very large. (Suppose that
there are 80 molecules in the box. The probability that
all are in the left half is

(
1
2

)80 = 10−24. If samples were
taken 106 times per second, it would take 1018 seconds to
sample 1024 boxes, one of which, on the average, would
have all of the molecules in the left half. This is greater
than the age of the universe.)

Just after the partition in the box was removed, the sit-
uation was very ordered. The system spontaneously ap-
proached a much more random situation in which nearly
half the molecules were in each half of the box. The ac-
tual number n fluctuates about N/2, but in such a way
that the average 〈n〉 (taken, say, over several seconds)
no longer changes with time. Typical fluctuations with a
constant 〈n〉 are shown in Fig. 3.4(a). When the average3

3There is a subtlety about the meaning of average that we are

glossing over here. If we take a whole ensemble of identical systems,

which were all prepared the same way, and measure n in each one,

we have the ensemble average n̄. This is calculated in the way

described in Appendix G. If we watch one system over some long

time interval, as in Fig. 3.4, we can take the time average 〈n〉. It is

taken by recording values of n for a large number of discrete times

in some interval. Strictly speaking, an equilibrium state is one in

which the ensemble average is not changing with time.
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FIGURE 3.4. (a) Fluctuations of n about N/2. (b) The ap-
proach of the system to the equilibrium state after the parti-
tion is removed.

of the macroscopic parameters is not changing with time,
we say that the system is in an equilibrium state. Figure
3.4(b) shows the system moving toward the equilibrium
state after the partition is removed.

An equilibrium state is characterized by macroscopic
parameters whose average values remain constant with
time, although the parameters may fluctuate about the
average value. It is also the most random (i.e., most
probable) macrostate possible under the prescribed con-
ditions. It is independent of the past history of the system
and is specified by a few macroscopic parameters.4

The definition of a microstate of a system has so far
been rather vague; we have not said precisely what is re-
quired to specify it. It is actually easier to specify the mi-
crostate of a system when using quantum mechanics than
when using classical mechanics. When the energy of an
individual particle in a system (such as one of the mole-
cules in the box) is measured with sufficient accuracy, it
is found that only certain discrete values of the energy
occur. This is because of the wave nature of the particles.
The allowed values of the energy are called energy levels.
You are probably familiar with the idea of energy levels
from a previous physics or chemistry course; for exam-
ple, the spectral lines of atoms are due to the emission
of light when an atom changes from one energy level to
another. Because the energy levels are well defined, the
energy difference, and hence the frequency or color of the
light, is also well defined (see Chapter 14).

A particle in a box has a whole set of energy levels
at energies determined by the size and shape of the box.
Compared to macroscopic measurements of energy, these
levels are very close together. The particle can be in any
one of these levels; which energy the particle has is spec-
ified by a set of quantum numbers. If the particle moves
in three dimensions, three quantum numbers are needed

4A more detailed discussion of equilibrium states is found in Reif
(1964).

to specify the energy level. If there are N particles, it will
be necessary to specify three quantum numbers for each
particle or 3N numbers in all. (If there are M molecules,
each made up of a atoms, then N = aM . The number of
quantum numbers is less than 3N because the atoms can-
not all move independently. If the molecules were thought
of as single particles, there would be 3M quantum num-
bers. But the molecules can rotate and vibrate, so that
the number of quantum numbers is greater than 3M and
less than 3N .)

The total number of quantum numbers required to
specify the state of all the particles in the system is called
the number of degrees of freedom of the system, f .

A microstate of a system is specified if all the quantum
numbers for all the particles in the system are specified.

In most of this chapter, it will not be necessary to con-
sider the energy levels in detail. The important fact is
that each particle in a system has discrete energy levels,
and a microstate is specified if the energy level occupied
by each particle is known.

3.3 The Energy of a System: The
First Law of Thermodynamics

Figure 3.5 shows some energy levels in a system occupied
by a few particles. The total energy of the system U is
the sum of the energy of each particle. In making this
drawing, we have assumed that all the particles are the
same and that they do not interact with one another very
much. Then each particle has the same set of energy lev-
els, and the presence of other particles does not change
them. In that case, we can say that there is a certain
set of energy levels in the system and that each level can
be occupied by any number of particles. The energy of
the ith level, occupied or not, will be called ui. For the
example of Fig. 3.5, the total energy is

U = 2u23 + u25 + u26 + 3u28.

Suppose that the system is isolated so that it does not
gain or lose energy. It is still possible for particles within

FIGURE 3.5. A few of the energy levels in a system. If a par-
ticle has a particular energy, a dot is drawn on the level. More
than one particle in this system can have the same quantum
numbers.
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the system to exchange energy and move to different en-
ergy levels, as long as the total energy does not change.
(Classically, two particles could collide, so that one gained
and one lost energy.) Therefore the number of particles
occupying each energy level can change, as long as the
total energy remains constant. For a system in equilib-
rium, the average number of particles in each level does
not change with time.

There are two ways in which the total energy of a sys-
tem can change. Work can be done on the system by the
surroundings, or heat can flow from the surroundings to
the system. The meaning of work and heat in terms of
the energy levels of the system is quite specific and is
discussed shortly. First, we define the sign conventions
associated with them.

It is customary to define Q to be the heat flow into
a system. If no work is done, the energy change in the
system is

∆U = Q.

It is also customary to call W the work done by the sys-
tem on the surroundings. When W is positive, energy
flows from the system to the surroundings. If there is no
accompanying heat flow, the energy change of the system
is

∆U = −W.

The most general way the energy of a system can change
is to have both work done by the system and heat flow
into the system. The statement of the conservation of en-
ergy in that case is called the first law of thermodynamics:

∆U = Q − W. (3.5)

The joule is the SI unit for energy, work and heat flow.
The calorie (1 cal = 4.184 J) is sometimes used. The di-
etary calorie is 1000 cal.

The positions of the energy levels in a system are de-
termined by some macroscopic properties of the system.
For a gas of particles in a box, for example, the positions
of the levels are determined by the size and shape of the
box. For charged particles in an electric field, the posi-
tions of the levels are determined by the electric field.
If the macroscopic parameters that determine the posi-
tions of the energy levels are not changed, the only way
to change the total energy of a system is to change the
average number of particles occupying each energy level,
as in Fig. 3.6. This energy change is called heat flow.

Work is associated with the change in the macroscopic
parameters (such as volume) that determine the posi-

FIGURE 3.6. No work is done on the system, but heat is
added. The positions of the levels do not change; their average
population does change.

FIGURE 3.7. Work is done on the system, but no heat flows.
Each level has been shifted to a higher energy.

(a) (b) (c)

FIGURE 3.8. Symbols used to indicate various types of isola-
tion in a system. (a) This system is completely isolated. (b)
There is no heat flow through the double wall, but work can
be done (symbolized by a piston). (c) No work can be done,
but there can be heat flow through the single wall.

tions of the energy levels. If the energy levels are shifted
by doing work without an accompanying heat flow, the
change is called adiabatic. An adiabatic change is shown
in Fig. 3.7. In general, there is also a shift of the popu-
lations of the levels in an adiabatic change; the average
occupancy of each level can be calculated using the Boltz-
mann factor, described in Sec. 3.7. There is no heat flow,
but work is done on or by the system, and its energy
changes.

To summarize: Pure heat flow involves a change in the
average number of particles in each level without a change
in the positions of the levels. Work involves a change in
the macroscopic parameters, which changes the positions
of at least some of the energy levels. In general, this means
that there is also a shift in the average population of
each level. The most general energy change of a system
involves both work and heat flow. In that case the total
energy change is the sum of the changes due to work and
to heat flow.

It is customary in drawing systems to use the symbols
in Fig. 3.8 to describe how the system can interact with
the surroundings. A double-walled box means that no
heat flows, and any processes that occur are adiabatic.
This is shown in Fig. 3.8(a). If work can be done on the
system, a piston is shown as in Fig. 3.8(b). If heat can
flow to or from the system, a single wall is used as in
Fig. 3.8(c).

3.4 Ensembles and the Basic
Postulates

In the next few sections we will develop some quite re-
markable results from statistical mechanics. Making the
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postulate that when a system is in equilibrium each mi-
crostate is equally probable, and arguing that as the en-
ergy, volume, or number of particles in the system is in-
creased the number of microstates available to the system
increases, we will obtain several well-known results from
thermodynamics: heat flows from one system to another
in thermal contact until their temperatures are the same;
if their volumes can change they adjust themselves un-
til the pressures are the same; and the systems exchange
particles until their chemical potentials are the same. We
will also obtain the concept of entropy; the Boltzmann
factor; the theorem of equipartition of energy; and the
Gibbs free energy, which is useful in chemical reactions
in living systems where the temperature and pressure are
constant.

The initial postulates are deceptively simple. Unfortu-
nately, a fair amount of mathematics is required to get
from them to the final results. We start with the basic
postulates.

The microstate of a system is determined by specify-
ing the quantum numbers of each particle in the system.
The total number of quantum numbers is the number of
degrees of freedom. The macrostate of a system is deter-
mined by specifying two things:

1. All of the external parameters, such as the volume of
a box of gas or any external electric or magnetic field,
on which the positions of the energy levels depend.
(Classically, all the external parameters that affect
the motion of the particles in the system.)

2. The total energy of the system, U .

The external parameters determine a set of energy levels
for the particles in the system; the total energy deter-
mines which energy levels are accessible to the system.

Statistical physics deals with average quantities and
probabilities. We imagine a whole set or ensemble of
“identical” systems, as we did in Eq. 3.1. The systems
are identical in that they all are in the same macrostate.
Different systems within the ensemble will be in differ-
ent microstates. Imagine that at some instant of time
we “freeze” all the systems in the ensemble and examine
which microstate each is in. From this we can determine
the probability that a system in the ensemble is in mi-
crostate i:

P (of being in microstate i)

=
number of systems in microstate i

total number of systems in the ensemble
.

Imagine that we now “unfreeze” all the systems in the
ensemble and let the particles move however they want.
At some later time we freeze them again and examine
the probability that a system is in each microstate. These
probabilities may have changed with time. For example,
if the system is a group of particles in a box, and if the
initial “freeze” was done just after a partition confining all

the particles to the left half of the box had been removed,
we would have found many systems in the ensemble in
microstates for which most of the particles are on the
left-hand side. Later, this would not be true. We would
find microstates corresponding to particles in both halves
of the box.

We will make two basic postulates about the systems
in the ensemble.5

1. If an isolated system (really, an ensemble of isolated
systems) is found with equal probability in each one
of its accessible microstates, it is in equilibrium.6

Conversely, if it is in equilibrium, it is found with
equal probability in each one of its accessible mi-
crostates.

2. If it is not in equilibrium, it tends to change with
time until it is in equilibrium. Therefore the equilib-
rium state is the most random, most probable state.

For the rest of this chapter, we deal with equilibrium
systems. According to our first postulate, each microstate
that is accessible to the system (that is, consistent with
the total energy that the system has) is equally proba-
ble. We will discover that this statement has some far-
reaching consequences.

Suppose that we want to consider some variable x,
which takes on various values. This variable might be the
pressure of a gas, the number of gas molecules in some
volume of the box, or the energy that one of the mole-
cules has. For each value of x, there will be some number
of microstates in which the system could be that are con-
sistent with that value of x. There will also be some total
number of microstates in which the system could be, con-
sistent with its initial preparation. We will use the Greek
letter Ω to denote the number of microstates. The total
number of accessible microstates (for all possible values
of x) is Ω ; the number for which x has some particular
value is Ωx. It is consistent with the first assumption to
say that the probability that the variable has a value x
when the system is in equilibrium is

Px =
Ωx

Ω
. (3.6)

We have been considering ensemble averages. For ex-
ample, the variable of interest might be the pressure,
and we could find the ensemble average by calculating

5For a more detailed discussion of these assumptions, see Reif
(1964), Ch. 3.

6In thermodynamics and statistical mechanics, equilibrium and
steady state do not mean the same thing. Steady state means
that some variable is not changing with time. The concentration
of sodium in a salt solution flowing through a pipe could be in
steady state as the solution flowed through, but the system would
not be in equilibrium. Only a few microstates corresponding to bulk
motion of the fluid are occupied. In other areas, such as feedback
systems, the words equilibrium and steady state are used almost
interchangeably.
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FIGURE 3.9. Two systems are in thermal contact with each
other but are isolated from the rest of the universe. They can
exchange energy only by heat flow.

p̄ =
∑

Ppp, where Pp is the probability of having pres-
sure p. In equilibrium Pp is given by Eq. 3.6, and p̄ does
not change with time. We could also consider a single
system, measure p(t) M times, and compute the time av-
erage, 〈p(t)〉 =

∑
i p(ti)/M . (The equivalence of the time

average and the ensemble average for systems in equilib-
rium is called the ergodic hypothesis.)

3.5 Thermal Equilibrium

A system that never interacts with its surroundings is an
idealization. The adiabatic walls of Fig. 3.8(a) can never
be completely realized. However, much can be learned by
considering two systems that can exchange heat, work, or
particles, but that, taken together, are isolated from the
rest of the universe. After we have learned how these two
systems interact, the second system can be taken to be
the rest of the universe. Eventually, we will allow all three
exchanges—heat flow, work, and particles—to take place;
for now, it will be convenient to consider only exchanges
of energy by heat flow. Figure 3.9 shows the two systems,
A and A′, isolated from the rest of the universe. The total
system will be called A∗. The total number of particles
is N∗ = N + N ′. For now N and N ′ are fixed. The total
energy is U∗ = U + U ′. The two systems can exchange
energy by heat flow, so that U and U ′ may change, as
long as their sum remains constant.

The number of microstates accessible to the total sys-
tem is Ω∗. The combined system was originally given a
total energy U∗ before it was sealed off from the rest
of the universe. The barrier between A and A′ prevents
exchange of particles or work. The total number of mi-
crostates depends on how much energy is in each system:
when system A has energy U , the total number of mi-
crostates is Ω∗(U).7

There are many microstates accessible to the system,
with U and U ′ having different values, subject always to
U∗ = U +U ′. Let the total number of microstates, includ-
ing all possible values of U , be Ω∗

tot . Then, according to
the postulate, the probability of finding system A with

7If Ω is a continuous function of U , then Ω(U) is actually the
number of states wih energy between U and U + dU .We ignore this
distinction. For a discussion of it, see Chapter 3 of Reif (1964).

TABLE 3.3. An example of two systems that can exchange
heat energy. The total energy is U∗ = 10u. Each system con-
tains two particles for which the energy levels are u, 2u, 3u,
etc.

System A System A′ System A∗

U Ω U ′ Ω′ Ω∗

2u 1 8u 7 7
3u 2 7u 6 12
4u 3 6u 5 15
5u 4 5u 4 16
6u 5 4u 3 15
7u 6 3u 2 12
8u 7 2u 1 7

Ω∗
tot = 84

energy U is

P (U) =
Ω∗(U)
Ω∗

tot

= C Ω∗(U). (3.7)

C = 1/Ω∗
tot is a constant (independent of U).

If the meaning of Eq. 3.7 is obscure, consider the fol-
lowing example. Systems A and A′ each consist of two
particles, the energy levels for each particle being at u,
2u, 3u, and so forth. The total energy available to the
combined system is U∗ = 10u. The smallest possible en-
ergy for system A is U = 2u, both particles having en-
ergy u. If U = 3u, there are two states: in one, the first
particle has energy u and the other 2u; in the second,
the particles are reversed. Label these states (u, 2u) and
(2u, u). For U = 4u, there are three possibilities: (u, 3u),
(2u, 2u), and (3u, u). In general, if U = nu, there are n−1
states, corresponding to the first particle having energy
u, 2u, 3u, ..., (n− 1)u. Table 3.3 shows values for U,U ′,Ω,
and Ω′.

It is now necessary to consider Ω∗ in more detail. If
there are two microstates available to system A and 6
available to system A∗, there are 2 × 6 = 12 states avail-
able to the total system. Ω∗ = ΩΩ′ is also given in Table
3.3. In a more general case, the number of microstates
for the total system is the product of the number for each
subsystem:

Ω∗(U) = Ω(U)Ω′(U ′). (3.8)

For the specific example, there are a total of 84 mi-
crostates accessible to the system when U∗ = 10u. Equa-
tion 3.7 says that since each microstate is postulated to
be equally probable, the probability that the energy of
system A is 3u is 12/84 = 0.14. The most probable state
of the combined system is that for which A has energy
5u and A′ has energy 5u.

The next question is how Ω and Ω′ depend on energy
in the general case. In the example, Ω is proportional to
U . For three particles, one can show that Ω increases as
U2 (see Problem 15). In general, the more particles there
are in a system, the more rapidly Ω increases with U .
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FIGURE 3.10. Example of the behavior of Ω, Ω′, and
Ω∗. In this case, the values used are Ω(U) = 5U2 and
Ω′(U ′) = 4(U ′)2. (These functions give Ω = 0 when U = 0,
which is not correct. But they are simple and behave properly
at higher energies.) The total energy is 6, so only values of U
between 0 and 6 are allowed. (a) Plot of Ω(U). The dashed
line is Ω′(6 − U). (b) Plot of Ω′(U ′). (c) Plot of Ω∗ = ΩΩ′.

For a system with a large number of particles, increasing
the energy drastically increases the number of microstates
accessible to the system.

As more energy is given to system A and Ω(U) in-
creases, there is less energy available for system A′ and
Ω′(U ′) decreases. The product Ω∗ = ΩΩ′ goes through
a maximum at some value of U , and that value of U is
therefore the most probable. These features are shown
in Fig. 3.10, which assumes that U and Ω are contin-
uous variables. The continuous approximation becomes
excellent when we deal with a large number of particles
and very closely spaced energy levels. The solid line in
Fig. 3.10(a) represents Ω(U); Ω′(U ′) is the solid line in
Fig. 3.10(b). The function Ω′ is also plotted vs U , rather
than U ′, as the dashed line in Fig. 3.10(a). As more energy
is given to A, Ω increases but Ω′ decreases. The product,
Ω∗ = ΩΩ′, shown in Fig. 3.10(c), reaches a maximum at
U = 3.

The most probable value of U is that for which P (U)
is a maximum. Since P is proportional to Ω∗, Ω∗(U) is
also a maximum. Therefore,

d

dU
[Ω∗ (U)] = 0 (3.9)

at the most probable value of U . This derivative can be
evaluated using Eq. 3.8. Since U + U ′ = U∗, Eq. 3.8 can
be rewritten as

Ω∗(U) = Ω(U)Ω′(U∗ − U). (3.10)

The derivative is

dΩ∗

dU
=

dΩ
dU

Ω′ + Ω
dΩ′

dU
.

By the chain rule for taking derivatives,

dΩ′

dU
=
(

dΩ′

dU ′

)(
dU ′

dU

)
.

Since U ′ = U∗ − U , dU ′/dU = −1. Therefore

dΩ∗

dU
= Ω′ dΩ

dU
− Ω

dΩ′

dU ′ . (3.11)

Factoring out ΩΩ′ gives

dΩ∗

dU
= ΩΩ′

(
1
Ω

dΩ
dU

− 1
Ω′

dΩ′

dU ′

)
. (3.12)

In equilibrium, this must be zero by Eq. 3.9. Since Ω∗ =
ΩΩ′ cannot be zero, the most probable state or the equi-
librium state exists when

1
Ω

dΩ
dU

=
1
Ω′

dΩ′

dU ′ . (3.13)

It is convenient to define the quantity τ by

1
τ
≡ 1

Ω
dΩ
dU

for any system. We must remember that this derivative
was taken when the number of particles and the para-
meters that determine the energy levels were held fixed.
These parameters are such things as volume and electric
and magnetic fields. To remind ourselves that everything
but U is being held fixed, it is customary to use the no-
tation for a partial derivative: ∂ instead of d (Appendix
N). Therefore, we write

1
τ
≡ 1

Ω

(
∂Ω
∂U

)

N,V,etc

. (3.14)

Often we will be careless and just write ∂Ω/∂U .
The quantity τ defined by Eq. 3.14 depends only on the

variables of one system, system A. It is therefore a prop-
erty of that system. Thermal equilibrium occurs when
τ = τ ′. Since Ω is just a number, Eq. 3.14 shows that τ
has the dimensions of energy.

Systems A and A′, which are in thermal contact, will
be in equilibrium (the state of greatest probability) when
τ = τ ′. This is reminiscent of something that is familiar
to all of us: if a hot system is placed in contact with a
cold one, the hotter one cools off and the cooler one gets
warmer. The systems come to equilibrium when they are
both at the same temperature. This suggests that τ is
in some way related to temperature, even though it has
the dimensions of energy. We will not prove it, but many
things work out right if the absolute temperature T is
defined by the relationship

τ = kBT. (3.15)

The proportionality constant is called Boltzmann’s con-
stant. If T is measured in kelvin (K), kB has the value

kB = 1.380 651 × 10−23 J K−1

= 0.861 734 × 10−4 eV K−1. (3.16)

[The electron volt (eV) is a unit of energy commonly used
when considering atoms or molecules. 1 eV = 1.60218 ×
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10−19 J .] The most convincing evidence in this book that
Eq. 3.15 is reasonable is the derivation of the thermody-
namic identity in Sec. 3.16.

The absolute temperature T is related to the temper-
ature in degrees centigrade or Celsius by

T = (temperature in ◦C) + 273.15. (3.17)

3.6 Entropy

The preceding section used the idea that the number of
microstates accessible to a system increases as the energy
of the system increases, to develop a condition for ther-
mal equilibrium. There are two features of those argu-
ments that suggest that there are advantages to working
with the natural logarithm of the number of microstates.
First, the total number of microstates is the product of
the number in each subsystem: Ω∗ = ΩΩ′. Taking natural
logarithms of this gives

ln Ω∗ = ln Ω + ln Ω′. (3.18)

The other feature is the appearance of (1/Ω) (∂Ω/∂U) in
the equilibrium condition. For any non-negative, differ-
entiable function y(x),

d

dx
(ln y) =

1
y

dy

dx
.

Therefore, Eq. 3.14 can be written as

1
τ

=
∂

∂U
(ln Ω) . (3.19)

The entropy S is defined by

S = kB ln Ω, Ω = eS/kB . (3.20)

If both sides of Eq. 3.19 are multiplied by kB , it is seen
that (

∂S

∂U

)

N,V,etc.

=
kB

τ
=

1
T

. (3.21)

This is a fundamental property of entropy that may be
familiar to you from other thermodynamics textbooks; if
so, it forms a justification for defining temperature as we
did.

Another important property of the entropy is that the
entropy of system A∗ is the sum of the entropy of A and
the entropy of A′:

S∗ = S + S′. (3.22)

This can be proved by multiplying Eq. 3.18 by kB .
A third property of the entropy is that S∗ is a maxi-

mum when systems A and A′ are in thermal equilibrium.
This result follows from the fact that Ω∗ is a maximum
at equilibrium, since S∗ = kB ln Ω∗ and the logarithm is
a monotonic function.

Finally, the entropy change in the system can be re-
lated to the heat flow into it. Equation 3.21 shows that if
there is an energy change in the system when N and the
parameters that govern the spacing of the energy levels
are fixed, then

dS =
(

∂S

∂U

)

N,V,etc.

dU =
(

dU

T

)

N,V,etc.

.

But the energy change when N,V and any other para-
meters are fixed is the heat flow dQ:

dS =
dQ

T
. (3.23)

3.7 The Boltzmann Factor

Section 3.5 considered the equilibrium state of two sys-
tems that were in thermal contact. It is often useful to
consider systems in thermal contact when one of the sys-
tems is a single particle. This leads to an expression for
the total number of microstates as a function of the en-
ergy in the single-particle system, known as the Boltz-
mann factor. The Boltzmann factor is used in many sit-
uations, as is its alternate form, the Nernst equation
(Sec. 3.8).

Let system A be a single particle in thermal contact
with a large system or reservoir A′. Transferring energy
from A′ to A decreases the number of microstates in A′.
The number of microstates in A may change by some
factor G or remain the same. We will discuss G at the
end of this section.

To make this argument quantitative, consider system
A when it has two different energies, Ur and Us. Reservoir
A′ is very large so that its temperature T ′ remains con-
stant, and it has many energy levels almost continuously
distributed. Let Ω′(U ′) be the number of microstates in
A′ when it has energy U ′. The relative probability that
A has energy Us compared to having energy Ur is given
by the ratio of the total number of microstates accessible
to the combined system:

P (Us)
P (Ur)

=
Ω∗(U = Us)
Ω∗(U = Ur)

=
Ω(Us)Ω′(U∗ − Us)
Ω (Ur) Ω′ (U∗ − Ur)

. (3.24)

This probability is the product of two functions, one de-
pending on system A and one on reservoir A′:

G =
Ω(Us)
Ω(Ur)

,

R =
Ω′(U∗ − Us)
Ω′(U∗ − Ur)

.
(3.25)

Ratio R is calculated most easily by using Eq. 3.14,
remembering the definition τ = kBT . Since neither the
volume nor number of particles is changed, we use an or-
dinary derivative. We write it in terms of the temperature
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of the reservoir:

1
Ω′

(
dΩ′

dU ′

)
=

1
kBT ′ ,

dΩ′

dU ′ =
(

1
kBT ′

)
Ω′. (3.26)

Since T ′ is constant, this is easily integrated:

Ω′(U ′) = const × eU ′/kBT ′
.

Therefore the ratio is

R =
const × e(U∗−Us)/kBT ′

const × e(U∗−Ur)/kBT ′

= e−(Us−Ur)/kBT . (3.27)

Although the temperature T ′ is a property of the reser-
voir, we drop the prime. This ratio is called the Boltz-
mann factor. It gives the factor by which the number of
microstates in the reservoir decreases when the reservoir
gives up energy Us − Ur to the system A.

The relative probability of finding system A with en-
ergy Ur or Us is then given by

P (Us)
P (Ur)

= Ge−(Us−Ur)/kBT =
[
Ω(Us)
Ω(Ur)

]
e−(Us−Ur)/kBT .

(3.28)
The exponential Boltzmann factor is a property of the

reservoir. The factor G is called the density of states fac-
tor. It is a property of the system. If system A is a single
atom with discrete energy levels and we want to know
the relative probability that the atom has a particular
value of its allowed energy, G may be unity. In other
cases, there may be two or more sets of quantum num-
bers corresponding to the same energy, a situation called
degeneracy. In that case G may be a small number. We
would have to know the details to calculate it.

3.8 The Nernst Equation

The Nernst equation is widely used in physiology to relate
the concentration of ions on either side of a membrane to
the electrical potential difference across the membrane.
It is an example of the Boltzmann factor.

Suppose that certain ions can pass easily through a
membrane. If the membrane has an electrical potential
difference across it, the ions will have different energy on
each side of the membrane. As a result, when equilibrium
exists they will be at different concentrations. The ratio
of the probability of finding an ion on either side of the
membrane is the ratio of the concentrations on the two
sides:

C2

C1
=

P (2)
P (1)

.

The total energy of an ion is its kinetic energy plus its
potential energy: U = Ek +Ep. Chapter 6 will show that

when the electrical potential is v, the potential energy is
Ep = zev. In this equation z is the valence of the ion
(+1,−1,+2, etc.) and e is the elementary charge (1.6 ×
10−19 C).

The concentration ratio is given by a Boltzmann factor,
Eq. 3.28:

C2

C1
=
[
Ω(2)
Ω(1)

]
e−(U2−U1)/kBT . (3.29)

We must now evaluate the quantity in square brackets. It
is the ratio of the number of microstates available to the
ion on each side of the membrane. The concentration is
the number of ions per unit volume and is proportional
to the probability that an ion is in volume ∆x∆y∆z. We
will state without proof that for a particle which can un-
dergo translational motion in three dimensions, Ω(U) is
α ∆x∆y∆z, where α is a proportionality constant. There-
fore

Ω(2)
Ω(1)

=
α ∆x∆y∆z

α ∆x∆y∆z
= 1.

The energy difference is

U2 − U1 = Ek(2) − Ek(1) + ze(v2 − v1).

It will be shown in Sec. 3.10 that the average kinetic
energy on both sides of the membrane is the same if the
temperature is the same. Therefore,

C2

C1
= e−ze(v2−v1)/kBT . (3.30)

If the potential difference is v2 − v1 then the ions will be
in equilibrium if the concentration ratio is as given by
Eq. 3.30. If the ratio is not as given, then the ions, since
they are free to move through the membrane, will do so
until equilibrium is attained or the potential changes.

If the ions are positively charged and v2 > v1, then
the exponent is negative and C2 < C1. If the ions are
negatively charged, then C2 > C1.

The concentration difference is explained qualitatively
by the electrical force within the membrane that causes
the potential difference. If v2 > v1, the force within the
membrane on a positive ion acts from region 2 toward
region 1. It slows positive ions moving from 1 to 2 and
accelerates those moving from 2 to 1. Thus it tends to
increase C1.

The Nernst equation is obtained by taking logarithms
of both sides of Eq. 3.30:

ln
(

C2

C1

)
= − ze

kBT
(v2 − v1).

From this,

v2 − v1 =
kBT

ze
ln
(

C1

C2

)
.

Multiplying both numerator and denominator of kBT/ze
by Avogadro’s number NA = 6.022142 × 1023 molecule
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mol−1 gives the quantities NAkB and NAe. The former
is the gas constant:

NAkB = R = 8.314 51 J mol−1 K−1. (3.31)

The latter is the Faraday constant:

NAe = F = 96 485.31 C mol−1. (3.32)

The coefficient is therefore

kBT

ze
=

RT

zF
. (3.33)

At body temperature, T = 37 ◦C = 310 K, the value of
RT/F is 0.0267 J C−1 = 26.7 mV.

In the form

v2 − v1 =
RT

zF
ln
(

C1

C2

)
, (3.34)

the Boltzmann factor is called the Nernst equation.

3.9 The Pressure Variation in the
Atmosphere

That atmospheric pressure decreases with altitude is well
known. This truth has medical significance because of the
effects of lower oxygen at high altitudes. We will derive
an approximate, constant temperature model for the de-
crease using the Boltzmann factor, and then we will do
it again using hydrostatic equilibrium.

The gravitational potential energy of an air molecule
at height y is mgy, where m is the mass of the molecule
and g is the gravitational acceleration. If the atmosphere
has a constant temperature, there will be no change of
kinetic energy with altitude. For a molecule to increase its
potential energy, and therefore its total energy, by mgy,
the energy of all the other molecules (the reservoir) must
decrease, with a corresponding decrease in the number of
accessible microstates. The number of particles per unit
volume is given by a Boltzmann factor:

C(y) = C(0)e−mgy/kBT . (3.35)

Since for an ideal gas p = NkBT/V = CkBT , the pres-
sure also decreases exponentially with height.

The same result can be obtained without using statis-
tical physics, by considering a small volume of the at-
mosphere that is in static equilibrium. Let the volume
have thickness dy and horizontal cross-sectional area S,
as shown in Fig. 3.11. The force exerted upward across
the bottom face of the element is p(y)S. The force down
on the top face is p(y + dy)S. The N molecules in the
volume each experience the downward force of gravity.
The total gravitational force is Nmg. In terms of the
concentration, N = CSdy. Therefore, the condition for

Area S
p(y + dy)S

p(y)S

y

y + dy

Nmg

FIGURE 3.11. Forces on a small volume element of the at-
mosphere.

equilibrium is p(y)S − p(y + dy)S − CSmg dy = 0. Since
p(y) − p(y + dy) = −(dp/dy) dy, this can be written as

[
−
(

dp

dy

)
− Cgm

]
S dy = 0.

The next step is to use the ideal gas law to write p =
CkBT :

−kBT
dC

dy
− Cgm = 0.

If this is written in the form

dC

dy
= − mg

kBT
C (3.36)

it will be recognized as the equation for exponential de-
cay. The solution is Eq. 3.35.

3.10 Equipartition of Energy and
Brownian Motion

A very important application of the Boltzmann factor is
the proof that the average translational kinetic energy
per degree of freedom of a particle in thermal contact
with a reservoir at temperature T is kBT/2. This result
holds for any term in the total energy that depends on
the square of one of the variables (such as a component
of the position or the momentum).

The proof is done for the kinetic energy resulting from
the x component of momentum. The same procedure can
be used for the other components. When the x compo-
nent of the momentum of a particle is between px and
px + dpx, the kinetic energy is p2

x/2m. The relative prob-
ability that the particle has this energy is given by the
Boltzmann factor, e−p2

x/2mkBT . We assert that the prob-
ability that the particle has momentum in this interval
is also proportional to dpx.8 The average kinetic energy
associated with px is obtained by multiplying the energy

8A more detailed justification of this is found in earlier editions
of this book, in texts on statistical mechanics, or on the website
associated with this book.
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by the Boltzmann factor and integrating over all values
of px. We normalize the probability by dividing by the
integral of the Boltzmann factor. (See the first equation
in Appendix G.)

(
p2

x

2m

)
=

∫∞
−∞(p2

x/2m)e−p2
x/2mkBT dpx

∫∞
−∞ e−p2

x/2mkBT dpx

. (3.37)

The integral in the denominator is evaluated in Appendix
K and is (2πmkBT )1/2. The integral in the numerator of
Eq. 3.37 is

(
1
m

)(
1
4

)
(2mkBT )(2πmkBT )1/2.

Combining these gives

(
p2

x

2m

)
=

kBT

2
. (3.38)

The average value of the kinetic energy corresponding
to motion in the x direction is kBT/2, independent of
the mass of the particle. The only condition that went
into this derivation was that the energy depended on the
square of the variable. Any term in the total energy that
is a quadratic function of some variable will carry through
the same way, so that the average energy will be kBT/2
for that variable. This result is called the equipartition of
energy.

The total translational kinetic energy is the sum of
three terms (p2

x + p2
y + p2

z)/2m, so the total translational
kinetic energy has average value 3

2kBT .
This result is true for particles of any mass: atoms,

molecules, pollen grains, and so forth. Heavier particles
will have a smaller velocity but the same average kinetic
energy. Even heavy particles are continually moving with
this average kinetic energy. The random motion of pollen
particles in water was first seen by a botanist, Robert
Brown, in 1827. This Brownian motion is an important
topic in the next chapter.

3.11 Heat Capacity

Consider a system into which a small amount of heat ∆Q
flows. In many cases the temperature of the system rises.
(An exception is when there is a change of state such as
the melting of ice.) The heat capacity C of the system is
defined as

C =
∆Q

∆T
. (3.39)

Heat capacity has units of J K−1. It depends on the size
of the object and the substance it is made of. The specific
heat capacity, c, is the heat capacity per unit mass (J K−1

kg−1) or the heat capacity per mole (J K−1 mol−1).
The heat capacity also depends on any changes in the

macroscopic parameters that take place during the heat

flow. Recall the first law of thermodynamics, Eq. 3.5:
∆U = Q − W. Only part of the energy transferred to
the system by the heat flow increases the internal energy.
Some also goes to work done by the system. For example,
if the volume changes, there will be pressure-volume work
done by the system (Sec. 1.16).

One special case is the heat capacity at constant vol-
ume, CV . In that case, no pdV work is done by the system
and ∆U = ∆Q, so

CV =
(

∂U

∂T

)

V

. (3.40)

Many processes in the body occur at constant pressure,
and the heat capacity at constant pressure, Cp, is not
equal to CV . If both the pressure and volume change dur-
ing the process, the heat capacity depends on the details
of the pressure and volume changes.

The simplest example is the heat capacity at constant
volume of a monatomic ideal gas. The average kinetic
energy of a gas molecule at temperature T moving in
three dimensions is 3

2kBT, and the total energy of N
molecules is U = 3

2NkBT. Therefore at constant volume
CV = 3

2NkB . For one mole of monatomic ideal gas the
heat capacity is 3

2NAkB = 3
2R. Molecules with two or

more atoms can also have rotational and vibrational en-
ergy, and the heat capacity is larger. The heat capacity
can also depend on the temperature.

As a biological example, consider the energy loss from
breathing [Denny (1993)]. In each breath we inhale about
V = 0.5 l of air. Our body warms this air from the sur-
rounding temperature to body temperature. (The body
has a much higher heat capacity and does not signifi-
cantly cool. See Problem 43.) The specific heat of air
under these conditions is c ≈ 1000 J K−1 kg−1, and the
density of air is ρ = 1.3 kg m−3. Therefore the heat flow
required to raise the air temperature in each breath is

∆Q = cρV (Tbody − Tsurroundings) . (3.41)

For a body temperature of 37 ◦C and surroundings at
20 ◦C, the temperature difference is 17 ◦C = 17 K. From
Eq. 3.41, ∆Q = 11 J. We breathe about once every 5
seconds, so the average power lost to the air we breathe
is 2.2W. A typical basal metabolic rate is about 100W,
so this represents 2% of our energy consumption.

3.12 Equilibrium When Particles Can
Be Exchanged: The Chemical
Potential

Section 3.5 considered two systems that could exchange
heat. The most probable or equilibrium state was that
in which energy had been exchanged so that the total
number of microstates or total entropy was a maximum.
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A A'

N N'

U U'

V V'

FIGURE 3.12. Two systems can exchange energy by heat flow
and paticles. The volume of each system remains fixed.

This occurred when (Eq. 3.13)

1
Ω

(
∂Ω
∂U

)

N,V

=
1
Ω′

(
∂Ω′

∂U ′

)

N ′,V ′
,

which is equivalent to T = T ′. Since S = kB ln Ω this is
also equivalent to

(
∂S

∂U

)

N,V

=
(

∂S′

∂U ′

)

N ′,V ′
.

This section considers the case in which the systems
can exchange both energy by heat flow and particles; they
are in thermal and diffusive contact (Fig. 3.12). The num-
ber of particles in each system is not fixed, but their sum
is constant:

N + N ′ = N∗. (3.42)

Equilibrium will exist for the most probable state, which
means that there is heat flow until the two temperatures
are the same and Eq. 3.13 is satisfied. The most probable
state also requires a maximum in Ω∗ or S∗ vs N . The
arguments used in the earlier section for heat exchange
can be applied to obtain the equilibrium condition

1
Ω

(
∂Ω
∂N

)

U,V

=
1
Ω′

(
∂Ω′

∂N ′

)

U ′,V ′
. (3.43)

The condition in terms of entropy is
(

∂S

∂N

)

U,V

=
(

∂S′

∂N ′

)

U ′,V ′
. (3.44)

For thermal contact, the temperature was defined in
terms of the derivative of S with respect to U , so that
equilibrium occurred when T = T ′. An analogous quan-
tity, the chemical potential, is defined by

µ ≡ −T

(
∂S

∂N

)

U,V

. (3.45)

(The reason T is included in the definition will become
clear later.) Both thermal and diffusive equilibrium exist
when

T = T ′, µ = µ′. (3.46)

Two systems are in thermal and diffusive equilibrium
when they have the same temperature and the same chem-
ical potential.

The units of the chemical potential are energy (J).
Since the units of S are J K−1 and the units of N are
dimensionless,9 Eq. 3.45 shows that the units of µ are J.

Consider next what happens to the entropy of the to-
tal system if particles are exchanged when the system is
not in equilibrium. Let the number of particles in the un-
primed system increase by ∆N and the number in the
primed system increase by ∆N ′. The change of total en-
tropy is

∆S∗ =
(

∂S∗

∂N

)
∆N =

(
∂S

∂N

)
∆N +

(
∂S′

∂N ′

)
∆N ′.

Using the definition of the chemical potential and the fact
that ∆N ′ = −∆N , we can rewrite this as

∆S∗ =
(
−µ

T

)
∆N −

(
−µ′

T ′

)
∆N.

If the two temperatures are the same, this is

∆S∗ =
(

µ′ − µ

T

)
∆N. (3.47)

We see again that the entropy change will be zero for a
small transfer of particles from one system to the other
if µ = µ′. Suppose now that particles flow from A′ to A,
so that ∆N is positive. If µ′ > µ, that is, the chemical
potential of A′ is greater than that of A, this will cause an
increase in entropy of the combined system. If particles
move from a system of higher chemical potential to one of
lower chemical potential, the entropy of the total system
increases.

3.13 Concentration Dependence of the
Chemical Potential

The change in chemical potential of an ideal gas (or
a solute in an ideal solution)10 when the concentration
changes from C0 to C and there is also a change in its
potential energy has the form

∆µ = kBT ln
(

C

C0

)
+ ∆(potential energy per particle).

(3.48)
We will derive this in Sec. 3.18; for now we show that it
is plausible and consistent with the Boltzmann factor.

We know from experience that particles tend to move
from a region of higher to lower potential energy, thus

9In this book, N represents the number of particles, and the

chemical potential has units of energy per particle. In other books

it may have units of energy per mole.
10An ideal solution is defined in Sec. 3.18.
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increasing their kinetic energy, which can then be trans-
ferred as heat to other particles by collision. We also know
that particles will spread out to reduce their concentra-
tion if they are allowed to. This latter process, called
diffusion, is discussed in Chapter 4. Both processes, de-
creasing the potential energy and decreasing the concen-
tration, cause a decrease in the chemical potential and
therefore an increase in the entropy.

It is the combination of these two factors that
causes the Boltzmann distribution of particles in the at-
mosphere. When the atmosphere is in equilibrium, the
potential energy term increases with height and the con-
centration term decreases with height so that the chemi-
cal potential is the same at all heights.

To see the equivalence between Eq. 3.48 and the Boltz-
mann factor, suppose that particles can move freely from
region 1 to region 2 and that the potential energy dif-
ference between the two regions is ∆Ep. The particles
will be in equilibrium when µ1 = µ2. From Eq. 3.48 this
means that

kBT ln C1 + Ep1 = kBT ln C2 + Ep2.

This equation can be rearranged to give

ln C2 − ln C1 = −Ep2 − Ep1

kBT
.

If exponentials are taken of each side, the result is

C2

C1
= e−∆Ep/kBT .

If the temperature of each region is the same, the aver-
age kinetic energy will be the same in each system, and
∆Ep = ∆U . This is then the same as the Boltzmann
factor, Eq. 3.29.

There is still another way to look at the concentra-
tion dependence. In an ideal gas, the pressure, volume,
temperature, and number of particles are related by the
equation of state pV = NkBT . In terms of the parti-
cle concentration C = N/V , this is p = CkBT . The work
necessary to concentrate the gas from volume V1 and con-
centration C1 to V2 and C2 is (see Eq. 1.56)

Won gas = −
∫ V2

V1

p(V ) dV. (3.49)

The concentration work at a constant temperature is

W = −NkBT

∫ V2

V1

dV

V
= −NkBT ln

V2

V1
.

If the final volume is smaller than the initial volume, the
logarithm is negative and the concentration work is pos-
itive. In terms of the particle concentration C = N/V
or the molar concentration c = n/V , the concentration
work is

Wconc = NkBT ln
C2

C1
= nRT ln

c2

c1
. (3.50)

The last form was written by observing that NkB = nR
where R is the gas constant per mole.

Comparing Eq. 3.50 with Eq. 3.48, we see that the con-
centration work at constant temperature is proportional
to the change in chemical potential with concentration.
It is, in fact, just the number of molecules N times the
change in µ: Wconc = N∆µ.

The concentration work or change of chemical potential
can be related to the Boltzmann factor in still another
way. Particles are free to move between two regions of
different potential energy at the same temperature. The
work required to change the concentration is, by Eq. 3.50,

Wconc = N∆µ = NkBT ln
C2

C1
.

The concentration ratio is given by a Boltzmann factor:

C2/C1 = e−(Ep2−Ep1)/kBT ,

so that ln(C2/C1) = −(Ep2 − Ep1)/kBT . Therefore, the
concentration work is Wconc = −N(Ep2 − Ep1).

If C2 < C1, W is negative and is equal in magnitude
to the increase in potential energy of the molecules. The
concentration energy lost by the molecules is precisely
that required for them to move to the region of higher
potential energy. If C2 > C1, the loss of potential energy
going from region 1 to region 2 provides the energy nec-
essary to concentrate the gas. Alternatively, one may say
that the sum of the concentration energy and the poten-
tial energy is the same in the two regions. This was, in
fact, the statement about the chemical potential at equi-
librium: µ2 = µ1.

The same form for the chemical potential is obtained
for a dilute solute. (We will present one way of under-
standing why in Sec. 3.18.) Therefore, the concentration
work calculated for an ideal gas is the same as for an ideal
solute. The work required to concentrate 1 mol of sub-
stance by a factor of 10 at 310K is (1 mol)(8.31 J mol−1

K−1)(310 K) ln(10) or 5.93× 103 J. One of the most con-
centrated substances in the human body is H+ ion in gas-
tric juice, which has a pH of 1. Since it was concentrated
from plasma with a pH of about 7, the concentration ra-
tio is 106. The work necessary to concentrate 1 mol is
therefore RT ln(106) = (8.31)(310)(13.82) = 3.56 × 104

J.

3.14 Systems That Can Exchange
Volume

We have considered two systems that can exchange en-
ergy or particles. Now consider the systems shown in
Fig. 3.13. They are isolated from the rest of the universe.
The vertical line that separates them is a piston that can
move and conduct heat, so that energy and volume can
be exchanged between the two systems. The piston pre-
vents particles from being exchanged. The constraints are
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A A'

N N'

U U'

V V'

FIGURE 3.13. Two systems that can exchange volume are
separated by a movable piston. Heat can also flow through
the piston.

V ∗ = V + V ′ and U∗ = U + U ′ from which dV = −dV ′,
dU = −dU ′. As before, equilibrium exists when the total
number of microstates or the total entropy is a maximum.
The conditions for maximum entropy are

(
∂S∗

∂U

)

N,V

= 0,

(
∂S∗

∂V

)

N,U

= 0.

The derivation proceeds as before. For example,
(

∂S∗

∂V

)

N,U

=
(

∂S

∂V

)

N,U

+
(

∂S′

∂V

)

N,U

=
(

∂S

∂V

)

N,U

−
(

∂S′

∂V ′

)

N ′,U ′
.

Equilibrium requires that T = T ′ so that there is no heat
flow. The piston will stop moving and there will be no
change of volume when

(
∂S

∂V

)

N,U

=
(

∂S′

∂V ′

)

N ′,U ′
. (3.51)

These derivatives can be evaluated in several ways. The
method used here involves some manipulation of deriva-
tives; a more detailed description, consistent with the mi-
croscopic picture of energy levels, is found in Reif (1964,
pp. 267–273).

For a small exchange of heat and work, the first law can
be written as dU = dQ−dW . In the present case the only
form of work is that related to the change of volume, so
dU = dQ−pdV . It was shown in Eq. 3.23 that dQ = TdS.
Therefore dU = TdS − pdV . This equation can be solved
for dS:

dS =
(

1
T

)
dU +

( p

T

)
dV. (3.52)

The entropy depends on U ,V and N : S = S(U, V,N).
If N is not allowed to change, then

dS =
(

∂S

∂U

)

N,V

dU +
(

∂S

∂V

)

N,U

dV. (3.53)

Comparison of this with Eq. 3.52 shows that
(

∂S

∂U

)

N,V

=
1
T

,

(
∂S

∂V

)

N,U

=
p

T
. (3.54)

The first of these equations was already seen as Eq. 3.21.
The second gives the condition for equilibrium under vol-
ume change. Referring to Eq. 3.51 we see that at equilib-
rium

p

T
=

p′

T ′ .

Therefore, equilibrium requires both T = T ′ and

p = p′. (3.55)

This agrees with common experience. The piston does
not move when the pressure on each side is the same.

3.15 Extensive Variables and
Generalized Forces

The number of microstates and the entropy of a system
depend on the number of particles, the total energy, and
the positions of the energy levels of the system. The posi-
tions of the energy levels depend on the volume and may
also depend on other macroscopic parameters. For exam-
ple, they may depend on the length of a stretched muscle
fiber or a protein molecule. For charged particles in an
electric field, they depend on the charge. For a thin film
such as the fluid lining the alveoli of the lungs, the en-
tropy depends on the surface area of the film. The number
of particles, energy, volume, electric charge, surface area,
and length are all extensive variables: if a homogeneous
system is divided into two parts, the value of the variable
for the total system (volume, charge, etc.) is the sum of
the values for each part. A general extensive variable will
be called x.

An adiabatic energy change is one in which no heat
flows to or from the system. The energy change is due to
work done on or by the system as a macroscopic parame-
ter changes, shifting at least some of the energy levels. For
each extensive variable x we can define a generalized force
X such that the energy change in an adiabatic process is

dU = −dW = Xdx. (3.56)

(Remember that dU is the increase in energy of the sys-
tem and dW is the work done by the system on the sur-
roundings.) Examples of extensive variables and their as-
sociated forces are given in Table 3.4.

3.16 The General Thermodynamic
Relationship

Suppose that a system has N particles, total energy
U , volume V , and another macroscopic parameter x on
which the positions of the energy levels may depend. The
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TABLE 3.4. Examples of extensive variables and the general-
ized force associated with them.

x X dU = −dW

Volume V −pressure −p −p dV
Length L Force F F dL
Area a Surface tension σ σ da
Charge q Potential v v dq

number of microstates, and therefore the entropy, will de-
pend on these four variables: S = S(U,N, V, x). If each
variable is changed by a small amount, there is a change
of entropy

dS =
(

∂S

∂U

)

N,V,x

dU +
(

∂S

∂N

)

U,V,x

dN (3.57)

+
(

∂S

∂V

)

U,N,x

dV +
(

∂S

∂x

)

U,N,V

dx.

Now consider the change of energy of the system. If
only heat flow takes place, there is an increase of en-
ergy dQ = TdS. If an adiabatic process with a con-
stant number of particles takes place, the energy change
is −dW = Xdx − pdV . If particles flow into the system
without an accompanying flow of heat or work, the en-
ergy change is dUN . It seems reasonable that this energy
change, due solely to the movement of the particles, is
proportional to dN : dUN = a dN . (It will turn out that
the proportionality constant is the chemical potential.)
For the total change of energy resulting from all these
processes, we can write a statement of the conservation
of energy: dU = TdS + Xdx − pdV + adN . This is an
extension of Eq. 3.5 to the additional variables on which
the energy can depend. It can be rearranged as

dS =
(

1
T

)
dU −

( a

T

)
dN +

( p

T

)
dV −

(
X

T

)
dx. (3.58)

Comparison of Eqs. 3.57 and 3.58 shows that
(

∂S

∂U

)

N,V,x

=
1
T

, (3.59a)

(
∂S

∂N

)

U,V,x

= − a

T
, (3.59b)

(
∂S

∂V

)

U,N,x

=
p

T
, (3.59c)

(
∂S

∂x

)

U,N,V

= −X

T
. (3.59d)

Comparison of Eq. 3.59b with Eq. 3.45 shows that a = µ.
This is why the factor of T was introduced in Eq. 3.45.

Equation 3.58, with the correct value inserted for a, is

TdS = dU − µdN + p dV − X dx. (3.60)

This is known as the thermodynamic identity or the fun-
damental equation of thermodynamics. It is a combina-
tion of the conservation of energy with the relationship

between entropy change and heat flow in a reversible
process. (A reversible process is one that takes place so
slowly that all parts of the system have the same tem-
perature, pressure, etc.) This equation and derivative re-
lations such as Eqs. 3.59 form the basis for the usual
approach to thermodynamics.

Finally, let us consider the addition of a particle to a
system when the volume is fixed. If we do this without
changing the energy, it increases the number of ways the
existing energy can be shared and hence the number of
microstates. Therefore the entropy increases. If we want
to restore the entropy to its original value, we must re-
move some energy. Exactly the same argument can be
made mathematically. We have seen in Eqs. 3.45 and
3.59b that

µ = −T

(
∂S

∂N

)

U,V

.

Since adding the particle at constant energy increases
the entropy, (∂S/∂N)U,V is positive and the chemical
potential is negative. Next, we rearrange Eq. 3.60 as
dU = T dS + µdN − p dV and by inspection see that

µ =
(

∂U

∂N

)

S,V

.

Therefore adding a particle at constant volume while
keeping the entropy constant requires that energy be re-
moved from the system.

3.17 The Gibbs Free Energy

3.17.1 Gibbs Free Energy

A conventional course in thermodynamics develops sev-
eral functions of the entropy, energy, and macroscopic
parameters that are useful in certain special cases. One
of these is the Gibbs free energy, which is particularly use-
ful in describing changes that occur in a system while the
temperature and pressure remain constant. Most changes
in a biological system occur under such conditions.

Imagine a system A in contact with a much larger reser-
voir as in Fig. 3.14. The reservoir has temperature T ′ and

A

A'

U U'
V V'

FIGURE 3.14. System A is in contact with reservoir A′. Heat
can flow through the piston, which is also free to move. The
reservoir is large enough to ensure that anything that happens
to system A takes place at constant temperature and pressure.
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pressure p′. A movable piston separates A and A′. (At
equilibrium, T = T ′ and p = p′.) The reservoir is large
enough so that a change of energy or volume of system
A does not change T ′ or p′.

Consider the change of entropy of the total system that
accompanies an exchange of energy or volume between A
and A′. Above, this entropy change was set equal to zero
to obtain the condition for equilibrium. In this case, how-
ever, we will express the total entropy change of system
plus reservoir in terms of the changes in system A alone.
The total entropy is S∗ = S + S′, so the total entropy
change is dS∗ = dS + dS′.

If reservoir A′ exchanges energy with system A, the
energy change is

dU ′ = T ′ dS′ − dW ′ = T ′ dS′ − p′ dV ′.

This can be solved for dS′, and the result can be put in
the expression for the total entropy change:

dS∗ = dS +
dU ′

T ′ +
p′ dV ′

T ′ .

We are trying to get dS∗ in terms of changes in system
A alone. Since A and A′ together constitute an isolated
system, dU = −dU ′ and dV = −dV ′. Therefore,

dS∗ = −−T ′ dS + dU + p′ dV

T ′ . (3.61)

(Note that a minus sign was introduced in front of this
equation.) This expresses the total entropy change in
terms of changes of S, U , and V in system A and the
pressure and temperature of the reservoir.

The Gibbs free energy is defined to be

G ≡ U − T ′S + p′V. (3.62)

If the reservoir is large enough so that interaction of the
system and reservoir does not change T ′ and p′, then the
change of G as system A changes is

dG = dU − T ′dS + p′dV. (3.63)

Comparison of Eqs. 3.61 and 3.63 shows that

dS∗ = −dG

T ′ . (3.64)

The change in entropy of system plus reservoir is related
to the change of G, which is a property of the system
alone, as long as the pressure and temperature are main-
tained constant by the reservoir.

To see why G is called a free energy, consider the con-
servation of energy in the following form:

(work done by the system) = (energy lost by the system)
+ (heat added to the system),

dW = −dU + T dS.

Subtracting pdV from both sides of this equation gives

dW − p dV = −dU + T dS − p dV = −dG.

The right-hand side is the decrease of Gibbs free energy
of the system. The work done in any isothermal, isobaric
(constant pressure) reversible process, exclusive of pdV
work, is equal to the decrease of Gibbs free energy of the
system. This non–p dV work is sometimes called useful
work. It may represent contraction of a muscle fiber, the
transfer of particles from one region to another, the move-
ment of charged particles in an electric field, or a change
of concentration of particles. It differs from the change in
energy of the system, dU , for two reasons. The volume of
the system can change, resulting in p dV work, and there
can be heat flow during the process. For example, let the
system be a battery at constant temperature and pressure
which decreases its internal (chemical) energy and sup-
plies electrical energy. From a chemical energy change dU
we subtract T dS, the heat flow to the surroundings, and
−p dV , the work done on the atmosphere as the liquid in
the battery changes volume. What is left is the energy
available for electrical work.

3.17.2 An Example: Chemical Reactions

As an example of how the Gibbs free energy is used, con-
sider a chemical reaction that takes place in the body at
constant temperature and pressure. System A, the region
in the body where the reaction takes place, is in contact
with a reservoir A′ that is large enough to maintain con-
stant temperature and pressure. Suppose that there are
four species of particles that interact. Capital letters rep-
resent the species and small letters represent the number
of atoms or molecules of each that enter in the reaction:

aA + bB ←→ cC + dD.

An example is 1 glucose+6O2 ←→6CO2+6H2O, where
a = 1, b = 6, c = 6, d = 6. The state of the system
depends on U , V , NA, NB , NC , and ND.

We begin with the definition of G, Eq. 3.62, and we call
the pressure and temperature of the system and reservoir
p and T :

G = U − TS + pV.

Differentiating, we obtain

dG = dU − T dS − S dT + p dV + V dp.

Generalize Eq. 3.60 for the case of four chemical species:

TdS = dU−µA dNA−µB dNB−µC dNC−µD dND+p dV.

Insert this in the equation for dG and remember that
since the process takes place at constant temperature and
pressure, dT and dp are both zero. The result is

dG = µA dNA + µB dNB + µC dNC + µD dND.
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In Sec. 3.13 we saw that the concentration dependence
of the chemical potential is given by a logarithmic term.
Equation 3.48 can be used to write

µA = µA0 + kBT ln(CA/C0),

where µA0 is the chemical potential at a standard con-
centration (usually 1 mol) and depends on temperature,
pH, etc. Note that C0 is the same reference concentration
for all species. As the reaction takes place to the right,
we can write the number of molecules gained or lost as
dNA = −adN, dNB = −bdN, dNC = cdN, dND =
ddN, so that we have

dG = [µA0 + kBT ln(CA/C0)] (−a dN)
+ [µB0 + kBT ln(CB/C0)] (−b dN)
+ [µC0 + kBT ln(CC/C0)] (c dN)
+ [µD0 + kBT ln(CD/C0)] (d dN).

This can be rearranged as (letting CA = [A], etc.)

dG = [cµC0 + dµD0 − aµA0 − bµB0

+kBT ln
(

[C]c[D]d

[A]a[B]b

)
− kBT ln

(
[C0]a[C0]b

[C0]c[C0]d

)]
dN.

The two logarithm terms together represent logs of con-
centration ratios. Therefore concentrations [A], [B], [C],
[D], and C0 must all be measured in the same units. The
last term can be made to vanish if the units are such that
C0 is unity (for example, 1 mol per liter). Then

dG = [cµC0 + dµD0 − aµA0 − bµB0

+ kBT ln
(

[C]c[D]d

[A]a[B]b

)]
dN.

Multiplying the expression in square brackets by Avo-
gadro’s number converts the chemical potential per mole-
cule to the standard Gibbs free energy per mole, and kBT
to RT . To compensate, the change in number of molecules
dN is changed to moles dn or ∆n:

∆G = [(cGC0 + dGD0 − aGA0 − bGB0) (3.65)

+ RT ln
(

[C]c[D]d

[A]a[B]b

)]
∆n.

The term in small parentheses is the standard free energy
change for this reaction, ∆G0, which can be found in
tables. At equilibrium ∆G = 0, so

0 = ∆G0 + RT ln
(

[C]c[D]d

[A]a[B]b

)
= ∆G0 + RT ln Keq.

The equilibrium constant Keq is related to the standard
(1 molar) free-energy change by

∆G0 = −RT ln Keq,

Keq =
[C]c[D]d

[A]a[B]b
.

Many biochemical processes in the body receive free en-
ergy from the change of adenosine triphosphate (ATP) to
adenosine diphosphate (ADP) plus inorganic phosphate
(Pi). This reaction involves a decrease of free energy. The
energy is provided initially by forcing the reaction to go
in the other direction to make an excess of ATP. One
way this is done is through a very complicated series of
chemical reactions known as the respiration of glucose.
The net effect of these reactions is11

glucose + 6O2 → 6CO2 + 6H2O, ∆G0 = −680 kcal,

36ADP + 36Pi → 36ATP + 36H2O, ∆G0 = +263 kcal .

The decrease in free energy of the glucose more than com-
pensates for the increase in free energy of the ATP. The
creation of glucose or other sugars is the reverse of the
respiration process and is called photosynthesis. The free
energy required to run the reaction the other direction is
supplied by light energy.

3.18 The Chemical Potential of a
Solution

We now consider a binary solution of solute and solvent
and how the chemical potential changes as these two
substances are intermixed.12 This is a very fundamen-
tal process that will lead us to the logarithmic depen-
dence of the chemical potential on solute concentration
that we saw in Sec. 3.13, as well as to an expression for
the chemical potential of the solvent that we will need in
Chapter 5.

To avoid having the subscript s stand for both solute
and solvent, we call the solvent water. The distinction
between solute and water is artificial; the distinction is
usually that the concentration of solute is quite small.
We need the entropy change in a solution when Ns solute
molecules, which initially were segregated, are mixed with
Nw water molecules. We make the calculation for an ideal
solution—one in which the total volume of water mole-
cules does not change on mixing and in which there is no
heat evolved or absorbed on mixing. This is equivalent to
saying that the solute and water molecules are the same
size and shape, and that the force between a water mole-
cule and its neighbors is the same as the force between
a solute molecule and its neighbors.13 The resulting en-
tropy change is called the entropy of mixing.

To calculate the entropy of mixing, imagine a system
with N sites, all occupied by particles. The number of
microstates is the number of different ways that particles
can be placed in the sites. The first particle can go in any

11There are multiple pathways in glucose respiration. The 36 is
approximate.

12See also Hildebrand and Scott (1964), p. 17, and Chapter 6.
13Extensive work has been done on solutions for which these as-

sumptions are not true. See Hildebrand and Scott (1964); Hilde-
brand et al. (1970).
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N =
3!

= 1 N =
2!  1!

= 33! 3!

FIGURE 3.15. The system on the left contains three water
molecules. Because they are indistinguishable there is only
one way they can be arranged. The system on the right con-
tains two water molecules and one solute molecule. Three dif-
ferent arrangements are possible. In each case the number of
arrangements in given by (Nw + Ns)!/(Nw!Ns!).

site. The second can go in any of N−1 sites, and so forth.
The total number of different ways to arrange the parti-
cles is N ! But if the particles are identical, these states
cannot be distinguished, and there is actually only one
microstate. The number of microstates is N !/N !, where
the N ! in the numerator gives the number of arrange-
ments and the N ! in the denominator divides by the num-
ber of indistinguishable states.14

Suppose now that we have two different kinds of par-
ticles. The total number is N = Nw + Ns, and the to-
tal number of ways to arrange them is (Nw + Ns)! The
Nw water molecules are indistinguishable, so this number
must be divided by Nw! Similarly it must be divided by
Ns! Therefore, purely because of the ways of arranging
the particles, the number of microstates Ω in the mix-
ture is (Nw + Ns)!/ (Nw!Ns!) . An example of counting
microstates is shown in Fig. 3.15.

There could also be dependence on volume and energy;
in fact, the dependence on volume and energy may also
contain factors of Nw and Ns. However, our assumption
that the molecules of water and solute have the same size,
shape, and forces of interaction ensures that these de-
pendencies will not change as solute molecules are mixed
with water molecules. The only entropy change will be
the entropy of mixing.

The entropy change of the mixture relative to the en-
tropy of Nw molecules of pure water and Ns molecules of
pure solute is

Ssolution − Spure water,
pure solute

= kB ln



 Ωsolution

Ωpure water,
pure solute



 . (3.66)

Since with our assumptions Ω is unity for the pure solute
and the pure water, the entropy difference is

Ssolution − Spure water,
pure solute

= kB ln
(

(Nw + Ns)!
Nw!Ns!

)

= kB {ln [(Nw + Ns)!] − ln(Nw!) − ln(Ns!)} . (3.67)

14The fact that there is only one microstate because of the indis-
tinguishability of the particles is called the Gibbs paradox. For an
illuminating discussion of the Gibbs paradox, see Casper and Freier
(1973).

This is symmetric in water and solute, and it is valid for
any number of molecules.

Since we usually deal with large numbers of molecules
and factorials are difficult to work with, let us use Stir-
ling’s approximation (Appendix I) to write

Ssolution − Spure water,
pure solute

(3.68)

= kB [(Nw + Ns) ln(Nw + Ns) − Nw ln Nw − Ns ln Ns] .

The next step is to relate the entropy of mixing to the
chemical potential. This is done by recalling the definition
of the Gibbs free energy, (Eq. 3.62): G = U + p V − T S.
The sum of the first two terms, H = U + p V , is called
the enthalpy. Any change of the enthalpy is the heat of
mixing; in our case it is zero. (The present case is actually
more restrictive: p, V , and U are all constant.) Therefore,
since T is also constant, the change in Gibbs free energy
is due only to the entropy change:

∆G = −T ∆S = kBT

[
Nw ln

(
Nw

Nw + Ns

)

+ Ns ln
(

Ns

Nw + Ns

)]
. (3.69)

This is still symmetric with water and solute, but it di-
verges if either Nw or Ns is zero, because of our use of
Stirling’s approximation.

We now need an expression that relates the change in G
to the chemical potential. This can be derived for the gen-
eral case using the following thermodynamic arguments.
We use Eq. 3.62 to write the most general change in G:

dG = dU + p dV + V dp − T dS − S dT.

The fundamental equation of thermodynamics, Eq. 3.60,
generalized to two molecular species, is

T dS = dU − µw dNw − µs dNs + p dV,

so

dG = µw dNw + µs dNs + V dp − S dT. (3.70)

This can be used to write down some partial derivatives
by inspection that are valid in general:

µw =
(

∂G

∂Nw

)

Ns,p,T

, (3.71a)

µs =
(

∂G

∂Ns

)

Nw,p,T

, (3.71b)

V =
(

∂G

∂p

)

Ns,Nw,T

, (3.71c)

S = −
(

∂G

∂T

)

Ns,Nw,p

. (3.71d)

To find the chemical potential, we differentiate our ex-
pression for G, Eq. 3.69, with respect to Nw and Ns to
obtain

µw = kBT lnxw, µs = kBT lnxs. (3.72)
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These have been written in terms of the mole fractions
or molecular fractions

xw =
Nw

Nw + Ns
, xs =

Ns

Nw + Ns
. (3.73)

Each chemical potential is zero when the mole fraction
for that species is one (i.e., the pure substance). The ex-
pressions for µ diverge for xw or xs close to zero because
of the failure of Stirling’s approximation for small values
of x.

The last step is to write the chemical potential in terms
of the more familiar concentrations instead of mole frac-
tions. We can write the change in chemical potential of
the solute as the concentration changes from a value C1

to C2 as

∆µs = µs(2) − µs(1) = kBT ln(x2/x1).

As long as the solute is dilute, Nw+Ns ≈ Nw, so x2/x1 =
C2/C1 and

∆µs = kBT ln(C2/C1),

which agrees with Eq. 3.48.
The change in chemical potential of the water can be

written in terms of the solute concentration. Since xw +
xs = 1, µw = kBT ln(1 − xs). For small values of xs the
logarithm can be expanded in a Taylor’s series (Appendix
D):

ln(1 − xs) = −xs −
1
2
x2

s − · · · .

The final result is

µw = −kBT xs = −kBT Ns/(Ns + Nw)
≈ −kBT (Ns/V )/(Nw/V ),

or
µw ≈ −kBT

Cs

Cw
. (3.74a)

To reiterate, this is the chemical potential of the water
for small solute concentrations. The zero of chemical po-
tential is pure water. The term is negative because the
addition of solute decreases the chemical potential of the
water, due to the entropy of mixing term. For a change of
solute concentration, the chemical potential of the water
changes by

∆µw = −kBT∆Cs

Cw
. (3.74b)

We now know the concentration dependence of the
chemical potential. In Chapter 5 we will be concerned
with the movement of solute and water, and we will need
to know the dependence of the chemical potentials on
pressure. To find this, we write

∆µw =
(

∂µw

∂p

)

T,Nw,Cs

∆p +
(

∂µw

∂Cs

)

T,p,Nw

∆Cs.

The second term is just Eq. 3.74b. To obtain the deriv-
ative in the first term, we use the fact that when the

partial derivative of a function is taken with respect to
two variables, the result is independent of the order of
differentiation (Appendix N):
[

∂

∂p

(
∂G

∂Nw

)

T,p,Ns

]

T,Nw

=

[
∂

∂Nw

(
∂G

∂p

)

T,Nw,Ns

]

T,p

From Eqs. 3.71a and 3.71c, we get
(

∂µw

∂p

)

T,Nw

=
(

∂V

∂Nw

)

T,p

. (3.75)

For a process at constant temperature, the rate of change
of µw with p for constant solute concentration is the same
as the rate of change of V with Nw when p is fixed.

The quantity (∂V/∂Nw)T,p is the rate at which the vol-
ume changes when more molecules are added at constant
temperature and pressure. For an ideal incompressible
liquid it is the molecular volume, V w. We can repeat this
argument for the solute to obtain

(
∂µw

∂p

)

T,Nw

= V w,

(
∂µs

∂p

)

T,Ns

= V s. (3.76)

In a solution, the total volume is V = NwV w + NsV s

where V w and V s are the average volumes occupied by
one molecule of water and solute. Dividing by V gives
1 = CwV w + CsV s. If the solution is dilute,

V w ≈ 1
Cw

. (3.77)

In an ideal solution V w = V s. For an ideal dilute solution,
we then have

∆µw = V w(∆p − kBT ∆Cs) ≈
∆p − kBT ∆Cs

Cw
. (3.78)

∆µs = kBT ln(Cs2/Cs1) + V s ∆p

≈ kBT ln(Cs2/Cs1) + V w ∆p. (3.79)

We saw this concentration dependence earlier, in Sec.
3.13. If the concentration difference is small, we can write
Cs2 = Cs1 + ∆Cs and use the expansion ln(1 + x) ≈ x to
obtain

∆µs ≈ kBT ∆Cs

Cs
+

∆p

Cw
. (3.80)

3.19 Transformation of Randomness
to Order

When two systems are in equilibrium, the total entropy is
a maximum. Yet a living creature is a low-entropy, highly
ordered system. Are these two observations in conflict?
The answer is no; the living system is not in equilibrium,
and it is this lack of equilibrium that allows the entropy to
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be low. The conditions under which order can be brought
to a system—its entropy can be reduced—are discussed
briefly in this section.

A car travels with velocity v and has kinetic energy
1
2mv2. In addition to the random thermal motions of the
atoms making up the car, all the atoms have velocity v
in the same direction (except for those in rotating parts,
which have an ordered velocity that is more complicated
to describe). If the brake shoes are brought into contact
with the brake drums, the car loses kinetic energy, and
the shoes and drums become hot. Ordered energy has
been converted into disordered, thermal energy; the en-
tropy has increased. Is it possible to heat the drums and
shoes with a torch, apply the brakes, and have the car
move as the drums and shoes cool off? Energetically, this
is possible, but there are only a few microstates in which
all the molecules are moving in a manner that consti-
tutes movement of the car. Their number is vanishingly
small compared to the number of microstates in which
the brake drums are hot. The probability that the car
will begin to move is vanishingly small.

An animal is placed in an insulated, isolated container.
The animal soon dies and decomposes. Energetically, the
animal could form again, but the number of microstates
corresponding to a live animal is extremely small com-
pared to all microstates corresponding to the same total
energy for all the atoms in the animal.

In some cases, thermal energy can be converted into
work. When gas in a cylinder is heated, it expands against
a piston that does work. Energy can be supplied to an or-
ganism and it lives. To what extent can these processes,
which apparently contradict the normal increase of en-
tropy, be made to take place? These questions can be
stated in a more basic form.

1. To what extent is it possible to convert internal en-
ergy distributed randomly over many molecules into
energy that involves a change of a macroscopic para-
meter of the system? (How much work can be cap-
tured from the gas as it expands the piston?)

2. To what extent is it possible to convert a random
mixture of simple molecules into complex and highly
organized macromolecules?

Both these questions can be reformulated: under what
conditions can the entropy of a system be made to de-
crease?

The answer is that the entropy of a system can be made
to decrease if, and only if, it is in contact with one or more
auxiliary systems that experience at least a compensating
increase in entropy. Then the total entropy remains the
same or increases. This is one form of the second law
of thermodynamics. For a fascinating discussion of the
second law, see Atkins (1994).

One device that can accomplish this process is a heat
engine. It operates between two thermal reservoirs at dif-
ferent temperatures, removing heat from the hotter one

and injecting heat into the cooler one. Even though less
heat goes into the cooler reservoir than was removed from
the hotter one (the difference being the mechanical work
done by the engine), the overall entropy of the two reser-
voirs increases. The entropy change of the hot reservoir
is a decrease, −∆Q/T , while the entropy change of the
cooler reservoir is an increase, +∆Q′/T ′. Since T ′ < T ,
the entropy increase more than balances the decrease,
even though ∆Q′ < ∆Q. The increase in the number
of accessible microstates of the cooler reservoir is greater
than the decrease in the number of accessible microstates
of the hotter reservoir. The coupled chemical reactions
that we saw in Sec. 3.17 are analogous.

Symbols Used in Chapter 3

Symbol Use Units First
used on
page

a Acceleration m s−2 49
a Number of atoms in a

molecule
53

a, b, c, d Number of atoms of
species A, B, C, and
D

66

a Area m2 65
cj Concentration

(molar)
mol m−3,
mol l−1

63

c Specific heat capacity J K−1 kg−1 61
e Base of natural loga-

rithms
58

e Elementary charge C 59
f Number of degrees of

freedom
53

g Gravitational
acceleration

m s−2 60

kB Boltzmann’s constant J K−1 57
m Mass kg 49
n Number of particles

in a volume
50

p Probability of “suc-
cess”

51

p Pressure Pa 56
px, py, pz Momentum kg m s−1 60
q Probability of

“failure”
51

q Electric charge C 65
t Time s 49
ui Energy of the ith

energy level
J 53

v, v′ Volume m3 51
v Electrical potential V 59
v, vx, vy, vz Velocity m s−1 49
x, y, z Position coordinate m 49
x General variable 55
x Extensive variable 64
xs, xw Mole fractions of

solute and water
69

y General variable 58
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Symbol Use Units First
used on
page

y Height m 60
z Valence 59
A, A′, A∗ Thermodynamic

systems
56

A, B, C, D Chemically reacting
species

66

Ci, C Concentration
(particles per
volume)

m−3 , l−1 59

C Heat capacity J K−1 61
Ek Kinetic energy J 59
Ep Potential energy J 59
F, Fx, Fy, Fz Force N 49
F Force N 65
F Faraday constant C mol−1 59
G Ratio of accessible

microstates in a
small system

58

G Gibbs free energy J 66
H Enthalpy J 68
Keq Equilibrium constant

in a chemical
reaction

67

M Number of molecules
in a system

53

M Number of repeated
measurements

56

N, N ′, N∗ Number of particles 50
Nw, Ns Number of solvent

(water) or solute
molecules

67

NA Avogadro’s number mol−1 59
NA, NB ,
NC , ND

Number of molecules
of species A, B, C,
and D consumed or
produced in a
chemical reaction

66

P Probability 50
Q Flow of heat to a sys-

tem
J 54

R Ratio of accessible
states in a reservoir
(Boltzmann factor)

58

R Gas constant J mol−1K−1 59
S Area m2 60
S, S′, S∗ Entropy J K−1 58
T Absolute

temperature
K 57

U, U ′, U∗ Total energy of a sys-
tem

J 53

V Volume m3 51

V w, V s Volume of water or
solute molecule

m3 69

W Work done by a
system on the
surroundings

J 54

Wconc Work done on a
system to increase
the concentration

J 63

X Generalized force 64
α General variable 59
ρ Density kg m−3 61
σ Surface tension N m−1 65
τ kBT J 57
µ Chemical potential J

molecule−1
62

µw, µs Chemical potential
of water or solute

J
molecule−1

68

Ω, Ω′, Ω∗ Number of accessible
microstates

55

A bar over any
quantity means that
it is averaged over an
ensemble of many
identially prepared
systems

52

〈〉 Angular brackets
mean an average
over time

52

Problems

Section 3.1

Problem 1 Some systems are so small that only a few
molecules of a particular type are present, and statistical
arguments begin to break down. Estimate the number of
hydrogen ions inside an E. coli bacterium with pH = 7.
(When pH = 7 the concentration of hydrogen ions is
10−7 mol l−1 .)

Problem 2 Use the last column of Table 3.2 to calculate
the average value of n, which is defined by n =

∑
nP (n).

Verify that n = Np in this case.

Problem 3 A loose statement is made that “if we throw
a coin 1 million times, the number of heads will be very
close to half a million.” What is the mean number of
occurrences of heads in 1 million tries? What is the stan-
dard deviation? What does “very close” mean? (You may
need to consult Appendices G and H.)

Problem 4 Evaluate P (n; 4, 0.5) using Eq. 3.4. Check
your results against the histogram of Fig. 3.2 and by list-
ing all the possible arrangements of four particles in the
left or right sides of the box.

Problem 5 Write a computer program to simulate mea-
surements of which half of a box a gas molecule is in.
Make several measurements with different sets of random
numbers, and plot a histogram of the number of times n
molecules are found in the left half. Try this for N = 1, 10,
and 100. In BASIC, use the function RND to obtain the
random number. Since the numbers are not really random
but form a well-defined sequence, a new experiment will
require changing the seed of the sequence. This is done
with the statement RANDOMIZE. Other languages have
similar functions.

Problem 6 Color blindness is a sex-linked defect. The
defective gene is located in the X chromosome. Females
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carry an XX chromosome pair, while males have an XY
pair. The trait is recessive, which means that the patient
exhibits color blindness only if there is no normal X gene
present. Let Xd be a defective gene. Then for a female,
the possible gene combinations are

XX, XXd, XdXd.

For a male, they are

XY, XdY.

In a large population about 8% of the males are color-
blind. What percentage of the females would you expect
to be color-blind?

Problem 7 A patient with heart disease will sometimes
go into ventricular fibrillation, in which different parts of
the heart do not beat together, and the heart cannot pump.
This is cardiac arrest. The following data show the frac-
tion of patients failing to regain normal heart rhythm af-
ter attempts at ventricular defibrillation by electric shock
[W. D. Weaver (1982). New Engl. J. Med. 307: 1101–
1106.]

Number of attempts Fraction persisting in fibrillation

0 1.00
1 0.37
2 0.15
3 0.07
4 0.02

Assume that the probability p of defibrillation on one at-
tempt is independent of other attempts. Obtain an equa-
tion for the probability that the patient remains in fib-
rillation after N attempts. Compare it to the data and
estimate p.

Problem 8 There are N people in a class (N = 25).
What is the probability that no one in the class has a
birthday on a particular day? Ignore seasonal variations
in birth rate and ignore leap years.

Problem 9 The death rate for 75-year-old people is
0.089 per year (Commissioners 1941 Standard Ordinary
Mortality Table).

(a) What is the probability that an individual aged 75
will die during a 12-hour period? Neglect the fact that
some are sick, some are terminally ill, and so on, and
assume that the probability is the same for everyone.

(b) Suppose that 10, 000 people, all aged 75, are given
the flu vaccine at t = 0. What is the probability that none
will die during the next 12 hours? (This underestimates
the probability, since sick people would not be given the
vaccine, but they are included in the death rate.)

Problem 10 This problem is intended to help you un-
derstand some of the nuances of the binomial probability
distribution.

(a) In a macabre “game” of “roulette” the victim places
one bullet in the cylinder of a revolver. (A less hazardous
game could be done with dice.) There is room for six bul-
lets in the cylinder. The victim spins the cylinder, so there
is a probability of 1/6 that the bullet is in firing position.
The victim then places the gun to the head and fires. If
the victim survives, the cylinder is spun again and the
process is repeated. We can look either at the cumulative
probability of “success” (being killed), or the cumulative
probability of “failure” (surviving). Make a table for 1000
victims who keep playing the game over and over. Plot
the number surviving, the number killed on each try, and
the cumulative number killed.

(b) Show that the number surviving can be expressed as
1000e−bN , where N is the number of tries, and find b.

(c) The data in the following table are from Fédération
CECOS, D. Schwartz and M. J. Mayaux (1982). Female
fecundity as a function of age, N. Engl. J. Med. 306(7):
404–406. They show the cumulative success rates in dif-
ferent age groups for patients being treated for infertil-
ity by artificial insemination from a donor. That is, each
month at the time of ovulation each patient who has not
yet become pregnant is inseminated artificially. Plot these
data. What do they suggest? Make whatever plots can
confirm or rule out what you suspect.

Fraction pregnant, Fraction pregnant,
Cycle age ≤ 25 age � 35

0 0 0
1 0.11 0.03
2 0.23 0.14
3 0.30 0.20
4 0.39 0.27
5 0.44 0.35
6 0.51 0.35
7 0.55 0.36
8 0.63 0.39
9 0.65 0.43
10 0.67 0.43
11 0.70 0.46
12 0.74 0.54

Section 3.3

Problem 11 A thermally insulated ideal gas of particles
is confined within a container of volume V . The gas is
initially at absolute temperature T . The volume of the
container is very slowly reduced by moving a piston that
constitutes one wall of the container. Give qualitative an-
swers to the following questions.

(a) What happens to the energy levels of each particle?
(b) Is the work done on the gas as its volume decreases

positive or negative?
(c) What happens to the energy of the gas?
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Section 3.5

Problem 12 System A has 1020 microstates, and system
A′ has 1019 microstates. How many microstates does the
combined system have?

Problem 13 Calculate the Celsius and absolute temper-
atures corresponding to a room temperature of 68 ◦F, a
normal body temperature of 98.6 ◦F, and a febrile body
temperature of 104 ◦F.

Problem 14 Calculate and plot Ω, Ω′, and Ω∗ for
Fig. 3.10, thus reproducing the figure. Write down an an-
alytic expression for Ω∗ and differentiate to find the value
of U for which Ω∗ is a maximum.

Problem 15 Systems A and A′ each consist of three par-
ticles, whose energy levels are u, 2u, 3u, etc. The total
energy available to the combined system is U∗ = 12u.

(a) Make a table similar to Table 3.3. (If you have
difficulty, see part (d) of this problem.)

(b) Find the most probable state. To what values of U
and U ′ does it correspond?

(c) Plot Ω∗vs. U. What is the probability that all three
particles in system A have energy u?

(d) Consider system A. If it has energy U, the max-
imum energy the first particle can have is U − 2u. How
many microstates are there for which the first particle has
energy U − 2u? U − 3u? Show that the total number of
microstates for system A is given by

U/u−2∑

i=1

(
U

u
− i − 1

)
=

1
2

[(
U

u

)2

− 3
(

U

u

)
+ 2

]

.

This proves the assertion in the text that for 3 particles,
Ω increases as U2.

Problem 16 We have seen that in general with volume,
number of particles, and other parameters that determine
the positions of the energy levels held fixed,

1
Ω

dΩ
dU

=
1

kBT
.

Suppose that U = CT , where C is the heat capacity of
the system. Find Ω(U).

Problem 17 Systems A and A′ are in thermal contact.
Show that if T < T ′, energy flows from A′ to A to increase
Ω∗, while if T > T ′, energy flows from A to A′.

Problem 18 A simple system has only two energy levels
for each single entity in the system. (The system could,
for example, be a collection of “gates” in a cell membrane,
each with two states, open and closed.) One level has en-
ergy u1, the other has energy u2. There are N entities
in the system. You can answer the following questions
without doing any calculations.

(a) What is the minimum energy of the system? How
many microstates are there for the minimum energy?

(b) What is the maximum energy of the system? How
many microstates are there for which the system has max-
imum energy?

(c) Sketch what Ω(U) must look like.
(d) Recall the definition of T , Eqs. 3.14 and 3.15. Are

there any values of U for which the temperature is nega-
tive? Where?

Section 3.6

Problem 19 Consider the following arrangements of the
26 capital letters of the English alphabet: (a) TWO, (b)
any three letters, in any order, that are all different, and
(c) any three letters, in any order, which may repeat
themselves. For (b) and (c), consider the same letters in
a different order to be a different arrangement. If each
arrangement is a “microstate,” find Ω and S in each case.

Problem 20 Ice and water coexist at 273K. To melt 1
mol of ice at this temperature, 6000 J are needed. Calcu-
late the entropy difference and the ratio of the number of
microstates for 1 mol of ice and 1 mol of water at this
temperature. (Do not worry about any volume changes of
the ice and water.)

Problem 21 If a system is maintained at constant vol-
ume, no work is done on it as the energy changes. In that
case dU = C(T ) dT , where U is the internal energy, C
is the heat capacity, and T is the temperature. The spe-
cific heat in general depends on the temperature. Suppose
that in some temperature region the specific heat varies
linearly with temperature: C(T ) = C0 + DT.

(a) What is the entropy change of the system when it
is heated from temperature T1 to temperature T2, both of
which are in the region where C(T ) = C0 + DT?

(b) What is the ratio of the number of microstates at
T2 to the number at T1?

Problem 22 A substance melts at constant temperature.
There are 7 times as many microstates accessible to each
molecule of the liquid as there were to each molecule of
the solid. Ignore volume changes.

(a) What is the change in entropy of each molecule?
(b) How much heat is required to melt a mole of the

substance if the melting temperature is 50 ◦C?

Problem 23 The entropy of a monatomic ideal gas
at constant energy depends on the volume as S =
NkB ln V +const. A gas of N molecules undergoes a
process known as a free expansion. Initially it is confined
to a volume V by a partition. The partition is ruptured
and the gas expands to occupy a volume 2V . No work is
done and no heat flows, so the total energy is unchanged.
Calculate the change of entropy and the ratio of the num-
ber of microstates after the volume change to the number
before.
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Section 3.7

Problem 24 A pore has three configurations with the
energy levels shown. The pore is in thermal equilibrium
with the surroundings at temperature T . Find the prob-
abilities p1, p2, and p3 of being in each level. Each level
has only one microstate associated with it.

1

2

3

0

U

2U0

0

Problem 25 The DNA molecule consists of two inter-
twined linear chains. Sticking out from each monomer
(link in the chain) is one of four bases: adenine (A),
guanine (G), thymine (T), or cytosine (C). In the double
helix, each base from one strand bonds to a base in the
other strand. The correct matches, A–T and G–C, are
more tightly bound than are the improper matches. The
chain looks something like this, where the last bond shown
is an “error.”

A T G C G
T A C G A (error)

The probability of an error at 300K is about 10−9 per
base pair. Assume that this probability is determined by
a Boltzmann factor e−U/kBT , where U is the additional
energy required for a mismatch.

(a) Estimate this excess energy.
(b) If such mismatches are the sole cause of mutations

in an organism, what would the mutation rate be if the
temperature were raised 20 ◦C?

Problem 26 In Chapter 18 we will study how the “spin”
magnetic moment of an atomic nucleus interacts with a
magnetic field B, leading to “magnetic resonance imag-
ing.” Assume a nucleus has a “magnetic dipole moment”
µ, which can point in only one of two directions: parallel
to B (“spin up”) or antiparallel (“spin down”). The en-
ergy of a nucleus with spin up is −µB; with spin down
it is +µB. Use the Boltzmann factor to determine an ex-
pression for the ratio of the number of particles with spin
up to the number with spin down. Evaluate this ratio for
µ = 1.4 × 10−26 J T−1, B = 2T, and T = 300K .

Problem 27 The data of Problem 2.10 were used to ob-
tain an empirical relationship between the charge integra-
tion time τ and the temperature T . It might be that τ
is determined by a chemical reaction whose rate is given
by a Boltzmann factor. Make a new plot based on that
assumption and determine the appropriate constants.

Problem 28 Oxygen and carbon monoxide compete for
binding to hemoglobin. If enough CO binds to hemoglobin,

the ability of the blood to deliver oxygen is impaired,
and carbon monoxide poisoning ensues. Consider the
hemoglobin molecule to be a two-state system: the heme
group is bound either to O2 or to CO. Calculate the prob-
ability of binding to CO. Let the G factor of Eq. 3.25 be
equal to the ratio of the concentrations of CO and O2.
Assume CO is 100 times less abundant than O2. CO is
more tightly bound than O2 to the heme group by about
0.15 eV. Let T = 300K.

Problem 29 The function of many enzymes is to act as
a catalyst: they increase the speed of a chemical reaction.
To get an idea of how a catalyst works, consider the re-
action

enzyme + substrate → enzyme + product.

In order for the reaction to proceed, some energy barrier
∆E must be overcome. The probability of the substrate
having an energy ∆E or greater depends primarily on a
Boltzmann factor, e−∆E/kBT . Determine by what factor
this probability increases if the enzyme decreases the acti-
vation energy by (a) 0.1 eV, (b) 1 eV. Assume T = 310K.

Problem 30 Chemists use Q10 to characterize a chem-
ical reaction. It is defined by

Q10 =
(reaction rate at T + 10)

(reaction rate at T )
,

where T is the absolute temperature. If the reaction rate
is proportional to the fraction of reacting atoms that have
an energy exceeding some threshold ∆U , then to a first
approximation

R ∝
∫ ∞

∆U

e−U/kBT dU.

(This neglects more slowly varying factors such as a U1/2

which are introduced in more accurate analyses.)
(a) Show that R ∝ kBTe−∆U/kBT .
(b) Show that

Q10T

T + 10
= exp

[
∆U

kB

10
T (T + 10)

]
.

(c) Estimate ∆U if Q10 = 2 at T = 300K.
(d) To use Q10 to determine reaction rate as a function

of temperature, one usually assumes exponential behavior:

R(T ) = R(T0) (Q10)
T−T0

10 .

Use values T0 = 298K, and ∆U = 0.6 eV, to calcu-
late R(T )/R(T0) using the Q10 model, the approximation
R(T )/R(T0) = (T/T0)

(
e−∆U/kBT /e−∆U/kBT0

)
, and the

approximation R(T )/R(T0) =
(
e−∆U/kBT /e−∆U/kBT0

)
.

Temperature corrections for metabolic rate vs. mass have
been used by Gillooly et al. (2001).
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Problem 31 The vapor pressure of a substance can be
calculated using the following model. All molecules in the
vapor that strike the surface of the liquid stick. (This
number is proportional to the pressure.) Those molecules
in the liquid that reach the surface and have enough en-
ergy escape. Equilibrium is established when the number
sticking per unit area per unit time is equal to the number
escaping.

(a) The number of molecules with energy U is propor-
tional to e−U/kBT . What will be the number with energy
greater than the escape energy, U0?

(b) Use the result of part (a) and look up values for the
vapor pressure of water as a function of temperature, to
make a plot on semilog paper. From this plot, estimate
the escape energy U0.

(c) The “heat of vaporization” of water is 540 calories
per gram. Convert the energy per molecule you found in
part (b) to calories per gram and compare it with this
figure.

Problem 32 A macromolecule of density ρ and mass m
is immersed in an incompressible fluid of density ρw at
temperature T . The volume v occupied by one macromole-
cule is known. A dilute solution of the macromolecules
is placed in an ultracentrifuge rotating with high angu-
lar velocity ω. In the frame of reference rotating with the
centrifuge, a particle at rest is acted on by an outward
force mω2r, where r is the distance of the particle from
the axis.

(a) What is the net force acting on the particle in this
frame? Include the effect of buoyancy of the surrounding
fluid, of density ρw.

(b) Suppose that equilibrium has been reached. Use the
Boltzmann factor to find the number of particles per unit
volume at distance r.

Problem 33 Suppose that particles in water are sub-
jected to an external force F (y) that acts in the y di-
rection. The force is related to the potential energy Ep(y)
by F = −dEp/dy. Neglect gravity and buoyancy effects.

(a) Apply Newton’s first law to a slice of the fluid in
equilibrium to obtain an expression for p(y).

(b) If the particles have a Boltzmann distribution, show
that p(y) − p(0) = kBT [C(y) − C(0)].

Section 3.8

Problem 34 The concentrations of various ions are
measured on the inside and outside of a nerve cell. The
following values are obtained when the potential inside the
cell is −70 mV with respect to the outside.

Ion Inside (mmol l−1) Outside (mmol l−1)
Na+ 15 145
K+ 150 5
Cl− 9 125

Comment on which species have concentrations that are
consistent with being able to pass freely through the cell
wall. Assume T = 300 K.

Problem 35 Calculate the volume of 1 mole of water.
Pour yourself a mole of water and drink it.

Section 3.9

Problem 36 A virus has a mass of 1.7 × 10−14 g. If
the virus particles are in thermal equilibrium in the at-
mosphere, their concentration will vary with height as
C(y) = C(0)e−y/λ. Evaluate λ. Do you think this answer
is reasonable?

Problem 37 Calculate the length constant λ for the ex-
ponential decay (e−y/λ) of atmospheric pressure. Assume
the atmosphere is made up entirely of nitrogen, N2. Ni-
trogen has an atomic weight of 14. Use your result to
compare air pressure at sea level to air pressure at the
top of Mt. Everest (8.8 km.) Assume the atmosphere is
all at the same temperature; it is not.

Section 3.10

Problem 38 Calculate the average kinetic energy (in J
and eV) of a particle moving in three dimensions at body
temperature, 37 ◦C .

Problem 39 This is our first model for the important
problem of detecting a “signal” in the presence of “noise.”
We will discuss this in detail in Chapters 9 and 11. A
sensitive balance consists of a weak spring hanging ver-
tically in the earth’s gravitational field. The equilibrium
position of the end of the spring is x = 0. When a mass
m is added to the spring, it elongates to an average posi-
tion x0, around which it vibrates because of thermal en-
ergy. In terms of ∆x = x − x0, the momentum of the
mass px and the spring constant K, the force that the
spring exerts on the mass is Kx0, and the total energy is
U = p2

x/2m + 1
2K(∆x)2.

(a) What is x0 in terms of m, g, and K?
(b) Find ∆x2 = (x − x0)2.
(c) What is the smallest mass that can be measured tak-

ing a single “snapshot” of the system to find the position
of the mass?

Section 3.11

Problem 40 The specific heat capacity of water is 4184 J
K−1 kg−1 [Denny (1993)]. Convert this to cal g−1 ◦C−1.
Historically, the calorie was defined in terms of the spe-
cific heat capacity of water.

Problem 41 The “calorie” we see listed on food labels is
actually 1000 cal or 1 kilocalorie. How many kilocalories
do you expend each day if your average metabolic rate is
100W?
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Problem 42 Your body must dissipate energy from
metabolism at a rate of about 100W by various mech-
anisms to keep the body from overheating. Suppose these
mechanisms stopped working (perhaps you are wrapped in
a very good thermal blanket, so no heat can flow from or
to your body). At what rate will your body temperature
increase? How long will it take for your body temperature
to increase by 5 ◦C? Assume you have a mass of 70 kg,
and the specific heat of your body tissue is the same as of
water, 4200 J K−1 kg−1.

Problem 43 A person of mass 70 kg and body temper-
ature 37 ◦C breathes in 0.5 l of air at a temperature of
20 ◦C. Assume that there are no other sources of heat
(turn off metabolism for a moment), and the body as
a whole is insulated so no heat is lost to the environ-
ment. Find the equilibrium temperature that the air and
body will ultimately attain. Useful data: ρair = 1.3 kg
m−3, ρwater = 1000 kg m−3, cair = 1000 J K−1 kg−1,
cwater = 4200 J K−1 kg−1. Assume that the person’s body
tissue has the same heat capacity and density as water.

Problem 44 Fish are cold-blooded, and “breathe” water
(in other words, they extract dissolved oxygen from the
water around them using gills). Could a fish be warm-
blooded and still breathe water? Assume a warm-blooded
fish maintains a body temperature that is 20 ◦C higher
than the surrounding water. Furthermore, assume that
the blood in the gills is cooled to the temperature of the
surrounding water as the fish breathes water. Calculate
the energy required to reheat 1 l of blood to the fish’s body
temperature. One liter of blood carries sufficient oxygen
to produce about 4000 J of metabolic energy. Is the energy
needed to reheat 1 l of blood to body temperature greater
than or less than the metabolic energy produced by 1 l
of blood? What does this imply about warm-blooded fish?
Why must a warm-blooded aquatic mammal such as a
dolphin breathe air, not water? Use c = 4200 J K−1 kg−1

and ρ = 103 kg m−3 for both the body and the surrounding
water. For more on this topic, see Denny (1993).

Problem 45 Forensic scientists sometimes use “New-
ton’s law of cooling” to determine how long ago a victim
died. Assume that at the time of death (tdeath) the body
had a temperature Tbody, and after death it cools to the
temperature of the surroundings, Tsurr. Assume that the
rate of heat loss by the body is proportional to the sur-
face area of the body, S, and the temperature difference
T − Tsurr. The constant of proportionality is called the
“convection coefficient.” As the corpse cools, the decrease
in temperature is determined by the heat capacity.

(a) Relate the rate of heat loss to the rate of temper-
ature change, and derive a differential equation for the
body temperature T .

(b) Solve this differential equation (if you are having
trouble, see Section 2.7). The solution is Newton’s law of
cooling.

(c) Write an expression for the time constant of cooling
in terms of the specific heat capacity, density, volume,
area, and the convection coefficient.

(d) For two bodies with the same shape but different
sizes, which will cool faster: the large body or the small
one?

Problem 46 Determine whether the specific heat capac-
ity of air, 1000 J K−1 kg−1 is the same as the molar
specific heat capacity of a monatomic ideal gas, 3R/2. If
not, why not? Assume air is all nitrogen, N2.

Section 3.12

Problem 47 A small system A is in contact with a
reservoir A′ and can exchange both heat and particles
with the reservoir. The number of microstates available
to system A does not change. Show that the difference in
total entropy when A is in two distinct states is

∆S∗ = −(N1 − N2)
(

∂S

∂N

)

U

− (U1 − U2)
(

∂S

∂U

)

N

,

so that
P (N1, U1)
P (N2, U2)

=
e(N1µ−U1)/kBT

e(N2µ−U2)/kBT
.

where T and µ are the temperature and chemical potential
of the reservoir. This is called the Gibbs factor, and it
reduces to the Boltzmann factor if N1 = N2. Chemists
use the notation λ = eµ/kBT , where λ is the absolute
activity. Then

P (N1, U1)
P (N2, U2)

=
λN1

λN2

e−U1/kBT

e−U2/kBT
.

Problem 48 Specialize the results of the previous prob-
lem to a series of binding sites on a surface, such as a
myoglobin molecule. The two states are

No particle bound at the site N1 = 0, U1 = 0
One particle bound at the site N2 = 1, U2 = U0

(a) Show that the fraction of sites occupied is

f =
λe−U0/kBT

1 + λe−U0/kBT
.

(b) If the sites are in equilibrium with a gas, then
µgas = µsites or λgas = λsites. From the definition µ =
−T (∂S/∂N)U,V and the expression for the entropy of a
monatomic ideal gas,

S(U, V,N) = NkB

(
ln V +

3
2

ln U − 5
2

ln N +
5
2

+ const
)

,

where const= 3
2 ln(m/3π�

2), show that f = p/(p0 + p),
where p is the gas pressure and

p0 =
(kBT )5/2 m3/2 eU0/kBT

(2π�2)3/2
.

This expression fits the data very well. See A. Rossi-
Fanelli and E. Antonini (1958). Archives Biochem. Bio-
phys. 77: 478.
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Section 3.13

Problem 49 The entropy of a monatomic ideal gas is

S(U, V,N) = NkB

(
ln V +

3
2

ln U − 5
2

ln N +
5
2

+ const
)

,

where const= 3
2 ln(m/3π�

2) depends only on the mass
of the molecule. Consider two containers of gas at the
same temperature and pressure that can exchange parti-
cles. Expand the total entropy in a Taylor’s series, keep
terms to second order, and use the result to find the vari-
ance in the fluctuating number of particles in one system.
Assume N � N ′. You should obtain the same result ob-
tained from the binomial distribution (σ2 = N) if you
take into account that it is the temperature of the gas
in the container, and not its energy, that should be held
fixed. (For a monatomic ideal gas U = 3NkBT/2. Use
this result to rewrite the entropy in terms of T, V, and
N .)

Problem 50 Show that the chemical potential of an ideal
gas is proportional to the logarithm of the concentra-
tion, a result that we have now seen several times for
dilute ideal systems. To do so, use the expression for
the entropy of a monatomic ideal gas given in the pre-
vious problems. Rewrite the thermodynamic identity as
dU = TdS +µdN − p dV, from which we can identify the
partial derivative

µ =
(

∂U

∂N

)

S,V

.

The chemical potential is the increase in energy of the
system if one particle is added while keeping the entropy
and volume fixed. Use the expression for the entropy of
the monatomic ideal gas, for the case of N particles with
total energy U and N+1 particles with total energy U+µ,
to show that the chemical potential of the ideal gas is

µ = kBT

[
ln
(

N

V

)
− 3

2
ln(3kBT/2) − const

]

or

µ = −kBT ln

[
V

N

(
mkBT

2π�2

)3/2
]

.

[A more extensive discussion for other simple systems is
given by Cook and Dickerson (1995).]

Problem 51 Derive the Nernst equation (Eq. 3.34) by
making the chemical potential the same on each side of a
charged membrane. Use Eq. 3.48, with the potential en-
ergy per particle given as zev.

Section 3.15

Problem 52 Consider two systems that can exchange
energy U and surface area a, but not volume V or number
of particles N . The total energy is U∗ = U + U ′and the

total surface area is a∗ = a + a′. Repeat the analysis of
Sec. 3.5 and show that in equilibrium T = T ′ and σ = σ′,
where the surface tension is defined as

σ = −T

(
∂S

∂a

)

U,V,N

.

Problem 53 Consider a spherical air bubble in water.
(a) Equate the pressure-volume work to the surface

work, and find a relationship between the pressure and
the radius. This relationship is analogous to the Law of
Laplace (Problem 1.19).

(b) Consider a small bubble attached to a large one. Use
the relationship derived in (a) to determine which bubble
has the larger internal pressure. Which bubble tends to
shrink and which tends to expand?

(c) The bubbles in (b) are a model for two alveoli con-
nected by a bronchiole in our lungs. Explain why a special
fluid called a surfactant is needed to reduce the surface
tension in the water on the surface of the alveolus. For
more on the biological implications of surface tension, see
Denny (1993).

Section 3.16

Problem 54 Use the analysis presented in Sec. 3.16 to
show that the surface tension is

σ =
(

∂U

∂a

)

S,V,N

.

Therefore, increasing the surface area when the entropy,
volume and number of particles are fixed requires energy.
For water, the surface tension is approximately 0.07 J
m−2, which is a large value [Denny (1993)].

Section 3.17

Problem 55 The reaction 1 glucose+6O2 ←→ 6CO2+
6H2O must conserve the number of each type of atom.
Determine the chemical formula of glucose.

Section 3.18

Problem 56 System A consists of N particles that move
from a region where the concentration is C1 to another
where the concentration is C2, each experiencing a change
in chemical potential ∆µ = kBT ln(C2/C1). The process
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occurs at constant temperature and pressure. What is the
ratio of the total number of microstates of system and sur-
roundings after the move to the number before the move?
Assume the concentrations do not change.

Problem 57 If one increases the volume of a liquid at
constant p and T , a portion of the liquid evaporates.
The amount of liquid decreases as V increases until all
the liquid is vaporized. The pressure at which the two
phases coexist is called the vapor pressure. The vapor
pressure depends on the temperature, as shown. When two
phases are in equilibrium, they are in mechanical, ther-
mal, and diffusive equilibrium: Tl = Tg, pl = pg, µl = µg.
Thus, at any arbitrary point on the vapor-pressure curve,
µg(T0, p0) = µl(T0, p0). Consider some nearby point in
the vapor-pressure curve, and expand both chemical po-
tentials in a Taylor’s series to show that

dp

dT
=

(∂µg/∂T )p − (∂µl/∂T )p

(∂µl/∂p)T − (∂µg/∂p)T
,

where dp/dT is the slope of the vapor-pressure curve. Use
the fact that G = Nµ(p, T ), that (∂G/∂T )N,p = −S, and
that (∂G/∂p)N,T = V , to show that

dp

dT
=

L

T∆V
,

where L is the latent heat of vaporization and ∆V is
the volume change on vaporization. (Since L and V are
both extensive parameters, they can be expressed per mole
or per molecule.) This is called the Clausius–Clapeyron
equation.

Problem 58 Use the definition of Gibbs free energy G =
U − T S + p V and the thermodynamic identity T dS =
dU − µdN + p dV to find the partial derivatives of G
when N , T , and p are the independent variables. Note
that U , S, and V are all extensive variables so that G is
proportional to N : G = NΦ. Thereby relate G to the
chemical potential.

Problem 59 (a) Find the change in Gibbs free energy
G = U −T S + p V for an ideal gas that changes pressure
reversibly from p1 to p2 at a constant temperature.

(b) Since ∆G = N∆µ, find ∆µ.

Problem 60 Use the Clausius–Clapeyron equation for
the vapor pressure as a function of temperature (see Prob-
lem 57), dp/dT = L/T∆V , and assume an ideal gas so
that ∆V ≈ Vg = NkBT/p to find the vapor pressure p as
a function of temperature.

Problem 61 The argument leading to the change in G
in a chemical reaction can be applied to a single particle
moving from a region where the chemical potential is µA

to a region where the chemical potential is µB by letting
dN = −dNA = dNB, in which case dG = (µB − µA) dN .
We saw in Sec. 3.13 that the chemical potential of a solute
in an ideal solution had the form ∆µ = kBT ln(C/C0) +
∆(potential energy per particle). Sodium ions of charge
+e (e = 1.6 × 10−19 C) are found on one side of a mem-
brane at concentration 145mmol l−1. The electrical po-
tential is zero. On the other side of the membrane the
concentration is 15mmol l−1 and the potential is 90mV.
The change in electrical potential energy is e∆v. What
is the change in Gibbs free energy if a single sodium ion
goes from one side to the other? The temperature is 310K
and the pressure is atmospheric.

Section 3.18

Problem 62 Suppose that a potential energy term as
well as a pressure must be added to the chemical poten-
tial, as was argued in Sec. 3.13. Consider a column of
pure water. What is the difference in chemical potential
between the top of the column and the bottom?

Problem 63 The open circles in the drawing represent
water molecules. The solid circles are solute molecules.
The vertical line represents a membrane that is permeable
to water but not solute. In case (a) there are two water
molecules to the right of the membrane. In (b) there is
one, and in (c) none. What is the total number of mi-
crostates of the combined system in each case?

(a)

(b)

(c)

Problem 64 If we want to apply Eq. 3.80 when there is
an appreciable difference in concentration, we can define
an average concentration by

∆µs = kBT ln(Cs2/Cs1) ≡ kBT (∆Cs/Cs),

Cs ≡ ∆Cs

ln(Cs2/Cs1)
=

∆Cs

ln(1 + ∆Cs/Cs1)
.

Use the Taylor’s-series expansion y = x/ln(1 + x) ≈ 1 +
x/2 − x2/12 + · · · to find an approximate expression for
Cs.

Problem 65 Verify that differentiation of Eq. 3.69 with
respect to Nw and Ns gives Eq. 3.72.
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4
Transport in an Infinite Medium

Chapters 4 and 5 are devoted to one of the most funda-
mental problems in physiology: the transport of solvent
(water) and uncharged solute particles. Chapter 4 devel-
ops some general ideas about the movement of solutes in
a solution. Chapter 5 applies these ideas to movement of
water and solute through a membrane.

Section 4.1 defines flux and fluence rate and derives
the continuity equation. Section 4.2 shows how to calcu-
late the solute fluence rate when the solute particles are
drifting with a constant velocity, as when they are being
dragged along by flowing solvent.

The next several sections are devoted to diffusion, the
random motion of solute particles. Sections 4.3–4.5 de-
scribe random motion in a gas and a liquid. Section
4.6 states Fick’s first law, which relates the fluence rate
of diffusing particles to the gradient of their concentra-
tion. Section 4.7 relates the proportionality constant in
Fick’s first law to the viscous drag coefficient of the par-
ticle in the solution. Section 4.8 combines Fick’s first law
and the equation of continuity to give Fick’s second law,
the diffusion equation, that tells how the concentration
C(x, y, z, t) evolves with time. Section 4.9 discusses vari-
ous time-independent (steady-state) solutions to the dif-
fusion equation. Section 4.10 analyzes steady-state diffu-
sion to or from a cell, including both diffusion through
the membrane and in the surrounding medium. Section
4.11 discusses a model of steady-state diffusion of a sub-
stance that is being produced at a constant rate inside a
spherical cell. Section 4.12 develops a steady-state solu-
tion when both drift and diffusion are taking place in one
dimension. One technique for solving the time-dependent
diffusion equation is introduced in Sec. 4.13. Section 4.14
describes a simple random-walk model for diffusion.

4.1 Flux, Fluence, and
Continuity

4.1.1 Definitions

Flow was introduced in Sec. 1.15 of Chapter 1. The flow
rate, volume flux, or volume current i is the total volume
of material transported per unit time and has units of
m3 s−1. One can also define the mass flux as the total
mass transported per unit time or the particle flux as the
total number of particles, and so on.

The particle fluence is the number of particles trans-
ported per unit area across an imaginary surface
(m−2). The volume fluence is the total volume trans-
ported across the surface and has units m3 times m−2,
or m.

The fluence rate or flux density is the amount of
“something” transported across an imaginary surface per
unit area per unit time. It can be represented by a
vector pointing in the direction the “something” moves
and is denoted by j. It has units of “something” m−2

s−1. It is traditional to use a subscript to tell what
is being transported: js is solute particle fluence rate
(m−2 s−1), jm is mass fluence rate (kg m−2 s−1), and
jv is volume flux density (m3 m−2 s−1 or m s−1). In
a flowing fluid jv is the velocity with which the fluid
moves.

Slightly different nomenclature is used in different
fields. The words flux and flux density are often used
interchangeably. Table 4.1 shows some of the names that
are encountered. Do not spend much time studying it;
it is provided to help you when you must deal with the
notation in other books.
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TABLE 4.1. Units and names for j and jS in various fields.

j jS
Units Names Units Names

Particles m−2 s−1 Particle fluence rate s−1 Particle flux
Particle current density Particle current
Particle flux density Particle flux
Particle flux

Electric charge C m−2 s−1 or A m−2 Current density C s−1 or A Current

Mass kg m−2 s−1 Mass fluence rate kg s−1 Mass flux
Mass flux density Mass flow
Mass flux

Energy J m−2 s−1 or W m−2 Energy fluence rate J s−1 or W Energy flux
Intensity Power
Energy flux

FIGURE 4.1. The fluence rates used to derive the continuity
equation in one dimension.

4.1.2 The Continuity Equation in One
Dimension

As long as we are dealing with a substance that does not
appear or disappear (as in a chemical reaction, radioac-
tive decay, etc.), the number of particles or the mass, or in
the case of an incompressible liquid, the volume, remains
constant or is conserved. This conservation leads to a very
useful equation called the equation of continuity. It will
be derived here in terms of the number of particles.

We will first derive it in one dimension. Let the fluence
rate of some species be j particles per unit area per unit
time, passing a point. All motion takes place in the x
direction along a tube of constant cross-sectional area
S. The value of j may depend on position in the tube
and on the time: j = j(x, t). The number of particles
in the volume shown in Fig. 4.1 between x and x + ∆x
is N(x, t). At x there may be particles moving both to
the right and to the left; the net number to the right in
∆t is j(x, t) times the area S times the time ∆t. A flux
density in the +x direction is called positive. The net
number of particles in at x is j(x, t)S∆t. Similarly, the net
number out at x+∆x is j(x+∆x, t)S∆t. Combining these

gives the net increase in the number of particles in the
volume S∆x:

∆N = [j(x, t) − j(x + ∆x, t)] S ∆t. (4.1)

As ∆x → 0, the quantity involving j is, by definition,
related to the partial derivative of j with respect to x
(Appendix N):

j(x, t) − j(x + ∆x, t) = −∂j(x, t)
∂x

∆x.

Similarly, the increase in N(x, t) is

∆N(x, t) = N(x, t + ∆t) − N(x, t) =
∂N

∂t
∆t.

These two expressions can be substituted in Eq. 4.1 to
give

∂

∂t
N(x, t) = −(S∆x)

∂

∂x
j(x, t).

This equation can be written in terms of the concentra-
tion C(x, t) by dividing both sides by the volume S∆x:

∂C

∂t
= − ∂j

∂x
. (4.2)

This is the continuity equation in one dimension.

4.1.3 The Continuity Equation in Three
Dimensions

In three dimensions, j is a vector with components jx,
jy, and jz. The flux across a surface dS oriented at some
arbitrary direction with the x, y, z axes is equal to the
component of j perpendicular to the surface times dS. To
see this, imagine that j lies in the xy plane with compo-
nents jx and jy. If j makes an angle φ with the vertical,
then jx = j sinφ, jy = j cos φ.
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FIGURE 4.2. Volume element used to relate the fluence rate
across the slant face to the components of the fluence rate
parallel to the x and y axes.

FIGURE 4.3. The total number of particles per second passing
through the closed surface (flux) is the sum of the contribu-
tions jndS from all elements of the surface.

Consider the small volume shown in Fig. 4.2. If there
is no buildup of particles within the volume, the flux
in across the two faces parallel to the axes is equal to
the flux across dS. The area dS of the slant surface is
drdz, where dz is the thickness of the volume perpendic-
ular to the paper. The number of particles per second
across the face dydz is jx dydz = (j sin φ)(dydz). Since
dy = dr sin θ, this may be written as j sin φ sin θdzdr.
Similarly, the number of particles per second in across
the bottom face is jy dxdz = j cos φ cos θdzdr. The sum of
these must be equal to the number leaving across the slant
face: j dzdr(sin φ sin θ + cos φ cos θ) = j dzdr cos(φ− θ) =
j dS cos(φ−θ). The number of particles per unit area per
second across the slant face is, therefore, j cos(φ − θ).
Now φ − θ is the angle between j and the unit vector n̂
perpendicular to the surface. We can write the flux den-
sity across dS as jn (the component of j parallel to n̂),
or j · n̂ (the dot product of j and the normal). The flow
per second is sometimes written as

(j · n̂)dS, jndS, or (j · dS). (4.3)

These are all equivalent: vector dS is defined to have mag-
nitude dS and to point along the normal to the surface
that points outward from the enclosed volume. The same
result is obtained (with more algebra) when j is not in
the xy plane.

4.1.4 The Integral Form of the Continuity
Equation

If we consider a closed volume as shown in Fig. 4.3, the
total number of particles flowing out of the volume can
be obtained by adding up the contribution from each el-
ement dS. It is

(total number of particles out in time ∆t)

=




∫∫

closed surface

jndS



∆t.

Since the total number of particles in the volume enclosed
by the surface is

∫∫∫

enclosed volume

C(x, y, z, t) dxdydz,

we can write1

∂

∂t

∫∫∫

enclosed volume

C dV = −
∫∫

surface enclosing
the volume

jn dS. (4.4)

The outward flux density or fluence rate of the substance
integrated over a closed surface (the net flux through the
surface) is equal to the rate of decrease of the amount of
substance within the volume enclosed by the surface.

How to evaluate the surface integral is best shown by
two examples. First consider a volume defined by a sphere
of radius r. Inside the sphere is a lamp radiating light
uniformly in all directions. The light leaves through the
surface of the sphere. The amount of light energy in the
volume defined by the sphere is not changing, so the rate
of energy production by the lamp P is equal to the energy
flux through the surface of the outer sphere:

P =
∫∫

jn dS. (4.5)

Because of the spherical symmetry, j is perpendicular to
the surface and is the same at all points on the sphere.
Therefore,

P = jn

∫∫
dS.

Since the integral of dS over the surface of a sphere of
radius r is 4πr2,

j = jn =
P

4πr2
. (4.6)

The amount of energy per unit area per unit time crossing
the surface of the sphere is the energy fluence rate or the
intensity.

The second example is slightly more complicated. Sup-
pose that j is parallel to the z axis and has the same value

1We can write dV as d3r or dxdydz.
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θ

j
n

j

j j

FIGURE 4.4. The fluence rate is the same everywhere. The
flux is jndS over the entire sphere. When the normal compo-
nent of the fluence rate is outward, the contribution is positive.
When it is inward, the contribution is negative.

everywhere. The net flux through any closed surface will
be zero in that case, and we will verify it to show how to
evaluate a surface integral. Consider the situation shown
in Fig. 4.4, where jn is integrated over the surface of the
sphere. At every point in the shaded strip, jn = j cos θ.
The strip has width rdθ and circumference 2πr sin θ, so
its area is 2πr2 sin θ dθ. Thus

∫
jn dS =

∫ π

0

j cos θ 2πr2 sin θ dθ

= 2πr2j

∫ π

0

cos θ sin θ dθ = 0.

4.1.5 The Differential Form of the Continuity
Equation

The continuity equation can be expressed in terms of
derivatives instead of integrals. To derive this form, con-
sider a small rectangular volume located at (x, y, z) and
having sides (dx, dy, dz) as shown in Fig. 4.5. Apply Eq.
4.4 to each face of the volume. The rate the substance
flows in through the face at x is jx(x)(dydz). At face
x + dx it flows out at a rate jx(x + dx)dydz. There is

FIGURE 4.5. The small volume used to derive the differential
form of the continuity equation.

no contribution to the flow through this face from jy or
jz, since they are parallel to the face. The net increase in
particles in the volume is

− [jx(x + dx) − jx(x)] dydz = −∂jx

∂x
dxdydz.

Similar terms can be written for the faces perpendicular
to the y and z axes. The total amount of the substance
entering the volume per unit time is the rate of change of
the amount within the volume, which is the rate of change
of concentration times the volume dxdydz. Therefore,

∂C

∂t
(dxdydz) = −

(
∂jx

∂x
+

∂jy

∂y
+

∂jz

∂z

)
(dxdydz)

or

−∂C

∂t
=

∂jx

∂x
+

∂jy

∂y
+

∂jz

∂z
. (4.7)

This is the differential form of the continuity equation.
Equation 4.2 was a special case of this when j was parallel
to the x axis.

The combination of derivatives on the right-hand side
of Eq. 4.7 occurs frequently enough to warrant a special
name. It is called the divergence of the vector j:2

div j = ∇ · j =
∂jx

∂x
+

∂jy

∂y
+

∂jz

∂z
.

The continuity equation is therefore

∂C

∂t
= −div j. (4.8)

This differential form of the continuity equation is com-
pletely equivalent to the integral form, Eq. 4.4. It is some-
times more convenient to use Eq. 4.4 and at other times
more convenient to use Eq. 4.8.

The continuity equation says that the rate of decrease
of the amount of a conserved substance in a certain re-
gion expressed as −∂C/∂t is equal to the rate at which
it leaves the region expressed as the flow through the
surface surrounding the region. The substance may be a
certain kind of molecule, electric charge, heat, or mass.
If it is electric charge, j is the electric current per unit
area and C is the charge per unit volume. If it is mass, C
is the mass per unit volume or densityρ. The continuity
equation is found in many contexts; in each it expresses
the conservation of some quantity.

In the flow of a liquid, the density of the liquid ρ, the
mass M , and volume V are related by M = ρV . If the
liquid is incompressible, a given mass always occupies the
same volume, and the density does not change. Therefore,
∂ρ/∂t = 0, and the equation of continuity gives

div jm = 0. (4.9)

2The divergence is one of the concepts of vector calculus. A good

review of vector calculus is Schey (1997).
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4.1.6 The Continuity Equation with a
Chemical Reaction

Our derivation of the continuity equation assumed that
the substance was conserved—neither created nor de-
stroyed. If a chemical reaction is creating the substance
at a rate Q particles m−3 s−1 (which may depend on
position) then the continuity equation becomes

∂C

∂t
= Q − div j, (4.10a)

∂

∂t

∫∫∫

volume

C(x, y, z) dV (4.10b)

=
∫∫∫

volume

Q(x, y, z) dV −
∫∫

surface
enclosing

the volume

jn dS.

If particles are being consumed in the chemical reaction,
then Q is negative.

4.2 Drift or Solvent Drag

One simple way that solute particles can move is to drift
with constant velocity. They can do this in a uniform
electric or gravitational field if they are also subject to
viscous drag, or they can be carried along by the solvent,
a process called drift or solvent drag. (The solute particles
are dragged by the solvent.) The solute fluence rate is js,
with units of particles m−2 s−1 or just m−2 s−1. The
number of solute particles passing through a surface is
the volume of solution that moves through the surface
times the concentration of solute particles. Therefore,

js = C jv. (4.11)

This effect will be explored in greater detail in Sec. 4.12.

4.3 Brownian Motion

There is also movement of solute molecules when the wa-
ter is at rest. If the solution is dilute, the solute particles
are far apart and hit one another only occasionally. They
are struck by water molecules much more often. The re-
sult is that they are in continual helter-skelter motion.
Each solute molecule is influenced by water molecules,
but not by other solute molecules.

In Chapter 3, it was shown that the relative probabil-
ity for a particle to have energy u when it is in thermal
equilibrium with a reservoir at temperature T is given
by a Boltzmann factor:3P ∝ e−u/kBT . In Chapter 3, the

3The Boltzmann factor provided Jean Perrin with the first
means to determine Avogadro’s number. The density of particles

TABLE 4.2. Values of the rms velocity for various particles at
body temperature.

Molecular Mass vrms

Particle weight (kg) (m s−1)

H2 2 3.4 × 10−27 1940
H2O 18 3 × 10−26 652
O2 32 5.4 × 10−26 487
Glucose 180 3 × 10−25 200
Hemoglobin 65 000 1 × 10−22 11
Bacteriophage 6.2 × 106 1 × 10−20 1.1
Tobacco mosaic

virus 40 × 106 6.7 × 10−20 0.4
E. coli 2 × 10−15 0.0025

Boltzmann factor was used to show that if any energy
term depends on the square of some variable, then the av-
erage value of that term is kBT/2. A particle with kinetic
energy of translation m(v2

x + v2
y + v2

z)/2 has an average
energy kBT/2 for each of the three terms, or a total trans-
lational kinetic energy of 3kBT/2. This is true regardless
of the mass of the particle. Any particle in thermal equi-
librium with a reservoir (which can be the surrounding
fluid) will move with a mean square velocity given by4

v2 =
3kBT

m
. (4.12)

The square root of v2 is called the root-mean-square,
or rms, velocity. It decreases with increasing mass of the
particle. Table 4.2 shows values of vrms = (v2)

1/2
for dif-

ferent particles at body temperature.
This movement of microscopic-sized particles, resulting

from bombardment by much smaller invisible atoms, was
first observed by the English botanist Robert Brown in
1827 and is called Brownian motion. Solute particles are
also subject to this random motion. If the concentration
of particles is not uniform, there will be more particles
wandering from a region of high concentration to one of
low concentration than vice versa. This motion is called
diffusion.

In the next several sections, we study random motion
and diffusion, first for a gas and then for a liquid.

4.4 Motion in a Gas: Mean Free Path
and Collision Time

It is possible to define a mean free path, which is the
average distance a particle travels between successive

in the atmosphere is proportional to exp(−mgy/kBT ), where mgy
is the gravitational potential energy of the particles. Using particles
for which m was known, Perrin was able to determine kB for the

first time. Since the gas constant R was already known, Avogadro’s
number was determined from the relationship R = NAkB .

4The average velocity is v̄x = 0, since a particle with a given
speed moves with equal probability to the left or right.
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collisions, and a collision time, the average length of time
between collisions. Consider a collection of N0 molecules.
The number that have moved distance x without suffering
a collision is N(x). For short distances dx, the probability
that a molecule collides with another molecule is propor-
tional to dx: call it (1/λ)dx. Then, on the average, the
number of molecules having their first collision between
x and x+dx is dN = −N(x)(1/λ)dx. This is the familiar
equation for exponential decay. The number of molecules
surviving without any collision is N(x) = N0e

−x/λ.
To compute the average distance traveled by a molecule

between collisions, we multiply each possible value of x
by the number of molecules that suffer their first collision
between x and x+dx. Since N(x) is the number surviving
at distance x, and dx/λ is the probability that one of
those will have a collision between x and x + dx, the
mean value of x is

x =
1

N0

∫ ∞

0

xN(x)
1
λ

dx.

With the substitutions s = x/λ and N(x) = N0e
−s, this

can be written as

x = λ

∫ ∞

0

e−ss ds (4.13)

= −λ
[
e−s(s + 1)

]∞
0

= λ.

Thus λ is the mean free path.
A similar argument can be made for the length of time

that each molecule survives before being hit. The prob-
ability that a molecule is hit during a short time dt is
proportional to dt: call it (1/tc)dt. The number of mole-
cules surviving a time t is given by N = N0e

−t/tc , and the
mean time between collisions can be calculated as above.
It is tc, which is called the collision time. The number of
collisions per second is the collision frequency, 1/tc.

It is possible to estimate the mean free path and the
collision frequency. Consider a particle of radius a1 mov-
ing through a dilute gas of other particles of radius a2. For
convenience, imagine that particle 1 is moving and that
all the other particles are fixed in position. The path of
the first particle is shown in Fig. 4.6. If the center of one of
these other molecules lies within a distance a1 +a2 of the

FIGURE 4.6. A particle of radius a1 moves through a gas
of particles of radius a2. A collision will occur if the center of
another particle lies within a distance a1+a2 of the trajectory
of the particle under consideration.

moving molecule, there will be a collision. The effect is
the same as if the moving particle had radius a1 +a2 and
all the other particles were points. In moving a distance
x, the particle sweeps out a volume V (x) = π(a1 +a2)2x.
On average, when the particle has traveled a mean free
path there is one collision. The average number of gas
particles in the volume V (λ) = π(a1 + a2)2λ is therefore
1. The average number of particles per unit volume is C.
Thus, 1 = Cπ(a1 + a2)2λ, or

λ =
1

π(a1 + a2)2C
. (4.14)

The quantity π(a1+a2)2 is the area of a circle. It is called
the cross section for the collision of these particles. The
concept of cross section is used extensively in Chapter 15.

This estimation is somewhat crude in its assumption
that only one molecule is moving. If all the molecules are
of the same kind, then the factor 1 in the numerator is
replaced by 2−1/2 = 0.707 [Reif (1965, p. 471)].

For a gas at standard temperature and pressure, the
volume of 1 mol is 22.4 liter = 22.4 × 10−3 m3, so C =
2.7 × 1025 m−3. If a1 = a2 = 0.15 nm, then Eq. 4.14 can
be used to calculate the mean free path:

λ =
1

(3.14)(.3 × 10−9)2 m2(2.7 × 1025 m−3)
= 0.13 µm.

For a gas at standard temperature and pressure, the mean
free path is about 1000 times the molecular diameter, and
the assumption of infrequent collisions is justified.

The collision time can be estimated by saying that

tc =
λ

v
,

where v is the average speed of the molecules. Using the
rms velocity for v, we can use Eq. 4.12 to write

tc ≈ λ

(
m

3kBT

)1/2

. (4.15)

The important feature of this is the dependence on m1/2

and on λ. For air at room temperature, tc = 2 × 10−10 s.

4.5 Motion in a Liquid

The assumptions of the previous section do not hold in
a liquid, in which the particle is being continually bom-
barded by neighbors. Blindly applying Eq. 4.14 to water,
we can use the fact that 1 mol is 18 g and occupies 18
cm3, to obtain λ = 0.1 nm, so that a/λ ≈ 1, and the as-
sumptions behind the derivation break down. Estimating
the collision time with Eq. 4.15 gives a value that is a
factor of 1000 less than for the gas, or 10−13 s.

Although these estimates of the mean free path and
the collision time are undoubtedly wrong, the concepts
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appear to be valid. Computer simulations of molecular
collisions show that the distribution of free paths is expo-
nential even though the mean free path is only a fraction
of a molecular diameter. In Sec. 4.12 we will regard diffu-
sion as a random walk of the diffusing particles and relate
the diffusion constant to the mean free path and collision
time. Equations 4.14 and 4.15 can then be used to show
that the diffusion constant should be inversely propor-
tional to the square of the particle radius. This has been
verified experimentally for the diffusion of certain liquids.
Evidence for the validity of this random-walk model for
diffusion in liquids has been summarized by Hildebrand
et al. (1970, pp. 36–39).

A particle in a liquid is subject to a fluctuating force
F(t), which is random in magnitude and direction. The
particle begins to move in response to this force. However,
after it has begun to move, it suffers more collisions in
front than behind, so the force slows it down. Because the
particle can neither stay at rest nor continue to move in
the same direction, it undergoes a random, zig-zag motion
with average translational kinetic energy 3kBT/2. The
mean square velocity is not zero, but the mean vector
velocity is zero.

For each particle, Newton’s second law is m(dv/dt) =
F(t). This is not very useful as it stands. To make it
more tractable, consider a particle with average velocity
v. (The average means that an ensemble of identically
prepared particles is examined.) The particle has more
collisions on the front that slow it down. We therefore
break up F(t) into two parts: an average drag force, which
will be the same for all the particles in the ensemble, and
a rapidly fluctuating part g(t), which will vary with time
and from particle to particle. Newton’s second law is then
m(dv/dt) = (drag force) + g(t), where g(t) is random in
direction. The drag force will be zero when v is zero.
For average velocities that are not too large it can be
approximated by a linear term:

(drag force) = −β v.

With this approximation, Newton’s second law is known
as the Langevin equation:

m
dv
dt

= −β v + g(t). (4.16)

(If the liquid is moving, the drag force will be zero when
the particle has the same average velocity as the liquid.
So v can be interpreted as the relative velocity of the
particle with respect to the liquid.) This equation often
has another term in it, which does not average to zero
and which represents some external force such as gravity
that acts on all the particles. This approximate equation
can be solved in some cases, though with difficulty, and
has formed the basis for some treatments of the motion
of large particles in fluids. With suitable interpretation,
it can describe motion of the fluid molecules themselves.5

5See, for example, Pryde (1966, p. 161).

In particular, when dealing with molecular motion it is
necessary to consider the fact that the molecules do not
move independently of one another.

For a Newtonian fluid (Eq. 1.33) with viscosity η, one
can show (although it requires some detailed calculation6)
that the drag force on a spherical particle of radius a is
given by

Fdrag = −βv = −6πηav. (4.17)

This equation is valid when the sphere is so large that
there are many collisions of fluid molecules with it and
when the velocity is low enough so that there is no tur-
bulence. This result is called Stokes’ law.

If the sphere is not moving in an infinite medium but
is confined within a cylinder, then a correction must be
applied.7 In that case the viscous drag depends on the
velocity of the spherical particle through the fluid, the
average velocity of the fluid through the cylinder, and the
distance of the particle from the axis of the cylinder.8

4.6 Diffusion: Fick’s First Law

Diffusion is the random movement of particles from a
region of higher concentration to a region of lower con-
centration. The diffusing particles move independently of
one another; they may collide frequently with the mole-
cules of the fluid in which they are immersed, but they
rarely collide with one another. The surrounding fluid
may be at rest, in which case diffusion is the only mech-
anism for transport of the solute, or it may be flowing,
in which case it carries the solute along with it (solvent
drag). Both effects can occur together.

We first consider diffusion from a macroscopic point of
view and write down an approximate differential equa-
tion to describe it. We then obtain a second equation
describing diffusion by combining this with the conti-
nuity equation. After discussing some solutions to these

6This is an approximate equation. See Barr (1931, p. 171).
7An early correction for particles on the axis of a cylinder is

found in Barr (1931), p. 183. More recent work is by Levitt (1975),
Bean (1972), and Paine and Scherr (1975).

8Stokes’ law is valid for a particle in a gas if the mean free path
is much less than the particle radius a, so that many collisions with
neighboring molecules occur. At the other extreme, a mean free
path much greater than the particle radius, the drag force turns
out to be Fdrag = αηa(a/λ)v. Although this will not be directly
useful to us in considering biological systems, it is mentioned here
to show how important it is to understand the conditions under
which an equation is valid. Although the dimensions of this new
equation are unchanged (we have introduced a factor a/λ, which
is dimensionless), the drag force depends on a2 instead of on a.
The reason for the difference is that collisions are now infrequent
and that the probability of a collision that imparts some average
momentum change is proportional to the projected cross-sectional
area of the sphere, πa2. In the regime of interest to us, in which
there are many collisions, we would not expect the force to depend
on λ. We hope that this will convince you of the danger in using
someone else’s equation without understanding it.
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FIGURE 4.7. An example of diffusion. Each molecule at A
or B can wander with equal probability to the left or right.
There are more molecules at A to wander to the right than
there are at B to wander to the left. There is a net flow of
molecules from A to B.

equations, we look at the problem from a microscopic
point of view, considering the random motion of the par-
ticles, and show that we get the same results.

Suppose that the surrounding solvent does not move.
If the solute concentration is completely uniform, there
is no net flow. As many particles wander to the left as to
the right, and the concentration remains the same. There
will be local fluctuations in concentration, analogous to
those we saw in the preceding chapter for fluctuations in
the concentration of a gas, but that is all.

However, if the concentration is higher in region A than
in region B to the right of it, there are more particles to
wander to the right from A to B than there are to wander
to the left from B to A (Fig. 4.7). If the problem is one-
dimensional, there is no net flow if ∂C/∂x = 0, but there
is flow if ∂C/∂x 
= 0. If the concentration difference is
small, then the flux density j is linearly proportional to
the concentration gradient ∂C/∂x. The equation is

jx = −D
∂C

∂x
. (4.18a)

Constant D is called the diffusion constant. The units of
D are m2 s−1, as may be seen by noting that the units of
j are (something) m−2 s−1 and the units of ∂C/∂x are
(something) m−4. This relationship is called Fick’s first
law of diffusion, after Adolf Fick, a German physiologist
in the last half of the nineteenth century. The minus sign
shows that the flow is in the direction from higher con-
centration to lower concentration: if ∂C/∂x is positive,
the flow is in the −x direction.

If the actual process is not linear, this can be thought of
as the first term of a Taylor’s series expansion (Appendix
D).

Fick’s first law is one of many forms of the transport
equation. Other forms are shown in Table 4.3. The units
of the constant are different for the last three entries in
the table because the quantity that appears on the right
has different units than the quantity on the left. In each
case, however, a fluence rate or flux density (of particles,
mass, energy, electric charge, or momentum) is related

TABLE 4.3. Various forms of the transport equation.

Substance Units of

flowing Equation Units of j the constant

Particles js = −D
∂C

∂x
m−2 s−1 m2 s−1

Mass jm = −D
∂C

∂x
kg m−2 s−1 m2 s−1

Heat jH = −κ
∂T

∂x
J m−2 s−1 J K−1 m−1 s−1

or kg s−3

Electric charge je = −σ
∂V

∂x
C m−2 s−1 C m−1 s−1 V−1

or Ω−1 m−1

Viscosity

(y component
of momentum
transported
in the x

direction)
F

S
= −η

∂vy

∂x
N m−2 or kg m−1 s−1

kg m−1 s−2 or Pa s

to a rate of change of some other quantity with position.
This rate of change is called the gradient of the quantity.
The gradient is often called the driving force. The con-
centration gradient or driving force causes the diffusion
of particles; the temperature gradient “causes” the heat
flow; the electric voltage gradient “causes” the current
flow; the velocity gradient “causes” the momentum flow.

The diffusive fluence rate can be related to the gradient
of the chemical potential of the solute. With the notation
C1 = Cs and C2 − C1 = ∆Cs, equation 3.48 can be
rewritten as

∆µs = kBT ln(C2/C1) = kBT ln(1 + ∆Cs/Cs)
≈ kBT∆Cs/Cs,

from which ∆Cs ≈ Cs∆µs/kBT , so

∂Cs

∂x
=

Cs

kBT

∂µs

∂x

and

jsx = −DCs

kBT

∂µs

∂x
. (4.18b)

The solute flux density is proportional to the diffusion
constant, the solute concentration, and the gradient in
the chemical potential per solute particle.

In three dimensions, the flow of particles can point in
any direction and have components jx, jy, and jz. An
equation can be written for each component that is anal-
ogous to Eq. 4.18a or 4.18b. We can write one vector
equation instead of three equations for the three compo-
nents by defining x̂, ŷ, and ẑ to be unit vectors along the
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axes. Then

jxx̂ + jyŷ + jz ẑ

= −D

(
∂C

∂x
x̂+

∂C

∂y
ŷ +

∂C

∂z
ẑ
)

.

We have created a vector that depends on C(x, y, z, t) by
performing the indicated differentiations on C and mul-
tiplying the results by the appropriate unit vectors. This
vector function is the gradient of C in three dimensions:

gradC = ∇C =
∂C

∂x
x̂+

∂C

∂y
ŷ +

∂C

∂z
ẑ. (4.19)

Fick’s first law with this notation is

j = −D grad C = −D∇C. (4.20)

Remember that this is simply shorthand for three equa-
tions like Eq. 4.18a. If you feel a need to review vector
calculus, which deals with the divergence and gradient,
an excellent text is the one by Schey (1997).

4.7 The Einstein Relationship
Between Diffusion and Viscosity

Before we can apply Fick’s first law to real problems, we
must determine the value of the diffusion constant D. The
experimental determination of D is often based on Fick’s
second law of diffusion, which combines the first law with
the equation of continuity and is discussed in the next
section. It is closely related to the viscosity, as was first
pointed out by Albert Einstein. This is not surprising,
since diffusion is caused by the random motion of the
particles under the bombardment of neighboring atoms,
and viscous drag is also caused by the bombardment by
neighboring atoms. What is remarkable is that a general
relationship between them can be deduced quite easily by
imagining just the right sort of experiment.

Consider a collection of particles uniformly suspended
in a fluid at rest. Imagine that each particle is suddenly
subjected to an external force Fext (such as gravity) that
acts in the −y direction, as shown in Fig. 4.8. The par-
ticles will all begin to drift downward, speeding up until
the upward viscous force on them balances the external
force: Fext − β v = 0. In terms of magnitudes, Fext = βv.

FIGURE 4.8. Particles drifting under the influence of a down-
ward force Fext.

FIGURE 4.9. Calculating the fluence rate of particles drifting
downward.

Because these particles are all moving downward, there
is a downward flux density. With reference to Fig. 4.9,
the number of particles crossing area S in time ∆t will
be those within the cylinder of height v∆t. That number
is the concentration times the volume (Sv∆t). Dividing
by S and ∆t gives

jdrift = −vC(y)ŷ.

As the particles move down, they deplete the upper
region of the fluid and cause a concentration gradient.
This concentration gradient causes an upward diffusion
of particles, with a flux density given by

jdiff = −D
∂C

∂y
ŷ.

Equilibrium will be established when these two flux
densities are equal in magnitude:|jdrift| = |jdiff|,

|vC(y)| =
∣
∣
∣
∣D

∂C

∂y

∣
∣
∣
∣ . (4.21)

But equilibrium means that the particles have a Boltz-
mann distribution in y, because their potential energy
increases with y (work is required to lift them in opposi-
tion to Fext). For a constant Fext independent of y, the
energy is u(y) = Fexty, where Fext is the magnitude of
the force. The concentration is

C(y) = C(0)e−Fexty/kBT .

Therefore
∂C

∂y
= − Fext

kBT
C(y).

Inserting this in Eq. 4.21 gives v = DFext/kBT or D =
vkBT/Fext. In equilibrium the magnitude of Fext is equal
to the magnitude of the viscous force f . Therefore D =
kBTv/f . Since the viscous force is proportional to the
velocity, |f | = |βv|,

D =
kBT

β
. (4.22)

The derivation of this equation required only that the
velocities be small enough so that the linear approxima-
tions for Fick’s first law and the viscous force are valid.
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FIGURE 4.10. Viscosity of water at various temperatures.
Data are from the Handbook of Chemistry and Physics. (1972),
53rd ed., Cleveland, Chemical Rubber, p. F-36.

It is independent of the nature of the particle or its size.
If in addition the diffusing particles are large enough so
that Stokes’ law is valid, then β = 6πηa and9

D =
kBT

6πηa
. (4.23)

The diffusion constant is inversely proportional to the
fluid viscosity and the radius of the particle.

Combining Eqs. 4.18b and 4.22 shows that in terms of
the chemical potential,

jsx = −Cs

β

∂µs

∂x
.

Sometimes minus the gradient of the chemical potential is
called the driving force. To see why, note that for solvent
drag, js = Csv, so βv = −∂µs/∂x is the driving force.

The viscosity of water varies rapidly with temperature,
as shown in Fig. 4.10. These values of viscosity and Eq.
4.23 have been used to calculate the solid lines for D
vs a shown in Fig. 4.11. Various experimental values are
also shown. The diffusion constant increases rapidly with
temperature, so that care must be taken to specify the
temperature at which the data are obtained. Since not all
the molecules are spherical, there is some uncertainty in
the value of the particle radius a.

9For self-diffusion (such as radioactively tagged water in water),
a hydrodynamic calculation shows that β = 4πηa [R. B. Bird, W.
E. Stewart, and E. N. Lightfoot (1960). Transport Phenomena, New
York, Wiley, p. 514ff].
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FIGURE 4.11. Diffusion constant versus sphere radius a for
diffusion in water at three different temperatures. Experimen-
tal data at 20 ◦C (293 K) are from Benedek and Villars (2000),
Vol. 2, p. 122. Data at 25 ◦C (298 K) are from Handbook of
Chemistry and Physics, (1972), 53rd ed., Cleveland, Chemical
Rubber, p. F-47.

Figure 4.12 is a plot of D for particles diffusing in water
at 20 ◦C (293K) vs. molecular weight M . Although the
solid line provides a rough estimate of D if M is known,
scatter is considerable because of varying particle shape.
DNA lies a factor of 10 below the curve, presumably be-
cause it is partially uncoiled and presents a larger size
than other molecules of comparable molecular weight.

It is possible to measure the self-diffusion of water in
water by using a few water molecules in which one hydro-
gen atom is radioactive and measuring how they diffuse.
Water has an unusually large self-diffusion constant.

If all of the molecules shown had the same density, then
their radius would depend on M1/3 and the line would
have a slope of − 1

3 . The slope is steeper than this, sug-
gesting that the molecules are larger for large M than
constant density would predict. This increase in size may
be partially attributable to water of hydration. The pre-
cise values of diffusion constants depend on many details
of the particle structure; however, the lines in Fig. 4.12
provide an order-of-magnitude estimate.

The assumption that the flux depends linearly on the
concentration gradient was an approximation. The diffu-
sion constant is found, as a result, to be somewhat con-
centration dependent.
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FIGURE 4.12. Diffusion constant versus molecular weight in
daltons. (One dalton is the mass of one hydrogen atom.) Data
at 293 K are from Benedek and Villars (2000), Vol. 2, p. 122.
The 293-K solid line was drawn by eye through the data; the
line at 310 K was drawn parallel to it using the temperature
change in Eq. 4.23. Data scatter around the line by about
30%, with occasional larger departures.

4.8 Fick’s Second Law of Diffusion

Fick’s first law of diffusion, Eq. 4.18a, is the observa-
tion that for small concentration gradients, the diffusive
flux density is proportional to the concentration gradi-
ent: jx = −D ∂C/∂x. If this is differentiated, one obtains
∂jx/∂x = −D ∂2C/∂x2. Similar equations hold for the y
and z directions. The equation of continuity, Eq. 4.2, is

−∂C

∂t
=

∂jx

∂x
+

∂jy

∂y
+

∂jz

∂z
.

If we combine these two equations, we get Fick’s second
law of diffusion, also known as the diffusion equation:

∂C

∂t
= D

(
∂2C

∂x2
+

∂2C

∂y2
+

∂2C

∂z2

)
. (4.24)

The first law relates the flux of particles to the concen-
tration gradient. The second law tells how the concentra-
tion at a point changes with time. It combines the first
law and the equation of continuity. The function on the

right-hand side of Eq. 4.24,

∂2C

∂x2
+

∂2C

∂y2
+

∂2C

∂z2
,

is called the Laplacian of C. It is often abbreviated as
∇2C (read “del squared C”) in American textbooks or
∆C in European books. It is given in other coordinate
systems in Appendix L.

In principle, if C(x, y, z) is known at t = 0, Eq. 4.24 can
be solved for C(x, y, z, t) at all later times. (We develop
a general, and sometimes useful, equation for doing this
below.) We may also look at this equation as a local equa-
tion, telling how C changes with time at some point if we
know how the concentration changes with position in the
neighborhood of that point. The change of concentration
with position determines the flux j. The changes in flux
with position determine how the concentration changes
with time.

There is extensive literature on how to solve the dif-
fusion equation (or the heat-flow equation, which is the
same thing).10 Instead of discussing a large number of
techniques, we show by substitution that a Gaussian or
normal distribution function, spreading in a certain way
with time, is one solution to Eq. 4.24. In Sec. 4.14 we inde-
pendently derive the same solution from a random-walk
model of diffusion. An important feature of the Gaussian
solution is that the center of the distribution of concen-
tration does not move.

For simplicity, consider the one-dimensional case. Take
the distribution to be centered at the origin and find those
conditions under which11

C(x, t) =
N√

2πσ(t)
e−x2/2σ2(t). (4.25)

We can view the one-dimensional case in either of two
ways. If it represents diffusion along a pipe, then C(x, t)
is the number of particles per unit length in a slice be-
tween x and x+dx, and N is the total number of particles.
If it represents a three-dimensional problem with concen-
tration changing only in the x direction, then C(x, t) is
the number of particles per unit volume and N is the
number of particles per unit area.

Equation 4.25 is a solution to the one-dimensional ver-
sion of Eq. 4.24:

∂C

∂t
= D

∂2C

∂x2
. (4.26)

10See, for example, Crank (1975) or Carslaw and Jaeger (1959).
11The properties of the Gaussian function, Eq. 4.25, are discussed

in Appendix I.
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To do this, we will need various derivatives of Eq. 4.25.
They can be evaluated using the chain rule:

∂C

∂t
=

N√
2π

(
− 1

σ2
e−x2/2σ2

+
x2

σ4
e−x2/2σ2

)
dσ

dt
,

∂C

∂x
= − N√

2π
e−x2/2σ2 x

σ3
,

∂2C

∂x2
=

N√
2π

(
− 1

σ3
e−x2/2σ2

+
x

σ3
e−x2/2σ2 x

σ2

)
.

When these are substituted in Eq. 4.26, the result is

N√
2πσ2

e−x2/2σ2
(
−1 +

x2

σ2

)
dσ

dt

= D
N√
2πσ3

e−x2/2σ2
(
−1 +

x2

σ2

)
.

We can divide both sides of this equation by

N√
2πσ2

e−x2/2σ2

because this factor is never zero. The result is
(

x2

σ2
− 1
)

dσ

dt
=

D

σ

(
x2

σ2
− 1
)

.

We can divide by
(
x2/σ2 − 1

)
for all values of x except

x = ±σ. These values of x are where the second deriv-
ative of C vanishes; at these points, ∂C/∂t = 0 for any
value of σ. At all other points, the solution will satisfy
the equation only if

σ
dσ

dt
= D.

This can be integrated to give
∫

σ dσ =
∫

D dt

or
1
2
σ2(t) = Dt + const.

Multiply through by 2 and observe that σ2(0) = 2 const,
so that

σ2(t) = 2Dt + σ2(0). (4.27)

If the concentration is initially Gaussian with variance
σ2(0), after time t it will still be Gaussian, centered on
the same point, with a larger variance given by Eq. 4.27.
Figure 4.13 shows this spreading in a typical case. At
still earlier times the concentration would have been even
more narrowly peaked. In the limit when σ(t) is zero, all
the particles are at the origin, giving an infinite concen-
tration. This is, of course, impossible. However, all the
particles could be very close to the origin, giving a very
tall, narrow curve for C(x).

The width of the curve, determined by σ, increases as
the square root of the time. A square root increase is
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σ2(2) = σ2(0) + 2 × 2

FIGURE 4.13. Spreading of particles by diffusion assuming
D = 1.

less rapid than a linear increase, reflecting the fact that
as the particles spread out the concentration does not
change as rapidly with distance, so that the flux and the
rate of spread decrease.

Note that the rate of change of concentration with
time depends on the second derivative of the concentra-
tion with distance. This is because the rate of buildup
is the flux into a region at some surface minus the flux
out through a nearby surface; each flux is proportional
to the gradient of the concentration, so the buildup is
proportional to the difference in gradients or the second
derivative.

In the Problems at the end of this chapter you will dis-
cover that diffusion of small particles through water for a
distance of 1 µm takes about 1 ms, and diffusion through
100 µm takes 1002 times as long, or 10 s. The times are
even longer for larger particles. Thus, diffusion is an ef-
fective mode of transport for distances comparable to the
size of a cell, but it is too slow for larger distances. This
is why multicelled organisms evolve circulatory systems.

4.9 Time-Independent Solutions

In this section we develop general solutions for diffu-
sion and solvent drag when particles are conserved and
the concentration and fluence rate are not changing with
time. The system is in the steady state. The continuity
equation, Eq. 4.8, then becomes div j = 0. We consider
the solutions for C and j in one, two, and three dimensions
when the symmetry is such that j depends on only one
position coordinate, x or r. These solutions are sometimes
appropriate models for limited regions of space. There is
always some other region of space, serving as a source or
sink for the particles that are diffusing, where the model
does not apply.

The behavior of j can be deduced from the continuity
equation. In one dimension, such as flow in a pipe or
between two infinite planes, the continuity equation is

djx

dx
= 0, (4.28)
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which has a solution jx = b1 where b1 is a constant. (The
subscript denotes the constant for the one-dimensional
case.) The total flux or current i is constant, so

jx =
i

S
, (4.29)

where S is the area perpendicular to the flow.
In two dimensions, we consider a problem with cylindri-

cal symmetry and consider only flow radially away from
or towards the z axis. In that case, the equation in Table
L.1 for the divergence becomes

1
r

d

dr
(rjr) = 0, (4.30)

from which
d

dr
(rjr) = 0. (4.31)

This means that (rjr) is constant, or

jr =
b2

r
. (4.32)

This is valid everywhere except along the z axis, where
there is a source of particles and the divergence is not
zero. The total current i leaving a region of length L
parallel to the z axis is also constant,

jr =
i

2πLr
. (4.33)

In three dimensions with spherical symmetry, the ra-
dial component of the divergence is

1
r2

d

dr
(r2jr) = 0,

from which
d

dr
(r2jr) = 0, (4.34)

so that
jr =

b3

r2
(4.35)

or
jr =

i

4πr2
. (4.36)

This is valid everywhere except at the origin, where there
is a source of particles.

These results depend only on continuity, time indepen-
dence, and the assumed symmetry. They are true for dif-
fusion, solvent drag, or any other process. Note the pro-
gression in going to higher dimensions: in n dimensions
rn−1jr is constant.

Now consider how the concentration varies in the two
limiting cases of pure solvent drag and pure diffusion.
(Section 4.12 discusses what happens when both trans-
port modes are important.)

For solvent drag, the velocity of the solvent is the vol-
ume flux density jv which also satisfies the continuity
equation. In one dimension jv = iv/S. In two dimensions

jv = iv/2πLr, and in three dimensions jv = iv/4πr2. In
each case

Cs =
js

jv
=

is
iv

. (4.37)

Since Cs is constant, there is no diffusion.
For the case of diffusion, j = −D∇C. In one dimension

this becomes
dC

dx
= − i

SD
,

which is integrated to give

C = − i

SD
x + b1,

where b1 is the constant of integration. The concentration
varies linearly in the one-dimensional case. If i is positive
(flow in the +x direction), C decreases as x increases.
Often the concentration is known at x1 and x2, and one
wants to know the current. We can write

C1 = − i

SD
x1 + b1,

C2 = − i

SD
x2 + b1,

and solve for i:
i =

C1 − C2

x2 − x1
SD. (4.38a)

In two dimensions

dC

dr
= − i

2πLD

1
r
,

and the solution is

C(r) = − i

2πLD
ln r + b2.

We can again solve for the current when the concentra-
tions are known at two different radii:

i =
2πLD(C1 − C2)

ln(r2/r1)
=

2πLD(C2 − C1)
ln(r1/r2)

. (4.38b)

Diffusion in two dimensions with cylindrical symmetry
has been used to model the concentration of substances
in the region between two capillaries.

In three dimensions, the diffusion equation is

dC

dr
=

i

4πDr2
,

which has a solution

C(r) =
i

4πDr
+ b3.

The current in terms of the concentration is

i =
4πD [C(r1) − C(r2)]

1/r1 − 1/r2
. (4.38c)

The three-dimensional case is worth further discussion,
because it can help us to understand the diffusion of nutri-
ents to a single spherical cell or the diffusion of metabolic
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waste products away from the cell. Consider the case in
which the cell has radius r1 = R, the concentration at
the cell surface is C0, and the concentration at infinity is
zero. Then

i = 4πD C0R, (4.39a)

C(r) =
C0R

r
, (4.39b)

jr =
C0DR

r2
. (4.39c)

The particle current depends on the radius of the cell,
R, not on R2. This very important result is not what we
might naively expect. Diffusion-limited flow of solute in
or out of the cell is proportional not to the cell surface
area, but to the cell radius. The reason is that the particle
movement is limited by diffusion in the region around the
cell, and as the cell radius increases, the concentration
gradient decreases. (It is possible for the rate of particle
migration into the cell to be proportional to the surface
area of the cell if some other process, such as transport
through the cell membrane, is the rate-limiting step.)

If diffusion is toward the cell, the concentration is C0

infinitely far away. At the cell surface, every diffusing
molecule that arrives is assumed to be captured, and the
concentration is zero. The solutions are then

i = −4πDC0R, (4.40a)
C(r) = C0 (1 − R/r) , (4.40b)

jr(r) = −C0DR

r2
. (4.40c)

4.10 Example: Steady-State Diffusion
to a Spherical Cell and End
Effects

In the preceding section we considered diffusion from infi-
nitely far away to the surface of a spherical cell where the
concentration was zero. We now add the effect of steady-
state diffusion through a series of pores or channels in
the cell membrane. This will lead to a very important re-
sult: it does not require very many pores per unit area in
the cell membrane to “keep up with” the rate of diffusion
of chemicals toward or away from the cell. The result is
important for understanding how cells acquire nutrients,
how bacteria move in response to chemical stimulation
(chemotaxis), and how the leaves of plants function.

To develop the model we need one more result: the
current due to diffusion from a disk of radius a where
the concentration is C1 to a plane far away where the
concentration is C2. The disk is embedded in the surface
of an impervious plane as shown in Fig 4.14, so particles
cannot cross to the region behind the disk. The current
is (Eq. 6.98)

i = 4Da (C1 − C2). (4.41)

C2C 1

Impervious
Infinite
Plane

FIGURE 4.14. The diffusion flux from the disk of radius a and
concentration C1 to the infinite sheet where the concentration
is C2 is given by i = 4Da(C1 − C2).

FIGURE 4.15. End effects in diffusion through a pore.

It is proportional to the radius of the disk, not its surface
area. [Obtaining this result requires solving the diffusion
equation in three dimensions. See Carslaw and Jaeger
(1959), p. 215.]

Consider diffusion through a pore of radius Rp which
pierces a membrane of thickness ∆Z, including diffusion
in the medium on either side of the membrane (Fig. 4.15).
If the material on either side were well stirred, there
would be a uniform concentration C1 on the left and C4

on the right. Because it is not stirred, there is diffusion in
the exterior fluid. Let C1 and C4 be measured far away,
and call the concentrations at the ends of the pore C2 on
the left and C3 on the right.

Equation 4.38a gives the diffusion flux within the pore

i =
πR2

pD (C2 − C3)
∆Z

. (4.42)

Diffusion from C1 to C2 is given by Eq. 4.41. It is

i = 4D Rp(C1 − C2), (4.43)

while from C3 to C4, it is

i = 4D Rp(C3 − C4). (4.44)

In the steady state, there is no buildup of particles and
i is the same in each region. We can solve Eqs. 4.42–4.44
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FIGURE 4.16. Diffusive end effects for a spherical cell pierced
by pores.

simultaneously to relate i to concentrations C1 and C4:

i =
πR2

p D

∆Z + 2πRp/4
(C1 − C4). (4.45)

This has the same form as Eq. 4.42, except that the mem-
brane thickness has been replaced by an effective thick-
ness

∆Z ′ = ∆Z + 2
πRp

4
. (4.46)

An extra length πRp/4 has been added at each end to
correct for diffusion in the unstirred layer on each side
of the pore. This correction is important when the pore
length is less than two or three times the pore radius.

Now consider diffusion in or out of the spherical cell
shown in Fig. 4.16. The radius of the cell is B. The mem-
brane has thickness ∆Z and is pierced by a total of N
pores, each of radius Rp. Within the cell we do not know
the details of the concentration distribution, since they
depend on what sort of chemical reactions are taking
place and where. But we will assume that at the radius
where diffusion to the pores becomes important, the con-
centration is C1. At the inner face of each pore it is C2, at
the outer face it is C3, and over an approximately spheri-
cal surface of radius B′ it is C4. Far away, the concentra-
tion is C5. As a result, there are four separate regions in
which we must consider diffusion. The first is from C1 to
the opening of each pore; the second is through the pore;
third, there is diffusion from the outer face of each pore
to C4; and, finally, there is diffusion from the spherical
object of radius B′ to the surrounding medium.

4.10.1 Diffusion Through a Collection of
Pores, Corrected

The first three processes are taken into account by ap-
plying the end correction to each end of the pores. The
flow through one pore is using Eq. 4.45

ipore =
πR2

p D

∆Z ′ (C1 − C4), (4.47)

where ∆Z ′ is given by Eq. 4.46. Since there are N pores
in all, the total flow through the cell wall is

icell = Nipore =
NπR2

p D

∆Z ′ (C1 − C4). (4.48)

The diffusion from C4 to infinity is given by Eq. 4.38c.

icell = 4πD B′(C4 − C5), (4.49)

where B′ is the effective radius for diffusion to the sur-
rounding medium. It is slightly larger than B. If we
equate Eqs. 4.48 and 4.49, solve for C4 and substitute
this result back in Eq. 4.49, we get

icell =
4πDB′ NR2

p

NR2
p + 4B′∆Z ′ (C1 − C5). (4.50)

This can be rewritten as

icell =
NπR2

pD

∆Zeff
(C1 − C5), (4.51)

where

∆Zeff = ∆Z + 2
πRp

4
+ N

R2
p

4B′ . (4.52)

The first term in ∆Zeff is the membrane thickness. The
second term corrects for diffusion from the end of each
pore to the surrounding fluid; the last corrects for dif-
fusion away from the cell into the surrounding medium.
The third term can be expressed as

NR2
p

4B′ =
B

B′Bf,

where

f =
NπR2

p

4πB2
(4.53)

is the fraction of the cell surface occupied by pores.
We now assume that B = B′. (Problem 28 shows that

the difference is usually very small.) The effective pore
length is then

∆Zeff = ∆Z + 2
(

πRp

4

)
+ Bf. (4.54)

Equations 4.51–4.54 treat the problem as diffusion
through a collection of N pores, corrected for diffusion
outside the pore by increasing the length of the pore.

4.10.2 Diffusion from a Sphere, Corrected

It is also useful to write these results as the equation
for diffusion to or from a sphere, Eqs. 4.39, corrected
for the diffusion through the cell wall. Writing it in this
form gives us insight into how much of the cell wall must
be occupied by pores for efficient particle transfer. Solve
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Eq. 4.53 for NR2
p and substitute the result in Eq. 4.50.

The result is

icell =
4πD B′B2 f (C1 − C5)

B2f + B′∆Z ′

= 4πBD (C1 − C5)
(

B′

B

)
f

f + (B′/B)(∆Z ′/B)
.

(4.55)

This has the form of diffusion to the sphere multiplied by
a correction factor. With B′/B again approximated by
unity, the correction factor is

f

f + ∆Z ′/B
.

The correction factor is zero when f is zero and becomes
nearly unity when the entire cell surface is covered by
pores.

4.10.3 How Many Pores Are Needed?

We now ask what fraction of the cell’s surface area
must be occupied by pores. The cell will receive half
the maximum possible diffusive flow when the fraction
f = ∆Z ′/B. For a typical cell with B = 5 µm and
∆Z = 5 nm, f = 0.001. This is a surprisingly small num-
ber, but it means that there is plenty of room on the cell
surface for different kinds of pores. There are two ways
to understand why this number is so small. First, we can
regard the ratio of concentration difference to flow as a
resistance, analogous to electrical resistance. The total
resistance from the inside of the cell to infinity is made
up of the resistance from the outside of the cell to infin-
ity plus the resistance of the parallel combination of N
pores.

When the resistance of this parallel combination is
equal to the resistance from the cell to infinity, adding
more pores in parallel does not change the overall resis-
tance very much. The second way to look at it is in terms
of the random walks of the diffusing solute molecules.
When a solute molecule has diffused into the neighbor-
hood of the cell, it undergoes many random walks. When
it strikes the cell wall, it wanders away again, to return
shortly and strike the cell wall someplace else. If the first
contact is not at a pore, there are more opportunities to
strike a pore on a subsequent contact with the surface.

4.10.4 Other Applications of the Model

The same sort of analysis that we have made here can be
applied to a plane surface area, such as the underside of a
leaf [Meidner and Mansfield (1968)] and to a cylindrical
geometry, such as a capillary wall.

The analysis can also be applied to the problem of bac-
terial chemotaxis—the movement of bacteria along con-
centration gradients. This problem has been discussed in

detail by Berg and Purcell (1977).12 The cell detects a
chemical through some sort of chemical reaction between
the chemical and the cell. Suppose that the reaction takes
place between the chemical and a binding site of radius
Rp on the surface of the cell. We want to know what
fraction of the surface area of the cell must be covered by
binding sites. This is similar to the diffusion problem of
Eq. 4.55, except that if the binding site is on the surface
of the cell, there is no diffusion through a pore of length
∆Z. The effective pore length ∆Z ′ is just the end correc-
tion for one end of the pore, πRp/4. Half of the maximum
possible flow to the binding site occurs when

f = πRp/4B.

A typical bacterium might have a radius B = 1 µm; the
binding site might have a radius of a few atoms or 1 nm.
With these values f = 7.9 × 10−4. The number of sites
would be f4πB2/πR2

p = πB/Rp = 3000. There is plenty
of room on the cell surface for many different binding
sites, each specific for a particular chemical.

An Escherichia coli cell typically travels 10–20 body
lengths per second. It detects concentration gradients as
changes with time. Because of this, Berg and Purcell con-
cluded that a uniform distribution of chemoreceptors over
the surface of the cell would be optimum. It would give
the highest probability of capture of a chemical molecule
that wandered near the cell. However, recent studies of E.
coli have shown that the receptors are located near the
poles of the cell [Maddock and Shapiro (1993); see also the
comment by Parkinson and Blair (1993), who point out
that the reduced efficiency of sensors could make sense
if “eating” or transport into the cell is more important
than “smelling.”]

The Berg–Purcell model has been extended to provide
a time-dependent solution and allow the receptors not to
be perfectly absorbing [Zwanzig and Szabo (1991)] and
also to have a process in which the molecules attach to
the membrane and then diffuse in the two-dimensional
membrane surface [Wanget al. (1992); Axelrod and Wang
(1994).]

4.11 Example: A Spherical Cell
Producing a Substance

Here is a simple model that extends the arguments of Sec.
4.9 to develop a steady-state solution for a spherical cell
excreting metabolic products. The cell has radius R. The
concentration of some substance inside the cell is C(r),
independent of time t and the spherical coordinate angles
θ and φ. (Spherical coordinates are described in Appendix
L.) The substance is produced at a constant rate Q par-
ticles per unit volume per second throughout the cell and

12See also Berg (1975, 1983) and Purcell (1977).
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leaves through the walls of the cell at a constant fluence
rate j(R), independent of t, θ, and φ. Assume that all
transport is by pure diffusion and the diffusion constant
for this substance is D everywhere inside and outside the
cell. The material inside the cell is not well stirred. (For
this model we assume that the cell membrane does not af-
fect the transport process. We could make the model more
complicated by introducing the features described in Sec.
4.10.) With these assumptions, the cell can be modeled as
an infinite homogeneous medium with diffusion constant
D that contains a spherical region producing material at
rate Q per unit volume per second.

We first find the concentration C(r) inside and outside
the cell by using a technique that only works because of
the spherical symmetry. We use the continuity equation
in the form Eq. 4.10b. Because the concentration is not
changing with time, the total amount of material flowing
through a spherical surface of radius r is equal to the
amount produced within that sphere. For r < R

4πr2j(r) = 4πr3Q/3,

j(r) = Qr/3.

For r > R

4πr2j(r) = 4πR3Q/3,

j(r) = QR3/3r2.

Using the fact that j(r) = −DdC/dr, we obtain for r < R

dC

dr
= − Q

3D
r,

C(r) = −Qr2

6D
+ b1,

where b1 is the constant of integration. For r > R,

dC

dr
= − QR3

3D r2
,

C(r) =
QR3

3D r
+ b2.

The fact that the concentration must be zero far from the
cell means that b2 = 0. Matching the two expressions at
r = R gives

−QR2/6D + b1 = QR2/3D,

b1 = QR2/2D,

so that

C(r) =






Q

6D
(3R2 − r2), r ≤ R

QR3

3D r
, r � R.

The other method is more general and can be extended
to problems that do not have spherical symmetry. We

find solutions to Fick’s second law, modified to include
the production term Q and with the concentration not
changing with time:

0 =
∂C

∂t
= D∇2C + Q,

∇2C = −Q

D
.

In spherical coordinates [Appendix L; Schey (1997)] this
is

1
r2

∂

∂r

(
r2 ∂C

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂C

∂θ

)

+
1

r2 sin2 θ

(
∂2C

∂φ2

)
= −Q

D
.

Since there is no angular dependence, we have separate
equations for each domain:

1
r2

d

dr

(
r2 dC

dr

)
=






−Q

D
, r < R

0, r > R.

It is necessary to solve each equation in its domain, and
then at the boundary require that C be continuous and
also that j and therefore dC/dr be continuous. For r < R
we get the following (b1 and b2 are constants of integra-
tion):

r2 dC

dr
= −Qr3

3D
+ b1,

dC

dr
= −Qr

3D
+

b1

r2
,

C(r) = −Qr2

6D
− b1

r
+ b2.

Since the concentration is finite at the origin, b1 = 0:

C(r) = b2 −
Qr2

6D
, r < R.

For r > R we can use the general solution with Q = 0
and different constants:

C(r) = −b′1
r

+ b′2.

Far away the concentration is zero, so b′2 = 0. Matching
dC/dr at the boundary gives

−QR

3D
=

b′1
R2

, b′1 = −Q
R3

3D
.

Matching C(r) at the boundary gives

−QR2

6D
+ b2 = −b′1

R
.

Putting all of this together gives the same expression
for the concentration we had earlier. This technique is
a bit more cumbersome, but there are many mathemati-
cal tools to extend this technique to cases where there is
not spherical symmetry and where Q is a function of po-
sition. These advanced techniques can also be used when
C is changing with time.
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4.12 Drift and Diffusion in One
Dimension

The particle fluence rate due to diffusion in one dimension
is jdiff = −D (∂C/∂x). That of particles drifting with
velocity v is jdrift = vC. The total flux density or fluence
rate is the sum of both terms:

js = −D
∂C

∂x
+ vC. (4.56)

The homogeneous (js = 0) solution was discussed in
Sec. 4.7, where cancellation of these two terms in equi-
librium was used to derive the relationship between the
diffusion constant and viscosity. Using the techniques of
Appendix F, we can write the homogeneous solution as

C(x) = Ae(v/D)x. (4.57)

This can be used to solve the problem of js = const when
the concentration is C0 at x = 0 and C ′

0 at x = x1. C(x)
must vary in such a way that the total flux density, the
sum of the diffusive and drift terms, is constant. Suppose
that both terms give flow from left to right. If the concen-
tration is high, then the drift flux density is large and the
concentration gradient must be small. If the concentra-
tion is small, the diffusive flux, and hence the gradient,
must be large. To develop a formal solution, write Eq.
4.56 as

dC

dx
− 1

λ
C = − js

D
, (4.58)

where λ = D/v has the dimensions of length and can be
interpreted as the distance over which diffusion is impor-
tant. If the velocity is zero, diffusion is important every-
where and λ = ∞. If the velocity is very large, λ → 0.
Since v can be either positive or negative, so can λ. A
particular solution to Eq. 4.58 is

C(x) =
λjs

D
=

js

v
.

The general solution is the sum of the particular solution
and the homogeneous solution, Eq. 4.57:

C(x) = Aex/λ + js/v. (4.59)

The situation is slightly different than what we encoun-
tered in Chap. 2. We must determine two constants, A
and js, given the two concentrations C0 and C ′

0. Writing
Eq. 4.59 for x = 0 and for x = x1, we obtain

C0 = A +
js

v
,

C ′
0 = Aex1/λ +

js

v
.

(4.60)

Subtracting these gives

C ′
0 − C0 = A(ex1/λ − 1),

A = (C ′
0 − C0)/(ex1/λ − 1).

(4.61)

This can be combined with either of Eqs. 4.60 to give

js =
C0e

x1/λ − C ′
0

ex1/λ − 1
v. (4.62)

We can also substitute Eqs. 4.61 and 4.62 in 4.59 to
obtain an expression for C(x). The result is

C(x) =
C0(ex1/λ − ex/λ) + C ′

0(e
x/λ − 1)

ex1/λ − 1
. (4.63)

We will discuss the implications of this equation below.
Let us first determine the average concentration be-

tween x = 0 and x = x1. The average concentration is
defined by

C =
1
x1

∫ x1

0

C(x) dx. (4.64)

While one could integrate this directly, it is much easier
to integrate Eq. 4.56 from 0 to x1:

−D

∫ x1

0

(
dC

dx

)
dx + v

∫ x1

0

C(x) dx = +js

∫ x1

0

dx.

The first term is −D(C ′
0 −C0). The second is vx1C. The

third is jsx1. The equation can therefore be rewritten as

vC =
D (C ′

0 − C0)
x1

+ js. (4.65)

Substituting Eq. 4.62 for js gives the average concentra-
tion

C =
C0e

x1/λ − C ′
0

ex1/λ − 1
− λ

x1
(C0 − C ′

0). (4.66)

The exponentials can be expanded to give an approxi-
mate expression for small values of x1/λ13

C =
(C0 + C ′

0)
2

+
x1

λ

1
12

(C0 − C ′
0). (4.67)

For larger values of x1/λ, the mean can be written

C =
C0 + C ′

0

2
+ (C0 − C ′

0)G
(x1

λ

)
. (4.68)

The correction factor G(x1/λ) = G(ξ), given by

G(ξ) =
1
2

eξ + 1
eξ − 1

− 1
ξ
, (4.69)

is plotted in Fig. 4.17. The function is odd, and only
values for ξ ≥ 0 are shown. For ξ = 0 (λ = ∞, pure
diffusion), the average concentration is (C0 + C ′

0)/2.
Figure 4.18 shows the concentration profile calculated

from Eq. 4.63. The concentration is 5 times larger on
the left, so diffusion is from left to right. When x1/λ =

13See Levitt (1975, p. 537). For x1/λ = 1.5, this approximation
is within 1%. For x1/λ = 2.5, the error is about 6%.
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FIGURE 4.17. The correction factor G(ξ) used in Eq. 4.68.
The dashed line is the approximation G(ξ) = ξ/12, which is
valid for small ξ and is used in Eq. 4.67.
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FIGURE 4.18. Concentration profile for combined drift and
diffusion. The concentration is 1.0 on the left and 0.2 on the
right. For x1/λ = x1v/D = 0.8, drift and diffusion are both
to the right. As the concentration falls, the magnitude of the
gradient increases. For x1/λ = x1v/D = −0.8 drift opposes
diffusion. As the concentration falls, so does the magnitude of
the gradient.

x1v/D = 0.8, drift is also from left to right. As the con-
centration falls, the magnitude of the gradient rises, so
that the sum of the diffusive and drift fluxes remains the
same. When x1/λ = −0.8, drift is opposite to diffusion.
Therefore, both the concentration and the magnitude of
the gradient must rise and fall together to keep total flux
density constant.

Equation 4.65 can be rewritten as

js =
−D (C ′

0 − C0)
x1

+ vC. (4.70)

This can be interpreted as meaning that the fluence rate
is given by the sum of a diffusion term with the average
concentration gradient and a drift term with the aver-
age concentration. However, the discussion in the preced-
ing paragraph showed that there is actually a continuous
change of the relative size of the diffusion and drift terms
for different values of x.

FIGURE 4.19. Diffusion from ξ to x.

4.13 A General Solution for the
Particle Concentration as a
Function of Time

If C(x, 0) is known for t = 0, it is possible to use the result
of Sec. 4.8 to determine C(x, t) at any later time. The key
to doing this is that if C(x, t) dx is the number of parti-
cles in the region between x and x + dx at time t, it may
be be interpreted as the probability of finding a particle
in the interval (x, dx) multiplied by the total number of
particles. (Recall the discussion on p. 91 about the inter-
pretation of C(x, t).) The spreading Gaussian then repre-
sents the spread of probability that a particle is between
x and x + dx.

If a particle is definitely at x = ξ at t = 0, then
σ2(0) = 0. The particle cannot remain there because of
equipartition of energy: collisions cause it to acquire a
mean square velocity 3kBT/m and move. At some later
time

σ(t) = (2Dt)1/2. (4.71)
Define P (ξ, 0;x, t) dx to be the probability that a par-

ticle has diffused to a location between x and x + dx at
time t, if it was at x = ξ when t = 0. This probability is
given by Eq. 4.25, except that the distance it has diffused
is now x − ξ instead of x. The variance σ2(t) is given by
Eq. 4.71. The result is

P (ξ, 0;x, t) dx =
1√

4πDt
e−(x−ξ)2/4Dt dx. (4.72)

The number of particles initially between x = ξ and x =
ξ+dξ is the concentration per unit length times the length
of the interval N = C(ξ, 0)dξ, as shown in Fig. 4.19.

The particles can diffuse in either direction. At a later
time t, the average number between x and x + dx that
came originally from between x = ξ and x = ξ +dξ is the
original number in (ξ, dξ) times the probability that each
one got from there to x. This number is a differential of a
differential, d [C(x, t)dx], because it is only that portion
of the particles in dx that came from the interval dξ:

d [C(x, t) dx] = C(ξ, 0) dξ
1√

4πDt
e−(x−ξ)2/4Dt dx.

To get C(x, t)dx, it is necessary to integrate over all pos-
sible values of ξ:

C(x, t) dx =
1√

4πDt

[∫ ∞

−∞
C(ξ, 0)e−(x−ξ)2/4Dt dξ

]
dx.

(4.73)
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FIGURE 4.20. The initial concentration is constant to the left
of the origin and zero to the right of the origin.

FIGURE 4.21. Plot of the error function erf(x).

This equation can be used to find C(x, t) at any time, pro-
vided that C(x, t) was known at some earlier time. The
factor that multiplies C(ξ, 0) in the integrand is called
the influence function or Green’s function for the diffu-
sion problem; it gives the relative weighting of C(ξ, 0) in
contributing to the later value C(x, t).

As an example of using this integral, consider a situ-
ation in which the initial concentration has a constant
value C0 from ξ = −∞ to ξ = 0 and zero for all positive
ξ, as shown in Fig. 4.20. At t = 0 the diffusion starts.
The concentration at later times is given by

C(x, t) =
C0√
4πDt

∫ 0

−∞
e−(x−ξ)2/4Dt dξ.

Such integrals are most easily evaluated by using the er-
ror function that is tabulated in many mathematical ta-
bles. It is defined by

erf(z) =
2√
π

∫ z

0

e−t2dt. (4.74)

The error function is plotted in Fig. 4.21. One must be
careful in using tables, for other functions tabulated are
related to the error function but differ in normalization
constants and in the limits of integration.

To use the error function in evaluating the integral in
Eq. 4.73, make the substitution s = (x − ξ)/(4Dt)1/2.

FIGURE 4.22. The spread of an initially sharp boundary due
to diffusion.

The integral becomes

C(x, t) =
−C0√
4πDt

∫ x/
√

4Dt

∞
e−s2√

4Dt ds.

Since
∫ B

A
f(x) dx =

∫ B

0
f(x) dx +

∫ 0

A
f(x) dx =

∫ B

0
f(x) dx −

∫ A

0
f(x) dx, this can be written as

C(x, t) =
−C0√

π

(∫ x/
√

4Dt

0

e−s2
ds −

∫ ∞

0

e−s2
ds

)

=
C0

2

[
1 − erf(x/

√
4Dt)

]
. (4.75)

The plot in Fig. 4.22 shows how the initially sharp con-
centration step becomes more diffuse with passing time.
Quantitative measurements of the concentration can be
used to determine D. Benedek and Villars (2000, pp. 126–
136) discuss some experiments to verify the solution we
have obtained above and to determine D.

Many other solutions to the diffusion equation and
techniques for solving it are known. See Crank (1975)
or Carslaw and Jaeger (1959).

4.14 Diffusion as a Random Walk

The spreading solution to the one-dimensional diffusion
equation that we verified can also be obtained by treat-
ing the motion of a molecule as a series of independent
steps either to the right or to the left along the x axis.
(The same treatment can be extended to three dimen-
sions, but we will not do so.) The derivation gives us a
somewhat simplified molecular picture of diffusion. The
derivation also provides an opportunity to see how the
Gaussian distribution approximates the binomial distrib-
ution. This section is not necessary to understand the rest
of Chapters 4 and 5, and you should tackle it only if you
are familiar with the binomial and Gaussian probability
distributions (Appendices H and I). The model is more re-
strictive than the diffusion equation derived above, since
the latter is the linear approximation to the transport
problem.



4.14 Diffusion as a Random Walk 101

We use a simplified model in which the diffusing par-
ticle always moves in steps of length λ (the mean free
path), either in the +x or −x direction. Let the total
number of steps taken by the particle be N , of which n
are to the right and n′ are to the left: N = n + n′. Also
let m = n−n′. The particle’s net displacement in the +x
direction is then

nλ − n′λ = mλ.

Since the steps are independent and a step to the left or
right is equally likely (p = 1/2), the probability of having
a displacement mλ is given by the binomial probability
P (n;N):

P (n;N) =
N !

(n!)(N − n)!

(
1
2

)n(1
2

)n′

. (4.76)

Since this problem is analogous to throwing a coin, and
we know that on the average we get the same number
of heads (steps to the left) as tails (steps to the right),
we know that the distribution is centered at n = n′ or
m = 0. We also know [Eq. G.4] that the variance in n is
given by n2 −n2 = Npq = N/4. Since n = N/2, this says
that n2 = N/4 + N2/4. However, we need the variance
in m, m2 − m2. To obtain it, we write m = 2n − N and
m2 = 4n2 + N2 − 4nN . Therefore,

m2 = 4n2 + N2 − 4Nn = N.

The variance of the distribution of displacement x is
equal to the step length λ times the variance in the num-
ber of steps:

σ2 = x2 = λ2m2 = λ2N.

The number of steps is the elapsed time divided by the
collision time N = t/tc. Therefore,

σ2 =
λ2t

tc
.

Comparing this with Eq. 4.70, we identify D = λ2/2tc,
so that

σ2 = 2Dt. (4.77)

We have shown that this simple model gives a distri-
bution with fixed mean which spreads with a variance
proportional to t. We now must show that the shape is
Gaussian. Appendix I shows that the Gaussian is an ap-
proximation to the binomial distribution in the limit of
large N . Since σ2

n = N/4 and n = N/2, Eq. G.4 can be
used to write

P (n) =
(

2πN

4

)−1/2

e−(n−N/2)2/(2N/4).

This can be rewritten in terms of the net number of steps
to the right, since m = n − n′ = 2n − N :

P (m) =
(

2
πN

)1/2

e−m2/2N .

FIGURE 4.23. Relationship between the values of x and the
allowed values of m. Every other value of m is missing.

Note that only every other value of m is allowed. Since
m = 2n − N , m goes in steps of 2 from −N to N as n
goes from 0 to N .

To write the probability distribution in terms of x and
t, refer to Fig. 4.23. The spacing between each allowed
value of x is 2, so that the number of allowed values of
m in interval (x, x + dx) is dx/2λ. Therefore, P (x) dx =
P (m)(dx/2λ),

P (x) =

√
2

πN4λ2
e−m2/2N .

With the substitutions m = x/λ and N = t/tc, this be-
comes

P (x, t) =

√
tc

2πλ2t
e−x2(tc/2λ2t).

With the substitutions D = λ2/2tc and C(x, t) =
C(0)P (x, t), we obtain Eq. 4.25.

The result of Eq. 4.71 is easily extended to two di-
mensions. Imagine that a total of N steps are taken,
half in the x direction and half in the y direction. Then
σ2

x = σ2
y = λ2(N/2). If r2 = x2+y2, σ2

r = σ2
x+σ2

y = λ2N .
We still define D in any direction as λ2/2tc, where tc is
the time between steps in that direction. After a total
time t, N steps have been taken, but only half of them
were in, say, the x direction. Therefore tc = 2t/N . There-
fore

σ2
r = σ2

x + σ2
y = 4Dt (two dimensions). (4.78)

A similar argument in three dimensions gives

σ2
r = σ2

x + σ2
y + σ2

z = 6Dt (three dimensions). (4.79)

Figure 4.24 shows the result of a computer simulation
of a two-dimensional random walk. A random number is
selected to determine whether to step one pixel to the
left, up, right, or down—each with the same probability.
The trail for 4000 steps is shown in Fig. 4.24(a). The
results of continuing for 40,000 steps are shown in Fig.
4.24(b). Note how the particle wanders around one region
of space and then takes a number of steps in the same
direction to move someplace else. The particle trajectory
is “thready.” It does not cover space uniformly. A uniform
coverage would be very nonrandom. It is only when many
particles are considered that a Gaussian distribution of
particle concentration results.



102 4. Transport in an Infinite Medium

(b)(a)

FIGURE 4.24. (a) Trail of a particle for 4000 steps. (b) Trail
for additional steps to total 40,000.

Both results in Fig. 4.24 were for the same sequence of
random numbers. A computer simulation with 328 runs
of 10,000 steps each gave x = −3.3, σ2

x = 5142, y = 8.2,
σ2

y = 4773, and x2 + y2 = 10, 027. The expected values
are, respectively, 0, 5000, 0, 5000, and 10,000.

Symbols Used in Chapter 4

Symbol Use Units First

used on

page

a, a1, a2 Particle radius m 86

b1, b2, b3 Constants 93

f Fraction of cell surface area 95

g Gravitational acceleration m s−2 85

g Force N 87

i Particle current s−1 81

j, j, js Solute fluence rate m−2 s−1 81

jdrift,

jdiff

Solute fluence rate due to drift

velocity, diffusion

m−2 s−1 89

jm Mass fluence rate kg m−2 s−1 81

jn Component of j normal to a sur-

face

m−2 s−1 83

jv Volume fluence rate m s−1 81

jx, jy, jz Components of j m−2 s−1 83

kB Boltzmann’s constant J K−1 85

l Linear separation of pores on

cell surface

m 106

m Mass kg 85

m n − n′ 101

n̂ Unit vector normal to a surface 83

n, n′ Number of steps to right, left 101

p, q Probabilities 101

r Distance, radius m 83

s Dummy variable 86

t Time s 81

tc Collision time s 86

u Energy of a particle J 85

v, v Velocity m s−1 85

x, y, z Cartesian coordinates m 81

A Constant 98

B, B′ Cell radius m 95

C, Cs Concentration m−3 81

D Diffusion constant m2 s−1 88

F, F, Fext Force N 87

G Correction factor for average

concentration

98

L Length m 93

M Mass kg 84

M Molecular weight 90

N, N0 Number of molecules 82

N Number of pores on cell surface 95

N Number of steps in a random

walk

101

P Rate of energy production

(power)

W 83

P Probability 85

Q Rate of creating a substance per

unit volume

m−3 s−1 85

R Gas constant J K−1

mol−1
98

R Radius of a sphere m 94

Rp Radius of a pore m 94

S Surface area m2 82

dS Vector surface element pointing

in the direction of the normal

m2 83

T Absolute temperature K 85

V Volume m3 84

∆Z Cell membrane thickness m 94

α Proportionality constant 87

β Proportionality constant

between force and velocity

N s m−1 87

κ Thermal conductivity J K−1 m−1

s−1
88

λ Mean free path m 86

λ Ratio of D/v m 98

θ, φ Angles 82

η Coefficient of viscosity Pa s 88

σ Standard deviation 91

σ Electrical conductivity Ω−1 m−1 88

ξ Position m 99

ξ Dimensionless variable 98

ρ Mass density kg m−3 84

µs Chemical potential of solute J

molecule−1
88

Problems

Section 4.1

Problem 1 A cylindrical pipe with a cross-sectional area
S = 1 cm2 and length 0.1 cm has js(0)S = 200 s−1 and
js(0.1)S = 150 s−1.

(a) What is the total rate of buildup of particles in the
pipe?

(b) What is the average rate of change of concentration
in the section of pipe?

Problem 2 Write the continuity equation in cylindrical
coordinates if jφ = 0 but jr and jz can be nonzero.

Problem 3 Consider two concentric spheres of radii r
and r +dr. If the particle fluence rate points radially and
depends only on r, and the number of particles between r
and r + dr is not changing, show that d(r2j)/dr = 0.

Section 4.2

Problem 4 Suppose that the total blood flow through a
region is F (m3 s−1). A chemically inert substance is
carried into the region in the blood. The total number of
molecules of the substance in the region is N . The amount
of blood in the region is not changing. Show that dN/dt =
(CA−CV )F , where CA and CV are the concentrations of
substance in the arterial and venous blood. This is known
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as the Fick principle or the Fick tracer method. It is often
used with radioactive tracers.

Section 4.3

Problem 5 R. D. Allen et al. [(1982). Science 218:
1127–1129] report seeing regular movement of particles in
the axoplasm of a squid axon. At a temperature of 21 ◦C,
the following mean drift speeds were observed:

Particle size (µm) Typical speed (µm s−1)
0.8 − 5.0 0.8
0.2 − 0.6 2

How do these values compare to thermal speeds? (Make a
reasonable assumption about the density of particles and
assume that they are spherical.)

Section 4.4

Problem 6 (a) Use the ideal gas law, pV = NkBT =
nRT to compute the volume of 1 mole of gas at T = 30 ◦C
and p = 1atm . Express your answer in liters. Show that
this is equivalent to a concentration of 2.4×1025 molecule
m−3.

(b) Find the concentration of liquid water molecules at
room temperature.

Problem 7 Using the information on the mean free path
in the atmosphere and assuming that all molecules have a
molecular weight of 30, find the height at which the mean
free path is 1 cm. Assume the atmosphere has a constant
temperature.

Section 4.6

Problem 8 Suppose C(x, t) =
(
N/

√
4πDt

)
e−x2/4Dt.

Find an expression for js(x, t).

Section 4.7

Problem 9 If all macromolecules have the same density,
derive the expression for D versus the molecular weight
that was used to draw the line in Fig. 4.12.

Problem 10 For diagnostic studies of the lung, it would
be convenient to have radioactive particles that tag the
air and that are small enough to penetrate all the way to
the alveoli. It is possible to make the isotope 99mTc into
a “pseudogas” by burning a flammable aerosol contain-
ing it. The resulting particles have a radius of about 60
nm [W. M. Burch, I. J. Tetley, and J. L. Gras (1984).
Clin. Phys. Physiol. Meas 5: 79–85]. Estimate the mean
free path for these particles. If it is small compared to the
molecular diameter, then Stokes’ law applies, and you can
use Eq. 4.23 to obtain the diffusion constant. (The vis-
cosity of air at body temperature is about 1.8×10−5 Pa
s.)

Problem 11 Figure 4.12 shows that D for O2 in water
at 298 K is 1.2 × 10−9 m2 s−1 and that the molecular
radius of O2 is 0.2 nm. The diffusion constant of a dilute
gas (where the mean free path is larger than the molecular
diameter) is D = λ2/2tc, where the collision time is given
by Eq. 4.15.

(a) Find a numeric value for the diffusion constant for
O2 in O2 at 1 atm and 298 K and its ratio to D for O2

in water. The molecular weight of oxygen is 32.
(b) Assuming that this equation for a dilute gas is valid

in water, estimate the mean free path of an oxygen mole-
cule in water.

Section 4.8

Problem 12 (a) The three-dimensional normalized ana-
log of Eq. 4.25 is

C(x, y, z, t) =
N

[2π σ2(t)]3/2
exp

(
−x2 + y2 + z2

2σ2(t)

)
.

Find the three-dimensional analog of Eq. 4.27.
(b) Show that σ2 = x2 + y2 + z2 = 6Dt.

Problem 13 A crude approximation to the Gaussian
probability distribution is a rectangle of height P0 and
width 2L. It gives a constant probability for a distance
L either side of the mean.

(a) Determine the value of P0 and L so that the distri-
bution has the same value of σ as a Gaussian.

(b) Plot P (x, t) if σ is given by Eq. 4.27 and the mean
remains centered at the origin for times of 1, 5, 50, 100,
and 500 ms. Use D for oxygen diffusing in water at body
temperature.

(c) How long does it take for the oxygen to have a rea-
sonable probability of diffusing a distance of 8 µm, the
diameter of a capillary?

(d) For t = 100 ms, plot both the accurate Gaussian
and the rectangular approximation.

Problem 14 Write an equation for Fick’s second law in
three-dimensional Cartesian coordinates when the diffu-
sion constant depends on position: D = D(x, y, z).

Problem 15 The heat flow equation in one dimension
is

jH = −κ

(
∂T

∂x

)
,

where κ is the thermal conductivity in W m−1 K−1. One
often finds an equation for the “diffusion” of energy by
heat flow:

∂T

∂t
= DH

(
∂2T

∂x2

)
.

The units of jH are J m−2 s−1. The internal energy per
unit volume is given by u = ρCT , where C is the heat ca-
pacity per unit mass and ρ is the density of the material.
Derive the second equation from the first and show how
DH depends on κ, C, and ρ.
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Problem 16 The dimensionless “Lewis number” is de-
fined as the ratio of the diffusion constant for molecules
and the diffusion constant for heat flow (see Problem 15.)
If the Lewis number is large, molecular diffusion occurs
much more rapidly than the diffusion of energy by heat
flow. If the Lewis number is small, energy diffuses more
rapidly than molecules. Use the following parameters:

Air Water
D (m2 s−1) 2 × 10−5 2 × 10−9

κ (W m−1 K−1) 0.03 0.6
C (J kg−1 K−1) 1000 4000
ρ (kg m−3) 1.2 1000.

(a) Calculate the Lewis number for oxygen in air and
in water.

(b) Is it possible using either air or water to design a
system in which oxygen is transported by diffusion with
almost no transfer of heat?

Problem 17 A sheet of labeled water molecules starts at
the origin in a one-dimensional problem and diffuses in
the x direction.

(a) Plot σ vs t for diffusion of water in water.
(b) Deduce a “velocity” versus time.
(c) How long does it take for the water to have a rea-

sonable chance of traveling 1 µm? 10 µm? 100 µm? 1
mm? 1 cm? 10 cm?

Problem 18 In three dimensions the root-mean-square
diffusion distance is σ =

√
6Dt, where t is the diffusion

time. Consider the diffusion of oxygen from air to the
blood in the lungs. The terminal air sacs in the lungs,
the alveoli, have a radius of about 100 µm. The radius
of a capillary is about 4 µm. Estimate the time for an
oxygen molecule to diffuse from the center to the edge of
an alveolus, and the time to diffuse from the edge to the
center of a capillary. Which is greater? From the data in
Table 1.4 estimate how long blood remains in a capillary.
Is it long enough for diffusion of oxygen to occur? Assume
the diffusion constant of oxygen in air is 2×10−5 m2 s−1

and in water is 2 × 10−9 m2 s−1.

Problem 19 Why breathe? Estimate the time required
for oxygen to diffuse from our nose to our lungs. Assume
the diffusion constant of oxygen in air is 2×10−5 m2 s−1.

Problem 20 At a nerve-muscle junction, the signal
from the nerve is transmitted to the muscle by a chemical
junction or synapse. In order to activate a muscle, mole-
cules of acetylcholine (ACh) must diffuse from the end
of the nerve cell across an extracellular gap about 20 nm
wide to the muscle cell. Assuming one-dimensional diffu-
sion, estimate the signal delay caused by the time needed
for ACh to diffuse. The delay of the signal at the nerve-
muscle junction is about 0.5 ms. How does this compare to
the diffusion time? Use a diffusion constant of 5× 10−10

m2 s−1.

Problem 21 A substance has diffusion constant D, and
its concentration is distributed in space according to
C(x, t) = A(t) sin(2πx/L), where L is the wavelength
and A(t) is the amplitude of the distribution. Use the
one-dimensional diffusion equation, Eq. 4.26, to show
that the concentration decays exponentially with time,
A(t) ∝ e−t/τ . Determine an expression for the time con-
stant τ in terms of L and D. Which decays faster: a long-
wavelength (diffuse) distribution, or a short-wavelength
(localized) distribution? This result can be used with the
Fourier methods developed in Chapter 11 to derive very
general solutions to the diffusion equation.

Problem 22 Some tissues, such as skeletal muscle, are
anisotropic: the rate of diffusion depends on direction. In
these tissues, Fick’s first law in two dimensions has the
form (

jx

jy

)
= −

(
Dxx Dxy

Dyx Dyy

)(
∂C/∂x
∂C/∂y

)
.

The 2 × 2 matrix is called the “diffusion tensor.” It is
always symmetric, so Dxy = Dyx.

(a) Derive the two-dimensional diffusion equation for
anisotropic tissue. Assume the diffusion tensor depends
on direction but not on position.

(b) If the coordinate system is rotated from (x, y) to
(x′, y′) by

(
x′

y′

)
=
(

cos θ sin θ
− sin θ cos θ

)(
x
y

)
,

the diffusion tensor changes by
(

Dx′x′ Dx′y′

Dx′y′ Dy′y′

)

=
(

cos θ sin θ
− sin θ cos θ

)(
Dxx Dxy

Dxy Dyy

)(
cos θ − sin θ
sin θ cos θ

)
.

Find the angle θ such that the tensor is diagonal (Dx′y′ =
0). Typically, this direction is parallel to a special direc-
tion in the tissue, such as the direction of fibers in a mus-
cle.

(c) Show that the trace of the diffusion tensor (the sum
of the diagonal terms) is the same in any coordinate sys-
tem (Dxx +Dyy = Dx′x′ +Dy′y′ for any θ). Basser et al.
(1994) invented a way to measure the diffusion tensor us-
ing magnetic resonance imaging (Chapter 18). From the
diffusion tensor they can image the direction of the fiber
tracts. When they want images that are independent of
the fiber direction, they use the trace.

Problem 23 Calcium ions diffuse inside cells. Their
concentration is also controlled by a buffer:

Ca + B ⇐⇒ CaB.

The concentrations of free calcium, unbound buffer, and
bound buffer ([Ca], [B], and [CaB]) are governed, assum-
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ing the buffer is immobile, by the differential equations

∂[Ca]
∂t

= D∇2[Ca] − k+[Ca][B] + k−[CaB],

∂[B]
∂t

= −k+[Ca][B] + k−[CaB],

∂[CaB]
∂t

= k+[Ca][B] − k−[CaB].

(a) What are the dimensions (units) of k+ and k− if
the concentrations are measured in mole l−1 and time in
s?

(b) Derive differential equations governing the total cal-
cium and buffer concentrations, [Ca]T = [Ca]+[CaB] and
[B]T = [B] + [CaB] . Show that [B]T is independent of
time.

(c) Assume the calcium and buffer interact so rapidly
that they are always in equilibrium:

[Ca][B]
[CaB]

= K,

where K = k−/k+.Write [Ca]T in terms of [Ca] , [B]T ,
and K (eliminate [B] and [CaB]).

(d) Differentiate your expression in (c) with respect to
time and use it in the differential equation for [Ca]T found
in (b). Show that [Ca] obeys a diffusion equation with an
“effective” diffusion constant that depends on [Ca]:

Deff =
D

1 + K[B]T
(K+[Ca])2

.

(e) If [Ca] � K and [B]T = 100K (typical for the
endoplasmic reticulum), determine Deff/D.

For more about diffusion with buffers, see Wagner and
Keizer (1994).

Problem 24 Inside cells, calcium is stored in compart-
ments, such as the sarcoplasmic reticulum. In some cells,
a rise in calcium concentration, C, triggers the release
of this stored calcium. A model of such “calcium-induced
calcium release” is

dC

dt
= − k

C2
0

C (4C − C0) (C − C0) (1)

(a) Plot the rate of calcium release (the right-hand side
of Eq. 1) vs. C. Identify points for which the calcium re-
lease is zero (steady-state solutions to Eq. 1). By qualita-
tive reasoning, determine which of these points are stable
and which are unstable. (Will a small change in C from
the steady-state value cause C to return to the steady-
state value or move farther away from it?)

(b) If C � C0/4, what does Eq. 1 become, and what is
its solution?

(c) Eq. 1 is difficult to solve analytically. To find a
numerical solution, approximate it as

C(t + ∆t) − C(t)
∆t

= − k

C2
0

C(t) [4C(t) − C0] [C(t) − C0] .

(2)

Write a computer program to determine C(t) at times
t = n∆t, n = 1, 2, 3, . . . , 100, using ∆t = 0.1 s, k = 1 s−1,
C0 = 1 µM, and C(t = 0) = C ′. Find the threshold value
of C ′, below which C(t) goes to zero, and above which
C(t) goes to C0.

(d) If we include diffusion of calcium in one dimension,
Eq. 1 becomes

dC

dt
= D

∂2C

∂x2
− k

C2
0

C (4C − C0) (C − C0) . (3)

This is a type of “reaction-diffusion” equation. To solve
Eq. 3 numerically, divide the distance along the cell into
discrete points, x = m∆x, m = 0, 1, 2, . . . ,M. Approxi-
mate Eq. 3 as

C(x, t + ∆t) − C(x, t)
∆t

(4)

= D
C(x + ∆x, t) − 2C(x, t) + C(x − ∆x, t)

(∆x)2

− k

C2
0

C(x, t) (4C(x, t) − C0) (C(x, t) − C0)

Assume the ends of the cell are sealed, so C(0, t) =
C(∆x, t) at one end and C(M∆x, t) = C((M − 1)∆x, t)
at the other. Start with the cell at C(x, 0) = 0 for all
points except at one end, where C(0, 0) = C0. Calculate
C(x, t) using ∆x = 5µm, ∆t = 0.1 s, D = 200µm2 s−1,
and C0 = 1 µM. You should get a wave of calcium prop-
agating down the cell. What is its speed?

Calcium waves play an important role in many cells.
This simple model does not include a mechanism to return
the calcium concentration to its originally low value after
the wave has passed (a process called recovery). For a
more realistic model, see Tang and Othmer (1994). For
more information about numerical methods, see Press et
al. (1992).

Section 4.9

Problem 25 Consider steady-state diffusion through
two plane substances as shown in the figure. Show that
the diffusion is the same as through a single membrane
of thickness ∆x1 + ∆x2, with diffusion constant

D =
D1D2

∆x1

∆x1 + ∆x2
D2 +

∆x2

∆x1 + ∆x2
D1

.
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Problem 26 A fluid on the right of a membrane has
different properties than the fluid on the left. Let the dif-
fusion constants on left and right be D1 and D2, respec-
tively, and let the pores in the membrane be filled by the
fluid on the right a distance xL, where L is the thickness
of the membrane.

L

xL

D1
D2

(a) Use the results of Problem 25 to determine the ef-
fective diffusion constant D for a membrane of thickness
L when D2 = yD1, ∆x1 = (1 − x)L, and ∆x2 = xL.
Neglect end effects.

(b) In the case that oxygen is diffusing in air and water
at 310 K, the diffusion constants are D1 = 2.2×10−5 m2

s−1, D2 = 1.6 × 10−9 m2 s−1. Plot D/D1 vs x.

Section 4.10

Problem 27 (a) Derive Eq. 4.45.
(b) Derive Eqs. 4.51 and 4.52 from Eqs. 4.48 and 4.49.

Problem 28 We can estimate B/B′ of Eqs. 4.49–4.55
by noting that B′ must be larger than B because of two
effects. First, it is larger by πRp/4 because of end ef-
fects. Second, the concentration varies near the pores and
smooths out further away, so B′ must also be larger by an
amount roughly equal to l, the spacing of the pores. There
are N/4πB2 pores per m2, so l ≈ Rp(π/f)1/2. Use the ex-
ample in the text: B = 5 µm, ∆Z = 5 nm, f = 0.001,
to estimate these two corrections. Assume that the pore
radius, Rp, is smaller than ∆Z. Are these corrections im-
portant?

Problem 29 Consider an impervious plane at z = 0
containing a circular disk of radius a having a concen-
tration C0. The concentration at large z goes to zero.
Carslaw and Jaeger (1959) show that the steady-state so-
lution to the diffusion equation is

C(r, z) =
2C0

π
sin−1

[
2a

√
(r − a)2 + z2 +

√
(r + a)2 + z2

]

.

(a) (optional) Verify that C(r, z) satisfies ∇2C = 0.
The calculation is quite involved, and you may wish to
use a computer algebra program such as Mathematica or
Maple.

(b) Show that for z = 0, C = C0 if r < a.
(c) Show that for z = 0, dC/dz = 0 if r > a.
(d) Integrate jz over the disk (z = 0, 0 < r < a) and

show that i = 4DaC0.

Section 4.11

Problem 30 The processes of heat conduction and diffu-
sion are similar: the concentration C and temperature T
both obey the diffusion equation (Problem 15). Consider a
spherical cow of radius R having a specific metabolic rate
Q W kg−1. Assume the temperature of the outer surface
of the cow is the same as the surroundings, Tsur. Assume
that heat transfer within the cow is by heat conduction.

(a) Calculate the steady-state temperature distribution
inside the animal and find the core temperature at the
center of the sphere.

(b) Consider a smaller (but still spherical) animal such
as a rabbit. What is its core temperature?

(c) Calculate the temperature distribution and core
temperature in a rabbit covered with fur of thickness d.

Assume the bodies of the cow and rabbit have the ther-
mal properties of water and that the fur has the thermal
properties of air. Let d = 0.03 m and Tsur = 20 ◦C .

Water Air
κ (W m−1 K−1) 0.6 0.03
C (J kg−1 K−1) 4000 1000
ρ (kg m−3) 1000 1.2

Cow Rabbit
R (m) 0.3 0.05
Q (W kg−1) 0.6 1.6

Problem 31 The goal of this problem is to estimate how
large a cell living in an oxygenated medium can be before
it is limited by oxygen transport. Assume the extracellular
space is well-stirred with uniform oxygen concentration
C0. The cell is a sphere of radius R. Inside the cell oxygen
is consumed at a rate Q molecule m−3 s−1.The diffusion
constant for oxygen in the cell is D.

(a) Calculate the concentration of oxygen in the cell in
the steady state.

(b) Assume that if the cell is to survive the oxygen con-
centration at the center of the cell cannot become nega-
tive. Use this constraint to estimate the maximum size of
the cell.

(c) Calculate the maximum size of a cell for C0 = 8 mol
m−3, D = 2×10−9 m2 s−1, Q = 0.1 mol m−3 s−1. (This
value of Q is typical of protozoa; the value of C0 is for
air and is roughly the same as the oxygen concentration
in blood.)

Problem 32 A diffusing substance is being consumed by
a chemical reaction at a rate Q per unit volume per sec-
ond. The reaction rate is limited by the concentration of
some enzyme, so Q is independent of the concentration of
the diffusing substance. For a slab of tissue of thickness b
with concentration C0 at both x = 0 and x = b, solve the
equation to find C(x) in the steady state. This is known as
the Warburg equation [Biochem Z. 142: 317–350 (1923)].
It is a one-dimensional model for the consumption of oxy-
gen in tissue: points x = 0 and x = b correspond to the
walls of two capillaries side by side.
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Problem 33 Suppose that a diffusing substance disap-
pears in a chemical reaction and that the rate at which
it disappears is proportional to the concentration −kC.
Write down the Fick’s second law in this case. Show
what the equation becomes if one makes the substitution
C(x, y, z, t) = C ′(x, y, z, t)e−kt.

Problem 34 A spherical cell has radius R. The flux den-
sity through the surface is given by js = −D gradC. Sup-
pose that the substance in question has concentration C(t)
inside the cell and zero outside. The material outside is
removed fast enough so that the concentration remains
zero. Using spherical coordinates, find a differential equa-
tion for C(t) inside the cell. The thickness of the cell wall
is ∆r � R.

Problem 35 The cornea of the eye must be transparent,
so it can contain no blood vessels. (Blood absorbs light.)
Oxygen needed by the cornea must diffuse from the surface
into the corneal tissue. Model the cornea as a plane sheet
of thickness L = 500µm . The oxygen concentration, C,
is governed by a one-dimensional steady-state diffusion
equation

D
d2C

dx2
= Q.

Assume the cornea is consuming oxygen at a rate Q =
4 × 1022 molecule m−3 s−1 and has a diffusion constant
D = 3×10−9 m2 s−1 . The rear surface of the cornea is in
contact with the aqueous humor, which has a uniform oxy-
gen concentration C2 = 1.8×1024 molecule m−3.Consider
three cases for the front surface:

(a) Solve the diffusion equation for C(x) when the front
surface is in contact with air, which has an oxygen con-
centration C1 = 5 × 1024 m−3.

(b) The eye is closed, but a layer of tears maintains the
concentration at the front surface that is the same as the
aqueous humor: C1 = 1.8 × 1024 m−3. Plot C(x).

(c) The eye is covered by an oxygen-impermeable con-
tact lens, so that at the front surface dC/dx = 0. Solve
the diffusion equation and plot C(x).

Supplying oxygen to the cornea is a major concern for
people who wear contact lenses. Often a tear layer between
the contact and cornea, replenished by blinking, is suffi-
cient to keep the cornea oxygenated. If you sleep wearing
a contact, this tear layer may not be replenished, and the
cornea will be deprived of oxygen. For a similar but some-
what more realistic model, see Fatt and Bieber (1968).

Problem 36 The distance L that oxygen can diffuse in
the steady state is approximately L =

√
CD/Q,where C

is the oxygen concentration, D is the diffusion constant,
and Q is the rate per unit volume that oxygen is used for
metabolism.

(a) Show that L has dimensions of length.
(b) The diffusion of oxygen in air is about 10,000

times larger than the diffusion of oxygen in water [Denny
(1993)]. By how much will the diffusion distance L

change if oxygen diffuses through air instead of water,
all other things being equal?

Insects deliver oxygen to their flight muscles by dif-
fusion down air-filled tubes instead of by blood vessels,
thereby taking advantage of the large diffusion constant
of oxygen in air [Weiss-Fogh (1964)].

Section 4.12

Problem 37 Dimensionless numbers, like the Reynolds
number of Chapter 1, are often useful for understanding
physical phenomena. The “Sherwood number” is the ra-
tio of transport by drift to transport by diffusion. When
the Sherwood number is large, drift dominates. The solute
fluence rate from drift is Cv, where C is the concentra-
tion and v the solvent speed. The solute fluence rate from
diffusion is D times the concentration gradient (roughly
C/L, where L is some characteristic distance over which
the concentration varies).

(a) Determine an expression for the Sherwood number
in terms of C, L, v, and D.

(b) Verify that the Sherwood number is dimensionless.
(c) Which parameter in Section 4.12 is equivalent to

the Sherwood number?
(d) Estimate the Sherwood number for oxygen for a

person walking.
(e) Estimate the Sherwood number for a swimming bac-

terium. [For more about the Sherwood number, see Denny
(1993) and Purcell (1977).]

Problem 38 Extend Fick’s second law in one dimension
∂C/∂t = D (∂2C/∂x2) to include solvent drag.

Problem 39 Use Eqs. 4.63 and 4.64 to derive Eq. 4.66.

Problem 40 Expand ex = 1+x+x2/2!+x3/3! to derive
Eq. 4.67 from Eq. 4.66.

Problem 41 Use a Taylor’s series expansion to show
that G(ξ)in Eq. 4.69 is equal to ξ/12 for small ξ.

Problem 42 Consider Eq. 4.63 with C0 = 0 and
C ′

0 = 1.
(a) If v > 0, write an equation for C(x). Plot C(x)

for 0 < x/x1 < 1 for two cases: x1 � λ and x1 � λ.
Interpret these results physically.

(b) Repeat the analysis for v < 0.

Section 4.14

Problem 43 We can use the microscopic model of a
random walk to derive important information about dif-
fusion without ever using the binomial probability distri-
bution. Let xi(n) be the position of the ith particle after
n steps of a random walk. Then

xi(n) = xi(n) ± λ,
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where half the time you take the + sign and half the time
the − sign. Then x(n), the value of x averaged over N
particles, is

x(n) =
1
N

N∑

i=1

xi(n).

(a) Show that x(n) = x(n − 1) so that on average the
particles go nowhere.

(b) Show that x2(n) = x2(n − 1) + λ2. Use this result
to show that x2(n) = nλ2.

For a detailed discussion of this approach, see Denny
(1993).

Problem 44 We can write the diffusion constant, D,
and the thermal speed vrms in terms of the step size, λ,
and the collision time, tc as

D =
λ2

2tc
,

vrms =
λ

tc
.

Solve for λ and tc in terms of D and vrms.

Problem 45 Using the definitions in Problem 44, write
the diffusion constant in terms of λ and vrms. By how
much do you expect the diffusion constant for “heavy wa-
ter” (water in which the two hydrogen atoms are deu-
terium, 2H) to differ from the diffusion constant for wa-
ter? Assume the mean free path is independent of mass.

Problem 46 Write a computer program to model a two-
dimensional random walk. Make several repetitions of a
random walk of 3600 steps and plot histograms of the dis-
placements in the x and y directions and mean square
displacement.

Problem 47 Write a program to display the motion of
100 particles in two dimensions.

Problem 48 Particles are released from a point between
two perfectly absorbing plates located at x = 0 and x = 1.
The particles random walk in one dimension until they
strike a plate. Find the probability of being captured by the
right-hand plate as a function of the position of release,
x. (Hint: The probability is related to the diffusive fluence
rate to the right-hand plate if the concentration is C0 at
x and is 0 at x = 0 and x = 1.)

Problem 49 The text considered a one-dimensional
random-walk problem. Suppose that in two dimensions the
walk can occur with equal probability along +x, +y, −x,
or −y. The total number of steps is N = Nx +Ny, where
the number of steps along each axis is not always equal
to N/2.

(a) What is the probability that Nx of the N steps are
parallel to the x axis?

(b) What is the probability that the net displacement
along the x axis is mxλ?

(c) Show that the probability of a particle being at
(mxλ,myλ) after N steps is

P ′(mx,my) =
∑

Nx

(
N !

Nx! (N − Nx)!

)(
1
2

)N

P (mx, Nx)P (my, N−Nx),

where P (m,N) on the right-hand side of this equation is
given by Eq. 4.76.

(d) The factor N !/Nx!(N − Nx)! is proportional to a
binomial probability. What probability? Where does this
factor peak when N is large?

(e) Using the above result, show that P ′(mx,my) =
P (mx, N/2)P (my, N/2).

(f) Write a Gaussian approximation for two-
dimensional diffusion.
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5
Transport Through Neutral Membranes

The last chapter discussed some of the general features
of solute movement in an infinite medium. Solute par-
ticles can be carried along with the flowing solution or
they can diffuse. This chapter considers the movement
of solute and solvent through membranes, ignoring any
electrical forces on the particles.

The movement of electrically neutral particles through
aqueous pores in membranes has many applications in
physiology. They range from flow of nutrients through
capillary walls, to regulation of the amount of fluid in
the interstitial space between cells, to the initial stages of
the operation of the kidney.

Sections 5.1 through 5.4 are a qualitative introduction
to the flow of water through membranes as a result of
hydrostatic pressure differences or osmotic pressure dif-
ferences. The reader who is not interested in the more
advanced material can read just this part of the chapter,
culminating in the clinical examples of Sec. 5.4.

Sections 5.5 and 5.6 present phenomenological trans-
port equations that are simple linear relationships be-
tween the flow of water and solute particles and the pres-
sure and concentration differences that cause the flows.
These relationships are valid for any type of membrane
as long as a linear relationship adequately describes the
flow and the proportionality constants are regarded as ex-
perimentally determined quantities. These equations are
applied to the artificial kidney in Sec. 5.7.

Section 5.8 presents a simple model for countercurrent
transport, which is important in artificial organs, the kid-
ney, and in conserving heat loss from the extremities.

The last section, Sec. 5.9, provides a more advanced
treatment of one particular membrane model: a mem-
brane pierced by pores in which electrical forces can be
neglected and in which Poiseuille flow takes place. The
model leads to expressions for the phenomenological co-
efficients that can be compared to experimental data,
though that is not done here. The last part of the section

uses this model to calculate the forces on a membrane
when there are osmotic effects.

5.1 Membranes

All cells are surrounded by a membrane 7–10 nm thick.
Furthermore, virtually all the physical substructures
within the cell are also bounded by membranes. Mem-
branes separate two regions of space; they allow some
substances to pass through but not others. The mem-
brane is said to be permeable to a substance that can
pass through it; it is semipermeable when only certain
substances can get through. A substance that can pass
through is said to be permeant.

The simplest model that one can conceive for a semi-
permeable membrane is shown in Fig. 5.1(a). A number
of pores pierce the membrane. The pores could follow
a longer path, as in Fig. 5.1(b). Another simple model
is shown in 5.1(c): there are no pores, but small mole-
cules actually “dissolve” in the membrane and diffuse
through. Each example in Fig. 5.1 shows water molecules
(open circles), solute molecules (small solid circles), and
a large protein molecule that cannot pass through the
membrane.

In Figs. 5.1(a) and 5.1(b) the motion of the water mole-
cules is quite different from that of the small solute mole-
cules. Each water molecule is in contact with neighboring
water molecules so that when the water molecules move,
they flow together. The result is the familiar bulk flow
that occurs in a pipe. The solute molecules, on the other
hand, are so dilute that they seldom collide with one an-
other. Each one undergoes a random walk independent of
other solute molecules due to collisions with water mole-
cules.

The motion of each solute molecule is not independent
of the motion of the surrounding water molecules. If the
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FIGURE 5.1. Simple models for a semipermeable membrane.
(a) A straight pore. (b) A pore following a tortuous path. (c)
Small molecules dissolve in the membrane and diffuse through.

water is at rest, the movement of the solute molecules is
diffusion; if the water is moving, this diffusion is superim-
posed on a flow of the solute molecules with the moving
fluid.

In Fig. 5.1(c), the water and solute molecules are very
dilute within the membrane, so that both kinds of mole-
cules diffuse. The water molecules are not in contact with
each other, but are in some sort of interstices within the
membrane structure, walking randomly in response to
thermal agitation of the membrane.

5.2 Osmotic Pressure in an Ideal Gas

The selective permeability of a membrane gives rise to
some striking effects. The flow of water that occurs be-
cause solutes are present that cannot get through the
membrane is called osmosis. Although the phenomena
seem strange when they are first encountered, they can
be explained quite simply. They are important in a va-
riety of clinical problems that are described in Sec. 5.4.
We begin by finding the conditions under which no flow
takes place and the direction of flow when it does occur.

FIGURE 5.2. An ideal gas fills a box of volume V ∗.

Later, in Sec. 5.5, we consider the rate of flow in response
to a given pressure difference.

It is easiest to understand osmotic pressure by consid-
ering the special case of two ideal gases and a membrane
that is permeable to one but not the other. This case is
simple because the gas molecules do not interact with one
another. Then, in Sec. 5.3, we will examine the phenom-
enon when the substances are liquids.

Suppose a box with total volume V ∗ contains N∗
1 mole-

cules of gas species 1. If the box is at temperature T , the
ideal-gas law relates the pressure, temperature, and the
number of molecules:

p1V
∗ = N∗

1 kBT. (5.1)

This has been written the way physicists like to write it,
in terms of the number of molecules N∗

1 . Chemists write
it in terms of the number of moles n∗

1:

p1V
∗ = n∗

1RT.

The only difference is that R is per mole instead of per
molecule. Since 1 mole contains NA molecules, where NA

is Avogadro’s number, N∗
1 = NAn∗

1 and R = NAkB . Nu-
merical values are

NA = 6.022 × 1023 mol−1,

kB = 1.3807 × 10−23 J K−1,

R = 8.3145 J mol−1 K−1,

R = 0.08206 l atm mol−1 K−1.

The concentration is the number of molecules or moles
per unit volume. We denote molecular concentration by
capital letter C and molar concentration by lowercase c:

C1 =
N∗

1

V ∗ m−3 or molecules m−3,

c1 =
n∗

1

V ∗ m−3 or mol m−3.

If we were to imagine volume V ∗ divided into two sub-
volumes of volume V and V ′, the average number of mole-
cules in each subvolume would remain unchanged. The
pressure in each subvolume would still be p1, and the
temperature would be T. We can write

p1V = N1kBT, p1V
′ = N ′

1kBT.
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FIGURE 5.3. The introduction of a semipermeable membrane
does not change the pressure or concentration of the gas.

Dividing both sides of each equation by the appropriate
volume gives

p1 = C1kBT, p1 = p′1 = C ′
1kBT. (5.2)

Now place a membrane along the surface separating the
subvolumes, which has small holes so that the molecules
can pass through, as shown in Fig. 5.3. This does noth-
ing to change the fact that at equilibrium p1 = p′1. When
the pressure is the same on both sides of the membrane,
no molecules pass through on average. If the pressure
is greater on one side than the other, molecules pass
through to bring the pressures into equilibrium, as we
saw in Chap. 3. Equations 5.2 say nothing about how
frequently a molecule that strikes the membrane passes
through. It could take hours or days for equilibrium to
be attained if we started away from equilibrium and the
molecules do not pass through very often.

FIGURE 5.4. Species 2, which cannot pass through the mem-
brane, has been introduced in V . The pressure in V is higher
than in V ′ by the partial pressure p2.

Now, keeping V fixed, introduce species 2 on the left as
in Fig. 5.4. Suppose that species 2 cannot pass through
the membrane. Bombardment of the membrane by the
new molecules causes an additional force on the left side
of the membrane. The total pressure in volume V is now
the sum of the partial pressures p1 due to species 1 and
p2 due to the second species:

p = p1 + p2,

p1V = N1kBT, (5.3)
p2V = N2kBT.

The ideal-gas law is still obeyed in terms of the total
number of molecules in V , N = N1 + N2: pV = p1V +
p2V = N1kBT + N2kBT = (N1 + N2)kBT = NkBT .

In an ideal gas the presence of the second species does
not change the partial pressure p1. The total pressure on
the walls and the membrane is increased by p2 so the
membrane is bowed towards the right, but the total pres-
sure is simply the sum of the two partial pressures. The
ratio p1/p is the fraction of the pressure due to collisions
of molecules of the first kind with the wall.

Suppose now that the pressure in V ′ is raised, either
by compressing the gas or by introducing more molecules
of type 1, so that instead of p′1 = p1, we have p′1 = p. The
partial pressure of species 1 is higher in V ′ than in V .
Since these molecules can pass through the membrane,
they will flow from V ′ to V . An identical flow could have
been caused without having species 2, simply by raising
the pressure in V ′. Not every molecule striking the mem-
brane will pass through, but some fraction of all collisions
with the wall will result in a molecule passing through.
The fraction will depend on the details of the membrane
structure. The number going through will be proportional
to the number of collisions on one side minus the number
of collisions on the other and hence to the difference of
partial pressures. If p1 > p′1, species 1 will flow from V
to V ′. If p1 < p′1, the flow will be in the other direction.
The details of the membrane will determine how rapid
this flow is. The flow of any species of gas molecule that
can pass through the membrane will be from the region of
higher partial pressure to lower partial pressure.

Suppose we start out with only species 1 on each side
of the membrane and equal pressure on both sides so
that p = p1 = p′ = p′1. There are three ways to make
p1 less than p′1, thereby causing flow from right to left.
One is simply to let the gas on the left expand into a
larger volume, which lowers p = p1. (Or we could have
compressed the gas on the right, raising p′ = p′1.) The
other two ways involve introducing on the left a species 2
that cannot pass through the membrane. The second way
would be to keep the total pressure and volume on the
left the same, but remove one molecule of species 1 for
every molecule of species 2 that is introduced. The third
way would be to increase the volume on the left as each
molecule of species 2 is introduced, so that p = p1 + p2

remains the same.
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The total partial pressure of all species that cannot
pass through the membrane is called the osmotic pressure
in region V and is usually denoted by π. If the subscript
2 denotes all impermeant species,

π2 = C2kBT. (5.4)

The flow through the membrane because of an increase in
the osmotic pressure or a decrease in the total pressure
is identical. In each case the flow is determined by the
difference across the membrane of p1, the total partial
pressure of all the species that can pass through.

The description in the previous paragraphs of partial
pressure is easy to visualize, and for the case given it is
correct. It is more general, however, to express the con-
dition for equilibrium in terms of the chemical potential.
Recall that in Chapter 3 we derived the pressure in terms
of volume changes of a system and the chemical potential
in terms of the number of particles in the system.

Suppose that the membrane separating the two sides
is actually a semipermeable piston that is free to move.
Equality of the total pressure on both sides of the piston
means that the piston will not move and the two systems
will not exchange volume. Equality of the chemical po-
tential of a species that can get through the membrane
means that the two systems will not exchange particles.
It is better, therefore, to say the flow of any species that
can pass through the membrane will be from the region of
higher chemical potential to the region of lower chemical
potential for that species. If the chemical potentials are
the same, there will be no flow.

The mixture of two ideal gases is a special case of the
ideal solution that was described in Sec. 3.18. The chemi-
cal potential of species 1 that can pass through the mem-
brane is given by Eq. 3.78:

∆µ1 = V 1(∆p − kBT∆C2),

µ1 − µ′
1 = V 1 [p − p′ − kBT (C2 − 0)] ,

µ1 − µ′
1 = V 1(p1 + p2 − p′1 − kBTC2).

Since p2 = kBTC2, the chemical potential is the same on
both sides of the membrane when p1 = p′1.

5.3 Osmotic Pressure in a Liquid

Imagine now that the two volumes are filled with a sol-
vent, which we will call water. If the pressure of the wa-
ter is the same in both regions there is no flow of water
through the membrane, nor is there exchange of volume
if the membrane piston is free to move. Increasing the
pressure on one side of the fixed membrane causes water
to flow through the membrane from the side with higher
pressure to the side with lower pressure. The chemical
potential contains a term proportional to the pressure. It

was shown in Sec. 3.18 that for an ideal solution1

∆µw =
∆p − kBT∆Cs

Cw
.

If there is a solute in the water that can pass freely
through the membrane along with the water, the situa-
tion is unchanged.

Now let us add some solute on the left that cannot
pass through the membrane. We will keep the volume on
the left fixed. To add the solute in such a way that the
pressure does not change, we must remove some water
molecules as we add it.

We saw in Chapter 3 that replacing some water mole-
cules with solute increases the entropy of the solution.2

This means that the Gibbs free energy and the chemical
potential are decreased. Water flows from the region on
the right, where the chemical potential is higher, to the
region on the left, where it is lower. The chemical poten-
tial of the water on the left can be increased by increasing
the total pressure on the left. The osmotic pressure is the
excess pressure that we must apply on the left to prevent
the flow of water through the membrane. There is no flow
of water when p = p′ + π. It is more convenient to write
all the unprimed quantities on the left: p − π = p′. The
quantity p−π will occur so often in what follows that it is
worth a special name. We will define the driving pressure

pd ≡ p − π. (5.5)

As far as we know, it has not been used by other authors.
It is a monotonic function of the chemical potential. In
an ideal solution it is Cwµw. Except in an ideal gas, it
is not the same as the partial pressure (a concept that
is not normally used in a liquid). On the right there is
no solute and p′d = p′. There is no flow when the driving
pressure is the same on both sides,

pd = p′d, (5.6a)

or the chemical potential of the water is the same on both
sides,

µw = µ′
w. (5.6b)

The water passes through the membrane in the direction
from higher pd to lower pd (or from higher chemical po-
tential to lower chemical potential). Either the total pres-
sure or the osmotic pressure can be manipulated to change

1An ideal solution can be defined in several equivalent ways.
One is that it is a solution that obeys Eq. 3.78. Another is that
when the separated components are mixed, there is no change of
total volume and no heat is evolved or absorbed. See Hildebrand
and Scott (1964), Chapter 2.

2This, recall, is because the water molecules are indistinguish-
able. A simple model shows why this happens. Suppose that four
water molecules occupy four identical energy levels, and that these
are the only four levels available. Because the molecules are indis-
tinguishable, there is only one microstate and the entropy is zero. If
one molecule is removed, there are then four separate microstates,
corresponding to the empty level being any one of the four. The
entropy is kB ln(4).
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pd (and µw). An increase of total pressure has the same
effect as a decrease of osmotic pressure.

Increasing the concentration of the solute increases the
osmotic pressure. The fact that pd = p−π = Cwµw means
that for ideal solutions obeying Eq. 3.78,

π = CkBT = cRT. (5.7)

In many cases this is confirmed by experiment, particu-
larly in dilute solutions. This is known as the van’t Hoff
law for osmotic pressure.

An osmole is the equivalent of a mole of solute par-
ticles. The term osmolality is used to refer to the num-
ber of osmoles per kilogram of solvent, while osmolarity
refers to the number of osmoles per liter of solution. The
reason for introducing the osmole is that not all imper-
meant solutes are ideal; their osmotic effects are slightly
less than CkBT . The osmole takes this correction into
account.

5.4 Some Clinical Examples

As blood flows through capillaries, oxygen and nutrients
leave the blood and get to the cells. Waste products leave
the cells and enter the blood. Diffusion is the main process
that accomplishes this transfer. The capillaries are about
the diameter of a red cell; the red cells therefore squeeze
through the capillary in single file. They move in plasma,
which consists of water, electrolytes, small molecules such
as glucose and dissolved oxygen or carbon dioxide, and
large protein molecules. All but the large protein mole-
cules can pass through the capillary wall.

Outside the capillaries is the interstitial fluid, which
bathes the cells. The concentration of protein molecules
in the interstitial fluid is much less than it is in the cap-
illaries. Osmosis is an important factor determining the
pressure in the interstitial fluid and therefore its volume.
The following values (in units3 of torr) are typical for the
osmotic pressure inside and outside the capillary:4

Inside capillary πi = 28 torr
Outside capillary, interstitial fluid πo = 5 torr

Measurements of the total pressure in the interstitial fluid
are difficult, but the value seems to be about −6 torr. It is
maintained below atmospheric pressure (taken here to be
0 torr) by the rigidity of the tissues. The driving pressure
of water and small molecules outside is therefore

pwo = po − πo = −6 − 5 = −11 torr.

The total pressure within the capillary drops from the ar-
terial end to the venous end, causing blood to flow along

31 torr = 1 mm Hg = 133.3 Pa = 0.019 34 lb in.−2.
4A short account of the pressures used here is found in Guyton

(1991, Chapter 16). A more detailed discussion is in Guyton et al.
(1975).
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FIGURE 5.5. Pressures inside and outside the capillary. (a)
Inside. (b) Outside. (c) Comparison of the water driving pres-
sure inside and outside.

the capillary. A typical value at the arterial end is 25
torr; at the venous end, it is 10 torr. If the drop is linear
along the capillary, the total pressures versus position
is as plotted in Fig. 5.5(a).5 Subtracting from this the
osmotic pressure of the large molecules gives the curve
for the driving pressure inside, pdi, which is also plotted
in Fig. 5.5(a). Figure 5.5(b) shows the total and driving
pressures in the interstitial fluid. Figure 5.5(c) compares
the driving pressure inside and outside. The driving pres-
sure is larger inside in the first half of the capillary and
larger outside in the second half of the capillary. The re-
sult is an outward flow of plasma through the capillary

5This simple discussion uses pressures that compensate for the
fact that the surface area of the capillary is larger at the venous
end than at the arterial end.
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wall in the first half and an inward flow in the second
half. There is a very slight excess of outward flow. This
fluid returns to the circulation via the lymphatic system.

There are three ways that the balance of Fig. 5.5 can
be disturbed, each of which can give rise to edema, a
collection of fluid in the tissue. The first is a higher av-
erage pressure along the capillary. The second is a re-
duction in osmotic pressure because of a lower protein
concentration in the blood (hypoproteinemia). The third
is an increased permeability of the capillary wall to large
molecules, which effectively reduces the osmotic pressure.
Each is discussed below.

5.4.1 Edema Due to Heart Failure

A patient in right heart failure exhibits an abnormal col-
lection of interstitial fluid in the lower part of the body
(the legs for a walking patient; the back and buttocks for
a patient in bed). This can be understood in terms of
the mechanism discussed above. The right heart pumps
blood from the veins through the lungs. If it can no longer
handle this load, the venous blood is not removed rapidly
enough, and the pressure in the veins and the venous end
of the capillaries rises. There is a corresponding rise in pd

along the capillary. More fluid flows from the capillary to
the interstitial space. The interstitial pressure rises until
the net flow is again zero. When the interstitial pressure
becomes positive, edema results.

The same process can occur in left heart failure in
which the pressure in the pulmonary veins builds up.
The patient then has pulmonary edema and may liter-
ally drown.

5.4.2 Nephrotic Syndrome, Liver Disease, and
Ascites

Patients can develop an abnormally low amount of pro-
tein in the blood serum, hypoproteinemia, which reduces
the osmotic pressure of the blood. This can happen, for
example, in nephrotic syndrome. The nephrons (the ba-
sic functioning units in the kidney) become permeable to
protein, which is then lost in the urine. The lowering of
the osmotic pressure in the blood means that the pd rises.
Therefore, there is a net movement of water into the in-
terstitial fluid. Edema can result from hypoproteinemia
from other causes, such as liver disease and malnutrition.

A patient with liver disease may suffer a collection of
fluid in the abdomen. The veins of the abdomen flow
through the liver before returning to the heart. This al-
lows nutrients absorbed from the gut to be processed im-
mediately and efficiently by the liver. Liver disease may
not only decrease the plasma protein concentration, but
the vessels going through the liver may become blocked,
thereby raising the capillary pressure throughout the ab-
domen and especially in the liver. A migration of fluid out
of the capillaries results. The surface of the liver “weeps”

fluid into the abdomen. The excess abdominal fluid is
called ascites.

5.4.3 Edema of Inflammatory Reaction

Whenever tissue is injured, whether it is a burn, an infec-
tion, an insect bite, or a laceration, a common sequence
of events initially occurs that cause edema. They include
the following.

1. Vasodilation. Capillaries and small blood vessels di-
late, and the rate of blood flow is increased. This is
responsible for the redness and warmth associated
with the inflammatory process.

2. Fluid exudation. Plasma, including plasma proteins,
leaks from the capillaries because of increased per-
meability of the capillary wall.

3. Cellular migration. The capillary walls become
porous enough so that white cells move out of the
capillaries at the site of injury.

5.4.4 Headaches in Renal Dialysis

Dialysis is used to remove urea from the plasma of pa-
tients whose kidneys do not function. Urea is in the inter-
stitial brain fluid and the cerebrospinal fluid in the same
concentration as in the plasma; however, the permeability
of the capillary–brain membrane is low, so equilibration
takes several hours.6 Water, oxygen, and nutrients cross
from the capillary to the brain at a much faster rate than
urea. As the plasma urea concentration drops, there is a
temporary osmotic pressure difference resulting from the
urea within the brain. The driving pressure of water is
higher in the plasma, and water flows to the brain in-
terstitial fluid. Cerebral edema results, which can cause
severe headaches.

The converse of this effect is to inject into the blood
urea or mannitol, another molecule that does not read-
ily cross the blood–brain barrier. This lowers the driving
pressure of water within the blood, and water flows from
the brain into the blood. Although the effects do not last
long, this technique is sometimes used as an emergency
treatment for cerebral edema.7

5.4.5 Osmotic Diuresis

The functional unit of the kidney is the nephron. Water
and many solutes pass into the nephron from the blood
at the glomerulus. As the urine flows through the rest of
the nephron, a series of complicated processes cause a net
reabsorption of most of the water and varying amounts
of the solutes. Some medium-weight molecules such as

6Patton et al. (1989), Chapter 64.
7Fishman (1975); White and Likavek (1992).
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FIGURE 5.6. Osmotic fragility of red cells. The different
curves are discussed in the text. From S. I. Rappoport (1971).
Introduction to Hematology. New York, Harper & Row, p. 99.
Reproduced by permission of Harper & Row.

mannitol are not reabsorbed at all. If they are present
in the nephron, for example, from intravenous adminis-
tration, the driving pressure of water is lowered and less
water is reabsorbed than would be normally. The result
is an increase in urine volume and a dehydration of the
patient called osmotic diuresis.8 Similar diuretic action
takes place in a diabetic patient who “spills” glucose into
the urine.

5.4.6 Osmotic Fragility of Red Cells

Red cells (erythrocytes) are normally disk-shaped, with
the center thinner than the rim. In the disease called
hereditary spherocytosis the red cells are more rounded. If
a red cell is placed in a solution that has a higher driving
pressure than that inside the cell, water moves in and
the cell swells until it bursts. Since cell membranes (as
distinct from the lining of capillaries) are nearly imper-
meable to sodium, sodium is osmotically active for this
purpose.

The osmotic fragility test consists of placing red cells
in solutions with different sodium concentrations and de-
termining what fraction of the cells burst. A typical plot
of fraction vs. sodium concentration is shown in Fig. 5.6.
Sodium concentration decreases and pd increases to the
right along the axis.

The patient with hereditary spherocytosis has cells
that will be destroyed at a lower external pd (higher
sodium concentration) than normal, because the mem-
brane is more permeable to the sodium.

If the red cells are incubated at body temperature in a
sodium solution with the osmolality of plasma for 24 h,
the fragility of hereditary spherocytosis cells is markedly
increased. During this incubation period the concentra-
tion of sodium within the cell increases; the sodium can-

8Gennari and Kassirer (1974); Guyton (1991).

not escape rapidly when the external concentration is re-
duced, the driving pressure within the cell is lower than
before incubation, and water flows into the cell even more
rapidly.

5.5 Volume Transport Through a
Membrane

In this section and the next we develop phenomenolog-
ical equations to describe the flow of fluid and the flow
of solute through a membrane. These are linear approxi-
mations to the dependence of the flows on pressure and
solute concentration differences. Three parameters are in-
troduced that are widely used in physiology: the filtration
coefficient (or hydraulic permeability), the solute perme-
ability, and the solute reflection coefficient.

The volume fluence rate or volume flow per unit area
per second through a membrane is Jv.

Jv =

(
total volume per second

through membrane area S

)

S
=

iv
S

m s−1.

(5.8)
Consider pure water. The fluence rate depends on the
pressure difference across the membrane. When the pres-
sure difference is zero, there is no flow. The direction of
flow, and therefore the sign of the fluence rate, depends
on which side of the membrane has the higher pressure.
The simplest relationship that has this property is a lin-
ear one:9

Jv = Lp∆p. (5.9)

The proportionality constant is called the filtration coef-
ficient or hydraulic permeability. It depends on the de-
tails of the membrane structure, such as the properties
of the pores. The SI units for Lp are m s−1 Pa−1, m3

N−1 s−1, or m2 s kg−1. Often in the literature, however,
values of Lp are reported in units of (cm/s)/atm. Since
1 atm = 1.01 × 105 Pa, the conversion is

1 cm s−1 atm−1 = 0.99 × 10−7 m s−1 Pa−1. (5.10)

If a solute is present to which the membrane is com-
pletely impermeable, only water will flow, and the flow
will depend on ∆pd:

∆pd = pd − p′d = p − π − (p′ − π′)
= p − p′ − (π − π′)
= ∆p − ∆π

so
Jv = Lp(∆p − ∆π). (5.11)

9The traditional sign convention has been followed here. There
would be a minus sign in the equation if ∆p were defined to be
p(x + ∆x)− p(x). However, it is usually defined as p− p′. The flow
is from the region of higher pressure to the region of lower pressure.
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FIGURE 5.7. Different flow possibilities for a completely im-
permeant solute. (a) ∆pd = 0, so there is no flow even though
p > p′. (b) Flow to the right even though p = p′. (c) Flow to
the left even though p = p′.

Figure 5.7 shows the pressure relations on each side of the
membrane for no flow and for flow in either direction.

When the solute is partially permeant, the volume flu-
ence rate in the linear approximation still depends on
both ∆p and ∆π, but the proportionality constants may
be different. Since the solute does not reduce the flow
as much as in Eq. 5.11, it is customary to write the two
constants as Lp and σLp:

Jv = Lp(∆p − σ∆π). (5.12)

Parameter Lp is determined by measuring Jv and ∆p
when ∆π = 0, while σ is determined from measurements
of ∆p and ∆π when Jv = 0.

Parameter σ is called the reflection coefficient. It has
different values for different solutes. When σ = 0 there
is no reflection, and the solute particles pass through like
water. When σ = 1 all the solute particles are reflected
and Eq. 5.12 is the same as Eq. 5.11.

FIGURE 5.8. Pressure relationships on each side of the mem-
brane when σ = 2

3
. (a) There is no bulk flow. (b) There is flow

to the right.

We can imagine that part of the solute moves freely
with the water and part is reflected. (Later, we will con-
sider a model for partial reflection in which a solute par-
ticle of radius a < Rp can enter the pore, but its center
cannot be closer to the wall than its radius.) We can write

p = pd + σπ, (5.13)

and we can further break this down to a driving pressure
for the water pdw and one for the permeant solute:

osmotic pressure

of all solute molecules
︷ ︸︸ ︷

p = pdw + (1 − σ)π + σπ

︸ ︷︷ ︸ ︸︷︷︸
driving pressure osmotic pressure

for permeant of impermeant

molecules molecules

(5.14)

With this substitution the flow equation becomes

Jv = Lp [∆pdw + (1 − σ)∆π] . (5.15)

Figure 5.8 shows the pressure relationships across the
membrane.

In the approximation that van’t Hoff’s law holds, π =
kBTC = RTc and Eq. 5.12 can be written as

Jv = Lp(∆p − σkBT ∆C), (5.16)
Jv = Lp(∆p − σRT ∆c). (5.17)

In Eq. 5.16 the concentration is in molecules m−3; in Eq.
5.17 it is mol m−3. In both cases the units of kBT ∆C
and RT ∆c are pascals.
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FIGURE 5.9. Apparatus used to treat fluid overload by ultra-
filtration. Connection A is used for a patient connected to an
artificial kidney. Connection B is used when the ultrafilter is
used by itself. Pressure is monitored at Pi on the input side
and Po on the output side. The three numbered rectangles
are (1) the anticoagulant infusion site, (2) the site for mea-
suring clotting time in the filter, and (3) the site for measur-
ing patient clotting time. From M. E. Silverstein, C. A. Ford,
M. J. Lysaght, and L. W. Henderson. Treatment of severe
fluid overload by ultrafiltration. Reproduced, by permission,
from the N. Engl. J. Med. 291: 747–751. Copyright c© 1974
Massachusetts Medical Society. All rights reserved. Drawing
courtesy of Prof. Henderson.

As an example of volume flow, consider ultrafiltration.
Ultrafiltration is the process whereby water and small
molecules are forced through a membrane by a hydrosta-
tic pressure difference while larger constituents are left
behind. An interesting clinical application of ultrafiltra-
tion has been proposed. A severely edematous patient
(for any of the reasons mentioned in the previous sec-
tion) must have the extra water removed from the body.
This is usually accomplished with diuretics, drugs that
increase the renal excretion of water. Some patients may
not respond to these drugs, and in other cases, partic-
ularly pulmonary edema, the response may not be fast
enough. In the latter case, phlebotomy (bloodletting) is
sometimes used to reduce the body water rapidly. This
has obvious disadvantages, for example, the removal of
blood cells. Silverstein et al. (1974) have used ultrafiltra-
tion to remove water and sodium from the plasma while
leaving the other constituents behind. The apparatus is
shown in Fig. 5.9. The ultrafilter consists of a total area
S = 0.2 m2 of membrane, the permeability of which is 1
ml min−1 m−2 torr−1. The pores are permeable to mole-
cules of molecular weight less than 50,000. The filtration
rate is set by clamping the ultrafiltrate line (PF in Fig.
5.9), thereby increasing the pressure on the outside of
the ultrafilter and decreasing the pressure drop across
the membrane. The pressure was adjusted to give iv of
32 ml min−1 or less, which is equal to that found in a
normal kidney.
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FIGURE 5.10. Filtration rate (flow) iv, vs transmembrane
pressure for a fixed blood flow of 200 ml min−1 through the
apparatus in Fig. 5.9. The solid straight line shows a value
of Lp of 1 ml min−1 m−2 torr−1 as reported by Silverstein et
al. Modified, by permission, from the N. Engl. J. Med. 291:
747–751. Copyright c© 1974 Massachusetts Medical Society.
All rights reserved.

Figure 5.10 shows the flow vs ∆p. The initial slope
of this curve determines LpS and hence Lp. The curve is
not linear but saturates at about 32 ml min−1 of filtration
flow, possibly because of poor mixing within the blood.

Ultrafiltration is sometimes called reverse osmosis. The
name is unfortunate, because it suggests some mysterious
process unrelated to the principles of this section. Ultra-
filtration is often used by campers for purifying water and
has been suggested for desalinization of sea water.

5.6 Solute Transport Through a
Membrane

Solute can pass through the membrane in two ways: it
can be carried along with flowing water (solvent drag),
and it can diffuse.

If there is no reflection (σ = 0) and the solute con-
centration is the same on both sides of the membrane
so there is no diffusion, the flux density or fluence rate
is caused by solvent drag and is simply the solute con-
centration (particles per unit volume) times the volume
fluence rate (Sec. 4.2):

Js = CsJv.

If the solute particles are completely reflected (σ = 1)
then Js = 0.

In the intermediate case with coefficient σ,

Js = (1 − σ)CsJv.

This is consistent with the idea expressed by Eq. 5.14
that a fraction (1 − σ) of the solute particles can enter
the membrane. In that case, Cs is the solute concentra-
tion outside the membrane on both sides, and Cs(1−σ) is



120 5. Transport Through Neutral Membranes

the solute concentration inside the membrane. We will de-
velop a detailed model for transport in a right-cylindrical
pore in Sec. 5.9. We anticipate that discussion and present
a simple justification of the factor 1− σ. In bulk solution
the concentration Cs is obtained by imagining a certain
volume of solution, counting the number of solute par-
ticles whose centers lie within the volume, and taking
the ratio. In a cylindrical pore of radius Rp and length
∆Z, the volume of fluid is πR2

p∆Z. The centers of solute
particles of radius a cannot be within distance a of the
pore wall. The number of solute particles within the pore
is therefore Csπ (Rp − a)2 ∆Z. The concentration in the
pore is the number of particles divided by the pore vol-
ume:

Cs, inside =
Csπ (Rp − a)2 ∆Z

πR2
p∆Z

= Cs

(
1 − a

Rp

)2

= Cs (1 − σ) .

This correction is called the steric factor. Solvent flow
within a distance a of the walls contributes to Jv but not
to solvent drag. This model will be extended to a volume
flow with a parabolic velocity profile in Sec. 5.9.4.

If Jv = 0 there will be no solvent drag but there will
be diffusion. The solute flux will be proportional to the
concentration gradient and therefore to the concentra-
tion difference across the membrane: Js ∝ ∆Cs. The pro-
portionality constant depends on properties of the mem-
brane. If the membrane is pierced by pores, for example,
it depends on pore size, membrane thickness, number of
pores per unit area, and the diffusion constant. The de-
pendence will be derived later in this chapter. It is cus-
tomary to write the proportionality constant as ωRT :
Js = ωRT∆Cs. The factor ω is called the membrane per-
meability or solute permeability.

In the linear approximation the fluence rate resulting
from both processes is the sum of these two terms:

Js = (1 − σ)CsJv + ωRT ∆Cs. (5.18)

Here an average value Cs has been written for the solvent
drag term, because the concentration on each side of the
membrane is not necessarily the same. The way that this
average is taken will become clearer in the discussion of
the pore model described in Section 5.9.

The solute equation has been written for both fluence
rate and concentration in terms of particles. In terms of
molar fluence rate and concentration, it is exactly the
same:

Js(molar) = (1 − σ)csJv + ωRT ∆cs. (5.19)

Either way, the diffusion proportionality constant is ωRT .
It does not change because Cs and Js(particles) are both
written in terms of particles, and cs and Js(molar) are
both written in terms of moles. Referring to Eq. 5.18,
the solvent drag term has units of (particles m−3) (m

s−1) = particles m−2 s−1. Therefore the factor ωRT has
units of m s−1. Since the units of RT are joules or N m
(per mole), the units of ω are

mol m s−1

N m
= mol N−1 s−1. (5.20)

Further interpretation of ω will be made for specific mod-
els.

We have used the same σ in both the solvent drag term
and in the preceding section. Although this was made
plausible by saying that 1 − σ is the fraction of solute
molecules that gets through the membrane, its rigorous
proof is more subtle. It has been proved in general us-
ing thermodynamic arguments, which can be found in
Katchalsky and Curran (1965). It can be proved in detail
for specific membrane models.

5.7 Example: The Artificial Kidney

The artificial kidney provides an example of the use of
the transport equations to solve an engineering problem.
The problem has been extensively considered by chemical
engineers, and we will give only a simple description here.
Those interested in pursuing the problem further can be-
gin with reviews by Galletti et al. (2000) or Lysaght and
Moran (2000). The reader should also be aware that this
“high-technology” solution to the problem of chronic re-
nal disease is not an entirely satisfactory one. It is expen-
sive and uncomfortable and leads to degenerative changes
in the skeleton and severe atherosclerosis [Lindner et al.
(1974)].

The alternative treatment, a transplant, has its own
problems, related primarily to the immunosuppressive
therapy. Anyone who is going to be involved in biomedical
engineering or in the treatment of patients with chronic
disease should read the account by Calland (1972), a
physician with chronic renal failure who had both chronic
dialysis and several transplants. The distinction between
a high-technology treatment and a real conquest of a dis-
ease has been underscored by Thomas (1974, pp. 31–36).

The simplest model of dialysis is shown in Fig. 5.11.
Two compartments, the body fluid and the dialysis fluid,
are separated by a membrane that is porous to the

FIGURE 5.11. The simplest model of dialysis. All the body
fluid is treated as one compartment; transport across the
membrane is assumed to take longer than transport from var-
ious body compartments to the blood.
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small molecules to be removed and impermeable to larger
molecules. If such a configuration is maintained long
enough, then the concentration of any solute that can
pass through the membrane will become the same on both
sides. The dialysis fluid is prepared with the desired com-
position of such small molecules as sodium, potassium,
and glucose. Volume V ′ must be larger than V for effec-
tive dialysis to take place; otherwise, the concentration
of solutes in the dialysis fluid builds up from the initially
prepared values. In early work, V ′ was up to 100 l (since
V is about 40 l). Although the fluid was replaced every 2
hours or so, it was an excellent medium in which to grow
bacteria. Although the bacteria could not get through the
membrane, they released exotoxins (or, if they died, endo-
toxins) which diffused back into the patient and caused
fever. Now a continuous flow system has been used in
which the solutes are continually metered into flowing
dialysis fluid that is then discarded. Because of this, we
will assume that there is no buildup of concentration in
the dialysis fluid. (Effectively volume V ′ is infinite.) We
will assume that ∆p = 0. (Actually, proteins cause some
osmotic pressure difference, which we will ignore.)

Without solvent drag, the solute transport is by diffu-
sion, Js = ωRT (C − C ′), where C is the concentration
of solute in the blood and C ′ is the concentration in the
dialysis fluid. If the surface area of the membrane is S,
then the rate of change of the number of solute molecules
N is

dN

dt
= −SωRT (C − C ′).

If the solute is well mixed in the body fluid compartment,
then N = CV , and this equation can be written as

dC

dt
= −SωRT

V
(C − C ′).

This is the equation for exponential decay. The steady-
state solution is C = C ′. The complete solution is (Ap-
pendix F)

C(t) = [C(0) − C ′] e−t/τ + C ′, (5.21)

where the time constant is

τ =
V

SωRT
. (5.22)

The only variables that are adjustable in this equation are
the membrane area S and its permeability ω. The size of
pores in the membrane is dictated by what solutes are to
be retained in the blood. The number of pores per unit
area and the thickness of the membrane can be controlled.
Typical cellophane membranes have ωRT = 5 × 10−6 m
s−1 (with a thickness of 500 µm). The area may be 2 m2.
With a fluid volume V = 40 l, this gives a time constant

τ =
40 × 10−3 m3

(2 m2) (5 × 10−6 m s−1)
= 4 × 103 s = 1.1 h.

Typically, dialysis requires several hours. This longer pe-
riod is for two reasons. Some of the larger molecules

have smaller permeabilities and therefore longer time con-
stants, and rapid dialysis causes cerebral edema and se-
vere headaches.

The actual apparatus is quite complicated. First, it
must be sterile, which requires a sterilized, disposable
dialysis membrane. Second, the apparatus causes clots,
so the blood must be treated with heparin as it enters
the machine, and the heparin must be neutralized with
protamine as it returns to the patient.

5.8 Countercurrent Transport

This section considers a problem that demonstrates the
principle of countercurrent transport. An apparatus (per-
haps a dialysis machine or an oxygenator) transports
a single solute across a thin membrane of permeability
ωRT . On one side of the membrane (the “inside”) is a
thin layer of solvent that flows along the membrane in
the +x direction as shown in Fig. 5.12. On the “outside”
is another thin layer of solvent that may be at rest or
may flow in either the +x or the −x direction. When it
flows in the opposite direction of the fluid inside we have
the countercurrent situation.

Suppose that the concentration of solute in the two lay-
ers is Cin(x) inside and Cout(x) outside. Solute is trans-
ported in the x direction in each fluid layer by pure sol-
vent drag. It diffuses through the membrane from the side
with higher concentration to the other. We develop the
model below and show that the steady-state concentra-
tion profiles are quite different depending on whether the
solvent flows are in the same or opposite directions. The
results are shown in Fig. 5.13 for the situation in which
the value of Cin is 1 and the value of Cout is 0 where each
solvent starts to flow across the membrane. In Fig. 5.13(a)
both layers flow to the right; in Fig. 5.13(b) they flow in
opposite directions. The countercurrent case is more ef-
fective in reducing Cin. The final value of Cin is 0.5 in the
first case and 0.33 in the second.

To develop the model, we make the following assump-
tions. The concentration of solute in each fluid layer is
independent of y, z, and t. The thickness of the fluid
layer inside is hin. The fluid velocity jv in is everywhere
constant. The only important mechanism for solute trans-
port within the fluid is solvent drag. Let the length of

x

y
z

jv in

v outj

Fluid 
Membrane 
Fluid

FIGURE 5.12. Layers of fluid containing a solute flow parallel
to the x axis on either side of a membrane.
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(a) Both flows are to the right.

(b) The flows are in opposite directions.

FIGURE 5.13. Solute concentration profiles for two different
situations where solvent flows parallel to the membrane sur-
face and solute moves through the membrane from inside to
outside. (a) Both fluid layers flow to the right. The concen-
trations rise and falls exponentially, eventually becoming the
same on both sides of the membrane. (b) The countercurrent
case, in which the solvent flows are in opposite directions. The
solvent outside flows from right to left. The concentrations
vary linearly.

the slab in the y direction be Y . Inside, the number of
particles per second in through the face of the rectan-
gle of area Y hin at x is Cin(x)jv inY hin. The number out
through the face at x + dx is Cin(x + dx)jv inY hin. The
number through the membrane into the exterior volume
is [Cin(x) − Cout(x)] ωRTY dx. Combining these we get

dCin

dx
= − ωRT

jv inhin
[Cin(x) − Cout(x)] . (5.23)

A similar expression can be derived for the exterior:

dCout

dx
=

ωRT

jv outhout
[Cin(x) − Cout(x)] . (5.24)

Our notation allows jv to have a different direction (sign).
Defining a = ωRT/jvh we have the coupled differential
equations

dCin

dx
= −ain(Cin − Cout),

dCout

dx
= +aout(Cin − Cout).

(5.25)

We restrict ourselves to the case in which |ain| =
|aout| = a. Changing the direction of jv changes the sign
of a. Assume a is the same on both sides. The equations
show that the slope of Cin(x) is minus the slope of Cout(x)
if both currents are in the same direction, and the two
slopes are the same if the currents are in opposite direc-
tions. This can be seen in the solutions in Fig. 5.13.

You can verify that Eqs. 5.26 represent a solution of
Eqs. 5.25:

Cin(x) =
c1

2
(
1 + e−2ax

)
+

c2

2
(
1 − e−2ax

)
,

Cout(x) =
c1

2
(
1 − e−2ax

)
+

c2

2
(
1 + e−2ax

)
,

(5.26)

were c1 and c2 are the values of Cin and Cout at x = 0.
Figure 5.13(a) shows the concentrations for c1 = 1 and
c2 = 0 with a = 1 and 0 < x < 2. If the sign of a
is changed in the second differential equation, then the
fluid outside is flowing in the opposite direction to the
fluid inside. Again you can verify that the most general
solution is

Cin(x) = c1 + (c2 − c1)ax,
Cout(x) = c2 + (c2 − c1)ax.

(5.27)

Figure 5.13(b) is a plot with the constants set so that the
concentration inside on the left is 1 and on the outside on
the right is zero (c1 = 1, c2 = 2/3, a = 1, 0 < x < 2). This
configuration is called countercurrent flow. We can see
from the figure that the transport through the membrane
is increased because the concentration difference across
the membrane is, on average, greater.

The countercurrent principle is found in the renal
tubules [Guyton (1991), p. 309; Patton et al. (1989), p.
1081], in the villi of the small intestine [Patton et al.
(1989), p. 915], and in the lamellae of fish gills [Schmidt-
Nielsen (1972), p. 45]. The principle is also used to con-
serve heat in the extremities—such as a person’s arms
and legs, whale flippers, or the leg of a duck. If a vein
returning from an extremity runs closely parallel to the
artery feeding the extremity, the blood in the artery will
be cooled and the blood in the vein warmed. As a result,
the temperature of the extremity will be lower and the
heat loss to the surroundings will be reduced.

5.9 A Continuum Model for Volume
and Solute Transport in a Pore

In this section we develop a model to predict the values
of the phenomenological coefficients of Secs. 5.5 and 5.6.
The success of the model depends on its ability to pre-
dict behavior, particularly as the size of solute particles is
varied. This was an important problem in physiology in
the 1960s and 1970s. Instead of comparing the model to
experiment, we conclude the section by showing what the
forces are on the membrane. This is important because
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TABLE 5.1. Symbols used for porous membrane.
Quantity On left In pore On right

Total pressure p p′

Solute concentra-
tion

Cs C(z) C′
s

Osmotic pressure π = kBTCs π′ = kBTC′
s

Effectively imper-
meant part of os-
motic pressure

σπ σπ′

Effectively per-
meant part of
osmotic pressure
plus water driving
pressure

(1 − σ)π + pdw pd(z) (1 − σ)π′ + p′dw

there has been a fair amount of confusion in the liter-
ature about the forces on a semipermeable membrane.
This section is fairly long. It stands alone; you can skip
it if you wish.

The model assumes that the membrane has a particu-
larly simple structure.

1. The membrane is pierced by n circular pores per
unit area, all having radius Rp and all being right
cylinders. The membrane thickness is ∆Z.

2. The pore and the fluid are electrically neutral. No
electrical forces are considered.

3. There is complete mixing on both sides of the pore,
so that flow within the liquid on either side can be
neglected.

4. The system is in the steady state. There is no vari-
ation in flux density (fluence rate) or concentration
as a function of time.

5. The pores are large enough so that the bulk flow can
be calculated by continuum hydrodynamics.

The quantities considered in this section are summa-
rized in Table 5.1.

5.9.1 Volume Transport

The results of Chap. 1 can be used when the pore is filled
with pure water or water and a solute for which σ = 0.
From Eq. 1.40 the flux through a single pore is

iv(single pore) =
πR4

p

8η

∆p

∆x
. (5.28)

The fluence rate through the membrane is obtained by
multiplying iv by n, the number of pores per unit area.
The result is

Jv =
nπR4

p

8η

∆p

∆Z

so that

Lp =
nπR4

p

8η ∆Z
. (5.29)

While Lp can be measured fairly easily using Eq. 5.12, it is
much more difficult to measure the microscopic quantities
needed to test Eq. 5.29. We will not compare the model
to experiment here;10 we will simply give an example of
how calculations are done.

In discussing ultrafiltration we considered a filter
(Fig. 5.10) for which Lp ≈ 1 ml min−1 m−2 torr−1. Since
760 torr = 1 × 105 Pa, the hydraulic permeability in SI
units is

Lp =
1 ml

1 torr min m2

1 min
60 s

10−6 m3

1 ml
760 torr

1 × 105 Pa
= 1.27 × 10−10 m s−1 Pa−1.

The manufacturer’s literature11 can be used to estimate

Rp ≈ 4.5 nm,

∆Z ≈ 10 µm.12

The viscosity of water is 0.9 × 10−3 Pa s at 25 ◦C. This
gives us enough information to estimate n and the frac-
tion of the filter surface that is pores. From Eq. 5.29

n =
8η ∆Z Lp

πR4
p

=

(
(8)(0.9 × 10−3 Pa s)(10 × 10−6 m)

π (4.5 × 10−9)4 m4

)

× (1.27 × 10−10 m s−1 Pa−1)

= 7.1 × 1015 m−2.

Since the area of one pore is πR2
p = 6.36× 10−17 m2, the

total pore area in 1 m2 is 0.45 m2, a number that is not
unreasonable.

Next consider the volume flow when the reflection co-
efficient is not zero. The position within the pore is speci-
fied by cylindrical coordinates (r, φ, z). The position along
the axis of the pore is given by z. The position in a plane
perpendicular to the axis of the pore is specified by po-
lar coordinates r and φ. Flow of the fluid is described by
the vector volume fluence rate jv(r, φ, z). (We use J for
fluence rate for the membrane as a whole and j for the
fluence rate in bulk solution inside a pore.) It is possible
to show rigorously that as long as the pore is a right cir-
cular cylinder, jv points only along z and is independent
of φ (the fluid does not flow in a spiral and does not flow
into or out of the walls):

jv(r, φ, z) = jv(r, z)ẑ. (5.30)

The solution is in a steady state and the flow is not chang-
ing with time. Therefore, the flux density into a volume
at z must be the same as the flux density out at z + dz:

∂jv

∂z
= 0 (5.31)

10See earlier editions or, for example, Bean (1969, 1972).
11Amicon XM-50.
12This value nay not be consistent with the value of Lp quoted.

The pore length ∆Z is not well known, and Lp is variable, depend-
ing on experimental conditions.
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FIGURE 5.14. Pressure within a pore and at the boundaries
in the steady state.

so that jv is constant along the z axis (although it can
be a function of r). This is just what we saw in Chap. 1
for Poiseuille flow; the variation of jv with r corresponds
to the parabolic velocity profile. A value of jv(r) that is
constant in the z direction requires a constant value of
∂p/∂z inside the pore.

In the pore, the driving pressure is pd(z). A typical
pressure profile is shown in Fig. 5.14. The symbols are
defined in Table 5.1. The pressure in the pore has been
drawn with constant slope, since ∂pd/∂z is constant. Us-
ing Eqs. 5.16 and 5.29, we can write

Jv = Lp(∆p − σkBT ∆Cs), (5.32)

where Lp is given by Eq. 5.29. The value of σ is derived
in the next section.

The average value of jv(r) within the pore will be called
jv. It is the total flux density through the pore divided
by πR2

p:

jv =
i(single pore)

πR2
p

=
1

πR2
p

∫ Rp

0

jv(r) 2πr dr

=
Jv

nπR2
p

= −
R2

p

8η

∂pd

∂z
. (5.33)

5.9.2 Solute Transport

We now consider solute transport in our model pore. The
arguments here are very similar to those for combined
diffusion and solvent drag that were developed in Sec.
4.12. Those arguments are extended by averaging over
the cross section of the pore.

Within the pore, the local solute flux is js(r, φ, z). Ar-
guments similar to those in the preceding section can be
offered to show that js points along the z axis and is
independent of φ:

js(r, φ, z) = js(r, z)ẑ. (5.34)

The solute concentration does not depend on φ, or else
there would be diffusion in the φ direction and js would
have a φ component. So C = C(r, z). The r dependence
must be kept because the center of a solute molecule of
radius a cannot be within a distance a of the wall. (Recall
the discussion of the steric correction on p. 120.) Thus
C(r, z) = 0 if r > Rp − a. We write13

C(r, z) =
{

0, Rp − a < r
C(z), 0 � r � Rp − a.

(5.35)

The solute flux due to solvent drag is Csjv. For dif-
fusion in one dimension the solute flux along the z axis
is −D(∂C/∂z). For the cylindrical pore we can combine
these and write

js(r, z) = C(r, z)jv(r, z) − D(r, a,Rp)
∂C(r, z)

∂z
. (5.36)

The diffusion constant has been written as a function of
r, a, and Rp because in the pore, as distinct from an
infinite medium, the constant depends on how close the
particle is to the walls. (Remember the relation of D to
the viscous drag and the fact that Stokes’ law requires
modification when the fluid is confined in a tube.)

The preceding section showed that for the steady state
jv is independent of z. A similar argument can be made
using the continuity equation for solute particles, imply-
ing that js is independent of z. Therefore, Eq. 5.36 sim-
plifies to

D(r, a,Rp)
∂C(r, z)

∂z
− jv(r)C(r, z) = −js(r). (5.37)

The easiest way to write C(r, z) in accordance with Eq.
5.35 is

C(r, z) = C(z)Γ(r),

where

Γ(r) =

{
0, Rp − a < r

1, 0 � r < Rp − a.

With this substitution Eq. 5.37 becomes

Γ(r)D(r, a,Rp)
dC(z)

dz
−C(z)Γ(r)jv(r) = −js(r). (5.38)

This equation can be multiplied by 2πr dr and integrated
from r = 0 to r = Rp. The result is
(∫ Rp

0

Γ(r)D(r, a,Rp)2πr dr

)
dC(z)

dz

−
(∫ Rp

0

Γ(r) jv 2πr dr

)

C(z) = −
∫ Rp

0

js(r)2πr dr.

(5.39)

The physical meaning of this integration can be under-
stood with the aid of Fig. 5.15, which shows a slab of fluid

13It can be argued that this is the only possible form for C(r, z).
See Levitt (1975, p. 535ff.).
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FIGURE 5.15. A slab of fluid in a pore between z and z + dz,
showing how the integration over r is done.

in the pore between z and z + dz. Solute does not cross
a surface of constant r but moves parallel to the z axis.
Diffusion and solvent drag are considered in each shaded
area 2πr dr. The integration of Eq. 5.38 establishes an
average solute fluence rate, since the right-hand side of
the equation is the total flux or current of solute particles
per second passing through the pore:

is =
∫ Rp

0

js(r)2πr dr.

As with the volume fluence rate, it is convenient to call
the average solute fluence rate js:

js =
is

πR2
p

=
1

πR2
p

∫ Rp

0

js(r)2πr dr. (5.40)

The first term of Eq. 5.38 is the diffusive flux at z aver-
aged over the entire cross section of the pore. Define an
effective diffusion constant

Deff =
1

πR2
p

∫ Rp

0

Γ(r)D(r, a,Rp)2πr dr. (5.41)

The second term on the left of Eq. 5.38 is the solvent
drag flux averaged over the entire cross section of the
pore. The integral is

∫ Rp

0

jv(r)Γ(r)2πr dr =
∫ Rp−a

0

jv(r)2πr dr. (5.42)

This integral can be evaluated because we know the ve-
locity profile, jv(r), Eq. 1.39:14

jv(r) =
1
4η

∆p

∆z

(
R2

p − r2
)
. (5.43)

We have already defined the average volume fluence rate
to be

jv =
1

πR2
p

∫ Rp

0

jv(r)2πr dr.

14This ignores the fact that since the walls affect the force on the
solute particles, the solute must distort the velocity profile slightly.
This point is discussed below.

The desired quantity differs only in the limits of integra-
tion. To calculate it, write

∫ Rp−a

0

jv(r)2πr dr = πR2
p jv

∫ Rp−a

0

jv(r)2πr dr

∫ Rp

0

jv(r)2πr dr

.

The integrals are easily evaluated (see Problems). The
result is

∫ Rp

0

jv(r)Γ(r)2πr dr = πR2
p jv f(a/Rp), (5.44a)

where the function f is

f(ξ) = 1 − 4ξ2 + 4ξ3 − ξ4. (5.44b)

When Eqs. 5.40, 5.41, and 5.44a are substituted into Eq.
5.38 and each term is divided by πR2

p, the result is

Deff

(
dC

dz

)
− jvf

(
a

Rp

)
C(z) = −js (5.45a)

or
dC

dz
− jvf(a/Rp)

Deff
C(z) = − js

Deff
. (5.45b)

This is a differential equation for C(z). The right-hand
side is the total solute fluence rate, which is constant. On
the left-hand side, C varies along the pore so that the
diffusive and solvent-drag fluence rates add up to this
constant value. If the constant in front of C(z) is written
as

1
λ

=
jvf(a/Rp)

Deff
, (5.46)

this is recognized as Eq. 4.58 for drift plus solvent drag
in an infinite medium. The results of Sec. 4.13 can be
applied here. It is only necessary to determine values for
C0 and C ′

0. Recall that in the pore C(r, z) = C(z)Γ(r).
The function Γ(r) takes into account the reflection that
occurs because solute particles cannot be closer to the
pore wall than their radius. It was also assumed that the
solution on either side of the membrane is well stirred.
Therefore, C0 = Cs and C ′

0 = C ′
s. Equation 4.70 becomes

js = f jv Cs + Deff
Cs − C ′

s

∆Z
. (5.47)

This is an expression for js, the average solute fluence rate
in the pore. To get solute fluence rate in the membrane,
it must be multiplied by πR2

p and the number of pores
per unit area. Since Jv = nπR2

p jv, we have

Js = fCs Jv +
nπR2

p Deff

∆Z
∆Cs. (5.48)

Comparing this with the general phenomenological equa-
tion for solute flow, Eq. 5.18,

Js = (1 − σ)CsJv + ωRT ∆Cs
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we see that

1 − σ = f,

ωRT =
nπR2

p Deff

∆Z
, (5.49)

λ =
Deff

jv(1 − σ)
=

ωRT (∆Z)
Jv(1 − σ)

.

The average solute concentration C is obtained from
Eq. 4.66 with the substitution of ∆Z for the pore length:

Cs =
Cse

x − C ′
s

ex − 1
− 1

x
(Cs − C ′

s).

This can be rearranged as

Cs = 1
2 (Cs + C ′

s) + G(x)(Cs − C ′
s) (5.50a)

with

G(x) =
1
2

(
ex + 1
ex − 1

)
− 1

x
, (5.50b)

where x = ∆Z/λ. This is the same function we saw in
Fig. 4.17.

The solute concentration away from the sides of the
pore is

C(z) =
Cs(e∆Z/λ − ez/λ) + C ′

s(e
z/λ − 1)

e∆Z/λ − 1
. (5.51)

While the concentration profile is not usually measured
experimentally, it is useful to plot it to help us visualize
the interrelation of diffusion and solvent drag. Call φ =
C ′

s/Cs. Equation 5.51 can be rearranged as

C(z) = C(0)
(

1 − (1 − φ)
ez/λ − 1

e∆Z/λ − 1

)
. (5.52)

We can see several things from this equation. First, if
the concentration is the same at each end of the pore,
φ = 1, the second term in large parentheses vanishes,
and the concentration is uniform throughout the pore. If
φ 
= 1, then the concentration is that at z = 0, plus a
factor which may be positive or negative, depending on
whether φ is less than or greater than 1. The ratio of
exponentials occurring in that factor is plotted in Fig.
5.16 for different values of ∆Z/λ, the ratio of the pore
length to the effective diffusion distance.

These curves determine the shape of the concentra-
tion profile along the pore. If the flow is zero, λ =
Deff/jv(1 − σ) is infinite and ∆Z/λ is zero. We then
have pure diffusion, and the concentration changes uni-
formly along the pore, corresponding to the straight line
in Fig. 5.16. The plots in Fig. 5.17 show what the concen-
tration profiles are like for diffusion to the left and to the
right when the flow is to the right. Compare the shape
of the concentration profile on the left in Fig. 5.17 with
the curve for ∆Z/λ = 1 in Fig. 5.16. When the concen-
tration is higher on the left, we have to take the mirror

1.0

0.8

0.6

0.4

0.2

0.0

(e
z/

λ  - 
1)

/(e
∆ Z

/λ
 - 

1)

1.00.80.60.40.20.0

z/∆Z

∆Z/λ = -10

∆Z/λ = -1

∆Z/λ = 0

∆Z/λ = 1

∆Z/λ = 10

FIGURE 5.16. Plot of the factor (ez/λ−1)/(e∆Z/λ−1), which
appears in Eq. 5.52.

FIGURE 5.17. A possible set of values for p, pd, and C along
a pore for diffusion to the left and diffusion to the right. The
fluid on each side of the pore is well stirred and of sufficient
volume so that concentrations do not change with time.

image of Fig. 5.16; the curve for ∆Z/λ = −1 gives the
concentration profile in Fig. 5.17 on the right.

As the pore becomes very long compared to the dif-
fusion length (for example, |∆Z/λ| = 10 or more), the
concentration along the pore is nearly that carried into
the pore by bulk flow from the left until we get to the
far end, where diffusion back up the pore gives a smooth
transition to the final concentration on the right.
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We can think of the pressure in the pore as being made
up of driving pressures due to water and to the solute
within the pore:

pd(z) = pdw(z) + pds(z).

Since the effective driving pressure for impermeant solute
in the Jv equation is kBT∆C, it would be nice to be able
to write

pd(z) = pdw(z) + (1 − σ)kBT C(z).

This is consistent with the solvent drag flux at position
z in the pore, which was given in Eq. 5.45a by

jv f C(z) = jv(1 − σ)C(z).

The “effective” concentration for solvent drag is (1 −
σ)C(z).

5.9.3 Summary

To summarize, the combination of solvent and a solute
with reflection coefficient has a volume flux

Jv = Lp(∆p − σ kBT ∆Cs) (5.53)

and a solute flux

Js = (1 − σ)CsJv + ωRT ∆Cs. (5.54)

The hydraulic permeability is

Lp =
nπR4

p

8η∆Z
. (5.55)

The solute permeability is

ωRT =
nπR2

p Deff

∆Z
. (5.56)

The characteristic length for diffusion is

λ =
Deff

jv(1 − σ)
=

∆Z ωRT

Jv(1 − σ)
. (5.57)

The average concentration is

Cs = 1
2 (Cs + C ′

s) + G(x)∆Cs, (5.58)

where G(x) is given by Eq. 5.50b. The parameter x is

x =
Jv(1 − σ)

ωRT
=

∆Z

λ
. (5.59)

Notice that the solvent drag term as well as the diffusion
term depends on ∆Cs, through the factor Cs.

FIGURE 5.18. Calculated values of the reflection coefficient
are indicated by the lines. Calculations are shown for the sim-
ple steric factor, the steric factor weighted by a parabolic ve-
locity profile, Eq. 5.60, and a more detailed calculation, which
takes account of the distortion of the velocity profile by the
solute particles. The data points are from Durbin (1960) as
reinterpreted by Bean (1972).

5.9.4 Reflection Coefficient

We have referred previously to the fact that the centers
of solute particles can occupy only a fraction of the pore
volume. A solute particle’s center cannot be further from
the pore axis than Rp − a. The simplest correction is the
steric factor, seen on p. 120. The ratio of effective area to
total area approximates 1 − σ. If ξ = a/Rp, then

1 − σ ≈ π(Rp − a)2

πR2
p

= 1 − 2a

Rp
+

a2

R2
p

,

σ = 2ξ − ξ2.

A better calculation was seen in the preceding subsec-
tion. Accept the fact (quoted from thermodynamic re-
sults) that the same σ occurs in the equations for Jv and
Js. We saw that the edges of the pore have less bulk flow
than the center, so that the steric effect overestimates
how many particles are reflected. From Eq. 5.44b,

σ = 1 − f = 4ξ2 − 4ξ3 + ξ4. (5.60)

These two approximations to σ are plotted in Fig. 5.18.
It was mentioned in a footnote that the calculation

which resulted in Eq. 5.44a neglected the change in ve-
locity profile caused by the solute particles. More rigorous
calculations have been done by Levitt (1975) and by Bean
(1972, pp. 29–35). Levitt’s result is

σ =
16
3

ξ2 − 20
3

ξ3 +
7
3
ξ4 + 0.35ξ5. (5.61)

This is valid for ξ < 0.6. The three equations for σ are
plotted in Fig. 5.18, along with some experimental data
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FIGURE 5.19. Plot of ω/ω0 for experimental data by Beck
and Schultz (1970) and a calculation by Bean (1972).

from Durbin (1960) using the pore radius assigned by
Bean.

5.9.5 The Effect of Pore Walls on Diffusion

The solute permeability is given by

ωRT =
nπR2

pDeff

∆Z
.

The effective diffusion coefficient takes into account the
steric factor as well as the drag on the solute particles by
the pore walls. If the pore had an infinitely large diameter,
the unrestricted permeability would be

ω0RT =
nπR2

pD

∆Z
,

where D is the diffusion coefficient for an infinite medium.
Figure 5.19 shows some data from Beck and Schultz
(1970) and a curve for ω/ω0 calculated by Bean (1972).15

In Europe, filtration rather than dialysis is used to
treat kidney patients. There is evidence that some as
yet unidentified toxin of medium molecular weight ac-
cumulates in the blood. Comparison of 1 − σ from Fig.
5.18 with ω/ω0 from Fig. 5.19 shows that solvent drag re-
moves medium-sized molecules more effectively. The fluid
and electrolytes lost by the patient must be replaced.

5.9.6 Net Force on the Membrane

We conclude the section by calculating the force of the
fluid on the membrane. The results give some insight into
the nature of osmotic pressure.

15The steric factor, which Bean includes separately, is built into
Deff through the function Γ(r).

F1 1F'

F2

F3

A
B

F'2

FIGURE 5.20. The forces on a membrane with pores. The
fluid on the left exerts force F1 due to the hydrostatic pressure
p. A similar force F′

1 is exerted on the right. Solute molecules
like A are reflected at the pore edge and exert force F2. Solute
molecule B enters the pore. It contributes to the viscous force
of the flowing fluid on the cylindrical walls of the pore, F3.
F3 is to the right if the fluid flows from left to right through
the pore.

A membrane of total area S is pierced by n pores per
unit area of radius Rp. The pressures in the fluid on each
side of the membrane are p and p′. A solute with reflection
coefficient σ has concentration C on the left and C ′ on
the right. We want to calculate the total force exerted by
the fluid on the membrane. There are three contributions
to this force. These can be understood by referring to
Fig. 5.20.

Forces F1 and F ′
1 are the forces exerted by the fluid

on the walls of the membrane on each side. They are
obtained by multiplying the total pressure on each side
by the area of the membrane that is not occupied by
pores. In a total area S there are nS pores, each of area
πR2

p.

F1 = pS
(
1 − nπR2

p

)

F ′
1 = p′S

(
1 − nπR2

p

)
.

The net force to the right is

F1 − F ′
1 = S (p − p′)

(
1 − nπR2

p

)
. (5.62)

Forces F2 and F ′
2 are exerted by solute molecules re-

flected from the pore region, such as molecule A in
Fig. 5.20. These are the ones that contribute to the os-
motic pressure. The net force to the right is therefore the
total pore area SnπR2

p times the impermeant part of the
osmotic pressure difference:

F2 − F ′
2 = SnπR2

p (σπ − σπ′) . (5.63)

Force F3 is the viscous drag exerted on the walls of the
pores by the water and permeant solute molecules flowing
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through them. To calculate it we recall that the viscous
force per unit area is− η (∂v/∂r) . The velocity is v = jv.
Differentiating Eq. 5.43,we obtain

∂jv

∂r
= − 1

4η

∆(p − σπ)
∆Z

2r.

The total force is η times this quantity evaluated at r =
Rp, times total area of the cylindrical walls of all the
pores, which is (Sn) (2πRp∆Z) :

F3 = Sn2πRp∆Zη

(
1
4η

(p − p′) − σ (π − π′)
∆Z

2Rp

)

= SnπR2
p [(p − p′) − σ (π − π′)] . (5.64)

The net force on the membrane is the sum of these
forces:

F1 − F ′
1 + F2 − F ′

2 + F3 = S(p − p′). (5.65)

We see that the net force on the membrane is the total
pressure difference times the total area of the membrane,
regardless of the differences in osmotic pressure on each
side. Both solute and solvent exert a force on the non-
pore area of the membrane. The solute molecules at the
membrane surface whose centers are within the area of a
pore may be reflected or may enter the pore. If they are
reflected, they contribute to the force when they strike the
membrane at the edge of a pore. If they are not reflected,
they enter the pore and contribute to the viscous drag on
the membrane due to flow through the pore.

Symbols Used in Chapter 5

Symbol Use Units First
used on
page

a Solute particle radius m 120
a, ain, aout Parameters m−1 122
c1, c2, c′1, c′2 Solute concentration (mole) m−3 112
f Temporary function 125
h Thickness of fluid layer m 121
i Solute current through

membrane
s−1 131

is Solute flow s−1 125
iv Volume flow m3 s−1 117
js, js Solute fluence rate in m−2 s−1 124

pore
jv, jv Volume fluence rate in

pore
m s−1 123

kB Boltzmann’s constant J K−1 112
n Number of moles 112
n Number of pores per unit

area
m−2 120

p1, etc. Pressure Pa 112

pd “Driving pressure” Pa 114
p Total pressure Pa 114
pdw “Driving pressure” of

water
Pa 114

r Radius in cylindrical

coordinates

m 123

x, y, z Position m 121

x ∆Z/λ 127
z Distance along pore m 123
ẑ Unit vector in z direction 123
C, Cs,
etc.

Particle concentration of
the species indicated by
the subscript

(particle)
m−3

112

D, Deff Diffusion constant m2 s−1 124
F Force N 128
G Factor relating solvent

drag and diffusion

126

Js Solute fluence rate
through membrane

m−2 s−1 119

Jv Volume fluence rate

through membrane

m s−1 117

Lp Hydraulic permeability m s−1 Pa−1 117
N1,etc. Number of molecules 112
NA Avogadro’s number 112
R Gas constant J mol−1 K−1 112
Rp Pore radius m 120
S Surface area m2 117
T Absolute temperature K 112
V, V ′, V ∗ Volume m3 112
X, Y Distance m 121
∆Z Pore length m 120

η Viscosity Pa s 123
λ Effective diffusion

distance
m 125

µ Chemical potential J molecule−1 114
ξ a/Rp 127
π Osmotic pressure Pa 114
σ Reflection coefficient 118
τ Time constant s 121
ω Solute permeability mol N−1 s−1 120
ω0 Solute permeability in an

infinite medium
mol N−1 s−1 128

φ Angle in cylindrical
coordinates

123

φ C′
s/Cs 126

Γ Radial dependence of
solute concentration

124

Problems

Section 5.3

Problem 1 The protein concentration in serum is made
up of two main components: albumin (molecular weight
75,000) 4.5 g per 100 ml and globulin (molecular weight
170,000) 2.0 g per 100 ml. Calculate the osmotic pressure
due to each constituent. (These results are inaccurate be-
cause of electrical effects.)

Problem 2 If the osmotic pressure in human blood is 7.7
atm at 37 ◦C, what is the solute concentration assuming
that σ = 1? What would be the osmotic pressure at 4 ◦C?

Problem 3 Sometimes after trauma the brain becomes
very swollen and distended with fluid, a condition known
as cerebral edema. To reduce swelling, mannitol may be
injected into the bloodstream. This reduces the driving
force of water in the blood, and fluid flows from the brain
into the blood. If 0.01 mol l−1 of mannitol is used, what
will be the approximate osmotic pressure?
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Section 5.4

Problem 4 When a person is given an intravenous
fluid, the solute concentration in the fluid must be
matched to the solute concentration in the blood to avoid
problems arising from a change in the blood’s osmotic
pressure. One such fluid, called “isotonic saline,” can be
made by adding salt (NaCl) to distilled water. The osmo-
larity of the blood is about 0.3 osmole.

(a) How many grams of NaCl must be added to a liter
of water to make isotonic saline? What fraction of the
solution’s mass is NaCl? (Hint: Recall that NaCl dissolves
into Na+ and Cl−, and both contribute to the osmotic
pressure.)

(b) Repeat for dextrose, C6H12O6, which does not dis-
sociate.

Problem 5 An understanding of osmotic pressure is im-
portant in medicine. Consider the case reported by Stein-
muller (1998) in the New England Journal of Medicine.
A 5% solution of albumin was needed to infuse into a
patient with kidney disease (renal insufficiency). No 5%
solution was available, so the hospital pharmacy used 25%
albumin diluted 1:4 with pure water. Injection of the so-
lution into the patient caused renal failure. The albumin
in a 25% albumin solution has an osmolarity of about 36
mosmol. Typically, such a solution also contains about
300 mosmol of other ions (see Problem 4).

(a) Calculate the osmolarity of the solution injected
into the patient.

(b) Calculate the osmolarity of the solution if the phar-
macy had properly used isotonic saline instead of pure
water to perform the 1:4 dilution.

Problem 6 Articular cartilage covers the ends of bones
in joints and allows the bones to move smoothly against
each other. It contains a network of collagen fibers that
can exert a mechanical tensile stress to resist tissue
swelling, resulting in a pressure Pc within the cartilage.
The collagen fibers do not withstand compression. The
cartilage also contains proteoglycan molecules that cause
tissue swelling because of their osmotic pressure, πPG.
One can determine Pc by placing the cartilage in a poly-
ethylene glycol solution with osmotic pressure πPEG, mea-
suring πPG and πPEG, and using the relationship Pc =
πPG − πPEG.

bone

collagen

fluid

cartilage

PG

PEG

Typical data are

πPEG (atm) πPG (atm)
0.0 4.0
2.5 5.5
5.0 7.0
7.5 8.5
10.0 10.0

(a) What is the excess pressure Pc exerted by the col-
lagen matrix under normal conditions (πPEG = 0)?

(b) At what value of πPEG does the collagen matrix
exert no tensile stress (become “limp”)?

(c) Plot Pc vs. πPEG. Find a linear equation that fits
the data.

(d) Osteoarthritis is thought to occur when the collagen
matrix is weakened. If the collagen in an arthritic joint
can only exert a pressure of 2 atm when πPEG = 0, by
how much will the tissue swell (by what percent will its
volume change?)

In (b) and (d), assume that only the proteoglycans
cause osmotic pressure and that their number does not
change, but the tissue volume increases as the tissue
swells with water. This problem is based on the work of
Basser et al. (1998), but the data have been modified.

Section 5.5

Problem 7 Suppose that Lp is expressed in m3 N−1 s−1

or m s−1 Pa−1. Find conversion factors to express it in
(a) ml min−1 cm−2 torr−1.
(b) ml s−1 cm−2 (in. water)−1.
(c) ml s−1 cm−2 (lb in.−2)−1.

Problem 8 An ideal semipermeable membrane is set up
as shown. The membrane surface area is S; the cross-
sectional area of the manometer tube is s. At t = 0, the
height of fluid in the manometer is zero. The density of
fluid is ρ. Show that the fluid height rises to a final value
with an exponential behavior. Find the final value and the
time constant. Ignore dilution of the solute.

Problem 9 Consider the design of a lecture demonstra-
tion apparatus to show osmotic pressure that uses a com-
mercially available filter as shown in the drawing. As-
suming well-stirred fluid on both sides of the membrane
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and neglecting the change of solute concentration in the
manometer tube as water flows in, one finds that height
z increases to the equilibrium value exponentially, with
a time constant obtained in the previous problem. What
would be the time constant if one used the membrane de-
scribed in Fig. 5.10? For that membrane Lp =1 ml min−1

m−2 torr−1, and the total membrane area is S = 0.2 m2.
Suppose that the inner radius of the manometer tube is 1
mm. (One could not use sucrose as a solute, because this
particular membrane is permeable to molecules of molec-
ular weight less than 50,000.)

Problem 10 A cell has variable volume V and fixed sur-
face area S. The total hydrostatic pressure p is the same
inside and outside the cell, and there is complete and in-
stantaneous mixing. Initially the interior and exterior are
both pure water. The initial volume of the cell is V0. At
t = 0, the exterior is bathed in a solution containing an
impermeant solute of concentration C0.

(a) Does the cell shrink to zero volume or expand to its
maximum volume, which is a sphere of surface area S?

(b) Derive a differential equation for the volume change
and integrate it to find how long it takes for the cell to
reach zero or maximum volume.

Problem 11 A cell has variable volume V and fixed sur-
face area S. The total hydrostatic pressure p is always the
same both inside and outside the cell. There is complete
and instantaneous mixing both inside and out. An imper-
meant solute has an initial concentration C(0) both inside
and outside. The initial cell volume is V0. At t = 0 the
exterior solute is removed.

(a) Does the cell shrink to zero volume or expand to its
maximum volume, which is a sphere of surface area S?

(b) Derive a differential equation for V (t) and find
how long it takes for the cell to reach zero or maximum
volume.

Section 5.6

Problem 12 Two membranes have permeabilities ω1RT
and ω2RT . Find the permeability of a two-layered mem-
brane in terms of ω1 and ω2.

Problem 13 Solute is carried through a pipe by solvent
drag. The radius of the pipe is b. The average flow along

the pipe is jv (independent of r because it has been aver-
aged over r). Assume that within the pipe the concentra-
tion of solute is independent of radius and can be writ-
ten as C(z). The solute is carried along purely by solvent
drag. Solute concentration outside the pipe is zero. Solute
diffuses through the wall of the pipe, which has solute
permeability ωRT . In terms of jv, b, and ωRT , obtain
a differential equation for C(z) and show that C decays
exponentially along the pipe. Find the decay constant.

Section 5.7

Problem 14 A kidney machine has a membrane perme-
ability ωRT = 0.5 × 10−3 cm s−1. If the membrane area
is 1 m2, the volume of body fluid is 40 l, and the vol-
ume of dialysant is effectively infinite, what is the time
constant? How long will it take to reduce the BUN (blood
urea nitrogen) concentration from 120 mg per 100 ml to
20 mg per 100 ml?

Problem 15 Find the pair of coupled differential equa-
tions for C and C ′ for a dialysis machine in which V ′ is
not infinite.

Section 5.8

Problem 16 In the countercurrent model (Eq. 5.25) the
total current i through the membrane when its length is
X is

i = ωRTY

∫ X

0

[Cin(x) − Cout(x)] dx.

Solve this integral for the two cases given by Eqs. 5.26
and 5.27. Show that the current ratio in these two cases
is 1.36 when a = 1 and X = 2.

Problem 17 The countercurrent model applies to the
transport of heat as well as particles, with temperature
taking the place of concentration. Consider a counter-
current heat exchanger, which represents the arrangement
of blood vessels in the flipper of a whale [Schmidt-Nielsen
(1972)].

x = 0 x = L

artery

vein

T  (x)a

T  (x)v

The temperatures of the arterial and venous blood are gov-
erned by equations similar to Eqs. 5.27:

Ta = c1 + (c2 − c1)ax,

Tv = c2 + (c2 − c1)ax.

Assume that the arterial blood at x = 0 is at the warm
temperature of the whale’s body, Tw. The arterial blood at
x = L enters the capillaries at temperature Ta(L) and is
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cooled to the temperature of the surrounding ocean water,
Tc, by the time it enters the vein at x = L.

(a) Determine c1 and c2 in terms of Tw, Tc, a, and L.
(b) Plot Ta(x) and Tv(x) for Tw = 37 ◦C, Tc = 7 ◦C,

a = 1mm−1, and L = 3mm .
(c) The loss of heat from the body to the surroundings

is proportional to ∆T = Ta(L) − Tc. Find an expression
for ∆T . What does ∆T reduce to if aL � 1? if aL � 1?
Interpret these results physically. To minimize heat loss
to the ocean should aL be large or small?

(d) The energy the body must supply to heat the return-
ing venous blood is proportional to ∆T ′ = Tw − Tv(0).
Find an expression for ∆T ′.

Section 5.9

Problem 18 Derive Eqs. 5.44a and 5.44b.

Problem 19 Show that Eq. 5.51 gives C(z) = const
when λ = 0 (pure solvent drag) and gives dC/dz = const
when λ → ∞ (pure diffusion).

Problem 20 Obtain expressions for Js when λ = 0 and
λ → ∞.

Problem 21 Show that for very large pores when σ = 0
the parameter x = ∆Z/λ = Jv/ωRT depends only on
pore radius, solute particle radius, pressure difference and
temperature, and not on viscosity, the number of pores per
unit area, or the membrane thickness.

Problem 22 When C ′
s = 0, what are the limiting values

of Cs as x → 0?as x → ∞?

Problem 23 (a) Write Js in terms of Cs, C ′
s, Jv and x.

(b) Specialize to the case C ′
s = 0.

Problem 24 (a) Find the ratio (1−σ)CsJv/[ωRT (Cs−
C ′

s)] in terms of x, Cs, and C ′
s.

(b) Specialize to the case C ′
s = 0 and discuss limiting

values for small and large x.

Problem 25 (a) Show that

Js = ωRT

(
Cs

xex

ex − 1
− C ′

s

x

ex − 1

)

where x = Jv(1 − σ)/ωRT .
(b) Discuss the special case C ′

s = 0 in the limits x → 0
and x→ ∞.

(c) From the data shown, estimate Lp and ωRT . The
data are for the transport of radioactive water with a con-
centration of 1015 molecules m−3 on one side of the mem-
brane and zero on the other.

Problem 26 Consider the following cases for transport
of water through a membrane.

(a) Water flows by bulk flow through the membrane
with ∆p = 0. There is an impermeant solute (σ = 1) on
the right with concentration Cbig and zero concentration
on the left. Find the particle fluence rate of water in terms
of Lp.

(b) There is no volume flow through the membrane
(Jv = 0). Some of the water molecules on the left are
tagged with radioactive hydrogen (tritium). The concen-
tration of tagged water molecules is Cs on the left and 0
on the right. Find the particle fluence rate of tagged water
in terms of Lp and ωRT .

(c) There is volume flow, as in case (a), and there are
also tagged water molecules on the left. Find the particle
fluence rate of tagged water in terms of Lp and ωRT .

(d) Restate the answers in terms of the parameters of a
collection of n pores per unit area of radius Rp and length
∆Z.

(e) Estimate the value of x for part (c) if Rp = 10−8

m and cbig = cs =0.1 mol 1−1.

Problem 27 Construct diagrams analogous to Fig. 5.17
(a) when the total pressure is the same on both sides and
π′ = 0 and (b) when (p − σπ) < p′ and π′ = 0.

Problem 28 Consider the case of water permeability
shown in Fig. 5.1(c). Water and solute molecules move
through the membrane in the same way. They “dissolve”
from solution into the membrane. Assume that the con-
centration of water molecules just inside the membrane
is proportional to the pressure just outside: C = αp. The
membrane has thickness ∆Z and the diffusion constant
for water in the membrane material is D. Under steady-
state conditions, derive an expression for Lp.

Problem 29 Consider the case in which solute moves
along a tube by a combination of diffusion and solvent
drag. Ignore radial diffusion within the tube, but assume
that solute is moving out through the walls so that js

is changing with position in the tube. In particular, the
number of solute particles passing out through the wall
in length dz in time dt is CA2πRp dz dt, where A is re-
lated to the permeability of the wall. Consider a case in
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which C does not change with time, but depends only on
position along the tube.

(a) Write down the conservation equation for an ele-
ment of the tube and show that

−∂j

∂z
− 2AC

Rp
= 0.

(b) Combine the results of part (a) with Eq. 5.45a and
show that C(z) must satisfy the differential equation

∂2C

∂z2
− jvf

D

∂C

∂z
− 2A

DRp
C = 0.

Show that this equation will be satisfied if the concen-
tration decreases exponentially along the tube as C(z) =
C0e

−αz, where

α =
jvf

2D



−1 +

(

1 +
8AD

Rpj
2
vf2

)1/2


 .

Problem 30 The volume of a water molecule is Vw and
the volume of a solute molecule is Vs. Define a new quan-
tity Jw that is the number of water molecules per unit area
per second passing through the membrane. What is Jw in
terms of Jv and Js?
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6
Impulses in Nerve and Muscle Cells

A nerve cell conducts an electrochemical impulse be-
cause of changes that take place in the cell membrane.
These changes allow movement of ions through the mem-
brane, setting up currents that flow through the mem-
brane and along the cell. Similar impulses travel along
muscle cells before they contract. This chapter reviews
the basic properties of electric fields and currents that
are needed to understand the propagation of the nerve-
or muscle-cell impulse.

Section 6.1 introduces the physiology of nerve conduc-
tion. The next eight sections develop the electrostatics
and the physics of current flow needed to understand how
the action potential propagates along the cell.

The next sections deal with the charge distribution on
a resting cell membrane (Sec. 6.10) and the cable model
of the axon (Sec. 6.11). If the membrane properties do
not change as the voltage across the membrane changes,
this leads to electrotonus or passive spread (Sec. 6.12). If
the membrane properties do change, a signal can prop-
agate without change of shape. Section 6.13 tells how
Hodgkin and Huxley developed equations to describe the
membrane changes, and Secs. 6.14 and 6.15 apply their
results to the propagation of a nerve impulse. The chap-
ter to this point forms an integrated story of conduction
in an unmyelinated axon.

Section 6.16 considers saltatory conduction: the “jump-
ing” of an impulse from node to node in a myelinated
fiber. Section 6.17 examines the capacitance of a bilayer
membrane that has layers with different properties. Sec-
tion 6.18 shows how minor alterations in the membrane
properties can transform the Hodgkin–Huxley model to
one that displays repetitive electrical activity.

Section 6.19 shows how tabulated solutions to the elec-
trical capacitance of conductors in different geometries
can be used to solve diffusion problems with similar geo-
metric configurations.

6.1 Physiology of Nerve and Muscle
Cells

A nerve1 consists of many parallel, independent signal
paths, each of which is a nerve cell or fiber. Each cell
transmits signals in only one direction; separate cells
carry signals to or from the brain. Each cell has an input
end (dendrites), a cell body, a long conducting portion
or axon, and an output end. It is the ends that give the
cell its unidirectional character. The input end may be a
transducer (stretch receptor, temperature receptor, etc.)
or a junction (synapse) with another cell. A threshold
mechanism is built into the input end; when an input
signal exceeding a certain level is received, the nerve fires
and an impulse or action potential of fixed size and dura-
tion travels down the axon. There may be several inputs
that can either aid or inhibit each other, depending on
the nature of the synapses.

Muscle cells are also long and cylindrical. An electrical
impulse travels along a muscle cell to initiate its contrac-
tion. This chapter concentrates on the propagation of the
action potential in a nerve cell, but the discussion can be
regarded as a model for what happens in muscle cells as
well.

The axon transmits the impulse without change of
shape. The axon can be more than a meter in length,
extending from the brain to a synapse low in the spinal
cord or from the spinal cord to a finger or toe. Bundles
of axons constitute a nerve. The output end branches out
in fine nerve endings, which appear to be separated by a
gap from the next nerve or muscle cell that they drive.

1A good discussion of the properties of nerves and the Hodgkin–
Huxley experiments is found in Katz (1966). More modern descrip-
tions of nerves and nerve conduction are found in many books, such
as Patton et al. (1989).
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FIGURE 6.1. A typical nerve impulse or action potential, plot-
ted as a function of time.

The long cylindrical axon has properties that are in
some ways similar to those of an electric cable. Its diam-
eter may range from less than one micrometer (1 µm) to
as much as 1mm for the giant axon of a squid; in hu-
mans the upper limit is about 20 µm. Pulses travel along
it with speeds ranging from 0.6 to 100 m s−1, depending,
among other things, on the diameter of the axon. The
axon core may be surrounded by either a membrane (for
an unmyelinated fiber) or a much thicker sheath of fatty
material (myelin) that is wound on like tape. A myeli-
nated fiber has its sheath interrupted at intervals and
replaced by a short segment of membrane similar to that
on an unmyelinated fiber. These interruptions are called
nodes of Ranvier . A typical human nerve might contain
twice as many unmyelinated fibers as myelinated. We will
see in Sec. 6.16 that the myelin gives a faster impulse con-
duction speed for a given axon radius. Myelinated fibers
conduct motor information; unmyelinated fibers conduct
information such as temperature, for which speed is not
important. A typical unmyelinated axon might have a ra-
dius of 0.7 µm with a membrane thickness of 5–10 nm.
Myelinated fibers have a radius of up to 10 µm, with
nodes spaced every 1–2 mm. We will find later that the
spacing of the nodes is about 140 times the inner radius of
the fiber, a fact that is quite important in the relationship
between conduction speed and fiber radius.

A microelectrode inserted inside a resting axon shows
an electrical potential that is about 70 mV less than out-
side the cell. (We will define electrical potential difference
in Sec. 6.4.) A typical nerve impulse or action potential
or spike in an unmyelinated axon is shown as a function
of time in Fig. 6.1. As the impulse passes by the elec-
trode, the potential rises in a millisecond or less to about
+40 mV. The potential then falls to about −90 mV and
then recovers slowly to its resting value of −70 mV. The
membrane is said to depolarize and then repolarize.

The history of recording the action potential has been
described by Geddes (2000). The action potential was
first measured by Helmholtz around 1850. The measure-

FIGURE 6.2. The response of a mechanical receptor in the
cornea to an applied force. (a) The impulses recorded on
the surface of the nerve bundle. (b) The applied force. Im-
pulses occur while the force is applied. From B. J. Kane,
C. W. Storment, S. W. Crowder, D. L. Tanelian, and G.
T. A. Kovacs. Force-sensing microprobe for precise stimula-
tion of mechanoreceptive tissues. IEEE Trans. Biomed. Eng.
42(8):745–750. c© 1995 IEEE. Reprinted by permission.

ment technology steadily improved, culminating in the
use of a microelectrode inserted by Hodgkin and Huxley
(1939) into the cut end of the giant axon of the squid, to
record the action potential directly.

The information sent along a nerve fiber is coded in the
repetition rate of these pulses, all of which are the same
shape. Figure 6.2 shows the response of a low-threshold
mechanoreceptor in the cornea to a mechanical stimulus.
The heavy curve in the bottom panel shows the applied
force, and the upper panel shows the impulses.

Comparison of the intracellular fluid or axoplasm with
the extracellular fluid surrounding each axon shows an
excess of potassium and a deficit of sodium and chlo-
ride ions within the cell, as shown in Fig. 6.3. The re-
generative action that produces the sudden changes of
membrane potential is caused by changing permeability
of the membrane to ions—primarily sodium and potas-
sium. These changes are discussed in Secs. 6.13 and 6.14.

The axon can be removed from the rest of the cell and
it will still conduct nerve impulses. The speed and shape
of the action potential depend on the membrane and the
concentration of ions inside and outside the cell. The ax-
oplasm has been squeezed out of squid giant axons and
replaced by an electrolyte solution without altering ap-
preciably the propagation of the impulses—for a while,
until the ion concentrations change appreciably. The ax-
oplasm does contain chemicals essential to the long-term
metabolic requirements of the cell and to maintaining the
ion concentrations.

At the end of a nerve cell the signal passes to another
nerve cell or to a muscle cell across a synapse or junc-
tion. A few synapses in mammals are electrical; most are
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FIGURE 6.3. Ion concentrations in a typical mammalian
nerve and in the extracellular fluid surrounding the nerve.
Concentrations are in mmol l−1; co/ci is the concentration
ratio. The membrane thickness is b.

chemical [Nolte (2002), p. 193, Guyton and Hall (2000,
Chapter 45)]. In electrical synapses, channels connect the
interior of one cell with the next. In the chemical case a
neurotransmitter chemical is secreted by the first cell. It
crosses the synaptic cleft (about 50 nm) and enters the
next cell.

At the neuromuscular junction the transmitter is
acetylcholine (ACh). ACh increases the permeability of
nearby muscle to sodium, which then enters and depo-
larizes the muscle membrane. The process is quantized.2

Packets of acetylcholine of definite size are liberated [Katz
(1966, Chapter 9); Patton et al. (1989, Chapter 6)].

There are a number of neurotransmitters in the central
nervous system. Glutamate is a common excitatory neu-
rotransmitter in the central nervous system. It increases
the membrane permeability to sodium ions, which en-
hances depolarization. Glycine, on the other hand, is an
inhibitory neurotransmitter. It causes the interior poten-
tial becomes more negative (hyperpolarized) and firing is
inhibited. A number of other chemical mediators such as
norepinephrine, epinephrine, dopamine, serotonin, hista-
mine, aspartate, and gamma-aminobutyric acid, are also
found in the nervous system [Guyton and Hall (2000,
Chapter 45)].

If the potential becomes high enough (that is, more
positive or less negative), the regenerative action of the
membrane takes over, and the cell initiates an impulse. If
the input end of the cell acts as a transducer, the interior
potential rises when the cell is stimulated. If the input is
from another nerve, the signal may cause the potential to
increase by a subthreshold amount so that two or more
stimuli must be received simultaneously to cause firing,
or it may decrease the potential and inhibit stimulation
by another nerve at the synapse. This makes possible the
logic network that comprises the central nervous system.

2See Problem 3 in Appendix J.

FIGURE 6.4. Force F is exerted by charge q1 on charge q2.
It points along a line between them. An equal and opposite
force −F is exerted by q2 on q1.

6.2 Coulomb’s Law, Superposition,
and the Electric Field

Coulomb’s law relates the electrical force between two
objects to their electrical charge and separation. For our
purpose, Coulomb’s law is a summary of many experi-
ments. If two objects have electrical charge q1 and q2, re-
spectively, and are separated by a distance r, then there
is a force between them, the magnitude of which is given
by

|F| =
(

1
4πε0

)
q1q2

r2
. (6.1)

When the charge is measured in coulombs (C), F in new-
tons (N), and r in meters (m), the constant has the value

1
4πε0

≈ 9 × 109 N m2 C−2 (6.2)

to an accuracy of 0.1%.3 The direction of the force is
along the line between the two charges as shown in Fig.
6.4. If the charges are both positive or both negative, the
force is repulsive, which is consistent with assigning a pos-
itive sign to F. If one is positive and the other negative,
then the force is attractive, and F has a negative value.
Force F is exerted by charge q1 on charge q2. The force
exerted by q2 on q1 has the same magnitude but points in
the opposite direction. The forces on both charges act to
separate them if they have the same sign and to attract
them if the signs are opposite.

If two or more charges exert a force on the particu-
lar charge being considered, the total force is found by
applying Coulomb’s law to each charge (paired with the
one on which we want to find the force) and adding the
vector forces that are so calculated. An example of this is
shown in Fig. 6.5. Charges q1, q2, and q3 are +1.0×10−6,
−2.0 × 10−6, and +3.0 × 10−6 C, respectively. The mag-
nitude of the force that q1 exerts on q3 is

F1 on 3 =
(9 × 109)(1 × 10−6)(3 × 10−6)

(2 × 10−2)2
= 67.5 N.

3The quantity 1/4πε0 has been assigned the exact value
8.987551787368176 4 × 109. This is because in 1983 the velocity
of light, c, was defined to be exactly 299, 792, 458 m s−1 and
1/4πε0 ≡ 10−7c2.
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FIGURE 6.5. An example of applying Coulomb’s law and
adding forces on q3 due to charges q1 and q2. (a) The arrange-
ment of charges. (b) The forces on q3.

Similarly, the force exerted by q2 on q3 is

F2 on 3 =
(9 × 109)(−2 × 10−6)(3 × 10−6)

(6 × 10−2)2
= −15 N.

The minus sign means that the force is attractive, that is,
toward q2. The two forces are shown in Fig. 6.5b, along
with their vector sum. The sum can be found by compo-
nents as in Chap. 1. The result is 78.8 N at an angle of
7.7 ◦ clockwise from the direction of F1 on 3.

If a collection of charges causes a force to act on
some other charge (a “test charge”) located somewhere
in space, we say that the collection of charges produces
an electric field at that point in space. One can think, for
example, of charge q1 producing an electric field vector,
of magnitude

|E1| =
1

4πε0

q1

r2
(6.3)

pointing radially away from q1 (if q1 is positive) or radi-
ally toward q1 (if q1 is negative). The force on test charge
q2 placed at the observing point is then

F = q2E1. (6.4)

6.3 Gauss’s Law

It is possible to derive a theorem about the electric
field from a collection of charges, known as Gauss’s law.
Rather than derive it from Coulomb’s law, we will state
it and show that Coulomb’s law can be derived from it.
Then we will consider some examples of its use.

Divide up any closed surface into elements of surface
area, such as ∆S in Fig. 6.6. For each element ∆S, cal-
culate the component of E normal to the surface, En,

FIGURE 6.6. Calculating the integral of the normal compo-
nent of E through a surface.

and multiply it by the magnitude of the surface area ∆S.
Add these quantities for the entire closed surface, calling
them positive if the normal component of E points out-
ward and negative if E points inward. Gauss’s law says
that the resulting sum is equal to the total charge inside
the surface, divided by ε0. In symbols,4

∫∫
En dS =

q

ε0
=

4πq

4πε0
. (6.5)

This surface integral is exactly the same as the flux of
the continuity equation, Eq. 4.4. It is in fact called the
electric field flux.5

While Gauss’s law is always true, it is not always useful.
It is helpful only in cases where E is constant over the
entire surface of integration, or when the surface can be
divided into smaller surfaces, on each of which En can
be argued to be constant or zero. One of the few cases in
which Gauss’s law is useful to calculate E is the case of a
point charge, and another is related to the cell membrane.
In each case, the symmetry of the problem allows the
surface of integration to be specified so that En is either
constant or zero.

The first example is a point charge in empty space.
Since such a charge has no preferred orientation (it is a
point), and since there is nothing else around to specify a
preferred direction in space, the electric field must point
radially toward or away from the charge and must depend
only on distance from the charge. Therefore, if the surface
of integration is a sphere centered on the charge, En is the
same everywhere on the sphere. It can be taken outside
the integral in Eq. 6.5 to give

∫∫
En dS = E

∫∫
dS.

The integral of dS over the entire surface of the sphere is
just the surface area of the sphere, 4πr2 (see Appendix
L). Gauss’s law gives

4πr2E =
q

ε0

4Some books use one integral sign in this equation and oth-
ers use two. Strictly speaking the integral over a surface is a two-
dimensional integral.

5Additional discussion and examples can be found in Schey
(1997).
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FIGURE 6.7. Gauss’s law is used to calculate the electric field
from an infinite line of charge. The Gaussian surface is a seg-
ment of a cylinder concentric with the line of charge.

or
E =

q

4πε0r2
.

Gauss’s law implies Coulomb’s law for the case of a point
charge.

If the charge in this problem is not a point charge,
nothing changes in the argument as long as the charge
distribution is spherically symmetric. The electric field
at a distance r from the center of the distribution is the
same as if all the charge within the sphere of radius r
were located at the center of the sphere.

Next, consider a problem with cylindrical symmetry
rather than spherical symmetry. An example is an infi-
nitely long line of charge. For a segment of the line of
charge of length L, the amount of charge is proportional
to L, q = λL, where λ is the linear charge density in units
C m−1. Symmetry shows that E must point radially out-
ward (or inward) and be perpendicular to the line. There-
fore if the Gaussian surface is a cylinder of length L and
radius r, the axis of which is the line of charge, one can
argue that on the end caps En = 0, while on the wrap-
around surface of the cylinder En = |E|. This is shown in
Fig. 6.7. The total integral is therefore the integral for the
wraparound surface, which is E

∫∫
dS. The surface area

of the cylinder is its circumference (2πr) times its length
(L). Therefore Gauss’s law becomes 2πrLE = λL/ε0, or

E =
λ

2πε0r
. (6.6)

Since the constant 1/4πε0 is so easily remembered, it is
convenient to write this as

E =
1

4πε0

2λ

r
. (6.7)

Consider next an infinite sheet of charge, with charge
per unit area σ C m−2. The symmetry of the situation
requires that E be perpendicular to the sheet. To see why,
suppose that E is not perpendicular to the sheet. I stand
on the sheet looking in such a direction that E points
diagonally off to my left. If I turn around in place, I see
E pointing diagonally off to my right. Since the charge

FIGURE 6.8. A portion of an infinite sheet of charge and the
appropriate Gaussian surface.

per unit area is constant and extends an infinite distance
in every direction, the charge distribution looks exactly
the same as it did before I turned around. The only way
to resolve this contradiction (that E changed direction
while the charge distribution did not change) is to have
E perpendicular to the sheet.

The Gaussian surface can be a cylinder with end caps
of area S and sides perpendicular to the sheet. Let the
end caps be a distance a from the charge sheet on one side
and b from the charge sheet on the other, as in Fig. 6.8.
Since there is no component of E across the sides of the
cylinder, changing b or a does not change the total flux
through the surface. Since the charge inside the volume
does not change, E must be independent of distance from
the sheet of charge. (This is true only because the charge
sheet is infinite.) By symmetry, the flux through each
end cap is the same, as may be seen from the cross sec-
tion of the surface in Fig. 6.9. The total flux is therefore
2ES, while the charge within the volume is σS. There-
fore, Gauss’s law gives

E =
σ

2ε0
=

1
4πε0

2πσ. (6.8)

There is, of course, something quite unreal about a
sheet of charge extending to infinity. However, it is a good
approximation for an observation point close to a finite
sheet of charge. If the sheet is limited in extent and the
observation point is far away, the distance to all parts of
the sheet from the observation point is nearly the same,
and the charge sheet may be regarded as a point charge.
If one considers a rectangular sheet of charge lying in
the xy plane of width 2c and length 2b, as shown in Fig.
6.10, it is possible to calculate exactly the E field along
the z axis. By symmetry, the field points along the z
axis. The surface charge density is σ. The distance is r =
(
x2 + y2 + z2

)1/2. The component of E parallel to the z
axis is E cos θ = Ez/r. Therefore, if the charge in element
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FIGURE 6.9. A side view of the Gaussian surface in Fig. 6.8.

z

 2c 

2b

FIGURE 6.10. A rectangular sheet of charge. The electric field
along the z axis is shown in Fig. 6.11 for 2b = 200 m and
2c = 2 m.

of area dx dy is σ dx dy, the field is

E =
σz

4πε0

∫ b

−b

∫ c

−c

(x2 + y2 + z2)−3/2 dxdy. (6.9)

This integral can be evaluated (see Problem 7). The result
is

E =
4σ

4πε0
tan−1

(
bc

z
√

c2 + b2 + z2

)
. (6.10)

This is plotted in Fig. 6.11 for c = 1 m, b = 100 m. Close
to the sheet (z � 1) the field is constant, as it is for an
infinite sheet of charge. Far away compared to 1 m but
close compared to 100 m, the field is proportional to 1/r
as with a line charge. Far away compared to 100 m, the
field is proportional to 1/r2, as from a point charge.

As a final example, consider two infinite sheets of
charge, one with density −σ and the other with density
+σ, as shown in Fig. 6.12. This can be solved by using
the result for a single sheet of charge, Eq. 6.8, and the
principle of superposition. Consider first the region I of
Fig. 6.12. There, the negative charge will give an E field
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FIGURE 6.11. A log-log plot of the electric field from a sheet
of charge of width 2 m and length 200 m, measured along the
perpendicular bisector of the sheet (Fig. 6.10). Much closer
than 1 m, the field is constant. Around 10 m the field is pro-
portional to 1/r, the field from a line charge. Farther away
than 100 m the field is proportional to 1/r2, the field from a
point charge.

that has magnitude σ/2ε0 and points toward the right,
while the positive sheet of charge will give an E field of
σ/2ε0 pointing to the left. The total E field in region I is
zero. A similar argument can be made in region III with
the field of the negative charge pointing left and that of
the positive charge pointing to the right. Again the sum
is zero. In region II, however, the two E fields point in
the same direction, and the total field is

E =
σ

ε0
=

1
4πε0

4πσ. (6.11)

Notice the factor of 2 difference between Eqs. 6.8 and
6.11. Another way to explain the difference is that there
is no E in region III, so that a Gaussian surface can be
constructed as shown in Fig. 6.13. Then the flux is zero
through every surface except cap A. The charge within

FIGURE 6.12. The electric field due to two infinite sheets of
charge of opposite sign.
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FIGURE 6.13. A Gaussian surface to determine the electric
field between two sheets of charge.

the volume is σS, while the flux through cap A is ES.
Therefore, E = σ/ε0.

Within a cell membrane of 6 nm thickness surround-
ing a cell of radius 5 µm or 5,000 nm, the electric field
can be calculated by making the approximation that the
sheets of charge are infinite. Suppose that the electric
field within the membrane is 1.17× 107 N C−1. (We will
learn how to determine this value later.) From Eq. 6.11
the charge density is

σ =
E

4π(1/4πε0)
=

1.17 × 107

4π(9 × 109)
= 1.03 × 10−4 C m−2.

This tells us something about the makeup of the cell.
The membrane is in contact with atoms, each of which
has a diameter of about 10−10 m. Therefore, there are
approximately 1020 atoms (in water molecules, as ions,
etc.) in contact with one square meter of the membrane
surface.

Suppose that the excess charge that causes the elec-
tric field in the membrane resides in these atoms and
that each atom is either neutral or a monovalent ion. The
number of atoms in the square meter which are charged
is

1.03 × 10−4 C m−2

1.6 × 10−19 C atom−1 = 6.4 × 1014 atoms m−2.

The fraction of atoms that are charged is (6.4 ×
1014)/(1020) = 6.4× 10−6. Roughly 1 in every 105 atoms
in contact with the membrane carries an unneutralized
charge. (This result is modified by partial neutralization
of this external charge by charge movement within the
membrane. See Eq. 6.35.)

6.4 Potential Difference

It is often convenient to talk about the electrical poten-
tial difference, or voltage difference instead of the electric
field. The potential is related to the difference in energy
of a charge when it is at different points in space. Suppose

FIGURE 6.14. A charge q is moved from A to B, a distance
dx in the x direction. External force Fext keeps the charge
from being accelerated.

that an electric field E of magnitude Ex points along the
x axis. A positive charge is located at point A. A force
Fext must be applied to the charge by something besides
the electric field, or else the charge will be accelerated
to the right by the force qEx. The charge can be moved
slowly to the right at a constant speed so that its kinetic
energy remains fixed, if the external force is always to the
left and its magnitude is adjusted so that Fext = −qEx.

This situation is shown in Fig. 6.14. The external force
does work on the charge. One can either say that the total
work done on the charge by both forces is equal to zero,
or one can ignore the work done by the electric force and
invent the idea of potential energy—energy of position—
due to the electric field. The increase in potential energy6

as the charge moves a distance dx is

dU = Fext dx = −qEx dx.

If Ex varies with position, the total change in potential
energy when the particle is moved without acceleration
from A to B is given by

∆U = U(B) − U(A) = −q

∫ B

A

Ex(x) dx. (6.12)

For example, in a constant electric field of 1.4 × 107 N
C−1, a particle with charge q = 1.6×10−19 C experiences
an electric force equal to 2.24× 10−12 N. If it is moved 5
nm along the x axis, the electric force does 1.12 × 10−20

J of work on it, increasing its kinetic energy. To prevent
this increase in kinetic energy, Fext must be applied. The
external force does work −1.12 × 10−20 J. We can either
say that the total work done by both forces is zero or
we can ignore the electrical force and say that the exter-
nal force changed the potential energy of the particle by
−1.12 × 10−20 J as the particle moved from A to B.

If the displacement of the particle is perpendicular to
the direction of the electric field, it is also perpendicular
to the direction of Fext. Therefore neither force does work
on the particle and the potential energy is unchanged.

6In earlier chapters the potential energy was called Ep, and the
total energy was called U . For the next few pages U will be used
for potential energy, to avoid confusion with a component of the
electric field.
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This fact can be used to prove [Halliday et al. (1992, p.
652)] that in three dimensions,

∆U = U(B) − U(A) (6.13)

= −q

(∫ B

A

Ex dx +
∫ B

A

Ey dy +
∫ B

A

Ez dz

)

.

Using the notation of a “dot” or scalar product of two
vectors (Sec. 1.8), this can also be written as a line inte-
gral along any path from A to B:

∆U = −q

∫ B

A

E·dr. (6.14)

It is easier to evaluate the integral along some paths than
along others.

The potential energy difference is measured in joules.
It is always proportional to the charge of the particle that
is moved in the electric field. It is convenient to define the
potential difference to be the potential energy difference
per unit charge. When the energy difference is in joules
and the charge is in coulombs, the ratio is J C−1, which
is called a volt (V):

∆v (V) =
∆U (J)
q (C)

. (6.15)

To move a charge of +3 C from point A to point B where
the potential is 5 V higher requires that 15 J work be done
on the charge. If the charge is then allowed to move back
to point A under the influence of only the electric field, its
kinetic energy increases by 15 J as the potential energy
decreases by the same amount.

This definition of potential, when combined with the
definition of potential energy, Eq. 6.12, gives

∆v = −
∫ B

A

Ex dx

or
Ex = −∂v

∂x
. (6.16a)

That is, the component of the electric field in any direc-
tion is the negative of the rate of change of potential in
that direction. The units of E were seen earlier to be N
C−1 (from F = qE). Equation 6.16 shows that the units
of E are also V m−1. In three dimensions this relationship
becomes

E = − grad v = −∇v, (6.16b)

where grad is the gradient operation defined in Eq. 4.19.
Notice that only differences in potential energy and dif-

ferences in potential (or colloquially, differences in volt-
age) are meaningful. We can speak of the potential at a
point only if we have previously agreed that the poten-
tial at some other point will be called zero. Then we are
really speaking of the difference of potential between the
reference point and the point in question.

FIGURE 6.15. The electric field in and around an infinite
plane conductor carrying a charge on each surface.

In many cases, it is customary to define the potential
to be zero at infinity. Then the potential at point B is

v(B) = −
∫ B

∞
Ex dx.

If you try to apply this equation to the infinite line and
sheet of charge, you will discover that it does not work.
The reason is that you cannot get infinitely far away from
a charge distribution that extends to infinity.

6.5 Conductors

In some substances, such as metals or liquids contain-
ing ions, electric charges are free to move. When all mo-
tion of these charges has ceased and static equilibrium
exists, there is no net charge within the conductor. To
see why there is not, consider a small volume within the
conductor. If there were an electric field within that re-
gion, the charges there would experience an electric force.
Since they are free to move, this force would accelerate
them. This force will vanish only when the electric field
within the conductor is zero. Therefore, in the static case
the electric field within a conductor is zero. Now apply
Gauss’s law to a small volume within the conductor. Since
the electric field in the conductor is zero everywhere, the
flux through the Gaussian surface is zero, and the net
charge within the volume is zero.

At the surface of the conductor, there may well be
charge that gives rise to electric fields outside the con-
ductor. Consider, for example, an infinite sheet of metal
that has positive charge on it. The positive charge will
distribute itself as shown in Fig. 6.15, and either super-
position or Gauss’s law may be used to show that the
electric field outside the conductor is σ/ε0.

Because the electric field is zero throughout a conduc-
tor in equilibrium, no work is required to move a charge
from one point to another. All parts of the conductor are
at the same potential. This statement is true only if the
charges are not moving. We will see later that if they are
(that is, if a current is flowing), then the electric field in
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the conductor is not zero and the potential in the con-
ductor is not the same everywhere.

6.6 Capacitance

Suppose that two conductors are fixed in space, with
charge +Q on one and −Q on the other. The potential
difference v between the conductors is proportional to Q.
The proportionality constant depends on the geometrical
arrangement of the conductors. When the proportionality
is written as

Q = Cv (6.17)

the proportionality constant C is called the capacitance.
The units of capacitance are C V−1 or farads (F).

As an example of capacitance, consider two parallel
conducting plates side by side. Let the area of each be S
and the separation be b. The charge layers of Fig. 6.13
might be charge on the inner surface of each conductor.
The total charge on each plate has magnitude σS. The
electric field between the plates is σ/ε0 and the potential
difference is v = Eb = σb/ε0. (Note that the potential
difference is proportional to the charge per unit area.)
The capacitance is

C =
Q

v
=

σSε0
σb

=
ε0S

b
. (6.18)

If the plates are separated further with a fixed charge on
them, the potential difference increases and the capaci-
tance is decreased. Increasing the area and charge of the
plates with fixed σ and fixed b increases Q and C but
not v.

6.7 Dielectrics

Charges rearrange themselves so that there is no static
electric field within a conductor. In a dielectric, charges
are not free to move far enough to completely cancel the
effect of any external electric field, but they can move far
enough to cause a partial cancellation.7

The partial neutralization of the external electric field
can be understood from the following model. Consider
a dielectric in the absence of external fields. The elec-
tron distribution of each atom is centered on the nucleus
so that there is no electric field (at least when we aver-
age over a region containing many atoms). This is shown
schematically in Fig. 6.16(a), in which each + sign repre-
sents a nucleus and each circle represents a distribution
of negative charge in an atom.

7In some materials an electric field applied along one direction
can cause charge displacement in a different direction. This book
deals only with cases in which the induced electric field is parallel
to the applied electric field.
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FIGURE 6.16. The polarization of a dielectric by an external
electric field. (a) Atoms in the absence of an external field. (b)
An external electric field causes a shift of each electron cloud
relative to the positively charged nucleus. (c) There is a net
buildup of positive charge at the left edge of the dielectric and
of negative charge at the right edge. (d) The total electric field
within the dielectric is the sum of the external electric field
and the polarization electric field induced in the dielectric.

Figure 6.16(b) shows some external charges produc-
ing an electric field. If the dielectric is introduced in the
space where this electric field exists, the negative electron
clouds are shifted with respect to the nuclei, as shown in
Fig. 6.16(b). The result is a polarization electric field Ep,
which is in the opposite direction to the external electric
field. The total field within the dielectric is the vector
sum of these two fields:8

Etot = Eext + Ep. (6.19)

8In most textbooks, it is customary to define the polarization

by P = −Ep or P = −ε0Ep. We have not done that in order to

make the phenomenon easier to understand.
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FIGURE 6.17. The polarization electric field reduces the elec-
tric field between the plates. The conducting plates could be
extracellular and intracellular fluid, and the dielectric could
be the cell membrane.

In simple materials all three vectors are parallel and Ep

is proportional to Etot. Then we can define the electric
susceptibility χ by the equation

Ep = −χEtot.

This can be combined with the previous equation to get

Ep = − χ

1 + χ
Eext.

The polarization electric field is thus proportional to both
the total electric field (proportionality constant −χ) and
the external field [proportionality constant −χ/(1 + χ)].
The former relationship is more fundamental, since the
field displacing charges in one atom is the total field, due
to both external charges and to the charges in neighboring
atoms.

The total field within the dielectric is

Etot = Eext −
χ

1 + χ
Eext =

1
1 + χ

Eext =
1
κ

Eext. (6.20)

The factor κ = 1 + χ is called the dielectric constant of
the dielectric. The electric field within the dielectric is
reduced by the factor 1/κ from that which would exist
without the dielectric. The dielectric constant for typical
nerve membranes9 is about 7. The dielectric constant of
water is quite high (around 80) because the water mole-
cules can easily reorient their charged ends.

The relationship between the applied field, the polar-
ization field, and the total field can be seen in the follow-
ing example. The electric field between two parallel sheets
of charge of density +σ and −σ per unit area has mag-
nitude Eext = σ/ε0. If there is dielectric between them
(such as a cell membrane) and if the polarization in the

9This value is high compared to the dielectric constant for a pure
lipid, which is between 2 and 3. See the discussion in Sec. 6.17.

dielectric is uniform, then there is effectively a charge
±σ′ induced on the surface of the dielectric that par-
tially neutralizes the external charges. This is shown in
Fig. 6.17. The total electric field within the membrane is
Etot = |Eext + Ep| = σ/ε0 − σ′/ε0 = σnet /ε0 = Eext/κ.

To recapitulate, in Fig. 6.17 Eext is σ/ε0 and depends
on the external charge distribution; the potential differ-
ence between the plates depends on the total field, and
its magnitude is Etot times the plate separation.

It is customary to refer to two different kinds of charge.
The free charge is the charge that we bring into a re-
gion. We have some control over it. The bound charge
is the charge induced in the dielectric by the movement
or distortion of atoms and molecules in the dielectric in
response to the free charge that has been introduced.
Gauss’s law can be written either in terms of the total
charge (free plus bound)

∫∫
En dS =

qtot

ε0
=

qfree + qbound

ε0
(6.21a)

or in terms only of the free charge
∫∫

κEn dS =
qfree

ε0
. (6.21b)

The dielectric constant is placed inside the integral sign
because the Gaussian surface could pass through materi-
als with different values of the dielectric constant.

As another example of the effect of a dielectric, consider
a spherical ion of radius a in which all the charge resides
on the surface. In a vacuum, the potential at distance r
is v = q/4πε0r, so on the surface of the ion, the potential
is q/4πε0a. The work required to bring to the surface an
additional charge dq is dW = vdq = qdq/4πε0a. The total
work required to place charge Q on the ion is therefore

W =
∫

dW =
1

4πε0a

∫ Q

0

q dq =
1
2Q2

4πε0a
.

If the sphere is immersed in a uniform dielectric the total
electric field and therefore the potential is reduced by a
factor κ. The energy required to assemble the ion is then

W =
1
2Q2

4πε0 κ a
. (6.22)

This is called the Born charging energy . For an ion of
radius 0.2 nm (200 pm) and Q = 1.6×10−19 C, the Born
charging energy in a vacuum is 5.8×10−19 J ion−1. Mul-
tiplying by Avogadro’s number gives 3.5 × 105 J mol−1.
Often in problems involving charges of a few times the
electronic charge, it is convenient to use the energy unit
electron volt: 1 eV= 1.6× 10−19 J. For this problem, the
Born charging energy is 3.6 eV ion−1.

If the ion is in a dielectric with κ = 2 (a lipid, for
example), the Born charging energy is reduced to 1.8 eV
ion−1. Water has a very high dielectric constant (about
80) because the water molecules look roughly like that
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FIGURE 6.18. A schematic diagram of a water molecule. The
hydrogen nuclei are 96.5 pm from the oxygen nucleus; the
included angle is about 104 ◦. The radius of each hydrogen
atom is about 120 pm; the radius of the oxygen atom is about
140 pm. The water molecule has a permanent electric dipole
moment.

in Fig. 6.18, and the molecules can easily align with an
applied electric field. The same ion in water has a Born
charging energy of 0.045 eV. At room temperature, the
Boltzmann factor for the energy required to create the ion
in vacuum is 3.32 × 10−61. In a lipid, it is 5.76 × 10−31,
and in water, it is 0.175. This explains why it is easy to
form ionic solutions in water but not in lipids.

6.8 Current and Ohm’s Law

In the electrostatic case, there are no moving charges and
no electric field within a conductor. When a current flows
in a conductor, charges are moving and there is an electric
field.

The electric current i in a wire is the amount of charge
per unit time passing a point on the wire. If the amount
of charge in time dt is dQ, the current is

i =
dQ

dt
. (6.23)

The units of the current are C s−1 or amperes (A) (some-
times called amps). The current density j (or jQ in the
notation of Chapter 5) is the current per unit area, i/S.
The units are C m−2 s−1 or A m−2. In an extended
medium, the current density is a vector j at each point
in the medium. The direction of j is the direction charge
is moving at that point.

If there is no electric field in the conductor, there is
no average motion of the charges. (There will be ran-
dom thermal motion, but it will be equally likely in every
direction. This random motion of charges is one cause
of “noise” in electrical circuits.) To have a current there
must be an electrical field in the conductor; this means
that there will be a potential difference between two
points in the conductor. If there is no potential differ-
ence between two points in the conductor, there is no
current. For the simple conductor of Fig. 6.19, the cur-
rent is found to be proportional to the voltage difference
between the ends of the conductor. The current is shown

FIGURE 6.19. A current flows in the wire as long as the bat-
tery or some other device maintains a potential difference be-
tween two points on the wire. The potential difference means
that there is an electric field within the wire. If the wire obeys
Ohm’s law, the current is proportional to the potential differ-
ence.

flowing from B to A. When v(B) is greater than v(A), v
is positive and the current is positive. When v is negative,
the current is in the other direction and is also negative.

For the wire of Fig. 6.19, the relationship between cur-
rent and voltage difference is linear. In that case, we can
write Ohm’s law :

i =
1
R

v = Gv (6.24a)

or
v = iR. (6.24b)

R is called the resistance of the conductor. Since the cur-
rent is measured in amps and the voltage in volts, its
units are V A−1 or ohms (Ω). The reciprocal of the resis-
tance is the conductance G. Its units are Ω−1 or siemens
(S).

Ohm’s law is not universal. It describes only cer-
tain types of conductors. Figure 6.20 shows the current–
voltage characteristics of several devices that have non-
linear behavior and that make modern electronic circuits
possible. They are shown here not for their own sake, but
to emphasize the limited validity of Ohm’s law. The nerve
cell membrane is not linear.

It is possible to write Ohm’s law in another form. Plac-
ing two identical wires in parallel in the circuit of Fig.
6.19 would cause twice as much current to flow (assum-
ing that the battery maintains the voltage difference at
the original level). The current density j remains constant
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FIGURE 6.20. Current–voltage relationships for some nonlin-
ear devices used in electronic circuits. (a) Diode. (b) Transis-
tor. (c) Tunnel diode. (d) Zener diode.

as the cross-sectional area of the wire is changed, when
the wire length and voltage difference are held fixed. Sim-
ilarly, to maintain the same current through a single wire
twice as long requires a voltage difference twice as great.
Therefore, it is voltage per unit length that determines
the current. In this spirit, Ohm’s law can be written as

j =
i

S
=

v(B) − v(A)
RS

.

If L is the length of the wire and x the position along it,
this can be written as

jx = − L

SR

v(x = L) − v(x = 0)
L

= − L

SR

∂v

∂x
, (6.25a)

jx = −σ
∂v

∂x
. (6.25b)

In three dimensions this alternative statement of Ohm’s
law becomes

j = σE. (6.26)

The σ in this equation10 is the electrical conductivity,
measured in (A m−2)/(V m−1) or S m−1. Its reciprocal
is the resistivity of the material, ρ. The units of resistivity
are Ω m. For a cylindrical conductor, the resistivity and
the resistance are related by

1
ρ

=
L

SR

10Note that σ has now been used for two things in this chap-
ter: surface charge per unit area and conductivity. This notation is
standard in the literature. You can tell from the context which is
meant. Similarly, the symbol ρ is used for charge per unit volume
and for resistivity (and for mass density in other chapters). These
double usages are found frequently in the literature.
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FIGURE 6.21. A resistor connected to a battery.

or
R = ρ

L

S
. (6.27)

This shows that making the conductor longer increases its
resistance, while increasing the cross-sectional area lowers
the resistance.

Suppose that an electric field acts on a charge moving
in a medium that obeys Ohm’s law. The electric field does
work on the charge, but the energy is continually trans-
ferred to the medium by collisions between the charge
and other particles in the medium. If a charge Q moves
to a lower potential, all the energy it gained is transferred
to heat. The rate of energy dissipation is the power

P = vi. (6.28)

The units of power are J s−1 or watts (W). For a material
that obeys Ohm’s law, Eq. 6.28 can be combined with
Ohm’s law to give

P = i2R (6.29)

or

P =
v2

R
. (6.30)

This type of energy loss has clinical significance. If a
patient contacts a source of very high voltage such as an
11, 000-V power line, the strong electric fields will cause
current to flow throughout the patient’s body or limb,
because j = σE. The resistive heating can be enough to
boil water within the tissues. If the limb is x rayed, the
steam bubbles will look very much like the bubbles that
appear in clostridium (gas gangrene) infections; if the x
ray is deferred a few days, it will be impossible to tell from
the x ray whether the bubbles are due to the electrical
injury or subsequent infection.

6.9 The Application of Ohm’s Law to
Simple Circuits

The ultimate goal of this chapter is to apply Ohm’s law
to the axon. Before doing that, however, it is worthwhile
to see how it can be applied to some simpler circuits in
which the current and voltage are not changing with time.

The simplest circuit is a resistance R connected across
a battery, as shown in Fig. 6.21. The battery voltage of
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6 V is the potential difference across the resistor. If the
resistance is 3 Ω, the current is i = v/R = 6/3 = 2 A.
The rate of heat production in the resistor is P = vi =
(6)(2) = 12 W. This could also have been calculated from
P = v2/R = 36/3, or P = i2R = (4)(3). A current of 2 A
means that every second 2 C of charge leave the positive
terminal of the battery and flow through the resistor.
When the charge arrives at the other end of the resistor,
it has lost 12 J of energy to heat. The 2 C then travel
through the battery back to the positive terminal, gaining
12 J from a chemical reaction within the battery.

This example has been stated as though the positive
charge moves. In a metallic conductor negative charges
(electrons) move from the negative terminal of the bat-
tery through the resistor to the positive terminal. In salt
water and most body fluids, both positive and negative
ions move. From a macroscopic point of view, we cannot
tell the difference between the transport of a charge −q
from point A to point B, and the transport of a charge
+q from point B to point A. Both processes make the
total charge at B less positive and the total charge at A
more positive by an amount q.

Two fundamental principles used in this discussion
have not been stated explicitly. The first is the conserva-
tion of electric charge: all charge that leaves the battery
passes through the resistor. The second is the conserva-
tion of energy : a charge that starts at some point in the
circuit and comes back to its starting point has neither
lost nor gained energy. (The energy gained by a charge
in the battery is equal to the energy lost by it in pass-
ing through the resistor.) These principles become less
obvious and more useful in a circuit that is more compli-
cated than the one considered above. They are known as
Kirchhoff’s laws.

In a more complicated circuit, Kirchhoff’s first law
(conservation of charge) takes the following form. Any
junction where the current can flow in different paths is
called a node. The algebraic sum of all the currents into
a node is zero. (By algebraic sum we mean that currents
into the node are positive, while currents leaving the node
are negative, or vice versa.) This ensures that no charge
will accumulate at the node.11

As an example of Kirchhoff’s first law, consider the
node in Fig. 6.22. Conservation of charge requires that
2 + 3 + i = 0 or i = −5 A. (In this case positive currents
flow into the node; the negative current means that 5 A
is flowing out of the node as current i.)

11More generally, the node could represent a conductor, such as
the plate of a capacitor, on which charge can accumulate. In that
case the charge Q changes with time:

dQ

dt
=
∑

(all currents into the node).

This statement is quite similar to the continuity equation of Sec.
4.1.

FIGURE 6.22. Conservation of charge means that current i is
−5 A.

FIGURE 6.23. A more complicated circuit, sometimes called
a voltage divider.

Kirchhoff’s second law was used implicitly in the ex-
ample above to say that the voltage across the resistor is
6 V. In general, Kirchhoff’s second law says that if one
goes around any closed path in a complicated circuit, the
total voltage change is zero.

Kirchhoff’s laws can be applied to show that the total
resistance of a set of resistors in series is

R = R1 + R2 + R3 + · · · .

This follows from the definition of resistance, the fact
that the same current flows in each resistor, and the total
potential difference across the set of resistors is the sum of
the potential difference across each one. Kirchhoff’s laws
can also be used to show that for a collection of resistors
in parallel, the total resistance is given by

1
R

=
1

R1
+

1
R2

+
1

R3
+ · · · ,

(see Problem 23).
Consider a more complicated example in which two re-

sistors are connected across a battery. The battery volt-
age is v, and the resistances are R1 and R2, as shown in
Fig. 6.23. If no current flows out lead A, then conservation
of charge requires that the same current i flows in each
resistor. The sum of the voltages v1 and v2 is v. There-
fore, i = v1/R1 = v2/R2 and v = v1 + v2 = iR1 + iR2 =
i(R1 + R2). The voltage across R2 is iR2 or

v2 =
R2

R1 + R2
v. (6.31)
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FIGURE 6.24. The potential, electric field, and charge at dif-
ferent points on the diameter of a resting nerve cell. Portions
of the cell membrane on opposite sides of the cell are shown.
Outside the cell on the left the potential and electric field are
zero. As one moves to the right into the cell, the electric field
in the membrane causes the potential to decrease to −70 mV.
Within the cell the field is zero and the potential is constant.
Moving out through the right-hand wall the potential rises to
zero because of the electric field within the membrane.

6.10 Charge Distribution in the
Resting Nerve Cell

The axon consists of an ionic intracellular fluid and an
ionic extracellular fluid, separated by a membrane. The
intracellular and extracellular media are electrical con-
ductors. When the cell is in equilibrium there is no cur-
rent and no electric field in these regions. There will be a
field and currents when an impulse is traveling along the
axon.

Because the electric field in the resting cell is zero, there
is no net charge in the fluid. Positive ions are neutralized
by negative ions everywhere except at the membrane. A
layer of charge on each surface generates an electric field
within the membrane and a potential difference across it.

Measurements with a microelectrode show that the po-
tential within the cell is about 70 mV less than outside.
If the potential outside is taken to be zero, then the in-
terior resting potential is −70 mV. Figure 6.24 shows a
slice across the cell, showing the membrane on opposite
sides of the cell and the charges and electric field. If the
potential drops 70 mV as one enters the cell on the left, if
the membrane thickness is 6 nm, and if the electric field
within the membrane is assumed to be constant, then

E = −dv

dx
= −−70 × 10−3 V

6 × 10−9 m
= 1.17 × 107 V m−1.

(6.32)
This is how the value of E was determined for use on p.
141.

Except for the layers of charge on the inside and outside
of the membrane, which are shown in Fig. 6.24 and which
give rise to the electric field and potential difference, the
extracellular and intracellular fluids are electrically neu-
tral. However, the ion concentrations are quite different in
each (Fig. 6.3). There is an excess of sodium ions outside
and an excess of potassium ions inside.

It is possible to see which concentrations (if any) are
consistent with the hypothesis that the ions can pass
freely through the membrane. If a species is in equilib-
rium, the concentration ratio ci/co across the membrane
is given by a Boltzmann factor or the Nernst equation
(see Chapter 3). The potential energy of the ion is zev,
where z is the valence of the ion, e the electronic charge
(1.6 × 10−19 C), and v the potential in volts. Using sub-
scripts i and o to represent inside and outside the cell, we
have

ci

co
=

e−zevi/kBT

e−zevo/kBT
= e−ze(vi−vo)/kBT . (6.33)

Here kB is Boltzmann’s constant, 1.38 × 10−23 J K−1.
For a situation in which T = 310 K and vi − vo =
−70×10−3 V, ci/co is 13.7 for univalent positive ions and
1/13.7 = 0.073 for negative ions. The ratios in Fig. 6.3 are
0.103 for sodium, 30 for potassium, and 0.071 for chlo-
ride. The chloride concentration ratio is consistent with
equilibrium, while the sodium concentration ratio is much
too small (too few sodium ions inside) and the potassium
concentration ratio is too large (too many potassium ions
inside).

A potential of −90 mV would bring the potassium con-
centration ratio into equilibrium, but then chloride would
not be in equilibrium and sodium would be even far-
ther from equilibrium. In fact, tracer studies show that
potassium leaks out slowly and sodium leaks in slowly.
The resting membrane is not completely impermeable to
these ions [Hodgkin (1964, Chapter 6); Laüger (1991)].
To maintain the ion concentrations a membrane protein
called the sodium-potassium pump uses metabolic energy
to pump potassium into the cell and sodium out. The
usual ratio of sodium to potassium ions in this active
transport is 3 sodium to 2 potassium ions [Patton et al.
(1989, Vol. 1, p. 27)].

The intracellular and extracellular fluids can be mod-
eled as two conductors separated by a fairly good insu-
lator. The conductors have a capacitance between them.
We can estimate this capacitance in two ways. We can
either regard the membrane as a plane insulator sand-
wiched between plane conducting plates (as if the mem-
brane had been laid out flat as in Fig. 6.25), or we can
treat it as a dielectric between concentric cylindrical con-
ductors. The text will use the first approximation, while
the second will be left to a problem. Suppose that two
parallel plates have area S and charge ±Q, respectively,
then the charge density on each is σ = ±Q/S. Equation
6.11 gives the electric field without a dielectric between
the conductors: Eext = σ/ε0 = Q/ε0S.
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FIGURE 6.25. A portion of a cell membrane of length L, in its
original configuration and laid out flat. The membrane thick-
ness is b and the radius of the axon is a. The plane approxima-
tion is used to calculate both the capacitance and resistance
of the membrane.

With the dielectric of dielectric constant κ, the field is
reduced to E = Eext/κ = σ/κε0 = Q/κε0S, as was seen
in Eq. 6.20. The magnitude of the potential difference is
E times the plate separation b: v = Eb = Qb/κε0S. The
capacitance is C = Q/v:

C =
Qκε0S

Qb
=

κε0S

b
. (6.34)

The charge density on the surface of the membrane is
obtained from σ = Q/S = Cv/S = κε0v/b.

Measurements of the dielectric constant κ for axon
membrane show it to be about 7. Using values of −70
mV for v and 6 nm for b, the capacitance per unit area of
membrane can be calculated, as can σ:

C

S
=

(7)(8.85 × 10−12)
6 × 10−9

= 0.01 F m−2 = 1µF cm−2,

σ = (0.01)(70 × 10−3) = 7 × 10−4 C m−2. (6.35)

This value for the surface charge density is larger by a
factor of 7 than that calculated in Sec. 6.3. The reduc-
tion of the electric field by polarization of the dielectric
has been taken into account in the present calculation. A
larger external charge is required to give the same field
within the dielectric.

The value of b for myelinated fibers is much greater,
typically 2000 nm instead of 6 nm. This reduces the ca-
pacitance per unit area by a factor of 300.

6.11 The Cable Model for an Axon

We now consider the rather complicated flow of charge
in the interior of an axon, through the membrane, and
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FIGURE 6.26. Leakage currents through the membrane. (a)
The flow of positive and negative ions. (b) The membrane
capacitance is represented by the parallel plates and the leak-
age resistance by a single resistor. (c) The capacitance and
resistance are usually drawn like this.

in the conducting medium outside the cell during depar-
tures from rest. We will model the axon by electric con-
ductors that obey Ohm’s law inside and outside the cell
and a membrane that has capacitance and also conducts
current. We will apply Kirchhoff’s laws—conservation of
energy and charge—to a small segment of the axon. The
result will be a differential equation that is independent
of any particular model for the cell membrane. This is
called the cable model for an axon. We will then apply
the cable model in two cases. The first case is when the
voltage change does not alter the properties of the mem-
brane. The second case is a voltage change that changes
the ionic permeability of the membrane, thereby gener-
ating a nerve impulse.

Consider the small segment of membrane shown in Fig.
6.26(a). For the moment we ignore the resting potential
on the membrane. We will see later that accounting for
the resting potential requires only a small change to the
model. The upper capacitor plate, corresponding to the
inside of the membrane, carries a charge Q. The lower
capacitor plate (the outside of the membrane) has charge
−Q. The charge on the membrane is related to the po-
tential difference across the membrane by the membrane
capacitance Cm: Q = Cmv. Figure 6.26(a) shows posi-
tive ions on the inside and negative ions on the outside of
the membrane. (In a resting nerve cell, there is negative
charge on the inside of the membrane, Q is negative, −Q
is positive, and v < 0.)

If the resistance between the plates of a capacitor is
infinite, no current flows, and the charge on the capaci-
tor plates remains constant. However, a membrane is not
a perfect insulator; if it were, there would be no nerve
conduction. Some current flows through the membrane.
We call this current im and define outward current to be
positive, as in Fig. 6.26(b).

Imagine for now that there is no current along the axon.
In that case im discharges the membrane capacitance,
and the charge and potential difference fall to zero as
charge flows through the resistor. When im is positive, Q
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and v decrease with time:

−im =
dQ

dt
= Cm

dv

dt
. (6.36)

Let us explore the behavior of this isolated segment of
axon a bit further. For now we think of the total leakage
current as being through a single effective resistance Rm.
This is shown in Fig. 6.26(b). It is customary to draw
the resistance separately, as in Fig. 6.26(c). The current
is then im = v/Rm and Cm(dv/dt) = −im = −v/Rm,

dv

dt
= − 1

RmCm
v. (6.37)

This is the familiar equation for exponential decay of the
voltage (see Chapter 2). If the initial voltage at t = 0 is
v0, the solution is

v(t) = v0e
−t/τ , (6.38)

where the time constant τ is given by

τ = RmCm. (6.39)

Referring to Fig. 6.25, we saw that if we have a section
of membrane of area S and thickness b the capacitance is
given by Eq. 6.34. For a conductor of the same dimensions
we saw [Eq. 6.27] that the resistance is Rm = ρmb/S, so
the time constant is

τ = RmCm =
ρmb

S

κε0S

b
= κε0ρm. (6.40)

We have the remarkable result that the time constant is
independent of both the area and thickness of the mem-
brane. Doubling the area S doubles the amount of charge
that must leak off, but it also doubles the membrane cur-
rent. Doubling b doubles the resistance, but it also makes
the membrane capacitance half as large. In each case the
factors S and b cancel in the expression for the time con-
stant.

If a very thin lipid membrane is produced artificially,
it is found to have a very high resistivity—about 1013 Ω
m [Scott (1975, p. 493)]. Certain proteins added to the
lipid material reduce the resistivity by several orders of
magnitude. For natural nerve membrane the resistivity is
about

ρm = 1.6 × 107 Ω m. (6.41)

This is the effective resistivity for resting membrane, tak-
ing into account all of the ion currents. If ρm had this
constant value the time constant would be τ = κε0ρm =
(7)(8.85 × 10−12)(1.6 × 107) = 1 × 10−3 s. (Actually, the
resistivity changes drastically as the potential across the
membrane changes during the propagation of a nerve im-
pulse.) Since we observe a potential difference across the
membrane, there must be a mechanism for renewing the
charge on the membrane surface.

The resistance and capacitance of the portion of the
axon membrane in Fig. 6.25 can be written in terms of

the axon radius a and the length L of the segment by
noting that S = 2πaL. Then one has

Cm =
κε02πaL

b
, Rm =

ρmb

2πaL
.

It is convenient to recall that v = iR can be written as
i = Gv and introduce the conductance of the membrane
segment

Gm =
2πaL

ρmb
. (6.42)

Both the capacitance and the conductance are propor-
tional to the area of the segment S. It is also convenient to
introduce the lowercase symbols cm and gm to stand for
the membrane capacitance and membrane conductance
per unit area:

cm =
Cm

S
=

κε0
b

, (6.43)

gm =
Gm

S
=

1
ρmb

=
σm

b
. (6.44)

(Remember that σm = 1/ρm is the electrical conductiv-
ity, the reciprocal of the resistivity. It is not the charge
per unit area. σ is frequently used for both quantities in
the literature.)

Both cm and gm depend on the membrane thickness
as well as the dielectric constant and resistivity of the
membrane. The units of cm and gm are, respectively, F
m−2 and S m−2. Be careful: many sources give them per
square centimeter instead of per square meter.

We can rewrite Eq. 6.36 in terms of the current den-
sity, jm, which is proportional to the capacitance per unit
area, cm:

−jm = cm
dv

dt
. (6.45)

Table 6.1 shows typical values for these quantities and
some to be discussed later for an unmyelinated axon.12

These values should not be associated with a particular
species. Parameters such as the resistance and capaci-
tance per unit length of the axon are measured directly.
Others, such as ρm, require an estimate of membrane
thickness and are less well known

Now let us consider current that flows inside and out-
side the axon. Assume that the currents inside are longi-
tudinal, that is, parallel to the axis of the axon. A discus-
sion of departures from this assumption is found in Scott

12Some insight into the magnitude of the charge on the membrane
can be obtained from these numbers. The excess charge on the
surface of the membrane is 7 × 10−4 C m−2 for the unmyelinated
fiber. This corresponds to 4.4× 1015 ions per square meter, if each
ion has a charge of 1.6 × 10−19 C. Each atom or ion in contact
with the membrane surface occupies an area of about 10−20 m2;
thus there are about 1020 atoms or ions in contact with a square
meter of membrane surface. These may be neutral or positively or
negatively charged. If charged, most are neutralized by the presence
of a neighbor of opposite charge. The excess charge density that is
required can be obtained if 4.4 × 1015/1020 or roughly one out of
every 20, 000 of the atoms in contact with the surface is ionized and
not neutralized.
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TABLE 6.1. Properties of a typical unmyelinated nerve.

.

a Axon radius 5 × 10−6 m
b Membrane thickness 6 × 10−9 m
ρi Resistivity of

axoplasm
0.5 Ω m

ri = ρi/πa2 Resistance per unit
length inside axon

6.4 × 109 Ω m−1

κ Dielectric constant of
membrane

7a

ρm Resistivity of
membrane

1.6 × 107Ω m

κρm 112 × 106 Ω m
cm = κε0/b Membrane

capacitance per
unit area

10−2 F m−2

2πκε0a/b Membrane
capacitance per
unit length of axon

3 × 10−7 F m−1

gm = 1/ρmb Conductance per unit
area of membrane

10 S m−2

1/gm Reciprocal of
conductance per unit
area

0.1 Ω m2

2πa/ρmb Membrane
conductance per
unit length of axon

3.2 × 10−4 S m−1

vr Resting potential
inside axon

−70 mV

E = vr/b Electric field
in membrane

1.2 × 107 V m−1

κε0vr/b Charge per unit area
on membrane surface

7 × 10−4 C m−2

Net number of
univalent ions per
unit area

4.4 × 1015 m−2

Net number of
univalent ions per
unit length

6.6 × 107 m−1

aSee Sec. 6.17 for a discussion of the dielectric constant.

(1975, p. 492). With this assumption, the interior fluid
can be regarded as a resistance of length L and radius a
as shown in Fig. 6.27. The resistance of such a segment
is Ri = ρiL/S = ρiL/πa2. It is convenient to work with
the resistance per unit length, ri:

ri =
Ri

L
=

ρi

πa2
=

1
πa2σi

. (6.46)

The question of resistance of the extracellular fluid for
currents outside the axon is more complicated. If the ex-
tracellular fluid were infinite in extent, the longitudinal
resistance outside the cell would be very small (see Chap-
ter 7). On the other hand, in a nerve or a muscle the axons
or muscle cells are packed closely together, there is not
very much extracellular fluid, and the external resistance

FIGURE 6.27. Axoplasm of length L and radius a can be
treated like a simple resistor.

x x + dx
im

i  (x)i i  (x + dx)i
a

FIGURE 6.28. The membrane surrounding a small portion of
an axon is shown, along with the longitudinal currents in and
out of the segment.

per unit length can be significant. There are some impor-
tant effects that occur because of this. We will discuss
them in Chapter 7.

Now we can consider the effect of both membrane and
longitudinal currents. Figure 6.28 shows a small region
of the axon between x and x + dx and the surrounding
membrane. Current ii flows longitudinally along the axon
on the inside. The current through the membrane is im.
The potential difference across the membrane is v = vi −
vo. In this section no attempt will be made to relate im
or jm to v. Charge Q resides on the inside surface of
the membrane and can be either negative or positive. An
equal and opposite charge −Q resides on the outer surface
of the membrane.

Because the capacitance can charge or discharge,
Kirchhoff’s law (conservation of charge) does not say that
the sum of the currents is zero. Rather, it says that the
net current into the volume of axoplasm between x and
x + dx changes the charge on the interior surface of the
membrane:

ii(x) − ii(x + dx) − im =
dQ

dt
= Cm

d(vi − vo)
dt

. (6.47a)

When ii(x) = ii(x + dx) this gives Eq. 6.36. The mem-
brane current im represents an average value for the seg-
ment of membrane between x and x + dx. It is also a
function of x.
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FIGURE 6.29. A hypothetical plot of vi(x) and the longitu-
dinal current ii associated with it.

We can define dii = ii(x + dx) − ii(x) as the increase
in ii along segment dx. Then we can rewrite Eq. 6.47a as

−dii = Cm
dv

dt
+ im. (6.47b)

This is an important equation. It says that when the cur-
rent flowing inside the axon decreases in a small distance
dx, part of the current charges the capacitance of that
segment of membrane, and the rest flows through the
membrane.

Consider a small segment of axoplasm of length dx.
The intracellular voltage at the left end is vi(x); at the
right end it is vi(x + dx). The current along the segment
is the voltage difference between the ends divided by the
resistance of the segment. The resistance is Ri = ri dx.
Therefore, the current is

ii(x) =
vi(x) − vi(x + dx)

ri dx
= − 1

ri

dvi

dx
. (6.48)

The voltage must change along the axon for a current to
flow within it. The minus sign in Eq. 6.48 shows that a
current flowing from left to right (in the +x direction)
requires a voltage that decreases from left to right, and
vice versa.

Figure 6.29 shows a hypothetical plot of vi(x) and the
current which would accompany it. Notice that the cur-
rent is flowing from the region of higher voltage to lower
voltage–towards both ends from the region between x1

and x2. In that region either the charge on the membrane
is changing or current is flowing through the membrane.

Consider again the cylindrical geometry shown in Fig.
6.28. The surface area of this portion of membrane is
2πa dx. Dividing each term of Eq. 6.47a by the area and
remembering the definitions of jm and cm we obtain

cm
∂v

∂t
= −jm +

1
2πa

[
ii(x) − ii(x + dx)

dx

]
. (6.49)

It is necessary to use partial derivatives because the cur-
rent and voltage depend on both x and t as an impulse
travels down the nerve. As dx → 0

ii(x + dx) − ii(x)
dx

→ ∂ii
∂x

.

This can be evaluated using the expression for Ohm’s law
in the axoplasm, Eq. 6.48:

∂ii
∂x

= − 1
ri

∂2vi

∂x2
. (6.50)

When this is inserted in Eq. 6.49 the result is

cm
∂(vi − vo)

∂t
= −jm +

1
2πa ri

∂2vi

∂x2
. (6.51)

In many cases the extracellular potential is small. In that
case the voltage across the membrane, v, is approximately
the same as the intracellular voltage, vi, so we can rewrite
Eq. 6.51 as

cm
∂v

∂t
= −jm +

1
2πa ri

∂2v

∂x2
. (6.52)

This rather formidable looking equation is called the
cable equation or Telegrapher’s equation. It has the form
of Fick’s second law of diffusion, Eq. 4.26, with the addi-
tion of the jm term.

It is worth recalling the origin of each term and veri-
fying that the units are consistent. The term on the left
is the rate at which the membrane capacitance is gaining
charge per unit area. Therefore, all terms in the equation
have the units of current per unit area. The first term on
the right is the current per unit area through the mem-
brane in the direction that discharges the membrane ca-
pacitance. The second term on the right gives the buildup
of charge on this area of the membrane because of differ-
ences in current along the axon. If v(x) were constant,
there would be no current along the inside of the axon. If
function v(x) had constant slope, the current along the
inside of the axon would be the same everywhere and
there would be no charge buildup on the membrane. It is
only because v(x) changes slope that ii is different at two
neighboring points in the axon and charge can collect on
the membrane.

Now, for the units. Since i = C(dv/dt), the units of
cm∂v/∂t are current per unit area. The jm term is by
definition current per unit area. Since ri has the units of
Ω m−1, the term 2πari, has the units of Ω. When this
is combined with ∂2v/∂x2, which has units V m−2, the
result is A m−2 as required.

This is a very general equation stating Kirchhoff’s laws
for a segment of the axon. The only assumptions are that
the currents depend only on time and position along the
axon and that voltage changes on the outside of the axon
can be neglected. Particular models for nerve conduction
use different relations between jm and v(x, t).
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6.12 Electrotonus or Passive Spread

The simplest membrane model is one that obeys Ohm’s
law. This approximation is valid if the voltage changes are
small enough so that the membrane conductance does not
change, or if something has been done to inactivate the
normal changes of membrane conductance with voltage.
It is also useful for myelinated nerves between the nodes
of Ranvier. This is called electrotonus or passive spread.

In its quiescent state, the voltage all along the inside
of the axon has the constant resting value vr. Both ∂v/∂t
and ∂2v/∂x2 are zero. Equation 6.52 can be satisfied only
if jm = 0. Although jm is zero, it may be made up of sev-
eral leakage components. In this section we simply assume
that jm is proportional to v − vr:

jm = gm(v − vr). (6.53)

This simple model does predict that jm = 0 when v = vr.
It also predicts that the current will be positive (outward)
if v > vr and negative (inward) if v < vr. It does not ex-
plain the propagation of an all-or-nothing nerve impulse.
The conductance per unit area, gm, is assumed to be in-
dependent of v and of the past history of the membrane.
This is a good assumption only for very small voltage
changes. With this assumption, Eq. 6.52 becomes

cm
∂v

∂t
= −gm(v − vr) +

1
2πa ri

∂2v

∂x2
. (6.54)

This equation is usually written in a slightly different
form by dividing through by gm:

1
2πa rigm

∂2v

∂x2
− v − cm

gm

∂v

∂t
= −vr.

It is also customary to make the assignments

λ2 =
1

2πa rigm
,

τ =
cm

gm
,

so that the equation becomes

λ2 ∂2v

∂x2
− v − τ

∂v

∂t
= −vr. (6.55)

In terms of the primary axon parameters, the parameters
in Eq. 6.55 are

λ2 =
abρm

2ρi
, (6.56)

τ = κε0ρm. (6.57)

The time constant was seen before in Eq. 6.40. Equation
6.55 has a steady-state solution v = vr. If a new vari-
able v′ = v − vr is used, it becomes the homogeneous
version of the same equation with a steady-state solu-
tion v′ = 0. This homogeneous equation is known as the

FIGURE 6.30. The voltage distribution along an axon in elec-
trotonus when the membrane capacitance is charged and the
voltage is not changing with time.

telegrapher’s equation: it was once familiar to physicists
and electrical engineers as the equation for a long cable,
such as a submarine cable, with capacitance and leakage
resistance but negligible inductance [Jeffreys and Jeffreys
(1956, p. 602)].

For nerve conduction, the inhomogeneous equation
with various exciting terms corresponding to physiolog-
ical stimuli was discussed by Davis and Lorente de Nó
(1947) and by Hodgkin and Rushton (1946). Their work
is summarized by Plonsey (1969, p. 127).

Before considering general solutions to Eq. 6.55, con-
sider some special cases. If cm = 0, so that τ = 0, or if
enough time has elapsed so that the voltage is not chang-
ing with time and ∂v/∂t = 0, the equation reduces to

λ2 ∂2v

∂x2
− v = −vr.

You can verify by substitution that this has a solution

v − vr =
{

v0e
−x/λ, x > 0

v0e
x/λ, x < 0.

(6.58)

If the voltage is held at a constant value v = vr + v0 at
some point on the axon, the voltage will decay exponen-
tially to vr in both directions from that point. This is
shown in Fig. 6.30.

Next, suppose that v(x, t) does not depend on x, so
that there is no longitudinal current in the axon and
∂2v/∂x2 = 0. This can be accomplished experimentally
by threading a wire axially along the axon, if the axon is
fat enough. The equation reduces to

τ
∂v

∂t
+ v = vr.

This is the familiar equation for exponential decay. If v
were held at v0+vr and then the constraint were removed
at t = 0, the voltage would decay exponentially back to
vr

v − vr = v0e
−t/τ .
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FIGURE 6.31. Some representative solutions to the problem
of electrotonus after the application of a constant current at
x = 0. (a) The voltage along the axon at different times (b)
Voltage at a fixed point on the axon as a function of time.

This represents the discharge of the membrane capaci-
tance through the membrane resistance.

The behavior of v(x, t) − vr at various times after an
excitation is applied is shown in Fig. 6.31. The excitation
is a constant current injected at x = 0 for all time t >
0. After a long time, the curve is identical to that in
Fig. 6.30, as the membrane capacitance has fully charged.
Only the membrane leakage current attenuates the signal.
At earlier times the solution is not precisely exponential;
the analytic solution involves error functions (Problem
34). The change of voltage with time at fixed positions
along the cable is also shown. Both the finite propagation
time and the attenuation of the signal are evident.

6.13 The Hodgkin–Huxley Model for
Membrane Current

If the voltage at some point on the axon changes by a
few millivolts from the resting value, the voltage at other
points on the axon is described by electrotonus. How-
ever, if the inside voltage rises from the resting value by
20 mV or more, a completely different effect takes place.
The potential rises rapidly to a positive value, then falls
to about −80 mV, and finally returns to the resting value
(Fig. 6.1). This behavior is attributable to a very nonlin-
ear dependence of membrane current on transmembrane
voltage.

Considerable work was done on nerve conduction in the
late 1940s, culminating in a model that relates the prop-
agation of the action potential to the changes in mem-
brane permeability that accompany a change in voltage.
The model [Hodgkin and Huxley (1952)] does not ex-
plain why the membrane permeability changes; it relates
the shape and conduction speed of the impulse to the
observed changes in membrane permeability. Nor does
it explain all the changes in current. (For example, the
potassium current does fall eventually, and there are some
properties of the sodium current that are not adequately
described.) Nonetheless, the work was a triumph that led
to the Nobel Prize for Alan Hodgkin and Andrew Huxley.

FIGURE 6.32. Apparatus for voltage-clamp measurements.

Most of the experiments that led to the Hodgkin–
Huxley model were carried out using the giant axon of
the squid. This is a single cell several centimeters long
and up to 1mm in diameter that can be dissected from
the squid. The removal of axoplasm from the prepara-
tion and its replacement by electrolytes has shown that
the critical phenomena all take place in the membrane.
The important results are reviewed in many places [Katz
(1966, Chapters 5 and 6); Plonsey (1969, p. 127); Plonsey
and Barr (1988, Ch. 4); Scott (1975, pp. 495–507)].

6.13.1 Voltage Clamp Experiments

Voltage-clamp experiments were particularly illuminat-
ing. Two long wire electrodes were inserted in the axon
and connected to the apparatus shown in Fig. 6.32. The
resistance of the wires was so low that the potential at
all points along the axon was the same at any instant
of time. The potential depended only on time, and not
on position. This is called a space-clamped experiment.
One electrode, paired with an electrode in the surround-
ing medium, measured the voltage difference across the
membrane. The other electrode was used to inject or re-
move whatever current was necessary to keep this voltage
difference constant. Measurement of this current allowed
calculation of the membrane conductance. This technique
is called voltage clamping. The experiment described here
was both voltage- and space-clamped.

When the membrane potential was raised abruptly
from the resting value to a new value and held there, the
resulting current was found to have three components:

1. A current, lasting a few microseconds, that changed
the surface charge on the membrane.

2. A current flowing inward which lasted for 1 or 2 ms.
Various experiments, such as replacing the sodium
ions in the extracellular fluid with some other mono-
valent ion, showed that this was due to the inward
flow of sodium ions. (Had the potential not been
voltage-clamped by the electronic apparatus, this in-
rush of positive charge would have raised the poten-
tial still further.)
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3. An outward current that rose in about 4 ms and
remained steady for as long as the potential was
clamped at this value. Tracer studies showed that
this current was due to potassium ions. (Over a time
scale of several tens of milliseconds, the potassium
current, like the sodium current, does fall back to
zero.)

The first current is the cm(∂v/∂t) term of Eq. 6.52; the
second and third currents together constitute jm. Because
of the clamping wires, the ∂2v/∂x2 term is zero.

The next step is to develop a model that describes the
major ionic constituents of the current. The sodium and
potassium contributions to the current will be considered
separately; all other contributions will be combined in a
“leakage” term:

jm = jNa + jK + jL. (6.59)

The leakage includes charge movement due to chloride
ions and any other ions that can pass through the mem-
brane.

Consider movement of sodium through the membrane.
Similar considerations apply to potassium. The concen-
trations of sodium inside and out are [Nai] and [Nao]. It
will be seen later that the total number of ions moving
through the membrane during a nerve pulse in a squid
giant axon is too small to change the concentrations sig-
nificantly. Therefore, the concentrations are fixed.

There would be no movement of sodium ions through
the membrane, regardless of how permeable it is, when
the concentrations and potential are related by the Boltz-
mann factor or Nernst equation (Eq. 6.33) with v =
vi − vo:

[Nai]
[Nao]

= e−ev/kBT .

For given concentrations, the sodium equilibrium or
Nernst potential is

vNa =
kBT

e
ln
(

[Nao]
[Nai]

)
. (6.60)

The sodium Nernst potential is usually about 50 mV. If
v = vNa there is no current of sodium ions, regardless of
the membrane permeability to sodium. If v is greater than
vNa (more positive), jNa flows outward. If v < vNa, the
sodium current is inward. These currents can be described
by

jNa = gNa(v − vNa). (6.61)

The coefficient gNa is the sodium conductance per unit
area. It is not constant but depends on the value of v and,
in fact, on the past history of v. Defining the conductance
this way makes the functional form of gNa less complex;
in particular, it does not have to change sign as v moves
through vNa and the sodium current reverses direction.

This equation can be multiplied by the membrane
area to give a current–voltage relationship. Many au-
thors draw a circuit diagram to represent the current flow

(a)

jNa

gNa

vNa = 50 mV
+

–

v

+

–

jm

gNa

vNavK vL

gK gL

(b)

inside

outside

FIGURE 6.33. Equivalent circuits for the membrane current.
(a) The sodium current–voltage relationship of Eq. 6.61 is the
same as that for a variable resistance in series with a battery at
the sodium Nernst potential. (b) The total membrane current
can be modeled with three such equivalent circuits. See the
discussion of the sign of the potassium and leakage Nernst
potentials in the text.

through the membrane and along the axon. The sodium
voltage–current relationship can be represented by a vari-
able resistance corresponding to gNa in series with a bat-
tery at the sodium Nernst potential, as shown in Fig.
6.33(a).

An expression similar to Eq. 6.61 can be written for
the potassium current density:

jK = gK(v − vK). (6.62)

The potassium Nernst potential is negative—about −77
mV—so the polarity of the potassium battery in Fig.
6.33(b) has been reversed. The leakage term will be con-
sidered later.

To summarize: v is the instantaneous voltage across the
membrane. Both vK and vNa are constants depending
on the relative ion concentrations inside and outside the
cell and the temperature. The conductances per unit area
depend on both the present value of v and its past history.

We can now describe the results of the voltage clamp
experiments. The voltage in each experiment was changed
from the resting value by an amount ∆v. Therefore,
v−vNa and v−vK had constant values after the change,
and the changes in current density mirrored the changes
in conductivity. Typical results for ∆v = 25 mV and
T = 6 ◦C are shown in Figs. 6.34 and 6.35. [The method
of distinguishing sodium from potassium current is de-
scribed in the original papers, or in Hille (2001, p. 39).]
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FIGURE 6.34. The behavior of the sodium and potassium
conductivities with time in a voltage-clamp experiment. At
t = 0 the voltage was raised by 25 mV from the resting po-
tential. The values are calculated from Eqs. 6.64–6.71 and are
representative of the experimental data.

For a voltage clamp experiment the current and con-
ductance have the same time variation. The sodium con-
ductance rises from zero and then falls, while the potas-
sium conductance rises more slowly from a small initial
resting value. (The potassium current before the volt-
age clamp was applied was small, because the resting
potential was close to the potassium Nernst potential.)
Measurements for longer times show that the potassium
conductivity rises to a constant value. Measurements for
much longer times show that the potassium current falls
after tens of milliseconds. For other values of ∆v the con-
ductance changes are different.

6.13.2 Potassium Conductance

Hodgkin and Huxley wanted a way to describe their ex-
tensive voltage-clamp data, similar to that in Figs. 6.34
and Fig. 6.35, with a small number of parameters. If we
ignore the small nonzero value of the conductance before
the clamp is applied, the potassium conductance curve of
Fig. 6.34 is reminiscent of exponential behavior, such as
gK(v, t) = gK(v)(1− e−t/τ(v)), with both gK(v) and τ(v)
depending on the value of the voltage. A simple exponen-
tial is not a good fit. Figure 6.36 shows why. The curve
(1−e−t/τ ) starts with a linear portion and is then concave
downward. The potassium conductance in Figs. 6.34 and
6.35 is initially concave upward. The curve (1−e−t/τ )4 in
Fig. 6.36 more nearly has the shape of the conductance
data. This suggests that we try to describe the conduc-
tance by

gK(v, t) = gK∞
[
n∞(v)(1 − e−t/τ(v))

]N
. (6.63)
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FIGURE 6.35. The behavior of the potassium conductance
for different values of the clamping voltage. These are repre-
sentative curves calculated from Eqs. 6.64–6.66.

In this expression, gK∞ is the largest possible conduc-
tance per unit area. The value of n∞(v) varies between 0
and 1 and determines the asymptotic value of the con-
ductance change for a particular value of the voltage
step. Hodgkin and Huxley found a good fit to their data
with N = 4. If the initial value of the conductance were
zero, our empirical fit to the potassium conductance data
would be

gK(v, t) = gK∞n4(v, t), (6.64a)

n(v, t) = n∞(v)(1 − e−t/τ(v)). (6.64b)

But the initial potassium conductance was not zero.
How should this be handled? Hodgkin and Huxley as-
sumed that n is a measure of some fundamental property
of the potassium channels, and that the conductance is
always described by Eq. 6.64a. When the clamp voltage
changes, the subsequent change of n is described by an
exponential decay with the appropriate values of n∞(v)
and τ(v). If the initial value of n is n0, the expression for
n(v, t) after the voltage clamp change is

n(v, t) = n∞(v)
[
1 −

(
n∞(v) − n0

n∞(v)

)
e−t/τ(v)

]
. (6.64c)

The function n is a solution to the differential equation

dn

dt
= −n

τ
+

n∞
τ

. (6.65a)

Hodgkin and Huxley wrote this instead in the form

dn

dt
= αn(1 − n) − βnn. (6.65b)

The subscript n on αn and βn distinguishes them from
similar parameters for the sodium conductance.
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FIGURE 6.36. A comparison of (1 − e−t/τ ) with
(1 − e−t/τ )4.The latter more closely approximates the
shape of the potassium conductance in Fig. 6.34.

The dependence of αn and βn on voltage is quite pro-
nounced. With v in mV and αn and βn in ms−1, the
equations used by Hodgkin and Huxley to describe their
experimental values of αn and βn are

αn(v) =
0.01 [10 − (v − vr)]

exp
(

10 − (v − vr)
10

)
− 1

,

βn(v) = 0.125 exp
(
−(v − vr)

80

)
.

(6.66)

The quantities αn and βn are rate constants in Eq. 6.65b.
Like all chemical rate constants, they depend on tem-
perature. The values above are correct when T = 279
K (6.3 ◦C). Hodgkin and Huxley assumed that the tem-
perature dependence was described by a Q10 of 3. This
means that the reaction rate increases by a factor of 3 for
every 10 ◦C temperature rise. The rate at temperature T
is obtained by multiplying rates obtained from Eq. 6.66
by

3(T−6.3)/10. (6.67)

For example, if the temperature is 18.5 ◦C, the rate must
be multiplied by 31.22 = 3.82.

The variable n is often called the potassium gate or
the n gate. It takes values between zero (a closed gate)
and 1 (an open gate). The n gate is partially open at
rest, making the resting membrane somewhat permeable
to potassium. As v becomes more positive than the rest-
ing potential (“depolarizes”), the n gate opens further or
“activates.”

The behavior of αn and βn was determined
from voltage-clamp experiments. In an actual nerve-
conduction process, v is not clamped. Hodgkin and Hux-
ley assumed that when v varies with time, the correct
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FIGURE 6.37. Plots of the sodium and potassium conduc-
tance parameters versus the transmembrane potential.

value of n can be obtained by integrating Eq. 6.65b. At
each instant of time the values of αn and βn are those
obtained from Eq. 6.66 for the voltage at that instant.
This was a big assumption—but it worked. The value of
gK∞ that they chose was 360 S m−2.

6.13.3 Sodium Conductance

The sodium conductance was described by two parame-
ters: one reproducing the rise and the other the decay of
the conductance. The equation was

gNa = gNa∞m3h. (6.68)

The parameters m and h obeyed equations similar to that
for n:

dm

dt
= αm(1 − m) − βmm, (6.69)

dh

dt
= αh(1 − h) − βhh. (6.70)
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The v dependences were

αm =
0.1[25 − (v − vr)]

exp
(

25 − (v − vr)
10

)
− 1

,

βm = 4 exp
(
−(v − vr)

18

)
,

αh = 0.07 exp
(
−(v − vr)

20

)
,

βh =
1

exp
(

30 − (v − vr)
10

)
+ 1

.

(6.71)

These values for α and β are also for a temperature of
6.3 ◦C. The temperature scaling of Eq. 6.67 must be used
for other temperatures. The value of gNa∞ is 1200 S m−2.
Figure 6.37 plots the time constants and asymptotic val-
ues as a function of membrane potential. These are the
parameters for the equations in the form of Eq. 6.65a
rather than Eq. 6.65b.

The variable m (called the sodium activation gate or
m gate) is nearly closed at rest, preventing the resting
membrane from being permeable to sodium. As v is depo-
larized m opens, allowing sodium to rush in. The sodium
ions carry positive charge, so this inward current causes
v to depolarize further, causing m to increase even more.
This positive feedback (see Chapter 10) is responsible
for the rapid upstroke of the action potential. The in-
ward sodium current ends when v approaches the sodium
Nernst potential, about 50 mV.

Variable h (the sodium inactivation gate or h gate) is
different than the n and m gates because it is open at
rest but closes upon depolarization. However, it is slow
compared to the m gate (see Fig. 6.37), so during an
action potential it does not fully close until after the m
gate has opened completely. After the action potential is
finished and v has returned to the resting value, the slow
h gate takes a few milliseconds to completely re-open.
During this time, the membrane cannot generate another
action potential (it is “refractory”) because the closed h
gate suppresses the sodium current.

6.13.4 Leakage Current

All other contributions to the current (such as movement
of chloride ions) were lumped in the leakage term jL =
gL(v − vL). The empirical value for gL is 3 S m−2. The
parameter vL was adjusted to make the total membrane
current equal zero when v = vr. For example, with the
data given, zero current is obtained with vr = −65 mV
and vL = vr +10.6 = −54.4 mV. The three contributions
to the membrane current can be thought of as the circuit
shown in Fig. 6.33b.

The Hodgkin–Huxley parameters have been used for
a wide variety of nerve and muscle systems, even though
they were obtained from measurements of the squid axon.

A number of other models have since been developed that
incorporate the sodium–potassium pump, calcium, and so
on. They have also been developed for various muscle and
cardiac cells [Dennis et al. (1994); Luo and Rudy (1994);
Wilders et al. (1991)].

6.14 Voltage Changes in a
Space-Clamped Axon

A space-clamped axon has an interior potential v(t) that
does not depend on x. If such an axon is stimulated, a
voltage pulse is observed. The first test we can make of
the Hodgkin–Huxley model is to see if the parameters
from the voltage-clamp experiments can also explain this
pulse. To do so, it is necessary to insert Eq. 6.59, with all
the other equations that are necessary to use it, in Eq.
6.52. Life is made somewhat simpler by the fact that the
spatial derivative in Eq. 6.52 vanishes when the wire is in
the axon. The result is

cm
∂v

∂t
= −gNa(v−vNa)−gK(v−vK)−gL(v−vL). (6.72)

When v = vr the right-hand side of this equation is
zero and v does not change. It is necessary to introduce
a stimulus to cause the pulse. This has been done in the
computer program of Fig. 6.38, which solves Eq. 6.72.
This program is not the most efficient that can be used;
it has been written for ease of understanding. A stimulus
of 10−4 A cm−2 = 1 A m−2 is applied between 0.5 and
0.6 ms. This is an additional term in Eq. 6.72, so that in
the program, Eq. 6.72 becomes

dvdt = (−jMemb + jStim)/Cmemb;

In this statement dvdt stands for ∂v/∂t, jMemb stands
for jm, Cmemb for cm, and jStim for the stimulus cur-
rent. The equation is solved by repeated application of
the approximation

v = v + dvdt ∗ deltat;

which stands for

v(t + ∆t) = v(t) +
(

∂v

∂t

)
∆t.

The program uses ∆t = 10−6 s. The present value of v is
used to calculate the rate constants in procedure Calcab.
These are then used to calculate the present value of
each conductivity. The membrane current is then calcu-
lated, and the entire process is repeated for the next time
step. The results are tabulated in Fig. 6.39 and plotted in
Fig. 6.40.

One can see from the plot that jm is proportional to
∂v/∂t. Note that although gNa is a smooth curve, jNa

has an extra wiggle near t = 2 ms, caused by the rapid
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FIGURE 6.38. The computer program used to calculate the
response of a space-clamped axon to a stimulus. The results
are shown in Figs. 6.39 and 6.40.

decrease in the magnitude of v − vNa as the voltage ap-
proaches the sodium Nernst potential. The initial depo-
larization is due to an inrush of sodium ions. But there is
still a considerable sodium current during the potassium
current. The sodium and potassium currents are nearly
balanced throughout most of the pulse. The pulse lasts
about 2 ms.

If the temperature is raised, the pulse is much shorter.
Figure 6.41 shows the impulse when the temperature is
18.5 ◦C, calculated by multiplying each of the α and β
values by 3(18.5−6.3)/10 = 3.82.

The potassium current is not actually needed to create
a nerve impulse because of the leakage current (primar-
ily chloride) and the fact that the sodium conductance
decreases after the initial depolarization. The potassium
current speeds up the repolarization process. It is easy to
modify the program of Fig. 6.38 to show this.

6.15 Propagating Nerve Impulse

If the wire is not inserted along the axon, the voltage
changes in the x direction. A strong enough stimulus at
one point results in a pulse that travels along the axon

FIGURE 6.39. Results of the calculation for a space-clamped
axon at 6.3 ◦C .

without change of shape. The basic equation that de-
scribes it is again Eq. 6.52 with the spatial term and with
the Hodgkin–Huxley model for the membrane current:

∂v

∂t
= − jm

cm
+

1
2πa ricm

∂2v

∂x2
,

jm = gNa(v − vNa) + gK(v − vK) + gL(v − vL).
(6.73)

These can be solved numerically by setting up arrays for
values of v, n, m, and h at closely spaced discrete values of
x along the axon. If index i distinguishes different values
of x, then the discrete equation is

dvdt[i]=−jMemb[i]/Cmemb
+(1/(6.28 ∗ a ∗ ri ∗ Cmemb ∗ dx ∗ dx))
∗(v[i + 1] − 2 ∗ v[i] + v[i− 1]).

Fig. 6.42 shows each term in Eq. 6.73 multiplied
through by cm to have the dimensions of current per unit
area. The term

cm
∂v

∂t

is the rate at which charge per unit area on the membrane
must to change the membrane potential at the rate ∂v/∂t,

−jm = −gNa(v − vNa) − gK(v − vK) − gL(v − vL)

is the rate of charge buildup because of current through
the membrane, and

1
2πa ri

∂2v

∂x2

is the rate of charge buildup on the inner surface of the
membrane because the longitudinal current is not uni-
form.
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FIGURE 6.40. A plot of the computation presented in
Fig. 6.38 for a pulse in a space-clamped squid axon at
T = 6.3 ◦C. The axon was stimulated at t = 0.5 ms for
0.1 ms.

6.16 Myelinated Fibers and Saltatory
Conduction

We have so far been discussing fibers without the thick
myelin sheath. Unmyelinated fibers constitute about two-
thirds of the fibers in the human body. They usually have
radii of 0.05–0.6 µm. The conduction speed in m s−1 is
given approximately by u ≈ 1800

√
a, where a is the axon

radius in meters.13 (Strictly speaking, in this formula a
should be replaced by the outer radius a + b including
the membrane thickness, but for an unmyelinated fiber
b � a.)

Myelinated fibers are relatively large, with outer radii
of 0.5–10 µm. They are wrapped with many layers

13Values quoted in the literature range from u = 1000
√

a [Plonsey

and Barr (1988)] to u = 3000
√

a [Rushton (1951)].
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FIGURE 6.41. A pulse in a space-clamped axon at 18.5 ◦C.
The pulse lasts about 1 ms.

of myelin between the nodes of Ranvier, as shown in
Fig. 6.43. Typically, the outer radius is a+ b ≈ 1.67a and
the spacing between nodes is proportional to the outer di-
ameter D = 200(a + b) ≈ 330a (See Problem 66). These
empirical proportionalities between node spacing and ra-
dius and between myelin thickness and radius will be very
important to our understanding of the conduction speed.
The conduction speed in a myelinated fiber is given ap-
proximately by u ≈ 12 × 106(a + b) ≈ 20 × 106a. The
conduction speeds of myelinated and unmyelinated fibers
are compared in Fig. 6.44.

In the myelinated region the conduction of the nerve
impulse can be modeled by electrotonus because the con-
ductance of the myelin sheath is independent of voltage.
At each node a regenerative Hodgkin–Huxley-type (HH-
type) conductance change restores the shape of the pulse.
Such conduction is called saltatory conduction because
saltare is the Latin verb “to jump.”
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TABLE 6.2. Properties of unmyelinated and myelinated axons of the same radius.

Quantity Unmyelinated Myelinated

Axon inner radius, a 5 µm 5 µm
Membrane thickness, b′ 6 nm
Myelin thickness, b 3.4 µm
κε0 6.20 × 10−11 s−1 Ω−1 m−1 6.20 × 10−11 s−1 Ω−1 m−1

Axoplasm resistivity ρi 1.1 Ω m 1.1 Ω m
Membrane (resting) or
myelin resistivity ρm

107 Ω m 107 Ω m

Time constant τ = κε0ρm 6.2 × 10−4 s 6.2 × 10−4 s

Space constant λ
λ =

√
abρm

2ρi

= 0.165
√

a
= 370 µm

λ =
√

abρm

2ρi
=

√
0.67a2ρm

2ρi

= a

√
0.67ρm

2ρi

= 1750a
= 8.8 mm

Node spacing D D = 340a = 1.7 mm

Conduction speed from
model

uunmyelinated ∝ λ/τ ≈ 270
√

a

umyelinated ∝
λ/τ ≈ 2.9 × 106a

or
D/τ = 0.55 × 106a

Conduction speed, empirical uunmyelinated ≈ 1800
√

a umyelinated ≈ 17 × 106a
Ratio of empirical to model
conduction speed

6.7 5.9 or 31

Space constant using thick
membrane model

λ = a

√
ln(1 + b/a)ρm

2ρi

= a

√
ln(1.67)ρm

2ρi

= 1530a
= 7.6 mm

We saw that electrotonus is described by

λ2 ∂2v

∂x2
− v − τ

∂v

∂t
= −vr, (6.74)

where the time constant is

τ = κε0ρm (6.75)

and the space constant is

λ =

√
ab ρm

2ρi
. (6.76a)

The results of Problem 65 can be used to show that when
the myelin thickness is appreciable compared to the inner
axon radius, the space constant should be modified:

λthick =

√
ln(1 + b/a) ρm

2ρi
a. (6.76b)

For a case in which a = 5 µm and b = 3.3 µm, the change
is not very large. The thin membrane equation contains

the quantity ab = 17 × 10−12 m2 and the thick myelin
equation contains a2 ln(1 + b/a) = 12.8 × 10−12 m2.

We now want to understand the different dependence
on radius of the conduction speed in the two kinds of
fibers. We could do computer modeling for the unmyeli-
nated fiber using Eq. 6.73 with axons of different radii,
but this would not provide an equation for u(a). Rather
than review the work that has been done (developing
equations for the behavior of the foot of the action po-
tential, for example), we will use a simple dimensional
argument. This will not give an exact expression for
u(a), but it will indicate the functional form it must
have.

In either the myelinated or the unmyelinated fiber
the signal travels to neighboring regions by electro-
tonus, where it initiates HH-type membrane conductance
changes. In the myelinated case the signal jumps from
node to node; in the unmyelinated case the influence is
on adjacent parts of the axon. When the neighboring re-
gion begins to depolarize, the HH change is much more
rapid than that due to electrotonus. (Another way to
say this is that during depolarization ρm and therefore τ
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the longitudinal current inside the axon. The bottom curve
shows the current charging or discharging the membrane and
the two terms comprising the right-hand side of Eq. 6.73.

FIGURE 6.43. The idealized structure of a myelinated fiber
in longitudinal section and in cross section. The internodal
spacing D is actually about 100 times the outer diameter of
the axon.

become much smaller.) Therefore the conduction speed
is limited by electrotonus. Regardless of the details of the
calculation, the speed is proportional to the characteristic
length in the problem divided by the characteristic time.
For the unmyelinated case it is plausible to assume that
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FIGURE 6.44. The conduction speed versus the inner axon ra-
dius a for myelinated and unmyelinated fibers. Unmyelinated
fibers with a > 0.6 µm are not found in the body.

the only characteristic length and time are λ and τ , so
the speed is

uunmyelinated ∝ λ

τ
=

√
b

2ρiρm

1
κε0

√
a. (6.77)

Since the membrane thickness for an unmyelinated fiber
is always about 6 nm, this gives

uunmyelinated ∝ 270
√

a (6.78)

as shown in Table 6.2.
For myelinated nerves the myelin thickness is b ≈

0.67a. This means that the space constant is proportional
to a:

λ =

√
ab ρm

2ρi
=

√
0.67a2ρm

2ρi
= a

√
0.67ρm

2ρi
= 1750a.

(6.79)
The spacing between the nodes, D, is about 340a. There
are two characteristic lengths for the myelinated case,
both proportional to a because of the way the myelin is
arranged. If we assume that the speed is proportional to
D/τ , we obtain

umyelinated ∝ 0.55 × 106a. (6.80)

If we assume that the speed is proportional to λ/τ , we
obtain

umyelinated ∝ 2.9 × 106a. (6.81)

Table 6.2 compares the space constants, time constants
and conduction speeds for myelinated and unmyelinated
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FIGURE 6.45. Structure of a bimolecular lipid membrane.

fibers. The empirical expressions for the conduction speed
are seven or eight times greater than what we estimate
based on λ/τ . We might expect firing at the next node
to occur when the signal has risen to about 10% of its
final value. This would reduce the time by about a factor
of 10.

The internodal spacing is about 20% of the space con-
stant. Suppose that a constant current is injected at one
node, as in Fig. 6.30. When the voltage has reached its
full value at the next node it is given by

v

v0
= e−D/λ = e−1.4/6.2 = 0.8.

If for some reason this node does not fire, the signal at
the next node will be 0.64 of the original value, and so on.
A local anesthetic such as procaine works by preventing
permeability changes at the node. It is clear from this
discussion that a nerve must be blocked over a distance
of several nodes (a centimeter or more) in order for an
anesthetic to be effective [Covino (1972)].

6.17 Membrane Capacitance

The value of 7 for the dielectric constant, which has been
used throughout this chapter, is considerably higher than
the value 2.2, which is known for lipids. The inconsistency
arises because part of the membrane is very easily polar-
ized and effectively belongs to the conductor rather than
to the dielectric; if the thickness of the lipid alone is con-
sidered in calculating the capacitance, then a value of 2.2
for κ is reasonable; if the entire membrane thickness is
used, then the much higher dielectric constant for water
and the polar groups within the membrane contributes,
and κ = 7 is a reasonable value.

The easiest experiments to understand are those done
with artificial bimolecular layers of lipid. The architec-

FIGURE 6.46. A membrane composed of two phases. The ith
phase has thickness bi and dielectric constant κi. The total
thickness is b and the effective dielectric constant is κ. The
charges shown are external charge; polarization of the dielec-
tric is not shown but determines the value of κ.

ture of such a film is shown in Fig. 6.45. Each lipid mole-
cule has a polar head and a hydrophobic tail. The mole-
cules are arranged in a double layer with the heads in the
aqueous solution. The dimensions in Fig. 6.45 are consis-
tent with both measurements of the film thickness and
with the known structure of the lipid molecules. Linear
aliphatic hydrocarbons have a bulk dielectric constant of
about 2. The polar heads have a much higher dielectric
constant, probably about 50. Water has a dielectric con-
stant of about 80.

The capacitance per unit area of bimolecular lipid films
is about 0.3 × 10−2 F m−2 (0.3µF cm−2). The simplest
way to explain this value is to assume that the polar heads
are part of the surrounding conductor. The capacitance
per unit area is then

C

S
=

κε0
b1

=
(2.2)(8.85 × 10−12)

5 × 10−9
= 0.4 × 10−2 F m−2.

A more sophisticated approach is to regard the membrane
as made up of three layers: polar, lipid, polar. The same
effect can be obtained by considering two layers with all
the polar component lumped together, as in Fig. 6.46.
Suppose that we put charge +Q on one surface and −Q
on the other surface of the membrane. We put no charge
on the interface between layers 1 and 2. The charge of zero
on the interface can be thought of as a superposition of
positive and negative charges as shown in Fig. 6.46. We
are referring only to external charge which we place on
the membrane; the charges induced by polarization of
the dielectric are not shown. They are taken into account
by the value of κ. The situation is that of two parallel-
plate capacitors in series. Each layer has a capacitance
Ci: Q = Civi = κiε0Svi/bi. The total potential across the
membrane is v = v1 + v2 = Q/C. The total capacitance
is

C =
Q

v1 + v2
=

Q

Qb1/κ1ε0S + Qb2/κ2ε0S

=
1

b1/κ1ε0S + b2/κ2ε0S
. (6.82)
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FIGURE 6.47. The results of x-ray diffraction measurements
of the structure of myelin surrounding frog sciatic nerve. Data
are adapted from Worthington (1971, p. 35).

The effective dielectric constant is obtained by equating
the total capacitance to κε0S/b:

κ =
b

b1/κ1 + b2/κ2
. (6.83)

Application of these equations to the bimolecular lipid
membrane (with κ1 = 2.2, κ2 = 50, b1 = 5 nm, b2 = 2
nm) gives

κ = 3.0,
C

S
= 0.38 × 10−2 F m−2.

(6.84)

The capacitance per unit area is nearly that obtained by
assuming the polar groups are perfect conductors.

The myelin surrounding a nerve fiber consists of several
layers wrapped tightly together. Each repeating layer is
made up of two single layers back to back. The best data
on the structure of these layers are from x-ray diffraction
experiments. The layers repeat every 17 nm. One model
for the structure within a repeat distance is shown in
Fig. 6.47 [Worthington (1971, p. 35)]. A single layer of the
myelin has a thickness of 8.55 nm. A surprising feature
of this model is that the lipid layer is less than half the
thickness of that in a bilayer lipid membrane. However,
the measured capacitance of a nerve-cell membrane or
myelin is greater than for the bilayer lipid membrane; if
one is to keep the lipid value for κ, the membrane must
be thinner. It is gratifying that the membrane thickness

as measured by x-ray diffraction is consistent with the
observed membrane capacitance.

To check the consistency, note that Eqs. 6.82 and 6.83
are easily extended to more than two phases. Use the
following data:

κi bi nm

Water 80 2.2
Lipid 2.2 4.2
Polar 50 10.8

With these values, the effective dielectric constant is

κ =
17.2

4.2/2.2 + 2.2/80 + 10.8/50
= 7.95.

If we assume that the membrane on an unmyelinated
axon has the same structure as a half-unit of the myelin,
then the thickness is 8.55 nm. With a dielectric constant
of 7.95, the capacitance per unit area is calculated to be
0.82 × 10−2 F m−2. The measured value is 1.0 × 10−2

F m−2.
When one begins to look at the detailed structure of

the membrane as we have done in this section, there is
no justification for using the same membrane thickness
b for the capacitance and the conductance of the mem-
brane. The capacitance is determined primarily by the
thickness of the lipid portion of the membrane; the con-
ductance includes the effect of ions passing through the
polar layers. The product, κρ, of the previous section is
meaningful only for a membrane that is homogeneous and
has the same thickness for both capacitive and conductive
effects.

As long as the membrane structure is not being con-
sidered, it is safer to express such things as attenuation
along the axon in terms of the directly measured parame-
ters: length and time constants. Nonetheless, a prelimi-
nary formulation in terms of a homogeneous membrane
model can be useful to start thinking about the problem.

6.18 Rhythmic Electrical Activity

Many cells exhibit rhythmic electrical activity. Various
nerve transducers produce impulses with a rate of firing
that depends on the input to which the transducer is
sensitive. The beating of the heart is controlled by the
sinoatrial node (SA node) that produces periodic pulses
that travel throughout the heart muscle.

The mechanism for such repetitive activity is similar to
what we have seen in the Hodgkin–Huxley model, though
the details of the ionic conductance variations differ. The
computer program of Fig. 6.38 can easily be modified to
model rhythmic activity.
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FIGURE 6.48. By changing the leakage current, it is possible
to make the Hodgkin–Huxley model display periodic electrical
activity.

Figure 6.48 shows a plot of the output of a modified
program. The only modification was to make jStim be
a constant leakage current of 0.2 A m−2 (0.2 × 10−4 A
cm−2). This provides the essential feature: a small inward
current between beats that causes the potential inside
the cell to increase slowly. When the voltage exceeds a
certain threshold, the membrane channels open and the
cell produces another impulse.

While this simple change produces repetitive firing, and
in fact the shape of the curve in Fig. 6.48 is very similar
to that measured in the SA node, the details of ionic con-
duction are actually very different. The SA node contains
no sodium channels. The rapid depolarization is due to
an inward calcium current. There are a number of con-
tributions to the current in the SA node, and detailed
ionic models of them have been described [Dennis et al.
(1994); Noble (1995); Noble et al. (1989); Wilders et al.
(1991).] The slow leakage is a complicated combination
of currents, the details of which are still not completely
understood [Anumonwo and Jalife (1995); DiFrancesco
et al. (1995)].

6.19 The Relationship Between
Capacitance, Resistance, and
Diffusion

There is a fundamental relationship between the capaci-
tance and resistance between two conductors in a homo-
geneous conducting dielectric. It is also possible to de-
velop an analogy between capacitance and steady-state
diffusion, so that known expressions for the capacitance
of conductors in different geometries can be used to solve
diffusion problems.

6.19.1 Capacitance and Resistance

Consider two conductors carrying equal and opposite
charge and embedded in an insulating medium with di-

electric constant κ. The potential difference between the
conductors is ∆v, and the magnitude of the charge on
each is Q = C∆v. The electric field is E(x, y, z). In a
vacuum, Gauss’s law applied to a surface surrounding
the positively charged conductor gives

∫∫
E·dS = Q/ε0.

Polarization in a dielectric surrounding the conductor re-
duces the electric field by a factor of κ. If E refers to the
electric field in the dielectric and Q to the charge on the
conductor, Gauss’s law becomes

∫∫
E·dS = Q/κε0. (6.85)

For a given charge on the conductor, the presence of the
dielectric reduces E and ∆v by 1/κ and, therefore, in-
creases the capacitance by κ.

Suppose that the dielectric is not a perfect insulator
but obeys Ohm’s law and has conductivity σ (j = σE).
If some process maintains the magnitude of the charge
on each conductor at Q, the current leaving the positive
conductor is

i =
∫∫

j·dS = σ

∫∫
E·dS = σQ/κε0. (6.86)

The resistance between the conductors is

R =
∆v

i
=

Q/C

σQ/κε0
=

κε0
σC

. (6.87)

This inverse relationship between the resistance and ca-
pacitance is independent of the geometry of the conduc-
tors, as long as the dielectric constant and conductivity
are uniform throughout the medium.

If the charge on the conductors is not replenished, it
leaks off with a time constant τ = RC = κε0/σ. We have
seen this result earlier in several special cases; we now
understand that it is quite general.

6.19.2 Capacitance and Diffusion

In Chapter 4, we saw that the transport equations for
particles, heat, and electric charge all have the same
form. We now develop an analogy between these trans-
port equations and the equations for the electric field.
The analogy is useful because it relates the diffusion of
particles between different regions to the electrical capac-
itance between conductors with the same geometry; the
electrical capacitance in many cases is worked out and
available in tables.

Fick’s first law of diffusion was developed in Chapter
4, Eq. 4.20:14

js = −D∇c. (6.88)

14In this section, we will use c for concentration of solute particles
and C for the electrical capacitance.
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The relationship between fluence rate (particle current
density) and particle flux (current) is

∫∫
js · dS = is, (6.89)

where is is the current of particles out of the volume
enclosed by the surface. This equation is very similar to
Gauss’s law, ∫∫

surface

E·dS =
q

κε0
, (6.90)

where q is the electric charge. The electric potential and
the electric field are related by the three-dimensional ver-
sion of Eq. 6.16:

E = −∇v. (6.91)

The similarity between Eqs. 6.91 and 4.20 and between
6.5 and 6.90 suggests that we make the substitutions

is ←→ q

κε0
,

c ←→ v

D
,

js ←→ E.

(6.92)

For any electrostatic configuration in which there are
two equipotential surfaces containing charge +q and −q,
there is an analogous diffusion problem in which there is a
flow of particles from one surface to another, each surface
having a constant concentration on it. In the electrical
case, the charge and potential are related by the capaci-
tance, which is a geometric property of the two equipo-
tential surfaces: q = C∆v. An analogous statement can
be made for diffusion between two surfaces of fixed con-
centration:

is = −C ∆v

κε0
= − C

κε0
D ∆c. (6.93)

We can find the rate of flow of particles if we know the dif-
fusion constant, the concentration difference, and the ca-
pacitance for the electrical problem with the same geom-
etry. To see the utility of this method, we will consider
some cases of increasing geometrical complexity.

As a first example, suppose that two concentric spheres
have radii a and b. You can show (from the work in Prob-
lem 16, for example) that the capacitance of this config-
uration is

C

κε0
=

4π

1/a − 1/b
. (6.94)

As b → ∞, this becomes

C

κε0
= 4πa. (6.95)

This can be applied to diffusion to or from a spherical
cell of radius a. If the diffusion is outward, as of waste
products, imagine that the outward flow rate is is and

that the concentration difference between the cell surface
and infinity is c0. Then

is = −4πaD c0. (6.96)

If, on the other hand, the concentration infinitely far away
is greater than that at the cell surface by an amount c0,
the number of particles in the cell will increase at a rate

is = +4πaD c0. (6.97)

These results were obtained directly in Chapter 4.
As another example, consider a circular disk of radius

a with the other electrode infinitely far away. It is more
difficult to calculate the capacitance in this case, but we
can look it up [Smythe et al. (1957)]. It is C/κε0 = 8a.
But this is the capacitance for the charge on both sides
of the disk; the lines of E and j go off in both directions.
We want only half of this, since we will use the result
to calculate the end correction for a pore. (If we were
concerned with diffusion to a disk-shaped cell, we would
use the whole thing.) For the half-space

is half = −4Da∆c (6.98)

is proportional to the radius of the disk, not its area.
Still another geometrical situation that may be of inter-

est is the diffusion of particles from one sphere of radius
a to another sphere of radius a, when the centers of the
spheres are separated by a distance b.

The capacitance between two such spherical electrodes
is [Smythe et al. (1957, pp. 5–14)]

C

κε0
= 2πa sinh β

(
1

sinhβ
+

1
sinh 2β

+
1

sinh 3β
+ · · ·

)
,

where cosh β = b/2a. This formula is written in terms of
the “hyperbolic functions”

sinhβ = 1
2

(
eβ − e−β

)
,

cosh β = 1
2

(
eβ + e−β

)
.

(6.99)

When the spheres are far apart b/2a → ∞, and coshβ ≈
1
2eβ , sinh β ≈ 1

2eβ . In that limit,

C

κε0
= 2πa

(
1
2eβ
)
(

1
1
2 eβ

+ 1
1
2 e2β

+ 1
1
2 e3β

+ · · ·
)

= 2πaeβ
(
e−β + e−2β + e−3β + · · ·

)

= 2πa
[
1 + (a/b) + (a/b)2 + · · ·

]
. (6.100)

The diffusive flow between two spheres is therefore

is = −2πaD ∆c (6.101)

if they are sufficiently far apart. Note that this is just
one-half of the flow from a sphere of radius a to a con-
centric sphere infinitely far away. The earlier results in
this section show that the electrical resistance between
two spherical electrodes sufficiently far apart is 1/2πσa.
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Symbols Used in Chapter 6

Symbol Use Units First
used on
page

a Distance m 139
a Axon inner radius m 151
a Radius of spherical ion

or cell

m 166

a Radius of disk m 166
b, c Distance m 139
b Membrane thickness m 137
b Myelin thickness m 160
b′ Membrane thickness at

node of Ranvier
m 160

b Sphere radius m 166
c Concentration m−3 137
ci, co Ion concentrations m−3;

mol l−1
148

cm Membrane capacitance
per unit area

F m−2 150

e Electronic charge C 148
gNa, gK , gm, gL Membrane conductance

per unit area
S m−2 151

gNa∞, gK∞ Asymptotic membrane
conductance per unit
area

S m−2 156

h, h∞ Parameters used to
describe sodium
conductance

157

i Electric current A 145
ii Currents along inside of

axon
A 151

im Current through a
section of membrane

A 149

is Solute current or flux s−1 165
j, j Current per unit area A m−2 145
jm Membrane current per

unit area
A m−2 150

jNa, jK , jL Membrane current per
unit area for that
species

A m−2 155

kB Boltzmann’s constant J K−1 148
m, m∞ Parameter used to

describe sodium
conductance

157

n, n∞ Parameter used to
describe potassium
conductance

156

p,p Dipole moment C s 168
q Electric charge C 137

qbound, qfree Bound and free charge C 144
r, r Distance m 137
ri Resistance per unit

length along inside of
axon

Ω m−1 151

t Time s 136
u Propagation velocity of

a wave or signal
m s−1 160

v Potential difference V 136
v vi − vo V 151

vK , vNa Equilibrium (Nernst)

potential for potassium,

sodium

V 155

vr Resting membrane po-
tential

V 153

x, y, z Distance m 139

z Valence of ion 148
C Capacitance F 143
Cm Membrane capacitance F 149
D Length of myelinated

segment
m 160

D Diffusion constant m2 s−1 165
E, Ex, Ey , Ez Electric field and

components

V m−1 138

Ep Electric field due to po-
larization charge

V m−1 143

Ee, Eext External electric field V m−1 143
Etot Total electric field V m−1 143
F Force N 137
Fext External force N 141

G Conductance Ω−1 or S 145
Gm Conductance of a

section of axon
membrane

Ω−1 or S 150

L Length of cylinder or
axon segment

m 139

[Nai], [Nao] Sodium concentrations
inside and outside an
axon

m−3 155

P Power W 146
Q Electric charge C 143
Q10 Factor by which the

rate of a chemical
reaction increases with
a temperature rise of
10 K

157

R Resistance Ω 145
Ri Internal resistance

along a segment of axon
Ω 151

Rm Resistance across a
segment of membrane

Ω 150

S, ∆S, dS Surface area m2 138
T Temperature K 148
U Potential energy J 141
W Work J 144
αm, βm, αn, βn,
αh, βh

Rate parameters for
Hodgkin–Huxley model

s−1 156

β Dimensionless variable 166
ε0 Electrical permittivity

of empty space
N−1 m−2

C2
137

κ Dielectric constant 144
λ Charge per unit length C m−1 139
λ Electrotonus spatial

decay constant
m 153

ρ Resistivity Ω m 146
ρi Resistivity of axoplasm Ω m 151
ρm Resistivity of membrane Ω m 150

θ Angle 139
σ Charge per unit area C m−2 139
σ Conductivity S m−1 146
χ Electrical susceptibility 144
τ Time constant s 150
τ Electrotonus time

constant
s 153

τh, τm, τn Time constants in
Hodgkin-Huxley model

s 157
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Problems

Section 6.2

Problem 1 Suppose that an action potential in a 1µm
diameter unmyelinated fiber has a speed of 1.3 m s−1. Es-
timate how long it takes a signal to propagate from the
brain to a finger. Repeat the calculation for a 10µm di-
ameter myelinated axon that has a conduction speed of
85m s−1. Speculate on the significance of these results for
playing the piano.

Problem 2 The median nerve in your arm has a diam-
eter of about 3mm . If the nerve consists only of 1µm-
diameter unmyelinated axons, how many axons are in
the nerve? (Ignore the volume occupied by extracellular
space.) Repeat the calculation for 20µm outer diameter
myelinated axons. Repeat the calculation for 0.5mm di-
ameter unmyelinated axons (about the size of a squid
axon). Speculate on why higher animals have myelinated
axons instead of larger unmyelinated axons.

Section 6.2

Problem 3 Two equal and opposite charges ±q sepa-
rated by a distance a form a dipole. The dipole moment
p is a vector pointing in the direction from the negative
charge to the positive charge of magnitude p = qa. In elec-
trochemistry the dipole moment is often expressed in de-
bye: 1 debye (D) = 10−18 electrostatic units (statcoulomb
cm) (1 statcoulomb = 3.3356 × 10−10 C).

(a) Find the relationship between the debye and the SI
unit for the dipole moment.

(b) Express the dipole moment of charges ±1.6×10−19

C separated by 2×10−10 m in debye and in the appropri-
ate SI unit.

Problem 4 The electric field of a dipole can be calcu-
lated by assuming the positive charge q is at z = a/2 and
the negative charge −q is at z = −a/2 (x = y = 0).
The electric field along the z axis is found by vector addi-
tion of the electric field from the individual charges using
Eq. 6.3. Find an expression for the electric field. (Hint:
1/(1 + x)2 is approximately equal to 1 − 2x for small x.)
By what power of z does the electric field fall off?

Section 6.3

Problem 5 Use the principle of superposition to calcu-
late the electric field in regions A, B, C, D, and E in the
figure.

Problem 6 An infinite sheet of charge has a thickness
2a as shown. The charge density is ρ C m−3. Find the
electric field for all values of x.

-a a x0

 ρ 

Problem 7 Derive Eq. 6.10 from Eq. 6.9. At some point
in your derivation you may need to use the substitution
u = y/

√
c2 + y2 + z2and the integrals

∫
dx

(x2 + a2)3/2
=

x

a2
√

x2 + a2

∫
dx

x2 + a2
=

1
a

tan−1
(x

a

)
.

Problem 8 Show that Eq. 6.10 reduces to Eq. 6.8 when
z � b, c. Show that Eq. 6.10 is consistent with Coulomb’s
law when z � b, c.

Section 6.4

Problem 9 Show that N C−1 is equivalent to V m−1.

Problem 10 Use Coulomb’s law and v = −
∫ x

∞Exdx to
determine the potential along the x axis due to a point
charge. Assume that v(x = ∞) = 0. Because there is no
preferred direction in space, the potential in any radial
direction from the charge has the same form.
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Problem 11 Try to apply the equation v(r) =
−
∫ r

∞ Erdr to the equation for the electric field of a line
of charge, Eq. 6.7. Why does it not work?

Section 6.5

Problem 12 A person stands near a high-voltage power
line. Assume for this problem that its voltage is not
changing with time. Since much of a person’s body is an
ionic solution, treat the body as a conductor and the sur-
rounding air as an insulator. In a static situation, what
is the electric field inside the person’s body caused by the
power line? (Hint: Think before you calculate.)

Section 6.6

Problem 13 Two plane parallel conducting plates each
have area S and are separated by a distance b. One carries
a charge +Q; the other carries a charge −Q. Neglect edge
effects.

(a) What is the charge per unit area on each plate?
Where does it reside?

(b) What is the electric field between the plates?
(c) What is the capacitance?
(d) As the plate separation is increased, what happens

to E, v, and C?
(e) If a dielectric is inserted between the plates, what

happens to E, v, and C? (See Sec. 6.7.)

Problem 14 It was shown in the text that the electric
field from an infinitely long line of charge, of charge den-
sity λ C m−1, is E = λ/2πε0r at a distance r from the
line.

(a) Show that if positive charge is distributed with den-
sity σ C m−2 on the surface of a cylinder of radius a, the
electric field is

0, r < a
σa/ε0r, r > a.

(b) Find the potential difference between a point a dis-
tance a from the center of the cylinder and a point a
distance d from the center of the cylinder (d > a).

(c) Is a or d at the higher potential?
(d) Suppose that another cylinder of radius d is placed

concentric with the first. It has a charge −σ′ per unit
area. How will its presence affect the potential difference
calculated in part (b)?

(e) Calculate the capacitance between the two cylinders
and show that it is 2πε0L/ ln(d/a), where L is the length
of the cylinder.

Problem 15 Problem 14 showed that the capacitance of
a pair of concentric cylinders, of radius a and d (d > a)
is 2πε0L/ ln(d/a). Suppose now that d = a+ b, where b is
the thickness of the region separating the two cylinders.
(It might, for example, be the thickness of the axon mem-
brane.) Use the fact that ln(1+x) = x−x2/2+x3/3+ · · ·
to show that, for small b (that is, b � a), the formula for

the capacitance becomes the same as that for a parallel-
plate capacitor.

Problem 16 Find the capacitance of two concentric
spherical conductors. The inner sphere has radius a and
the outer sphere has radius b.

Section 6.7

Problem 17 A parallel-plate capacitor has area S and
plate separation b. The region between the plates is filled
with dielectric of dielectric constant κ. The potential dif-
ference between the plates is v.

(a) What is the total electric field in the dielectric?
(b) What is the magnitude of the charge per unit area

on the inner surface of the capacitor plates?
(c) What is the magnitude of the polarization charge

on the surface of the dielectric?

Problem 18 For the unmyelinated axon of Table 6.1
and Fig. 6.3,

(a) How many sodium, potassium, and miscellaneous
anions are there in a 1-mm segment?

(b) How many water molecules are there in a 1-mm
segment?

(c) What is the charge per unit area on the inside of
the membrane?

(d) What fraction of all the atoms and ions inside the
segment are charged and not neutralized by neighboring
ions of the opposite charge?

Problem 19 A nerve-cell membrane has a layer of pos-
itive charge on the outside and negative charge on the
inside. These charged layers attract each other. The po-
tential difference between them is v = 70 mV. Assuming
a dielectric constant κ = 5.7 for the membrane, an axon
radius of 5 µm, and a membrane thickness b = 5 nm,
what is the force per unit area that the charges on one
side of the membrane exert on the other? Express the an-
swer in terms of b, v, and κ. (Hint: The force is calculated
by multiplying the charge in a given layer by the electric
field due to the charge in the other layer. Think carefully
about factors of 2.)

Problem 20 The drawing represents two infinite plane
sheets of charge with an infinite slab of dielectric filling
part of the space between them. The dashed lines repre-
sent cross sections of two Gaussian surfaces. The sides
are parallel to the electric field, and the ends are per-
pendicular to the electric field. Apply the second form of
Gauss’s law, Eq. 6.21b, to find the electric field within the
dielectric using the upper Gaussian surface. Repeat using
the lower Gaussian surface.



170 6. Impulses in Nerve and Muscle Cells
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Section 6.8

Problem 21 This problem will give you some insight
into the resistance of electrodes used in neurophysiology.
Consider two concentric spherical electrodes; the region
between them is filled with material of conductivity σ. The
inner radius is a, the outer radius is b.

(a) Imagine that there is a total charge Q on the inner
sphere. Find the electric field between the spheres in terms
of the potential difference between them and their radii.

(b) The current density in the conducting material is
given by j = σE. Find the total current.

(c) Find the effective resistance, R = v/i. What is the
resistance as b → ∞? This is the resistance of a small
spherical electrode in an infinite medium; infinite means
the other electrode is “far away.”

Problem 22 Patients undergoing electrosurgery some-
times suffer burns around the perimeter of the electrode.
Wiley and Webster (1982) analyzed the potential produced
by a circular disk electrode of radius a and potential v0 in
contact with a medium of conductivity σ. They found that
the normal component of current density at the surface
of the electrode is given by

jn =
2σv0

π

1

(a2 − r2)1/2
, 0 < r < a

(a) Calculate the total current I coming out of the elec-
trode.

(b) Determine the resistance of the electrode.
(c) Plot jn vs. r. Use the plot to explain why the pa-

tients suffer burns near the edge of the electrode.

Section 6.9

Problem 23 Derive the equation for the resistance of a
set of resistors connected (a) in series and (b) in parallel.

Section 6.10

Problem 24 The resting concentration of calcium ions,
Ca++, is about 1mmol l−1in the extracellular space but is
very low ( 10−4 mmol l−1) inside muscle cells. Determine
the Nernst potential for calcium. Is calcium in equilibrium
at a resting potential of −70mV?

Section 6.11

Problem 25 The resistivity of the fluid within an axon
is 0.5 Ω m. Calculate the resistance along an axon 5 mm
long with a radius of 5 µm. Repeat for a radius of 500
µm.

Problem 26 The voltage along an axon is as shown at
some instant of time. The axon radius is 10 µm; the resis-
tivity of the axoplasm is 0.5 Ω m. What is the longitudinal
current in the axon as a function of position?

Problem 27 This problem is designed to show you how
a capacitance, such as the cell membrane, charges and
discharges. To begin, the switch has been in position B for
a long time, so that there is no charge on the capacitor.
At t = 0 the switch is put in position A. It is kept there
for 20 s, then thrown back to position B.

(a) Write a differential equation for the voltage on the
capacitor as a function of time when the switch is in po-
sition A and solve it.

(b) Repeat when the switch is in position B.
(c) Plot your results.

Problem 28 Sometimes an organ is lined with a sin-
gle layer of flat cells. (One example is the lining of the
jejunum, the upper portion of the small intestine.) Exper-
imenters can then apply a time-varying voltage across the
sheet of cells and measure the resulting current. The cells
are packed so tightly together that one model for them is
two layers of insulating membrane of dielectric constant
κ and thickness b that behave like a capacitor, separated
by intracellular fluid of thickness a and resistivity ρ. Find
a differential equation or integral equation that relates the
total voltage difference across the layer of cells v(t) to the
current per unit area through the layer, j(t), in terms of
κ, ρ, b, a.

Problem 29 The current that appears to go “into” a
section of membrane is made up of two parts: that which
charges the membrane capacitance and that which is
a leakage current through the membrane: i = v/R +
C(dv/dt). Suppose that the total current is sinusoidal:
i = I0 cos ωt.
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(a) Show that the voltage must be of the form v =
I0R

′ cos ωt+I0X sin ωt and that the differential equation
is satisfied only if

R′ =
R

1 + ω2(RC)2
,

X = R
ω(RC)

1 + ω2(RC)2
.

(b) What happens to R′ and X as ω → 0? ω → ∞?
For what value of ω is X a maximum? What is the cor-
responding value of R′? Plot these points.

(c) Your plot in part b should suggest that the locus of
X vs. R′ is a semicircle, centered at X = 0, R′ = R/2.
Prove that this is so. [Remember that the equation of a
circle is (x − a)2 + (y − b)2 = r2.]

Section 6.12

Problem 30 Consider the myelinated and unmyelinated
axons of Tables 6.1 and 6.2. Compare the decay distance
for electrotonus in both cases. Neglect attenuation due to
the leakage at the node of Ranvier.

Problem 31 Show by direct substitution that v(x) =
v0e

−x/λ + vr satisfies the equation

d2v

dx2
= 2πa gmri(v − vr)

if vr is constant.

Problem 32 In an electrotonus experiment a microelec-
trode is inserted in an axon at x = 0, and a constant
current i0 is injected. After the membrane capacitance
has charged, the voltage outside is zero everywhere and
the voltage inside is given by Eq. 6.58:

v − vr =
{

v0e
−x/λ, x > 0

v0e
x/λ, x < 0.

.

(a) Find ii(x) in terms of v0, λ, and ri.
(b) Find jm(x) in terms of gm, v0, and λ.
(c) Find the current i0 injected at x = 0 in terms of

v0, λ, and ri.
(d) Find the input resistance v0/i0.

Problem 33 The cable equation is λ2(∂2v/∂x2) − v −
τ(∂v/∂t) = 0. Let v(x, t) = w(x, t) exp(−t/τ). Substitute
this expression into the cable equation and determine a
new differential equation for w(x, t). You should find that
w(x, t) obeys the diffusion equation (Chapter 4). Find the
diffusion constant in terms of the axon parameters and
evaluate it for a typical case.

Problem 34 The voltage along an axon when a constant
current is injected at x = 0 for all times t > 0 is given by
[Hodgkin and Rushton (1946)]

v(x, t) − vr =
v0
2

{
e−|x|/λ

[
1 − erf

(
|x|
2λ

√
τ
t −

√
t
τ

)]

−e|x|/λ
[
1 − erf

(
|x|
2λ

√
τ
t +

√
t
τ

)]}

where the error function erf(y) and its derivatives are

erf(y) =
2√
π

∫ y

0

e−z2
dz

d

dy
erf(y) =

2√
π

e−y2
.

(a) Show that the expression for v(x, t) obeys the cable
equation, Eq. 6.55.

(b) Use erf(0) = 0, erf(−∞) = −1, and erf(∞) = 1 to
show that as t → ∞, the expression for v(x, t) approaches
the solution in Eq. 6.58 and Fig. 6.30.

(c) Find a simple expression for v(x, t) when x = 0.
Use erf(1) = 0.843 and erf(0.5) = 0.520 to check that
this expression is consistent with the plots in Fig. 6.31.

Problem 35 Consider a space-clamped axon with a
membrane time constant τ . Initially (t ≤ 0), v′ = 0.
From t = 0 until a time t = d a stimulus is applied to
the membrane. Assume that when v′ < V ′ the membrane
behaves passively (V ′ is called the threshold potential),
and when v′ > V ′, an action potential will fire. v′ obeys
the equation dv′/dt = −v′/τ + s.

(a) Find v′ for 0 < t < d and for t > d. Note that v′

is maximum for t = d.
(b) Find an expression for v(t = d), and then solve it

for s.
(c) Plot s as a function of the pulse duration d. This

plot is called the “strength–duration curve.”
(d) Find the value of s that corresponds to threshold

stimulation for very long durations, in terms of V ′ and
τ . This value of s is called the“rheobase” stimulus.

(e) Find the value of d corresponding to threshold stim-
ulation using a stimulus strength of twice rheobase. This
duration is called “chronaxie.”

(f) Find an expression for τ in terms of chronaxie.
Measuring the strength–duration curve is one way to de-
termine the membrane time constant.

Problem 36 An alternative model to the cable equation
is an attenuating network of resistors and capacitors.
This problem is designed to show you how a “ladder” of
resistances can attenuate a signal.

(a) Show that the resistance between points B and G
in the circuit on the left is 10 Ω.

(b) Show that the resistance between points A and G
in the circuit on the right is also 10 Ω. What will be the
result if an infinite number of ladder elements are added
to the left of AG?

(c) Assume that vC (measured with respect to point G)
is 6 V. Calculate vB and vA. Note that the ratios are the
same: vB/vA = vC/vB.
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Problem 37 This is a more general version of the pre-
vious problem, which can be applied directly to electro-
tonus when capacitance is neglected. Consider the ladder
shown, which represents an axon. R0 is the effective re-
sistance between the inside and outside of the axon to the
right of the section under consideration. The axon has
been divided into small slices; Ri is the resistance along
the inside of the axon in the small slice, and Rm is the
resistance across the membrane in the slice. The resis-
tance outside the axon is neglected. Note that the resis-
tance looking into the axon to the right of points XX is
also R0.

(a) Show that R0 is given by a quadratic equation: R2
0−

RiR0 − RiRm = 0 and that the solution is

R0 =
1
2

[
Ri + (R2

i + 4RiRm)1/2
]
.

(b) Show that the ratio of the voltage across one ladder
rung to the voltage across the immediately preceding rung
is

RmR0

RmR0 + RmRi + RiR0
.

(c) Now assume that Ri = ridx and Rm =
1/(2πagmdx). Calculate R0 and the voltage ratio. Show
that the voltage ratio (as dx → 0) is

1
1 + (2πarigm)1/2dx

.

(d) The preceding expression is of the form 1/(1 + x).
For sufficiently small x, this is approximately 1 − x.
Therefore, show that the voltage change from one rung
to the next is dv = −

[
(2πa rigm)1/2dx

]
v so that v obeys

the differential equation

dv

dx
= −(2πarigm)1/2v.

Section 6.13

Problem 38 Use the Hodgkin–Huxley parameters to an-
swer the following questions.

(a) When v = vr, what are αn and βn?
(b) Show that dn/dt = 0 when n = 0.318. What is the

resting value of gK?
(c) At t = 0 the voltage is changed to −25 mV and held

constant. Find the new values of αn, βn, n∞, τn and the
asymptotic value of gK .

(d) Find an analytic solution for n(t). Plot n and n4

for 0 < t < 10 ms.

Problem 39 Calculate the values of the gates m, n,
and h for the resting membrane (v = −65 mV), us-
ing the Hodgkin and Huxley model. Recall that at rest,
m = m∞(v = −65 mV), etc.

Problem 40 If αn and βn depend on temperature ac-
cording to Eq. 6.67, how do n∞ and τn depend on tem-
perature?

Problem 41 Calculate the resting membrane conduc-
tance per unit area for the resting membrane, using the
Hodgkin and Huxley model. Hint: jm = 0 at rest. Let
v = vr+dv, where dv is small. Determine the steady-state
jm as a function of dv. To keep things simple, ignore any
changes to m, n, and h resulting from dv.

Problem 42 In a voltage-clamp experiment, a wire of
radius b is threaded along the interior of an axon of radius
a. Assume the axoplasm displaced by the wire is pushed
out the end so that the cross-sectional area of the axon
containing the wire remains πa2. The resistivities of wire
and axoplasm are ρw and ρa. Find the wire radius needed
so that voltage changes along the axon are reduced by a
factor of 100 from what they would be without the wire.
Ignore the electrode surface impedance.

Problem 43 A wire of resistivity ρw = 1.6 × 10−8 Ω m
and radius w = 0.1 mm is threaded along the exact center
of an axon segment of radius a = 1 mm, length L = 1
cm, and resistivity ρi = 0.5 Ω m. The axon membrane
has conductance gm = 10 S m−2. Find numerical values
for

(a) the resistance along the wire,
(b) the resistance of the axoplasm from the wire to the

membrane, and
(c) the resistance of the membrane.

Problem 44 If the voltage across an axon membrane is
changed by 25 mV as in Fig. 6.34, how long will it take for
all the potassium to leak out if it continues to move at the
constant rate at which it first leaks out? Use the asymp-
totic value for the potassium conductance from Fig. 6.34.
Use Table 6.1, and Fig. 6.3 for any other values you need.

Section 6.14

Problem 45 Use the data of Fig. 6.40 to answer the
following questions about a nerve impulse in a squid axon
of radius a = 0.1 mm.

(a) Estimate the peak sodium ion flux (ions m−2 s−1)
and the total number of sodium ions per unit area that
pass through the membrane in one pulse.

(b) By what fraction does the sodium concentration in
the cell increase during one nerve pulse?

(c) Estimate the peak potassium flux and total potas-
sium transport.
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Problem 46 Show by direct substitution that Eq. 6.64c
satisfies the equation dn/dt = αn(1− n)− βnn if αn and
βn are functions of v, but not of time.

Problem 47 The Hodgkin–Huxley equation for the
potassium parameter n is dn/dt = αn(1−n)−βnn. What
is the asymptotic value of n when t → ∞?

Problem 48 For t < 0 a squid axon has a resting
membrane potential of −65 mV. The sodium Nernst po-
tential is +50 mV. The Hodgkin–Huxley parameters are
m = 0.05, h = 0.60, and gNa = 1200 S m−2.

(a) What is jNa?
(b) For t > 0 a voltage clamp is applied so that v =

−30 mV. Suppose that m = 0.72(1 − e−2.2t) and h =
0.6e−0.63t (here t is in milliseconds). What is the total
charge transported across unit area of the membrane by
sodium ions?

Problem 49 Consider a 1-mm long segment of a squid
nerve axon, with a diameter of 1 mm.

(a) Let the intracellular sodium ion concentration be 15
mmol l−1. Calculate the number of sodium ions in this
segment of the axon.

(b) Use the plot of jNa versus time in Fig. 6.41 to
estimate the total number of sodium ions that enter the
axon during the action potential (if you have to determine
the area under the jNa curve, just estimate it).

(c) Find the ratio of the number of sodium ions en-
tering the axon in one action potential to the number
present in the resting axon. Does a single action poten-
tial change the intracellular concentration of sodium ions
significantly?

(d) What diameter axon is needed in order for the in-
tracellular sodium ion concentration to change by 10%
during one action potential?

Problem 50 A stimulating current of 1 A m−2 is ap-
plied for 100 µs. How much does it change the potential
across the membrane?

Problem 51 Using the resting value of jK from
Fig. 6.39, calculate how long it would take for the con-
centration of potassium inside an axon of radius 100 µm
to decrease by 1%.

Problem 52 Modify the program in Fig. 6.38 to produce
the values of m, h, and n as functions of time during an
action potential. Plot m(t), h(t), n(t), and v(t).

Problem 53 Modify the program in Fig. 6.38 so it uses
different stimulus strengths other than jstim = 1 A m−2.
Find the minimum value of jstim that results in an action
potential. This value is known as the “threshold stimulus
strength.”

Problem 54 Modify the program in Fig. 6.38 so it ap-
plies two stimulus pulses. The first is of strength j1 = 1
A m−2, duration 0.5 ms, and starts at t1 = 0. The sec-
ond is of strength j2, duration 0.5 ms, and starts at time

t2. For a given t2 value, determine the threshold stimu-
lus strength j2. Plot the threshold j2 as a function of the
interval t2 − t1, for 1 ms < t2 − t1 <10 ms. This plot is
called a “strength-interval curve.” The increase of thresh-
old j2 for small intervals reflects the refractoriness of the
membrane.

Problem 55 When a squid nerve axon is “hyperpolar-
ized” by a stimulus (the transmembrane potential is more
negative than resting potential) for a long time and then
released, the transmembrane potential drifts back toward
resting potential, overshoots vr and becomes more posi-
tive than vr, and eventually reaches threshold and fires
an action potential. This process is called “anode break”
excitation: anode because the membrane is hyperpolarized,
and break because the excitation doesn’t occur until after
the stimulus ends. Modify the program in Figure 6.38, so
that the stimulus lasts 3 ms, and the stimulus strength
is −0.15 A m−2. Show that the program predicts anode
break stimulation. Determine the mechanism responsible
for anode break stimulation. Hint: Pay particular atten-
tion of the sodium inactivation gate (the h gate). You
may want to plot h versus time to see how it behaves.

Problem 56 Consider a space-clamped axon for which
the resting potential is vr. Assume that the membrane
current density follows a very strange behavior:

jm =

{
B(v − vr)2, v > vr

0, v < vr.
.

(a) Write a differential equation for v(t).
(b) What are the units of B?
(c) What sign would B have for depolarization to take

place after a small positive change of v?
(d) Integrate the equation obtained in (a).

Problem 57 A comment was made in the text that the
potassium current is not required to generate an action
potential. Modify the program of Fig. 6.38 to eliminate
the potassium current. (First make sure that you have an
unmodified program that reproduces Fig. 6.39 correctly.)
Comment on the shape of the resulting pulse. After the
pulse there is a new value of the resting potential. Why?
Is it significant?

Section 6.15

Problem 58 A pulse that propagates along the axon
with speed u is of the form v(x, t) = f(x − ut).

(a) Use the chain rule to show that this means

∂v

∂t
= −u

∂v

∂x
,

∂2v

∂t2
= u2 ∂2v

∂x2
.

(b) Find an expression for the membrane current per
unit area in terms of cm, ρi, ρm, a, and the various partial
derivatives of f with respect to x.
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Problem 59 Consider an action potential propagating
along an axon. The “foot” of the action potential is that
part of the initial rise of the transmembrane potential that
occurs before the sodium channels open. Starting from Eq.
6.73, set the jm equal to zero and assume that the action
potential propagates with a uniform speed u. As in Prob-
lem 58, replace the spatial derivatives with temporal deriv-
ative and show that the transmembrane potential during
the foot of the action potential rises exponentially. Find
an expression for the time constant of this exponential
rise in terms of ri, cm, a, and u.

Problem 60 An unmyelinated axon has the following
properties: radius of 0.25 mm, membrane capacitance of
0.01 F m−2, resistance per unit length along the axon
of 2 × 106 Ω m−1, and propagation velocity of 20 m
s−1. The propagating pulse passes an observer at x = 0.
The peak of the pulse can be approximated by a parabola,
v(t) = 20(1 − 10t2), where v is in millivolts and t is in
milliseconds.

(a) Find the current along the axon at x = 0, t = 0.
(b) Find the membrane current per unit area jm at

x = 0, t = 0.

Problem 61 A space-clamped axon (v independent of
distance along axon) has a pulse of the form

v(t) − vr =






0, t < −t1
v0

[
1 − (t/t1)2

]
, −t1 < t < t1

0, t > t1,

as shown in Problem 60. The axon has radius a, length
L, resistivity ρi, and membrane capacitance cm per unit
area.

(a) What is the total change in charge on the membrane
from t = −t1 to t = 0?

(b) What is the total change in charge on the membrane
from t = −t1 to t = +t1?

(c) What is jm(t)?
(d) If jm is given by gm(v − vr), what is gm(t)? Com-

ment on its behavior.

Problem 62 Modify the program in Fig. 6.38 to include
x-dependence as outlined in the text. Reproduce Fig. 6.42
and determine the propagation speed. Use ri = 19.89 ×
105 Ω m−1 and a = 0.238mm.

Section 6.16

Problem 63 Consider a myelinated fiber in which the
nodes of Ranvier are spaced every 2 mm. The resistance
of the axoplasm per unit length is ri = 1.4× 1010 Ω m−1.
The nodal capacitance is about 1.5 × 10−12 F.

(a) If the voltage difference between nodes is 10 mV,
what is the current along the axon? Assume that the
voltages are not changing with time, so that the mem-
brane charge does not change. Also neglect leakage cur-
rent through the membrane.

(b) If the nerve impulse rises from −70 mV to +30 mV
in 0.5 ms, what is the average current required to charge
the nodal capacitance?

Problem 64 A myelinated cylindrical axon has inner
radius a and outer radius b. The potential inside is v.
Outside it is 0. The myelin is too thick to be treated as a
plane sheet of dielectric. Express all answers in terms of
a, b, and v.

(a) Give an expression for E for r < a.
(b) Give an expression for E for a < r < b.
(c) Give an expression for E for r > b.
(d) Assuming κ = 1, what is the charge density on the

inner surface? The outer surface?

Problem 65 Develop equations for the resistance and
capacitance of a cylindrical membrane whose thickness is
appreciable compared to its inner radius. Use Gauss’s law
for cylindrical symmetry, to determine the electric field.
Consider total charge Q distributed uniformly over the in-
ner surface of a section of the membrane of length D and
inner radius a. The membrane has dielectric constant κ.

(a) Any charge on the outer surface of the membrane
has no effect on the calculation of the electric field between
r = a and r = a + b as long as the charge is distributed
uniformly on the outer cylindrical surface at r = a + b.
Show that the electric field within the membrane is E =(

1
4πε0κ

)
2Q/Dr.

(b) Show that the potential difference is v = v(a) −
v(a+ b) = Q

2πε0κD ln(1+ b/a), and that the capacitance is

C =
2πκε0D

ln(1 + b/a)
(cylinder).

(c) Now place a conducting medium with resistivity ρ =
1/σ in the region of the membrane. Charge will move. It
will be necessary to provide a battery to replenish it. Show
that the resistance of the membrane segment of length D
is given by R = ρ

2πD ln(1 + b/a), so that

ρ =
2πRD

ln(1 + b/a)
(cylinder).

(d) Show that the resistivity of a plane resistor of cross
sectional area 2πaD and thickness b is

ρ =
2πRD

b/a
(plane),

and that the capacitance of this plane section of mem-
brane is

C =
2πκε0D

b/a
(plane).

(e) How large is this correction for a myelinated axon
in which b/a = 0.4?
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Problem 66 Suppose that the outer radius of a myeli-
nated axon, a + b, is fixed. Determine the value of b that
maximizes the length constant of the axon (Eq. 6.76b).
Ignore the Nodes of Ranvier. Your result should be ex-
pressed as b = γa, where γ is a dimensionless constant.

Problem 67 Use the empirical relationships between
axon radius and conduction speed in Table 6.2 to de-
termine the radius and speed at which the speed along a
myelinated and unmyelinated fiber is equal. For radii less
than this radius, is propagation faster in myelinated or
unmyelinated fibers? For speeds greater than this speed,
in what type of fibers is propagation fastest?

Section 6.18

Problem 68 Modify the computer program of Fig. 6.38
to have a constant value of jStim and run it.
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7
The Exterior Potential and the Electrocardiogram

In Chapter 6 we assumed that the potential outside a
nerve cell is zero. This is only approximately true. There
is a small potential that can be measured and has clin-
ical relevance. Before a muscle cell contracts, a wave of
depolarization sweeps along the cell. This wave is quite
similar to the wave along the axon. Measurement of these
exterior signals gives us the electrocardiogram, the elec-
tromyogram, and the electroencephalogram.

In Sec. 7.1 we calculate the potential outside a long
cylindrical axon bathed in a uniform conducting medium.
Section 7.2 shows that the exterior potential is small
compared to the potential inside the cell if there is
enough extracellular fluid so that the outside resistance
is low. Section 7.3 uses a model in which the action po-
tential is approximated by a triangular pulse to calcu-
late the potential far from the cell. Section 7.4 general-
izes this calculation to the case of a pulse of arbitrary
shape.

An unusual feature of heart muscle is that the my-
ocardial cells remain depolarized for 100 ms or so, as de-
scribed in Secs. 7.5 and 7.6. This means that the potential
difference outside the cell is much larger than for other
cells, giving rise to the electrocardiogram described in
Sec. 7.7.

The next two sections discuss electrocardiography and
some factors that contribute to the signal. They make
no attempt to consider advanced techniques such as or-
thogonal leads that are used to reconstruct the electrical
activity of the heart from potential difference measure-
ments on the surface of the body. Rather, they are much
closer to the way clinicians think about the electrocardio-
gram, and they can provide a basis from which to learn
more complicated techniques.

Section 7.9 talks about improved models that take into
account the interaction between the inside and outside
of cells and the anisotropies that exist in tissue resis-
tance. Section 7.10 discusses the problem of stimulation:

for measurement of evoked responses, for pacing, and for
defibrillation.

Section 7.11 discusses the electroencephalogram.

7.1 The Potential Outside a Long
Cylindrical Axon

When studying the action potential in Chapter 6 we as-
sumed that the potential outside the axon is zero. Now we
calculate the exterior potential distribution if the axon is
in an infinite uniform conducting medium.1 We will dis-
cover that for the case studied here the exterior potential
changes are less than 0.1% of those inside. If the exterior
medium is not infinite, the exterior potential changes are
larger, as is discussed in Sec. 7.9. This model also applies
to a muscle cell that is depolarizing before contraction.
We will adapt these results to a group of heart (myocar-
dial) cells that depolarize together, leading to a wave of
depolarization propagating through the tissue.

Consider a single axon stretched along the x axis. Di-
vide space into three regions as shown on the left in Fig.
7.1: the interior of the axon (the axoplasm), the axon
membrane, and the surrounding medium. Imagine that
the current inside the axon is constant to the left of a
certain point and zero to the right of that point, as shown
on the right in Fig. 7.1(b). Since the material inside the
axon obeys Ohm’s law, the interior potential decreases
linearly with x as shown in Fig. 7.1(a). Where the cur-
rent is zero, the interior potential does not change. At the
point where the interior current falls to zero, conserva-
tion of charge requires that the current pass through the
membrane and flow in the exterior conducting medium,

1Other textbooks examine this problem in greater detail [Gul-
rajani (1998), Malmivuo and Plonsey (1995)].
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FIGURE 7.1. An axon is stretched along the x axis. (a) A
plot of a portion of the interior action potential at one instant
of time. (b) A plot of the interior current, proportional to
the slope of the interior potential because of Ohm’s law. (c)
Schematic representation of the axon, showing current flowing
along the axon and into the exterior conducting medium at
the point where the interior current falls to zero.

as stated in Eq. 6.47b. Figure 7.1(c) shows the axon with
current flowing in the left part of the axon and then flow-
ing into the surrounding medium.

Now consider how the current flows in the surrounding
three-dimensional medium. Suppose that the surround-
ing or “outside” medium is infinite, homogeneous and
isotropic and has conductivity σo. Suppose also that the
axon stretched along the x axis is very thin and does not
appreciably change the homogeneous and isotropic na-
ture of the extracellular medium, except very close to the
x axis. If a current io enters the surrounding medium at
the origin, the current density j is directed radially out-
ward and has spherical symmetry. The current density at
distance r has magnitude j = io/4πr2. The magnitude of
the electric field is E = j/σo = io/4πσor

2. This has the
same form as the electric field from a point charge, for
which the electric field is E = q/4πε0r

2. We speak of io
as a point current source.

We can use the expression for the electric field to cal-
culate the exterior potential. The point current source is
shown as the dot in the center of the sphere in Fig. 7.2. To
calculate the potential difference between points A and
B, it is easiest to integrate Eq. 6.16 along a path from
A to B′ parallel to the direction of E, and then along
B′B where the displacement is always perpendicular to
E. The potential change along B′B is zero. Therefore

v(B) − v(A) = −
∫ rB

rA

Er dr = −
∫ rB

rA

io
4πσor2

dr

=
io

4πσo

(
1
rB

− 1
rA

)
.

FIGURE 7.2. A point current source is at the center of a
sphere. The path of integration to calculate the potential dif-
ference between points A and B goes first from A to B′ and
then from B′ to B.

FIGURE 7.3. The potential of Fig. 7.1 is extended to the left
in a region of constant (depolarized) potential. The interior
current is plotted below the potential. The electric field or
current-density lines are plotted at the bottom. The current
to the right on the axis is current within the axon; the other
lines represent current in the exterior conducting medium.

Only a difference of potential between two points has
meaning. However, it is customary to define the potential
to be 0 at rA = ∞ and speak of the potential as a func-
tion of position. Then the potential at distance r from a
point current source io is

v(r) =
io

4πσor
. (7.1)

The analogous expression for the potential due to a point
charge q is v(r) = q/4πε0r.

We do not yet have a useful model, because the poten-
tial cannot rise forever as we go along the axon to the
left. Let us assume that the potential levels off at some
point on the left, as shown in Fig. 7.3. (This will turn
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i1 = − ∆vi σ iπa2
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FIGURE 7.4. The action potential is approximated by a tri-
angular wave form. In this piecewise-linear approximation the
depolarization and repolarization are both linear. (a) The in-
terior potential. (b) The interior current.

out to be a very good model for the electrocardiogram,
because the repolarization of myocardial cells does not
take place for about 100 ms, so the cells are completely
depolarized before repolarization begins.) Define the lo-
cation of the origin so that the depolarization takes place
between x = 0 and x = x2. The potential change is shown
at the top, and the current along the inside of the axon
in the middle. The current exists only where there is a
voltage gradient between x = 0 and x = x2. Its magni-
tude is ii = ∆vi/R = ∆viσiπa2/x2. This current flows
out into the surrounding medium at x = x2 and back
into the axon at x = 0. Such a combination of source and
sink of equal magnitude is called a current dipole. (A pair
of equal and opposite electric charges is called an electric
dipole.) The lowest part of the figure shows lines of j or
E. The current is to the right inside the axon (along the
axis) and returns outside the axon. The potential at any
exterior point is due to two terms: one from the source ii
at x = x2 and the other from the sink −ii at x = 0. If r2

is the distance from the observation point to x2 and r0 is
the distance to the origin, then

v =
∆viσi πa2

4π σox2

(
1
r2

− 1
r0

)
=

∆viσia
2

4σox2

(
1
r2

− 1
r0

)
.

(7.2)
To estimate the potential from a nerve impulse, we can

approximate the action potential by a triangular poten-
tial as shown in Fig. 7.4(a). The potential is zero far to
the left. It rises by an amount ∆vi between x = −x1 and
x = 0. It falls linearly to zero at x = x2. The current is
plotted in Fig. 7.4(b). In the region just to the left of the
origin it is

i1 = −∆viσi πa2

x1
. (7.3a)

x

r1

P

+ 2i1 –(   +   )21

r0 r2

+ i i i

FIGURE 7.5. The axon of Fig. 7.4 is stretched along the x
axis. There are current sources at x = −x1 and x = x2, and a
current sink at the origin. The distances from each source or
sink to the observation point are shown.

(It is negative because it flows to the left.) To the right
of the origin it is

i2 =
∆viσi πa2

x2
. (7.3b)

Figure 7.5 shows the surrounding medium. There is
a source of current i1 at x = −x1, a source i2 at x =
x2, and a sink −(i1 + i2) at the origin. The potential at
observation point P is calculated by repeated application
of Eq. 7.1:

v =
1

4πσo

(
i1
r1

− i1 + i2
r0

+
i2
r2

)
. (7.3c)

Equations 7.3a–7.3c can be combined to give

v =
∆viσia

2

4σo

(
1/x1

r1
− 1/x1 + 1/x2

r0
+

1/x2

r2

)
. (7.4)

Equations 7.3 and 7.4 are valid at any distance from the
axon, as long as we can make the piecewise approximation
of the action potential shown in Fig. 7.4.

7.2 The Exterior Potential is Small

Let us use Eq. 7.2 for the rising edge of the action po-
tential to estimate the potential outside the axon when it
is in an infinite conducting medium. We evaluate Eq. 7.2
close to the surface of the axon where the potential will
be largest, say at x = 0. In that case r2 is approximately
x2. However, r0 is not zero. It can never become smaller
than r0 = a, the radius of the axon. (The potential would
diverge if the model were extended to r = 0.) We will use
an approximate value, r0 = a, and call the height of the
action potential ∆vi. Then

v(0) =
∆viσia

2

4σox2

(
1
x2

− 1
a

)
. (7.5)

Since 1/x2 � 1/a, this becomes

v(0) ≈ −∆viσia

4σox2
. (7.6)
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FIGURE 7.6. The observation point P is far away compared
to distances x1 or x2. The lines to P are nearly parallel.

Close to x = x2 the potential is

v(x2) =
∆viσia

2

4σox2

(
1
a
− 1

x2

)
≈ ∆viσia

4σox2
. (7.7)

The potential difference between these two exterior points
is

∆vo = v(x2) − v(0) =
σi

σo

a

2x2
∆vi. (7.8)

If the conductivities were the same inside and outside,
the ratio would be ∆vo/∆vi = a/2x2.

The ratio of exterior to interior potential change is pro-
portional to the ratio of the axon radius to the distance
along the axon over which the potential changes. From
Fig. 6.42 we see that the rising part of the squid action
potential has a length x2 ≈ 1 cm. If a = 0.5 mm (a quite
large axon), then the ratio is 1/40. For a smaller axon,
the ratio is even less.

The same result can be obtained by another argument.
The resistance between two points is the ratio of the po-
tential difference between the points to the current flow-
ing between them. Inside the axon j and E are large be-
cause the current is confined to a small region of area
πa2. The resistance inside is Ri = x2/πa2σi. The same
current flows outside, but it is spread out so that j and E
are much less. The resistance between two electrodes in a
conducting medium is related to their capacitance (Sec.
6.19). Equations 6.87 and 6.100 can be used to show that
two spherical electrodes of radius a spaced distance x2

apart (x2 � a) have a resistance Ro = 1/2πσoa. The
voltage ratio is

∆vo

∆vi
=

Ro

Ri
=

1
2πσoa

πa2σi

x2
=

σi

σo

a

2x2
,

the same result as Eq. 7.8.

7.3 The Potential Far From the Axon

In most cases measurements of the potential are made far
from the axon—far compared to the distance the action
potential spreads out along the axon. If point P is moved
far away, Fig. 7.5 looks like Fig. 7.6. The lines r1, r0, and

r2 are nearly parallel. If point P is located a distance r0

from the origin at angle θ with the x axis, then

r2 ≈ r0 − x2 cos θ, r1 ≈ r0 + x1 cos θ. (7.9)

Consider the potential in Eq. 7.2 due to the leading
edge of the action potential. (We will argue later that this
is a useful model for the electrocardiogram.) Substituting
Eqs. 7.9 in Eq. 7.2 gives

v =
∆viσia

2

4σox2

(
1

r0[1 − (x2/r0) cos θ]
− 1

r0

)
.

You can verify by a Taylor’s-series expansion or long di-
vision that

1
1 − x

= 1 + x + · · · , (7.10)

so that

v =
∆viσia

2

4σor2
0

cos θ. (7.11)

This is a very important result that will form the basis
for our model of the electrocardiogram:

1. The exterior potential v depends on ∆vi but not on
x2, the length of the depolarization region. This is
because increasing x2 decreases the strength of the
current at the same time that it increases v because
the source and sink are further apart.

2. The potential falls off as 1/r2 instead of 1/r as it
would from a point source.

3. The potential varies with angle, being positive to the
right of the transition region and negative to the left.

It is convenient to define a vector p that points along
the axon in the direction of the advancing depolarization
wave front (the region along the axon where the poten-
tial rises). It is called the activity vector or current-dipole
moment for reasons discussed shortly. Its magnitude is

p = πa2σi ∆vi. (7.12)

The exterior potential is then (dropping the subscript on
r)

v =
p · r

4πσor3
. (7.13)

Vector p has units of A m. Its magnitude (apart from the
conductivity) is the product of the cross-sectional area of
the axon and the difference in potential along the axon
between the resting and completely depolarized regions.
It is called the current-dipole moment because it is the
product of the current and the separation of the source
and sink. (The electric-dipole moment is the product of
the magnitude of the charges and their separation, with
units C m.)

Equation 7.11 can also be written in the form

v(r) =
πa2 cos θ

r2

1
4π

σi

σo
∆vi. (7.14)
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θ

r1 r2r0

2x1x−

FIGURE 7.7. When the observation point is not so far away,
or when a complete nerve impulse is being considered, the law
of cosines must be used to relate r1 and r2 to r0.

The quantity πa2 cos θ/r2 is ∆Ω, the solid angle2 sub-
tended at the observation point by a cross section of the
axon where the potential changes. The quantity 4π is the
maximum possible solid angle. In terms of the solid angle

v =
∆Ω
4π

σi

σo
∆vi. (7.15)

Now consider an entire pulse, one where the poten-
tial rises and then returns to the resting value. If the
approximation of Eq. 7.10 is applied to Eq. 7.4, the re-
sult vanishes. It is necessary to make a more accurate
approximation, one that takes into account the fact that
the vectors r1, r0, and r2 are not exactly parallel. Fig-
ure 7.7 shows the geometry. We use the law of cosines to
write [remember that cos(π − θ) = − cos θ]

r1 = r0

[
1 + (2x1/r0) cos θ + x2

1/r2
0

]1/2
,

r2 = r0

[
1 − (2x2/r0) cos θ + x2

2/r2
0

]1/2
.

When these are inserted in Eq. 7.4 and a Taylor’s-series
expansion is done to second order in both x1/r0 and
x2/r0, the result is

v =
2πa2

4πr3

σi

σo

∆vi(x1 + x2)
2

3 cos2 θ − 1
2

. (7.16)

The constants have been arranged to show that the term
∆vi(x1 + x2)/2 is the area under the impulse when v is
plotted as a function of x. The angular factor as writ-
ten with its factor of 2 in the denominator is tabulated
in many places as the “Legendre polynomial P2(cos θ)”.3

The exterior potential now falls off more rapidly with dis-
tance, as 1/r3. The angular dependence, shown in Fig.
7.8, is symmetric about π/2. This shows the angular de-
pendence as one moves around the impulse at a constant
distance from it.

This is a very different situation and a very different
curve from the potential measured at a fixed point out-
side the axon as an impulse travels past. In the latter

2The solid angle is defined in Appendix A.
3You can learn more about Legendre polynomials in texts on

differential equations or, for example, in Harris and Stocker (1998).
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FIGURE 7.8. Plot of the angular dependence of the potential
from the entire impulse, Eq. 7.16.
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FIGURE 7.9. The potential far from the axon as a function
of time as an impulse travels from left to right along the axis.
The potential from the complete pulse has been multiplied by
a factor of 10 in order to show it.

case r as well as θ is changing. This behavior is discussed
in Problems 8 and 9. The results are shown in Fig. 7.9.
The potential from the depolarization is biphasic; that
from the complete pulse is triphasic, being positive, then
negative, then positive again.

For a single axon in an ionic solution the exterior con-
ductivity is usually higher than in the axon, so σi/σo =
0.2. The conductivity of tissue is considerably less than
the conductivity of an ionic solution, and the ratio be-
comes greater than one. For the electrocardiogram it will
be more appropriate to use σo = 0.33 S m−1 (muscle) or
0.08 S m−1 (lung), in which case σi/σo is 6 or 25. We will
use an approximate value of 10.

7.4 The Exterior Potential for an
Arbitrary Pulse

We have derived the results of the previous sections for an
action potential that varies linearly during depolarization
and repolarization, a piecewise-linear approximation. In
general the action potential does not have sharp changes
in slope. We will now consider the general case and find
that the results are very similar. For depolarization alone,
we will again have a potential depending on the dipole
moment. For a complete pulse the potential will depend
on the area under the pulse curve.

Again, the axon is stretched along the x axis in an infi-
nite, homogeneous conducting medium. Consider a small
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FIGURE 7.10. The potential v(R) is obtained by integrating
the potential due to current dio from each element dx of the
cell.

segment of axon between x and x + dx. If the current
entering this segment at x is greater than the current
leaving at x + dx, the difference must flow into the exte-
rior medium. From Eq. 6.47b,

dio = −dii =
∂ii(x, t)

∂x
dx.

We can write Ohm’s law for the axoplasm as

ii(x, t) = −πa2σi
∂vi

∂x
. (7.17)

The current into the exterior medium from length dx of
the axon is

dio = πa2σi
∂2vi

∂x2
dx. (7.18)

It is proportional to the derivative of the current along
the axon with respect to x and therefore to the second
derivative of the interior potential with respect to x. A
small current source dio generates a potential dv at some
point in the exterior medium given by

dv =
dio

4πσor
. (7.19)

If the radius of the axon stretched along the x axis
is very small, the axon’s influence can be replaced by a
current distribution dio(x) along the x axis. The potential
at any point R is obtained by integrating Eq. 7.19:

v(R) =
∫

dio
4πσor

. (7.20)

Vector R specifies the point at which the potential is
measured, and r is the distance from the measuring point
to the point on the x axis where dio is injected, as shown
in Fig. 7.10. Combining this with Eq. 7.18 gives

v(R) =
∫

πa2σi

4πσo

∂2vi

∂x2

1
r

dx. (7.21)

Although it is difficult to integrate Eq. 7.21 analyt-
ically, the integration can be done numerically. Figure
7.11 shows a computer program to carry out this inte-
gration for a crayfish lateral giant axon immersed in sea

FIGURE 7.11. The computer program used to calculate the
exterior potential by integrating Eq. 7.21 for the problem
first solved by Clark and Plonsey (1968). The program uses
Romberg integration procedure qromb from Press et al. (1992).

water. The axon radius is 60 µm. The conductivity ra-
tio is σi/σo = 0.2. The action potential was measured
by Watanabe and Grundfest (1961). Clark and Plonsey
(1968) showed that it could be well represented by a sum
of three Gaussians, with vi = 0 taken to be the resting
value. Since only ∂2vi/∂x2 enters into Eq. 7.21, the ref-
erence level does not matter. The representation (with v
in mV and x in mm) is

vi(x) = 51e−[(x−5.4)/1.25]2 (7.22)

+ 72e−[(x−6.6)/1.876]2 + 18e−[(x−8.6)/3.003]2 .

This function corresponds to an impulse traveling to the
left. It can be differentiated to obtain an analytic expres-
sion for ∂2vi/∂x2. If the potential is being measured at
exterior point (x0, y0), the value of r which is used in Eq.
7.21 is r =

[
(x − x0)2 + y2

0

]1/2. The program allows four
values of y0 to be used. The smallest is taken to be a, the
radius of the axon.

The results of calculating the exterior potential at
y0 = a are shown in Fig. 7.12. The interior potential,
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FIGURE 7.12. (a) The transmembrane potential used for the
calculation in the program of Fig. 7.11. The impulse is trav-
eling to the left. (b) The exterior potential along the axon
calculated by the program for y0 = a.

shown in (a), has a peak value of 114 mV. The potential
on the surface of the axon (b) ranges from +0.04 to −0.07
mV. In general, the exterior potential is less than 0.1%
of the interior potential. (This would be different if the
extracellular fluid were not infinite.) The original calcu-
lation by Clark and Plonsey used much different mathe-
matical techniques (see Problem 30); however, the results
are very similar. The results of their more accurate cal-
culation are plotted in Fig. 7.13.

The approximation that the observer is far from the
axon can also be applied to the general case. The physics
is exactly the same as in the previous section for the
triangular pulse, except that now the pulse has an ar-
bitrary shape so current passes through the membrane
at all points along the axon where the second deriva-
tive is nonzero. The calculation requires making the same
type of approximations in order to evaluate the integral
(Eq. 7.21). Referring to Fig. 7.10, we again use the law
of cosines to write

r(x) = R
[
1 − 2(x/R) cos θ + x2/R2

]1/2
.

We need to use this in Eq. 7.21. As in the previous section,
we make a Taylor’s-series expansion of 1/r. To second
order the result is

1
r
≈ 1

R

(
1 +

x

R
cos θ +

1
2

x2

R2
(3 cos2 θ − 1)

)
. (7.23)

FIGURE 7.13. The exterior potential for the same problem
calculated using the more accurate method of Clark and Plon-
sey (1968). The smallest distance from the axon is y = 0.5
mm.

The expression for v(R) becomes

v(R) =
πa2σi

4πσo

[
1
R

∫ x2

x1

∂2vi

∂x2
dx +

cos θ

R2

∫ x2

x1

∂2vi

∂x2
x dx

+
3 cos2 θ − 1

2R3

∫ x2

x1

∂2vi

∂x2
x2 dx

]
. (7.24)

There are three integrals that we must evaluate. Take
limits of integration x1 and x2 to be points where
∂vi/∂x = 0. The first integral is ∂vi/∂x and vanishes.
The second integral can be integrated by parts. Since
∂vi/∂x = 0 at the end points the second integral is
vi(x1) − vi(x2). The third integral is integrated by parts
twice and is
∫ x2

x1

∂2vi

∂x2
x2 dx =

[
x2 ∂vi

∂x

]x2

x1

−2 [xv(x)]x2
x1

+2
∫ x2

x1

vi(x) dx.

(7.25)
The first term of this vanishes because of the way the end
points were chosen.

We now apply these results to Eq. 7.24 in two cases.
The first is the case of depolarization only, which is useful
in considering the electrocardiogram. Set up the coordi-
nate system so the origin is some place in the impulse
where ∂vi/∂x = 0. The total change in vi is ∆vi. Then
x1 = 0, vi(x1) = ∆vi, vi(x2) = 0. The first nonvanishing
term of Eq. 7.24 requires only the second integral:

v(R) =
πa2σi

4πσo

cos θ

R2
∆vi. (7.26)

We obtained this result in a special case as Eq. 7.11.
In the second case we consider the complete pulse, and

we take x1 to the left of the pulse and x2 to the right.
The first integral in Eq. 7.24 still vanishes. Now the sec-
ond integral also vanishes because vi(x1) = vi(x2) = vrest

and ∆vi = 0. It is necessary to use the third integral, Eq.
7.25. The first term in Eq. 7.25 vanishes. The second and
third terms must be considered together. Rewrite the po-
tential in terms of departures from the resting potential:
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vi(x) = vrest + vdepol(x). The second term in Eq. 7.25 is
−2vrest(x2 − x1). The third term of Eq. 7.25 is

2
∫ x2

x1

vdepol(x) dx + 2(x2 − x1)vrest.

Adding these gives

v(R) =
2πa2σi

4πσo

1
R3

3 cos2 θ − 1
2

∫ x2

x1

[vi(x) − vrest] dx.

(7.27)
Again, we saw a special case of this as Eq. 7.16.

Note the progression in these results. When we are
looking at one corner of a depolarization pulse, we have a
current source or sink, and the potential is proportional
to 1/R [Eq. 7.1]. We do not find this situation in phys-
iology, because the potential would have to keep rising
forever. When we consider the entire depolarization por-
tion of the wave form, the potential is proportional to
1/R2, as in Eqs. 7.11 or 7.26. (We will find that this is
a good model for the electrocardiogram because the re-
polarization does not commence until the entire heart is
depolarized.4) When the entire pulse is considered, the
potential is proportional to 1/R3 as in Eqs. 7.16 or 7.27.
This is a good model for nerve conduction. The poten-
tial is considerably less in this case because of the 1/R3

dependence.
This is an example of a technique called a multipole

expansion. Generally, defining ξ = x/R, one can make
the expansion

1
(1 − 2ξ cos θ + ξ2)1/2

= P0 + ξP1 + ξ2P2 + ξ3P3 + · · · ,

(7.28)
where the Pn are functions of cos θ and are called Legen-
dre polynomials.5 The first few Legendre polynomials are

P0 = 1,
P1 = cos θ,

P2 = 1
2 (3 cos2 θ − 1),

P3 = 1
2 (5 cos3 θ − 3 cos θ).

(7.29)

All of these calculations are based on a model in which
the current flows parallel to the axis of the axon, passes
through the membrane, and then returns in the extracel-
lular conducting medium. This model is called the line
approximation. It is, of course, impossible for current in-
side the axon to pass out through the membrane if it
always flows parallel to the axis of the axon. It is possible
to do an exact calculation in which j has a radial compo-
nent as well as one parallel to the axis of the axon. (See
Sec. 7.9 for a description of how this is done.) Trayanova
et al. (1990) have compared the exact solution with two
approximations, one of which is the line approximation.

4This is not strictly true. Atrial repolarization begins before the
ventricular depolarization is complete.

5Legendre polynomials are discussed in many books on differen-
tial equations or, for example, in Harris and Stocker (1998).
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FIGURE 7.14. Depolarization and repolarization of a myocar-
dial cell. The upstroke takes about 1 ms. The depolarization
lasts 200–300 ms. The resting potential is about −90 mV.

The line approximation is quite good if the radius of the
axon is much smaller than the distance along the axon
over which the depolarization takes place.

7.5 Electrical Properties of the Heart

There are many similarities between myocardial cells and
nerve cells: a membrane separates extracellular and intra-
cellular fluids; the concentrations of the principal ions are
about the same; except for a small amount of charge on
the membrane, the extracellular and intracellular fluids
are electrically neutral; and selective ion channels are re-
sponsible for the initiation and propagation of the action
potentials. There are also major differences: myocardial
cells in mammals are about 100 µm long and 10 µm in
diameter. The interiors of neighboring cells are connected
through gap junctions, so current and ions flow directly
from one cell to another [Delmar et al. (2004)]. This con-
tinuum of cells is called a syncytium. There are also im-
portant differences in the details of the ion currents. We
continue for now to use the simple model of long, one-
dimensional cells. Refinements to this model are discussed
in Sec. 7.9.

In the resting state, the potential inside an atrial cell
is at about −70 mV, while that in a ventricular cell is at
about −90 mV. When a cell depolarizes, the action po-
tential lasts for 100–300 ms, depending on the species. A
“typical” action potential is shown in Fig. 7.14. There are
variations in pulse shape between species and also in dif-
ferent parts of the heart. The initial rapid depolarization
in heart muscle cells is caused by an inward sodium cur-
rent (phase 0 on the curve) and takes about 1 ms. The
fall at phase 1 is caused by a transient outward potas-
sium current. This current is small in endocardium (near
the inside of the heart) but is prominent enough in the
epicardium (outer layers of the heart) so that there can
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be a “spike and dome” shape to the potential [Campbell
et al. (1995); Antzelevitch et al. (1995)]. This is followed
by a Ca2+ influx that maintains the plateau (phase 2)
of the action potential. The “slow” potassium channels
finally open [Oudit (2004)], and potassium efflux causes
repolarization (phase 3). During phase 4 the original ion
concentrations are restored.

The heart can beat in isolation. If it is removed from
an animal and bathed in nutrient solution, it continues
to beat spontaneously. With each beat, a wave of depo-
larization sweeps over the heart, and it contracts. The
wave is initiated by some specialized fibers located in the
right atrium called the sinoatrial node (SA node). As was
mentioned in Sec. 6.18, the SA node does not have the
usual sodium channels, and the depolarization is due to
calcium. The shape of the SA node potential is much
more like Fig. 6.48 than Fig. 7.14. In humans the SA
node fires about 60–100 times per minute; this rate is
increased by the sympathetic nerves to the heart (which
release norepinephrine) and decreased by the parasympa-
thetic nerves (which release acetylcholine). Devices that
produce such periodic firing are common in physics and
engineering. They are called free-running relaxation os-
cillators.

Figure 7.15 shows how the depolarization progresses
through the heart. Once the SA node has fired, the depo-
larization sweeps across both atria (a,b). When the atria
are completely depolarized (c) there is no depolarization
wavefront. The atria are separated from the ventricles
by fibrous connective tissue that does not transmit the
impulse. The only connection between the atria and the
ventricles is some conduction tissue called the atrioven-
tricular node (AV node). After passing through the AV
node, the depolarization spreads rapidly over the ventri-
cles on the conduction system—a set of specialized mus-
cle cells on the inner walls of the ventricles—(d,e), and
finally through the myocardium of each ventricle to the
outer wall (e,f,g). The conduction system consists of the
common bundle (or bundle of His), the left and right bun-
dles, and the fine network of Purkinje fibers. The AV node
will spontaneously depolarize at a rate of about 50 beats
min−1; it usually does not because it is triggered by the
more rapid beating of the atria. In well-trained athletes,
the resting pulse rate can be so low that the AV node
fires spontaneously, giving rise to what are called nodal
escape beats. These are physiologic and are no cause for
concern.

There is a difference between depolarization, which
propagates as a wave, and repolarization, which is a local
phenomenon. Sodium conductance increases as the trans-
membrane potential rises during depolarization. As the
potential rises at some point on the advancing wave front,
electrotonus increases the potential further along the cell.
This causes the sodium conductance to rise at that point,
enhancing the propagation of the signal. During repolar-
ization, as the potential falls at one point, electrotonus
tends to lower the potential at neighboring points. This

FIGURE 7.15. The wave of depolarization sweeping over the
heart. Atrial and ventricular muscle are not connected except
through the AV node. (a) Depolarization beginning at the
SA node. (b) Atria nearly depolarized. (c) The AV node is
conducting. (d) Beginning of depolarization of the left ventri-
cle. (e, f) Continuing ventricular depolarization. (g) Ventric-
ular depolarization nearly complete. Reprinted with permis-
sion from R. K. Hobbie. The electrocardiogram as an example
of electrostatics. Am. J. Phys. 41: 824–831. Copyright 1973,
American Association of Physics Teachers.

means that the potassium conductance also falls, which
tends to retard repolarization. Moreover, as the voltage
falls during repolarization, the transmembrane potential
is approaching the potassium Nernst potential, and the
potassium current falls for this reason as well.6 Therefore
electrotonus does not assist in the propagation of the re-
polarization, which is a local phenomenon.

6This argument ignores the potassium “K1” channels, which do
provide positive feedback late in the cardiac action potential.
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Normally, depolarization progresses through the my-
ocardium in an orderly fashion. It is followed by repo-
larization, and after a brief refractory period the heart
is ready to beat again. During the refractory period the
cells do not respond to a stimulus. It is possible in ab-
normal situations for a wave of depolarization to travel
in a closed path through the myocardium. This closed
path, called a reentrant circuit , can surround an obstacle
such as scar tissue, the aorta, or the pulmonary artery.
It can also surround an area that simply has different
conduction properties.

If the time to travel around the reentrant circuit is
greater than the refractory period, the wave can con-
tinue to travel on the closed path. Reentrant excitation is
thought to be responsible for several kinds of heart dis-
ease, including most life-threatening ventricular tachycar-
dias (rapid heart rate). Another type of reentrant excita-
tion is spiral waves that occur because of the nonlinear
nature of the myocardium [Davidenko (1995)]. (Such non-
linear behavior will be discussed in Chap. 10.) It is also
possible for a reentrant wave to leave behind a refractory
state that blocks normal conduction.

7.6 The Current-Dipole Vector of the
Heart as a Function of Time

Each myocardial cell depolarizes and repolarizes during
the cardiac cycle. These cells are short—about 100 µm
in length—but are interconnected. We apply our axon
model by noting that a current ii flows within each cell
during depolarization and a return current, which could
be ignored in our axon model, flows in the surrounding
tissue. We assume that each cell as it depolarizes has a
current dipole moment, and that these can be summed.

The total current-dipole vector at any instant is then
the sum of the vectors for all the cells in the heart.
This section considers how the total current-dipole vec-
tor changes with time as the myocardium depolarizes and
then repolarizes. Initially, all the cells are completely po-
larized (resting) and there is no net dipole moment. The
cells begin to depolarize near the SA node, and a wave of
depolarization sweeps across the atria. For each myocar-
dial cell, the dipole vector points in the direction that
the wave of depolarization is traveling7 and moves along
the cell with the depolarization wave. These vectors for
all the cells that are depolarizing constitute an advancing
wave that moves across the heart.

The potential at the point of observation can be calcu-
lated by applying Eq. 7.13 for each cell. Vector r is the
vector from the cell to the point of observation and is
different for each cell. However, we will assume for now

7If one takes into account the anisotropies in the conductivities
of myocardial tissue discussed in Sec. 7.9, the depolarization does
not travel in the direction that p points. We ignore this for now.

FIGURE 7.16. The locus of the tip of the total current-dipole
vector during the cardiac cycle. The z axis is perpendicular
to the x and y axes and the subject’s chest and comes out of
the page.

that the observation point is so far from the heart that
all points in the myocardium are nearly equidistant from
it. This is a terrible assumption; later we will be more
realistic. It allows us to speak of the instantaneous total
current-dipole moment, which is the sum of the dipole
moments of all depolarizing cells at that instant.

The locus of the tip of the total dipole moment dur-
ing the cardiac cycle is shown in Fig. 7.16 for a typical
case. The x axis points to the patient’s feet, the y axis
to the patient’s left, and the z axis from back to front.
The small loop labeled P occurs during atrial depolar-
ization. The loop labeled QRS is the result of ventricular
depolarization. Ventricular repolarization gives rise to the
“T wave.” Atrial repolarization is masked by ventricular
depolarization. A plot of the x, y, and z components of
p is shown in Fig. 7.17. These components are typical;
there can be considerable variation in the directions of
the loops in Fig. 7.16.

7.7 The Electrocardiographic Leads

We turn next to how the electrocardiographic measure-
ments are made. We model the torso as an infinite ho-
mogeneous conductor and continue to assume that every
myocardial cell is the same distance from each electrode.
Both assumptions are wrong, of course, and later we will
improve upon them.

The potential at r from a current dipole p is given by
Eq. 7.13. The potential difference between two points at
positions r1 and r2, each a distance r from the dipole, is
therefore (see Fig. 7.18)

v(r2, r1) =
p·(r2 − r1)

4πσor3
.

Denoting r2 − r1 by R, we have

v =
p · R

4πσor3
. (7.30)
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FIGURE 7.17. The three components of the total current-di-
pole vector p as a function of time.

FIGURE 7.18. Geometry for calculating the potential differ-
ence due to p between points A and B.

The potential difference between two electrodes separated
by a displacement R and equidistant from the current-
dipole vector p measures the instantaneous projection of
vector p on R.

If the depolarization can be described by a sin-
gle current-dipole vector, only three measurements are
needed in principle, corresponding to the projections on
three perpendicular axes. The standard electrocardio-
gram (ECG) records 12 potential differences using nine
electrodes. There are many reasons for this. The body is
not an infinite, homogeneous conductor, and the relation-
ship between cellular dipole moments and the potential
is more complicated than our model; to convert the three
perpendicular components to the instantaneous values of
p would require a mathematical reconstruction; and the

FIGURE 7.19. Vectors connecting the three electrodes for a
typical patient. The limbs are extensions of the leads of the
electrocardiograph machine.

electrodes are not far away compared to the size of the
heart. With 12 recorded potential differences, it is fairly
easy to interpret the electrocardiogram by inspection.

The first three electrodes are placed on each wrist and
the left leg. The limbs serve as extensions of the wires, so
that the potential is measured where the limbs join the
body. This is a major correction to our crude model that
the heart is in an infinite conducting medium. If the sub-
ject were immersed in a conducting medium such as sea
water, movement of the arms would change the size of the
ECG signal because it would change R. In air, however,
movement of the arms does not change the size of the sig-
nal. The simplest correction to explain this is to say that
R for the two arm electrodes goes from shoulder to shoul-
der. These three electrodes measure potential differences
between three points located approximately as shown in
Fig. 7.19. The dimensions are for a typical adult. The
three potential differences are called limb leads I, II, and
III:

I = vB − vA,

II = vC − vA, (7.31)

III = vC − vB.

In the approximation used here, the voltage difference I is
proportional to the projection of p on RI, and so forth.
These leads measure the projections of p on the three
vectors RI, RII, and RIII of Fig. 7.19.

It is customary also to combine these three potentials
in a slightly different way to obtain projections of p on
three other directions. These combinations are called the
augmented limb leads. They contain no information that
was not already present in the limb leads, but the six
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FIGURE 7.20. The six directions in the frontal plane defined
by the limb leads and the augmented limb leads. The angles
are for the same subject as in Fig. 7.19.

signals are easier to interpret by inspection. The combi-
nations are

aV R = vA − 1
2
(vB + vC) = −1

2
(I + II),

aV L = vB − 1
2
(vA + vC) =

1
2
(I − III), (7.32)

aV F = vC − 1
2
(vA + vB) =

1
2
(II + III).

These are proportional to the projections of p on vectors
RL, RR, and RF of Fig. 7.20. The subscripts refer to the
fact that the vectors point toward the left shoulder, right
shoulder, and foot, respectively.

The six lines in Fig. 7.20 are spaced approximately
every 30 ◦ in the frontal plane. Many texts argue that the
leads are spaced exactly every 30 ◦ and that the triangle of
Fig. 7.19 is an equilateral triangle (Einthoven’s triangle).
While the directions are not far from 30 ◦, this assumption
is not really necessary. Physicians often want to know the
direction of p at some point during the cardiac cycle, or
the average direction of p during the QRS wave (ventric-
ular depolarization). With six directions measured, this
can be determined by inspection.

These six leads measure projections in the frontal
plane. It is also necessary to have at least one projection
in a plane perpendicular to the frontal plane. It is custom-
ary to place six leads across the chest wall in front of the
heart; they are called the precordial leads. Their locations
are shown in Fig. 7.21. The potential difference is mea-
sured between each precordial electrode and the average
of vA, vB , and vC . A lead therefore measures the projec-
tion of p on a vector from the center of triangle ABC to
the electrode for that lead. This fact is not obvious, and
in fact is true only if differences in 1/r2 are neglected. To

FIGURE 7.21. The location of the precordial leads and
the directions of the components of p which they measure.
Reprinted with permission from R. K. Hobbie. The electro-
cardiogram as an example of electrostatics. Am. J. Phys. 41:
824–831. Copyright 1973, American Association of Physics
Teachers.

FIGURE 7.22. A perspective drawing of the vectors used to
calculate the potential in a precordial lead. Reprinted with
permission from R. K. Hobbie. The electrocardiogram as an
example of electrostatics. Am. J. Phys. 41: 824–831. Copy-
right 1973, American Association of Physics Teachers.

see that it is true with the appropriate approximation,
pick an arbitrary point O and from it construct vectors
RA, RB , RC , and RD to the points A, B, and C of Fig.
7.22 and to the precordial electrode at D. The desired
potential is

v = vD − vA + vB + vC

3
.

It can be calculated using Eq. 7.30 for each term:

v =
1

4πσo

[
p · RD

R3
D

− 1
3

(
p · RA

R3
A

+
p · RB

R3
B

+
p · RC

R3
C

)]
.

So far, the location of O is arbitrary. If it is picked to be at
the center of the triangle, then RA +RB +RC = 0. (This
is the definition of center.) Since RA ≈ RB ≈ RC , the
term in large parentheses vanishes. The desired potential
difference is then

v =
1

4πσo

p · RD

R3
D

.
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In this approximation, each precordial lead measures the
projection of p on a vector from the center of the triangle
ABC to the electrode. The amplitude of the signal will be
larger than for the limb leads, because RD < RA. Some
of the precordial leads are quite close to the heart. The
assumption that r is the same for all parts of the my-
ocardium is not valid. Because of the factor 1/r2, the
greatest contribution to the potential comes from the
closest regions of myocardium. A lead is said to “look
at” the myocardium closest to it.

7.8 Some Electrocardiograms

A normal electrocardiogram is shown in Fig. 7.23. When
p has its greatest magnitude during the QRS wave, it is
nearly parallel to RII. There is almost no signal in aV L,
which is perpendicular to RII.

Compare this to Fig. 7.24, which shows the electrocar-
diogram for a patient with right ventricular hypertrophy,
an enlargement and thickening of the right ventricle. Be-
cause of the greater right ventricular muscle volume, p
points to the right during the QRS wave, so that the QRS
signal is negative in lead I. Lead aV F shows that there
is very little vertical component of p during the QRS
wave. The precordial leads V1 and V2 show the strongest
signals, because the right ventricle faces the front of the
body. In this case an extra lead V4R has been used, which
is symmetrical with V4 but on the right side of the body.

The electrocardiogram in Fig. 7.25 is from a patient
with left ventricular hypertrophy. The thicker left ven-

FIGURE 7.23. A normal electrocardiogram. The large divi-
sions are 0.5 mV vertically and 0.2 s horizontally. Reprinted
with permission from R. K. Hobbie. The electrocardiogram
as an example of electrostatics. Am. J. Phys. 41: 824–831.
Copyright 1973, American Association of Physics Teachers.
The electrocardiogram was supplied by Prof. James H. Moller,
M.D.

FIGURE 7.24. The electrocardiogram of a patient with right
ventricular hypertrophy. Reprinted with permission from R.
K. Hobbie. The electrocardiogram as an example of electro-
statics. Am. J. Phys. 41: 824–831. Copyright 1973, American
Association of Physics Teachers. The electrocardiogram was
supplied by Prof. James H. Moller, M.D.

tricular wall causes the QRS dipole to point to the left.
As a result, lead I has an abnormally high peak, aV L is
large and positive, V2 is negative, and V4, V5, and V6 have
very large positive peaks. These last four leads are shown
at half scale.

A fault in the conduction system known as a bun-
dle branch block causes the depolarization wave to travel
through the myocardium rather than over the conduction
system. Since the speed of propagation in myocardium
is slower than that in the conduction system, the depo-
larization takes longer than usual. An electrocardiogram
for a patient with right bundle branch block (a block in
the bundle for the right ventricle) is shown in Fig. 7.26.
The effect is most striking in leads that are most sensi-
tive to the right ventricle: precordial leads 1 and 2. In V1

the early part of the QRS wave has the usual biphasic,
up–down pattern as the left ventricle depolarizes. This is
followed by a large and prolonged vector pointing to the
right, as the right ventricle slowly depolarizes. Lead V2

shows a strong and prolonged bipolar signal as the right
ventricle depolarizes.

7.9 Refinements to the Model

Our model for the potential outside a nerve or muscle cell
has been a long single conducting fiber in an infinite, ho-
mogeneous medium. We will consider four ways to extend
and improve the model. The first is to recognize that cur-
rent must also flow radially inside the cell. If it did not, it
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FIGURE 7.25. The electrocardiogram for a patient with left
ventricular hypertrophy. Reprinted with permission from R.
K. Hobbie. The electrocardiogram as an example of electro-
statics. Am. J. Phys. 41: 824–831. Copyright 1973, American
Association of Physics Teachers. The electrocardiogram was
supplied by Prof. James H. Moller, M.D.

could never leave the cell. At the same time we will aban-
don the assumption that the presence of the cell along the
x axis does not perturb the current outside the cell. The
third improvement is to recognize that the conductivity
may depend on position. This is particularly important
outside the cell, where there are muscle, fat, lungs, etc.
Finally, the conductivity at a given point may depend on
which direction the current flows—for example, parallel
or perpendicular to the cells.

In order to make these refinements to the model, we
must develop a different formulation of the problem. Con-
sider some region of space containing a conducting mate-
rial described by Ohm’s law. The electric field is related
to the potential by Eq. 6.16b: E = −grad v = −∇v. If
the material is isotropic and obeys Ohm’s law, then from
Eq. 6.26

j = σE = −σ∇v. (7.33)

We now apply the equation of continuity or conservation
of charge, casting Eq. 4.8 in terms of the electric current
density j and the electric charge per unit volume, ρ:

∂ρ

∂t
= −∇ · j. (7.34)

Combining these two equations gives

∂ρ

∂t
= div(σ grad v) = ∇ · (σ∇v). (7.35)

Leaving the conductivity inside the divergence term al-
lows the conductivity to depend on position. If the con-
ductivity is the same everywhere it can be taken outside

FIGURE 7.26. The electrocardiogram for a patient with right
bundle branch block. The electrocardiogram was supplied by
Prof. James H. Moller, M.D.

the divergence operator to give

∂ρ

∂t
= σ∇2v = σ

(
∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)
. (7.36a)

We can write this in cylindrical coordinates which are
more useful for modeling a cylindrical cell stretched along
the z axis. From Appendix L, assuming that the potential
does not depend on the polar angle φ, we have

∂ρ

∂t
= σ∇2v = σ

[
1
r

∂

∂r

(
r
∂v

∂r

)
+

∂2v

∂z2

]
. (7.36b)

These are very general equations, applicable to any vol-
ume of space where the material is homogeneous and
isotropic and obeys Ohm’s law. They were derived us-
ing Ohm’s law and the conservation of charge. Equation
7.36a is actually the same result we had in Eq. 6.51. This
is demonstrated in Problem 29.

7.9.1 The Axon Has a Finite Radius

Now we can make the first two improvements: we relax
the assumption that the axon radius is very small. Except
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at the cell membrane, where charge on the membrane ca-
pacitance is changing as the membrane potential changes,
∂ρ/∂t = 0. If we assume that the transmembrane poten-
tial vm is known, then Eq. 7.36b can be applied separately
to the extracellular and the intracellular fluid for a long
straight axon to determine the potential everywhere out-
side (or inside). This was first done by Clark and Plonsey
(1968). In the extracellular and intracellular fluids, Eq.
7.36b becomes

1
r

∂

∂r

(
r
∂vo(r, z)

∂r

)
+

∂2vo(r, z)
∂z2

= 0, r > a

1
r

∂

∂r

(
r
∂vi(r, z)

∂r

)
+

∂2vi(r, z)
∂z2

= 0, r < a

vm(z) = vi(a, z) − vo(a, z).

(7.37)

With vm known, these equations were solved for the po-
tential distribution inside and outside the cell. This is
the calculation that was done to obtain Fig. 7.13. The
result of this type of calculation has been compared to
the line-source model by Trayanova et al. (1990).

7.9.2 Nonuniform Exterior Conductivity

To make the next improvement, consider an extracellu-
lar region in which the conductivity is not uniform. In a
region without sources, the potential obeys

∇ · (σo∇vo) = 0. (7.38)

Often, the conductivity is assumed to be “piecewise” ho-
mogenous, with a different value assigned to each kind
of tissue. Within each tissue the potential then obeys
Laplace’s equation, ∇2vo = 0. At the boundary between
tissues, the potential and the normal component of the
current are continuous.

When the different tissues have realistic and ir-
regular boundaries, special techniques are needed to
solve Laplace’s equation. One important technique
is the “finite-element method” [Miller and Henriquez
(1990)], and another is the “boundary-element method”
[Gulrajani (1998)].

A typical application, which serves as the basis for
“noninvasive electrocardiographic imaging,” is to mea-
sure the potential at the body surface and then calculate
the potential on the epicardium (the outer surface of the
heart)[Rudy and Burnes (1999); Stanley et al. (1986)].
One cannot calculate the potential inside the heart un-
less the sources are known, but finding the potential on
the epicardial surface is possible.

7.9.3 Anisotropic Conductivity: The Bidomain
Model

The final improvement recognizes that the cardiac tissue
is generally not isotropic. If it is still described by Ohm’s

law, then we can write j = σ̃ · E where σ̃ is a matrix or
tensor. In Cartesian coordinates




jx

jy

jz



 =




σxx σxy σxz

σyx σyy σyz

σzx σzy σzz








Ex

Ey

Ez



 . (7.39)

This is a compact notation for

jx = σxxEx + σxyEy + σxzEz,

with similar equations for jy and jz. It can be shown
that the conductivity matrix must be symmetric, so there
are actually six conductivity coefficients, not nine. It is
often possible to make some of the matrix elements zero
by suitable choice of a coordinate system and suitable
orientation of the axes.

Problem 29 shows that for a small cylindrical region of
isotropic axoplasm of length h and radius a, the cylindri-
cal surface of which is surrounded by cell membrane, the
total charge Q within the axoplasm changes according to

∂Q

∂t
= πa2h

∂ρi

∂t
= C

∂vm

∂t
+ im = 2πah

(
cm

∂vm

∂t
+ jm

)
,

or

cm
∂vm

∂t
+ jm =

πa2h

2πah
σi

∂2vi

∂x2
=

σia

2
∂2vi

∂x2
.

This can also be written as

β

(
cm

∂vm

∂t
+ jm

)
= σi

∂2vi

∂x2
,

where β = 2πah/πa2h = 2/a is the ratio of surface area
to volume of the cell. Our cell was cylindrical. With other
geometrical configurations, such as a cubic or a spher-
ical cell, β would have a different value, but it always
has the dimensions of (length)−1. In the general three-
dimensional anisotropic case, the equivalent equation is

β

(
cm

∂vm

∂t
+ jm

)

zero, except at the cell membrane

(7.40)

= div(σ̃i grad vi) = ∇ · (σ̃i∇ vi)

Both σi and vi are functions of position. The left-hand
side is zero except at the cell membrane. The main theme
of this chapter has been that current that stops flowing
inside the cell must flow outside the cell. We can write
an analogous equation for the region outside the cell:

−β

(
cm

∂vm

∂t
+ jm

)

zero, except at the cell membrane

= div(σ̃o grad vo) (7.41)

= ∇ · (σ̃o∇ vo)

Myocardial cells are typically about 10 µm in diameter
and 100 µm long. They have the added complication that
they are connected to one another by gap junctions, as
shown schematically in Fig. 7.27. This allows currents to
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FIGURE 7.27. The interior of myocardial cells (shaded) is
connected to adjoining cells by gap junctions. The bidomain
model assumes that in a small region of space (large compared
to a cell) there are two potentials: the interior potential and
outside potential that are functions of position and time.

flow directly from one cell to another without flowing in
the extracellular medium. The bidomain (two-domain)
model is often used to model this situation [Henriquez
(1993)]. It considers a region, small compared to the size
of the heart, that contains many cells and their surround-
ing extracellular fluid. It simplifies the problem by assum-
ing that each small volume element contains two domains,
intracellular and extracellular.

Think of the volume element as the entire region shown
in Fig. 7.27. There are two potentials in each small vol-
ume element: vi(r, t) and vo(r, t). These potentials are
averages over the intracellular and extracellular domains
contained in the volume element. The transmembrane
potential is the difference between these two potentials:
vm(r, t) = vi(r, t) − vo(r, t). Charge can pass freely be-
tween the two domains, but the total charge within a
volume element is conserved. If the current densities in
each domain are ji and jo, then the divergence of the sum
is zero: ∇ · (ji + jo) = 0. The divergence of each current
individually passes through the membrane or charges the
membrane capacitance. The anisotropic analogs of Eqs.
7.40 and 7.41 are now

β

(
cm

∂vm

∂t
+ jm

)
= div(σ̃i · grad vi) = ∇ · (σ̃i · ∇vi),

−β

(
cm

∂vm

∂t
+ jm

)
= div(σ̃o · grad vo)

= ∇ · (σ̃o · ∇vo).
(7.42)

The quantity β is the membrane surface area per unit
volume of the entire bidomain—both intracellular and
extracellular volumes. For example, if we consider that
the cells are all cylindrical of length h and radius a, then
the surface area of a cell is 2πah. If the fraction of the
total volume occupied by cells is f , then the total volume
associated with this cell is πa2h/f , so

β =
2f

a
. (7.43)

The membrane current jm can be modeled by either a
passive membrane (Ohm’s law—electrotonus) or with one
of the models for an active membrane.

Anisotropy plays an important role in the bidomain
model. To see why, consider a solution to Laplace’s equa-
tion in a monodomain—a two-dimensional sheet of homo-
geneous, anisotropic tissue with straight fibers. If the x
direction is chosen to be along the fiber direction (the di-
rection of greatest conductivity), then Laplace’s equation
becomes

σox
∂2vo

∂x2
+ σoy

∂2vo

∂y2
= 0.

Now define a new set of coordinates x′ = x and y′ =√
σox/σoyy. You can show that in these new coordinates

Laplace’s equation becomes

∂2vo

∂x′2 +
∂2vo

∂y′2 = 0.

We have removed the effect of anisotropy by rescaling
distance in the direction perpendicular to the fibers. If
you try a similar trick with the bidomain model

σix
∂2vi

∂x2
+ σiy

∂2vi

∂y2
= β

(
cm

∂vm

∂t
+ jm

)
(7.44a)

σox
∂2vo

∂x2
+ σoy

∂2vo

∂y2
= −β

(
cm

∂vm

∂t
+ jm

)
, (7.44b)

you can find a new coordinate system that removes the
effect of anisotropy in either the intracellular space or
the extracellular space, but in general you cannot find a
coordinate system that removes the anisotropy in both
spaces simultaneously [Roth (1992)]. Only in the special
case of equal anisotropy ratios (σix/σiy = σox/σoy) will
the equations simplify dramatically. But the anisotropy
ratios in the heart are not equal. In the intracellular space
the ratio of conductivities parallel and perpendicular to
the fibers is about 10:1, while in the extracellular space
this ratio is about 4:1 [Roth (1997)]. Anisotropy plays
an essential role in the electrical behavior of the heart,
especially during electrical stimulation.

7.10 Electrical Stimulation

The information that has been developed in this chapter
can also be used to understand some of the features of
stimulating electrodes. These may be used for electromyo-
graphic studies, for stimulating muscles to contract, for a
cochlear implant to partially restore hearing, for cardiac
pacing, and even for defibrillation. The electrodes may be
inserted in cells, placed in or on a muscle, or placed on
the skin.

In addition to the material in this section, see Problems
38–41.

A pulse of current is sent to the stimulating electrode.
The current required to produce a response depends on
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the shape and size of the electrode, its placement, the
kind of cell being stimulated, and the duration of the
pulse. For a given electrode geometry the shorter the
pulse, the larger the current required for a tissue re-
sponse. For very long pulses there is a minimum cur-
rent required to stimulate that is called rheobase. The
strength-duration curve was first discovered by G. Weiss
in 1901. He expressed it in terms of total charge in the
stimulating pulse. A description of the strength-duration
curve and its history has been given by Geddes and Bour-
land (1985). They also describe some techniques for mak-
ing accurate measurements. The strength-duration curve
for current was first described by Lapicque (1909) as

i = iR

(
1 +

tC
t

)
, (7.45)

where i is the current required for stimulation, iR is the
rheobase, t is the duration of the pulse, and tC is chron-
axie, the duration of the pulse that requires twice the
rheobase current.

Equation 7.45 provides an empirical fit to the experi-
mental data. We can develop a model to explain it using
information from Chapter 6. A nerve fires after a cer-
tain departure from the resting potential. Subthreshold
behavior can be modeled by electrotonus. Suppose that
we inject a stimulating current into a cell at the origin.
Equation 6.58 gave the voltage along the axon for a cur-
rent injected in the cell at the origin after an infinitely
long time: v − vr = v0e

−|x|/λ. The solution to Problem
32 shows that the current injected is

i0 = 2v0/λri. (7.46)

The quantities λ and ri are defined in Chapter 6. The
factor of 2 arises because current flows both ways along
the cell. The rheobase current is

iR = 2
vthreshold

λri
. (7.47)

If we assume that the threshold voltage is independent
of pulse duration, we can use the curve for x = 0 in Fig.
6.31(c) to relate the minimum current to the pulse dura-
tion. As long as the pulse is applied, the voltage will rise
along this curve. When the current is turned off, the volt-
age will start to fall. If the voltage had reached threshold,
the cell will fire. This curve is the solution of Eq. 6.55.
The solution is [Chapter 6, Problem 34; Plonsey (1969,
p. 132)]

v(0, t) − vr = v0 erf

(√
t

τ

)

, (7.48)

where τ is the membrane time constant, κε0ρm. The error
function is defined in Eq. 4.74 and is plotted in Fig. 4.21.
The current required for stimulation with an intracellular
electrode at the origin is therefore

i =
2vthreshold

λri erf(
√

t/τ)
=

iR

erf(
√

t/τ)
. (7.49)
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R

1.41.21.00.80.60.40.20.0
t/τ

i/iR = 1 + 0.228 τ/t

i/iR = erf (t/τ)1/2

FIGURE 7.28. The stimulus strength-duration curve plotted
for the chronaxie–rheobase model, Eq. 7.45 and for electro-
tonus, Eq. 7.49.

Chronaxie can be related to the time constant τ by set-
ting i = 2iR:

2iR =
iR

erf
(√

tC/τ
) . (7.50)

From a table of values of the error function, we find

tC = 0.228τ. (7.51)

Figure 7.28 compares the standard empirical curve, Eq.
7.45, with this model. The curves are experimentally in-
distinguishable.

Equation 7.45 is also used for surface electrodes.
Table 7.1 shows some experimental values for rheobase
and chronaxie. The further the electrode from the tissue
being stimulated, the greater the rheobase current that
is required.

An electrode that is transferring positive charge to the
medium is called an anode. One that is collecting positive

TABLE 7.1. Comparison of values for rheobase and chronaxie
for different stimulations.

Stimulation Rheobase
(mA)

Chronaxie
(ms)

Intracellular, from Table 6.1,
vthreshold = 15 mV

6.7×10−6 0.23

Myocardium, from good pacing
electrodes

0.1

Motor nerves for inspiration,
from stimulation of chest wall
[Voorhees et al. (1992)]

49 0.17

Myocardium, from stimulation
of chest wall [Voorhees et al.
(1992)]

204 1.82
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Region of hyperpolarization

Region of depolarization

FIGURE 7.29. A schematic drawing showing why there is a
region of hyperpolarization near a stimulating anode (positive
electrode) with a region of weaker depolarization further away.

charge is called a cathode. If the stimulating electrode is
inside the cell, a positive current leaving the electrode
will increase the positive charge within the cell and de-
polarize it. Another way to say it is that current from
the electrode flows out through the membrane, so the in-
side of the membrane will be made more positive than
the outside. On the other hand, an anodic electrode just
outside the cell will send positive current in through the
membrane near the electrode, as shown in Fig. 7.29. This
lowers the potential inside and hyperpolarizes the mem-
brane near the electrode. Further away from the stim-
ulation point will be a region where current flows out
through the membrane, thus depolarizing the cell. How-
ever, the outward current is in general spread out over
more membrane, so the current density and hence the
depolarization is less than the hyperpolarization near the
anode. The situation is, of course, reversed for a cathodic
electrode. Figure 7.29 is conceptual; to draw the field lines
accurately would require taking into account the conduc-
tivities of the extracellular and intracellular fluid as well
as the membrane.

The electrotonus model also helps us understand an-
other effect that is observed: the virtual cathode. The
point of origin for a stimulus can be measured by plac-
ing sensing electrodes in or on the heart at different dis-
tances from the stimulating electrode and plotting the
time required for the depolarization wave front to reach
the electrode vs its position. Extrapolation to the time
of stimulus gives the size of the region of initial depo-
larization. Imagine a stimulating electrode inside a one-
dimensional cell. When the stimulus current is just above
rheobase, the region of depolarization is very small and
surrounds the electrode. As the stimulating current is in-
creased, the size of the initial depolarized region grows.
From Eqs. 6.58 and 7.50 we obtain

vthreshold =
i0λri

2
e−xvc/λ

or

xvc = λ ln
(

i0λri

2vthreshold

)
= λ ln

(
i0
iR

)
, (7.52)

where xvc is the size of the virtual cathode.

FIGURE 7.30. A patient with third-degree AV heart block.
From Rardon, D. P., W. M. Miles, and D. P. Zipes (2000).
Atrioventricular block and dissociation. In D. P. Zipes and J.
Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside,
3rd ed. Philadelphia, Saunders, pp. 451–459. Used by permis-
sion.

Cardiac pacemakers are a useful treatment for cer-
tain heart diseases [Jeffrey (2001), Moses et al. (2000);
Barold (1985)]. The most frequent are an abnormally slow
pulse rate (bradycardia) associated with symptoms such
as dizziness, fainting (syncope), or heart failure. These
may arise from a problem with the SA node (sick sinus
syndrome) or with the conduction system (heart block).
One of the first uses of pacemakers was to treat complete
or “third degree” heart block. The SA node and the atria
fire at a normal rate but the wave front cannot pass into
the conduction system. The AV node or some other part
of the conduction system then begins firing and driving
the ventricles at its own, pathologically slower rate. Such
behavior is evident in the ECG in Fig. 7.30, in which the
timing of the QRS complex from the ventricles is unre-
lated to the P wave from the atria. A pacemaker stim-
ulating the ventricles can be used to restore a normal
ventricular rate.

A pacemaker can be used temporarily or permanently.
The pacing electrode can be threaded through a vein from
the shoulder to the right ventricle (transvenous pacing,
Fig. 7.31) or placed directly in the myocardium during
heart surgery. Sometimes two pacing electrodes are used,
one in the atrium and one in the ventricle. The pacing
electrode can be unipolar or bipolar. With a unipolar elec-
trode, the stimulation current flows into the myocardium
and returns to the case of the pacemaker, which is often
placed in a pocket in the muscle of the chest wall near the
shoulder. The return current in a bipolar electrode goes
to a ring electrode a few centimeters back along the pac-
ing lead from the electrode at the tip. The surface area
of a typical tip is about 10 mm2 (10−5 m2). The cur-
rent density required to initiate depolarization depends
on the spatial distribution of the current and is approx-
imately 100 A m−2. Thus, in this model the current is
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FIGURE 7.31. An implantable pacemaker. The battery and
electronics are in a sealed container placed under the skin near
the left shoulder. The electrode or “lead” is threaded through
the subclavian vein into the right ventricle. Reprinted with
permission from Heart and Stroke Facts. p. 29. c©1992–2003
by the American Heart Association.

about8 1 mA. The resistance of the tissue is typically 500
Ω, so the voltage is 0.5V. After the pacing electrode is
implanted, the size of the voltage pulse required to initi-
ate ventricular activity rises because inflammatory tissue
grows around the electrode. It is conducting, but the my-
ocardium is further away, and the inflammatory tissue
effectively increases the size of the electrode, thereby re-
ducing the current density. After six months or so, the
inflammation has been replaced by a small fibrous cap-
sule, resulting in an effective electrode size larger than
the bare electrode but smaller than the region of inflam-
mation. Recently, electrodes that elute steroids have been
used to reduce the inflammation.

Pacemakers can also be designed to detect an abnormal
rhythm and apply an electrical stimulus to reverse it. Fig.
7.32 shows a patient with ventricular tachycardia due to
a reentrant circuit (p. 186) which has been corrected by
pacing very rapidly so that the refractory period prevents
the propagation of the reentrant wave.

Ventricular fibrillation occurs when the ventricles con-
tain many interacting reentrant wavefronts that propa-
gate chaotically. Fibrillation is discussed in greater detail
in Chapter 10. During fibrillation the ventricles no longer
contract properly, blood is no longer pumped through the
body, and the patient dies in a few minutes. Implantable
defibrillators are similar to pacemakers, but are slightly
larger. An implanted defibrillator continually measures
the ECG. When a signal indicating fibrillation is sensed,
it delivers a much stronger shock that can eliminate the

8Acute implants of smaller electrodes where the electrode resis-
tance is low, as well as computer simulations have shown simulation
with currents as small as 18 µA [Lindemans and Denier van der Gon
(1978)].

FIGURE 7.32. The top strip shows the onset of ventricular
tachycardia, which persists in the next two strips. Very rapid
pacing in the fourth strip restores a normal sinus rhythm.
Mitrani, R. D., L. S. Klein, D. P. Rardon, D. P. Zipes and
W. M. Miles (1995). Current trends in the implantable car-
dioverter–defibrillator. In D. P. Zipes and J. Jalife, eds. Car-
diac Electrophysiology: From Cell to Bedside, 2nd ed. Philadel-
phia, Saunders, pp. 1393–1403. Used by permission.

FIGURE 7.33. Ventricular fibrillation has been induced in the
electrophysiology laboratory. A pacemaker cardioverter-defib-
rillator detects the ventricular fibrillation. A capacitor is then
charged and applies a 24-joule defibrillation pulse that restores
normal rhythm. Mitrani, R. D., L. S. Klein, D. P. Rardon,
D. P. Zipes and W. M. Miles (1995). Current trends in the
implantable cardioverter–defibrillator. In D. P. Zipes and J.
Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside,
2nd ed. Philadelphia, Saunders, pp. 1393–1403.

reentrant wavefronts and restore normal hearth rhythm
(Fig. 7.33).

The bidomain model has been used to understand the
response of cardiac tissue to stimulation [Sepulveda et al.
(1989); Roth and Wikswo (1994); Roth (1994); Wikswo
(1995)]. The former simulation explains a remarkable
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FIGURE 7.34. The standard “10–20” arrangement of elec-
trodes on the scalp for the EEG. Courtesy of Grass, An As-
tro-Med, Inc., Product Group, West Warwick, RI.

experimental observation. Although the speed of the wave
front is greater along the fibers than perpendicular to
them, if the stimulation is well above threshold, the wave-
front originates farther from the cathode in the direc-
tion perpendicular to the fibers—the direction in which
the speed of propagation is slower. The simulations show
that this is due to the anisotropy in conductivity. This
is called the “dog-bone” shape of the virtual cathode. It
can rotate with depth in the myocardium because the
myocardial fibers change orientation. The difference in
anisotropy accentuates the effect of a region of hyper-
polarization surrounding the depolarization region pro-
duced by a cathodic electrode. Strong point stimulation
can also produce reentry waves that can interfere with
the desired pacing effect.

One of the fundamental problems with research in this
area can be seen in equations like 7.42. The variable on
the left is the transmembrane potential vm. The vari-
able on the right is the potential inside or outside the
cell. Measurement of vm requires measurement or cal-
culation of the difference vi − vo. Experimental mea-
surements of the transmembrane potential often rely on
the use of a voltage-sensitive dye whose fluorescence
changes with the transmembrane potential [Knisley et al.
(1994); Neunlist and Tung (1995); Rosenbaum and Jalife
(2001)].

7.11 The Electroencephalogram

Much can be learned about the brain by measuring the
electric potential on the scalp surface. Such data are
called the electroencephalogram (EEG). Nunez and Srini-
vasan (2005) have written an excellent book about the
physics of the EEG. We briefly examine the topic here.
The EEG is used to diagnose brain disorders, to local-
ize the source of electrical activity in the brain in pa-
tients who have epilepsy, and as a research tool to learn
more about how the brain responds to stimuli (“evoked
responses”) and how it changes with time (“plasticity”).
Typically, the EEG is measured from 21 electrodes at-
tached to the scalp according to the “10–20” system (Fig.

7.34). A typical signal from an electroencephalographic
electrode is shown in the top panel of Fig. 11.38. One
difficulty in interpreting the EEG is the lack of a suit-
able reference electrode. None of the 21 electrodes in Fig.
7.34 qualifies as a distant ground against which all other
potential recordings can be measured. One way around
this difficulty is to subtract from each measured potential
the average of all the measured potentials. In the prob-
lems, you are asked to prove that this “average reference
recording” does not depend on the choice of reference
electrode; it is a reference independent method.

Symbols Used in Chapter 7

Symbol Use Units First
used
on page

a Axon radius m 179
cm Membrane

capacitance per unit
area

F m−2 191

f Intracellular volume
fraction

192

h Length of segment m 191
i Current A 178
ii, io Current inside,

outside axon
A 178

iR Rheobase current A 193
j, j Current density A m−2 178
jm Current density

through membrane
A m−2 191

p,p Activity vector or
current dipole
moment

A m 180

q Charge C 178
ri Resistance per unit

length inside axon
Ω m−1 193

r, r Distance m 178
t Time s 190
tC Chronaxie s 193
v Potential V 178
vi, vo Potential inside,

outside axon
V 191

vm Potential across
membrane

V 191

x, y, z, x0, x1,
x2, y0

Distance or position m 179

xvc Size of virtual
cathode

m 194

C Capacitance F 191
E,E Electric field V m−1 178
Pn Legendre polynomial 181
Q Electric charge C 191
R Resistance Ω 179
R,R Distance or position m 182
β Ratio of surface area

to volume
m−1 191
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Symbol Use Units First
used on
page

ε0 Permittivity of free
space

N−1 m−2

C2
178

λ Space constant m 193
σ, σi, σo Electrical conduc-

tivity
S m−1 178

ρ Charge density C m−3 190
τ Time constant s 193
θ Angle 180
ξ Ratio of x to R 184
Ω Solid angle 181

Problems

Section 7.1

Problem 1 A single nerve or muscle cell is stretched
along the x axis and embedded in an infinite homoge-
neous medium of conductivity σo. Current i0 leaves the
cell at x = b and enters the cell again at x = −b. Find
the current density j at distance r from the axis in the
x = 0 plane.

Problem 2 An axon is stretched along the x axis. At one
instant of time an impulse traveling along the axon has
the form shown in the graph. The electrical conductivity
inside the axon of radius a is σi. In the infinite external
medium it is σo. Find an expression for the potential at
point (x0, y0).

x

-2b 0 b

v0

Problem 3 The interior potential of a cylindrical cell is
plotted at one instant of time. Distances along the cell
are given in terms of length b. The cell has radius a and
electrical conductivity σi. The resting potential is 0 and
the depolarized potential is v0. The conductivity of the
external medium is σo.

(a) Find expressions for, and plot, the current along
the cell in the four regions (x < 0, 0 < x < 2b, 2b < x <
3b, 3b < x).

(b) Find the potential at a point (x, y) outside the cell in
terms of the parameters given in the problem. The point
is not necessarily far from the cell.

Section 7.2

Problem 4 Modify the closing argument of Sec. 7.2 by
considering electrodes that are disks rather than spheres.
(Hint: The capacitance you will need is given in Sec.
6.19.)

Problem 5 Suppose an axon is surrounded by a thin
layer of extracellular fluid of thickness d. Use arguments
based on the intracellular resistance to estimate the ratio
∆vo/∆vi in this case.

Section 7.3

Problem 6 Starting with Eq. 7.4, make the Taylor’s se-
ries expansions described in the text, and use them to
derive Eq. 7.16.

Problem 7 What would be the current-dipole moment of
a nerve cell of radius 2 µm when it depolarizes? Would
myelination make any difference? Does the result depend
on the rise time of the depolarization? If the impulse lasts
1 ms and the conduction speed is 5 m s−1, how far apart
are the rising and falling edges of the pulse?

Problem 8 An axon or muscle cell is stretched along
the x axis on either side of the origin. As it depolar-
izes, a constant current dipole p pointing to the right
sweeps along the axis with velocity u. An electrode at
(x = 0, y = a) measures the potential with respect to
v = 0 at infinity. Ignore repolarization. Find an expres-
sion for v at the electrode as a function of time and sketch
it. Assume that at t = 0, p is directly under the electrode
at x = 0.

 x

p

Observation Point

a

Problem 9 An electrode at (x = 0, y = a) measures the
potential outside an axon with respect to v = 0 at infinity.
A nerve impulse is at point x along the axon, measured
from the perpendicular from the electrode to the axon. At
x+ b a current dipole points to the right, representing the
depolarization wave front. At x − b a vector of the same
magnitude points to the left,representing repolarization.
Obtain an expression for v as a function of x, b, p, and
a. Plot it in the case a = 1, b = 0.05.
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a

ELECTRODE

p-p

 x+b

 x-b 

Problem 10 A dipole p located at the origin (0, 0, 0) is
oriented in the x direction. The potential vo(x) produced
by this dipole is measured along the line y = 0, z = d.

(a) Find an equation for vo(x) in terms of x, d, σo (the
conductivity of the medium) and the dipole strength, p.

(b) Find an expression for the depth d of the dipole in
terms of the distance ∆x, defined as the distance between
the minimum and maximum of vo(x, y). This is an ex-
ample of an “inverse problem,”in which you try to learn
about the source (in this case, the depth of p) from mea-
surements of vo.

Problem 11 The “solid angle theorem” is often used to
interpret electrocardiograms. The relationship between the
exterior potential and the solid angle in Eq. 7.15 is a gen-
eral result: the potential is proportional to the solid angle
subtended by the wave front. Use this result to explain
(a) why a closed wave front produces no exterior poten-
tial, and (b) why an open wave front produces a potential
that depends only on the geometry of its opening or rim.

Section 7.4

Problem 12 Run the program of Fig. 7.11 and plot the
potential for different distances from the axon.

Problem 13 Modify the program of Fig. 7.11 to calcu-
late the potential from a single Gaussian action potential
and plot the potential.

Problem 14 Let the intracellular potential be zero ex-
cept in the range −a < x < a, where it is given by

vi =






2
(

a + x

a

)2

, −a < x < −a/2

1 − 2
(x

a

)2

, −a/2 < x < a/2

2
(

a − x

a

)2

, a/2 < x < a.

Plot vi vs x. Use Eq. 7.21 to calculate the exterior poten-
tial at (x0, y0). You may need the integral

∫
dx√

x2 + b2
= sinh−1

(x

b

)
.

Section 7.5

Problem 15 Suppose a wave front propagates at a speed
of 0.25 m s−1and its refractory period lasts 250 ms.
Calculate the minimum path length of its reentrant cir-
cuit. Most reentrant wave fronts are somewhat slower and
briefer than this, so their paths may be shorter.

Section 7.7

Problem 16 Two electrodes are placed in a uniform
conducting medium 10 cm from a cell of radius 5 µm
and 10 cm from each other, so that the two electrodes
and the cell form an equilateral triangle. When the cell
depolarizes the potential rises 90 mV. What will be the
potential difference between the two electrodes when the
cell orientation is optimum? How many cells would be
needed to give a potential difference of 1 mV between the
electrodes? Assume σi/σo = 10.

Problem 17 Guess whatever parameters you need to
predict the voltage at the peak of the QRS wave in lead
II. Compare your results to the electrocardiogram of Fig.
7.23.

Problem 18 At a particular instant of the cardiac cycle,
p is located at the midpoint of a line connecting two elec-
trodes that are 50 cm apart, and p is parallel to that line.
At that instant the magnitude of the potential difference
between the electrodes is 1.5 mV. Upon depolarization, the
potential change within the cells has magnitude 90 mV.

(a) What is the magnitude of p?
(b) If σi/σo = 10, what is the cross-sectional area of

the advancing region of depolarization?

Problem 19 A semi-infinite slab of myocardium occu-
pies the region z > 0. A hemispherical wave of depolariza-
tion moves radially away from the origin through the slab.
At some instant of time the radius of the hemispherical
depolarizing wavefront is R. Assume that p =

∫
dp, that

dp is everywhere perpendicular to the advancing wave-
front, and that the magnitude of dp is proportional to
the local area of the wavefront. Find p. Assume that the
observation point is very far away compared to R.

Problem 20 Make measurements on yourself and con-
struct Fig. 7.19.

Problem 21 Experiments have been done in which a
dog heart was stimulated by an electrode deep within
the myocardium. No exterior potential difference was de-
tected until the spherical wave of depolarization grew large
enough so that part of it intercepted one wall of the heart.
Why?

Problem 22 Prove directly from Eq. 7.31 that I − II +
III = 0. (It is sometimes said that the equilateral nature
of Einthoven’s triangle is necessary to prove this.)

Problem 23 Derive Eqs. 7.32.
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Section 7.8

Problem 24 Estimate the lower limit for the duration
of the QRS complex by calculating the time required for
a wave front to propagate across the heart wall. Assume
the wall thickness is 10 mm and the propagation speed is
0.2 m s−1.

Problem 25 In an ECG recording, the width of one
large square corresponds to 200 ms. A normal heart rate
is between 60 and 100 beats min−1. The heart rate is usu-
ally measured by counting the number of large squares
between adjacent QRS complexes.

(a) How many large squares are there for a normal
heart rate?

(b) In Fig. 7.30 determine the rate of the atria and of
the ventricles.

Problem 26 Consider Lead II of the normal ECG in
Fig. 7.23. The QRS wave and the T wave are both pos-
itive. Use a one-dimensional model to convince yourself
that the QRS complex and the T wave should have oppo-
site polarities. Why then is the T wave inverted? Find a
way to explain the inverted T wave by letting the action
potential duration vary between epicardium (outside) and
endocardium (inside). On which surface should the dura-
tion be longest?

Section 7.9

Problem 27 Ohm’s law says that j = σE. Draw what
j and E look like (a) in a circuit consisting of a battery
and a resistor; (b) for the current flowing when a nerve
cell depolarizes.

Problem 28 Obtain the values for β for a cube of length
a on a side, for a cylinder of radius a and length h, and
for a sphere of radius a.

Problem 29 Show that Eq. 7.36a is the same as Eq.
6.51 by considering the interior of a single cell stretched
along the x axis as in Fig. 6.28. Consider the charge in
a small cylindrical region of axoplasm of length h and
radius a, the cylindrical surface of which is surrounded
by cell membrane. Show that the total charge Q within
the axoplasm changes according to

∂Q

∂t
= πa2h

∂ρi

∂t
= C

∂vm

∂t
+ im

= 2πah

(
cm

∂vm

∂t
+ jm

)
,

and that this can be combined with Eq. 7.36a to give

cm
∂vm

∂t
+ jm =

πa2h

2πah
σi

∂2vi

∂x2

=
σia

2
∂2vi

∂x2
,

which is the same as Eq. 6.51, except that it is written in
terms of σi, a, and h instead of a and ri.

Problem 30 Clark and Plonsey (1968) solved Eq. 7.37
for a cylindrical axon of radius a using the following
method. Assume that the potentials all vary in the z direc-
tion sinusoidally, for instance vm(z) = V sin(kz), where
V is a constant.

(a) Show that the intracellular and extracellular poten-
tials can be written as

vi = AI0(kr) sin(kx)
vo = BK0(kr) sin(kz), (7.53)

where In and Kn are “modified Bessel functions” obeying
the equation

1
r

∂

∂r

(
r
∂v

∂r

)
−
(

k2 +
n2

r2

)
v = 0.

(b) Determine the constants A and B in terms of V ,
using the following two boundary conditions: vm = vi−vo,
and σi(∂vi/∂r) = σo(∂vo/∂r), both evaluated at r =
a. You will need to use the Bessel function identities
dI0(kr)/dr = kI1(kr) and dK0/dr = −kK1(kr). Clark
and Plonsey used this result and Fourier analysis (Chap-
ter 11) to determine vi and vo when they are not sinu-
soidal in z.

Problem 31 Starting with the bidomain equations, di-
vide Eq. 7.44a by σix and 7.44b by σex. Now subtract one
equation from the other. Under what conditions do the
equations contain vm = vi − vo but not vi and vo individ-
ually?

Section 7.10

Problem 32 Verify Eq. 7.47.

Problem 33 Verify the values given for rheobase and
chronaxie in Table 7.1 that are based on Table 6.1.

Problem 34 An approximation to the error function is
given by Abramowitz and Stegun (1972)

erf(x) ≈ 1 −
(
1 + 0.278393x + 0.230389x2

+ 0.000972x3 + 0.078108x4
)−4

, x > 0.

Calculate erf(x) using this approximation for x =
0, 0.5, 1.0, 2.0 and ∞. Using trial and error, determine
the value of x for which erf(x) = 0.5. (See Eq. 7.50.)

Problem 35 Find the equivalent of Eq. 7.45 in terms of
the charge required for the stimulation.

Problem 36 If the medium has a constant resistance,
find the energy required for stimulation as a function of
pulse duration.

Problem 37 A typical pacemaker electrode has a surface
area of 10 mm2. What is its resistance into an infinite
medium if it is modeled as a sphere? If it is modeled as
a disk? (You will have to use results from Chapter 6 and
assign a value for σo.)
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Problem 38 Equation 6.51 is the cable equation for a
nerve axon. Assume that the axon membrane is passive
[jm = gm(vi − vo), where gm is a constant].

(a) Express the equation in terms of vm and vo instead
of vi and vo, where vm = vi − vo.

(b) Divide the resulting equation by gm, and then write
the cable equation in terms of the time constant cm/gm

and the length constant 1/
√

2πarigm.
(c) Put all the terms containing vm on the left side,

and terms containing vo on the right side. The resulting
equation should look like Eq. 6.55, except for a new source
term on the right side equal to −λ2∂2vo/∂x2. (Measure
vm with respect to resting potential so vr = 0 in Eq. 6.55).
The negative of this new term has been called the “activat-
ing function” (Rattay, 1987). It is useful when studying
electrical stimulation of nerves.

Problem 39 For this problem, use the activating func-
tion derived in Problem 38. Assume that λ and τ are
negligibly small, so that vm simply equals the activating
function. Consider a point electrode in an infinite, homo-
geneous volume conductor at distance d from the axon.
The extracellular potential vo is vo = (1/4πσo) I/r.

(a) Calculate vm as a function of position x along the
axon (x = 0 is the closest position to the electrode).

(b) Assume that the axon will fire an action potential
if vm somewhere along the axon is greater than Vthreshold.
Calculate the ratio of the stimulation current I needed to
excite the axon for a cathode (negative electrode) and an
anode (positive electrode).

Problem 40 For this problem, use the activating func-
tion derived in Problem 38. An action potential can be ex-
cited if a stimulus depolarizes an axon to a value greater
than Vthreshold, and a propagating action potential can be
blocked if a stimulus hyperpolarizes to a value of vm less
than −Vblock(Vblock > Vthreshold).

(a) For a cathodal electrode [vo = (1/4πσo) I/r] calcu-
late the ratio of the threshold current to the ratio of the
current needed to block propagation.

(b) Use two electrodes (one cathodal and one anodal) to
design a stimulator that will result in one-way propaga-
tion along the axon (say, propagation only in the positive
x direction, but blocked in the negative x direction). For
an application of such electrodes during functional elec-
trical stimulation, see Ungar et al. (1986).

Problem 41 For this problem, use the activating func-
tion derived in Problem 38, and block by hyperpolarization
derived in Problem 40. The factor of λ2 in the activating
function implies that larger diameter axons are easier to
stimulate than smaller diameter axons. Sometimes you
want to excite the smaller fibers without the larger fibers
(“physiological recruitment”). Describe qualitatively how
you can use a single electrode and block in the hyperpo-
larized region to obtain physiological recruitment. For a
more complete discussion, see Tai and Jiang (1994).

Problem 42 In “second degree” heart block, the wave
front sometimes passes through the conduction system
and sometimes does not. Qualitatively sketch the ECG
for a heart with second degree block for at least five beats.
Specifically include the case where every third wave is
blocked. Include the P wave, the QRS wave, and the T
wave.

Problem 43 During “sinus exit block” the SA node
functions normally but the wave front fails to propagate
from the SA node to the atria. Sketch five beats of an
ECG with all beats normal except the third, which under-
goes sinus exit block.

Problem 44 In “sick sinus syndrome” the SA node has
a slow and erratic rate. The AV node and conduction sys-
tem function properly. You plan to implant a pacemaker
in the patient. Should it stimulate the atria or the ventri-
cles? Why?

Problem 45 A patient with “intermittent heart block”
has an AV node which functions normally most of the
time with occasional episodes of block, lasting perhaps
several hours. Design a pacemaker to treat the patient.
Ideally, your design will not stimulate the heart when it
is functioning normally. Describe

(a) whether you will stimulate the atria or ventricles
(b) which chambers you will monitor with a recording

electrode
(c) what logic your pacemaker will use to determine

when to stimulate. Your design may be similar to a “de-
mand pacemaker” described in Jeffrey (2001), p. 132.

Problem 46 The Lapicque strength-duration (SD)
curve is

i

iR
= 1 +

tC
t

,

the SD curve in terms of the error function is

i

iR
=

1

erf
(√

0.228t/tC

) ,

and the SD curve derived in Ch. 6 Prob. 35 is

i

iR
=

1
1 − e−0.693t/tC

.

(a) Plot all three curves for 0 < t/tC < 5. Use the
equation in Problem 34 to evaluate the error function.

(b) Find approximations for each curve for t/tC � 1.
You may need the Taylor’s series expansions ex ≈ 1 + x
and erf(x) ≈ 2x/

√
π.

(c) Discuss the physical assumptions that were used to
derive each curve.

Problem 47 Consider a pacemaker delivering 2mA,
1V, 1ms pulse every second. Pacemakers are often pow-
ered by a lithium-iodide battery that can deliver a total
charge of 2 ampere hours.
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(a) What is the energy per pulse?
(b) What is the average power?
(c) How long will the battery last?
(d) Your answer to (c) is an overestimate of battery

lifetime, in part because the battery voltage begins to
decline before all its charge has been delivered, and in part
because the pacemaker circuitry requires a small, constant
current. For this pacemaker, add a constant current drain
of 5µA and assume that the useful lifetime of the battery
is over when 75% of the total charge has been delivered.
How long will the battery last in this case?

Section 7.11

Problem 48 When measuring the EEG with electrodes
distributed according to the 10–20 system, you obtain
measurements of the potential difference between the ith
electrode (i = 1, . . . , 20) and the reference electrode (i =
21). Show that by computing the average reference v∗

i =
(vi − v20) − (1/20)

∑20
j=1 (vj − v20) , the resulting values

of v∗
i are independent of the reference potential v21.

Problem 49 Consider a very simple model of the EEG:
a dipole p pointing in the z direction at the center of
a spherical conductor of radius R and conductivity σo.
The potential vo can be written as the sum of two terms:
the potential of a dipole in an unbounded medium plus a
potential that obeys Laplace’s equation

vo =
p cos θ

4πσor2
+ Ar cos θ

where r and θ are in spherical coordinates, and A is an
unknown constant.

(a) Use Appendix L to show that the second term in
the expression for vo obeys Laplace’s equation.

(b) If the region outside the spherical conductor is air
(an insulator), determine the value of A by using the
boundary condition that the radial current at the surface
of the sphere is zero.

(c) Calculate vo as measured at the sphere surface (r =
R), and determine by what factor vo differs from what it
would be in the case of an unbounded volume conductor.

Problem 50 Suppose you measure the EEG potential vj

at N locations rj = (xj , yj , zj), j = 1, . . . , N . Assume
vj is produced by a dipole p = (px, py, pz) located at the
origin. Define

R =
N∑

j=1



 pxxj + pyyj + pzzj

4πσ
(
x2

j + y2
j + z2

j

)3/2
− vj





2

,

which measures the least-squares difference between the
data and the potential predicted by a single-dipole model.
(Chapter 11 explores the least-squares method in greater
detail.) The goal is to find the dipole components px, py, pz

that fit the data best (minimize R).

(a) Minimize R with respect to px (set dR/dpx = 0)
and find an equation relating px, py, and pz.

(b) Repeat for py and pz.
(c) Write the three equations in the form Ap = b,

where A is a 3 × 3 matrix and b is a 3 × 1 vector. Find
expressions for the components of A and b.

(d) If we had not assumed that we knew the location
of the dipole, the problem would be much more difficult.
Assume the dipole is at location rp = (xp, yp, zp). Mod-
ify R and then try to minimize it with respect to rp.
Carry the calculation far enough to convince yourself that
you must now solve nonlinear equations to determine rp.
Press et al. (1992) discuss methods for making nonlinear
least squares fits.

References

Abramowitz, M., and I. A. Stegun. (1972). Hand-
book of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. Washington, U.S. Government
Printing Office.

Antzelevitch, C., S. Sicouri, A. Lukas, V. V.
Nesterenko, D-W. Liu, and J. M. Di Diego (1995). Re-
gional differences of electrophysiology in ventricular cells:
physiological and clinical implications. In D. P. Zipes and
J. Jalife, eds. Cardiac Electrophysiology: From Cell to
Bedside, 2nd ed. Philadelphia, Saunders, pp. 228–245.

Barold, S. S. (1985). Modern Cardiac Pacing. Mount
Kisco, NY, Futura.

Campbell, D. L., R. L. Rasmusson, M. B. Comer, and
H. C. Strauss (1995). The cardiac calcium-independent
transient outward potassium current: kinetics, molecular
properties, and role in ventricular repolarization. In D. P.
Zipes and J. Jalife, eds. Cardiac Electrophysiology: From
Cell to Bedside, 2nd ed. Philadelphia, Saunders, pp. 83–
96.

Clark, J. and R. Plonsey (1968). The extracellular po-
tential field of a single active nerve fiber in a volume
conductor. Biophys. J. 8: 842–864.

Davidenko, J. M. (1995). Spiral waves in the heart:
Experimental demonstration of a theory. In D. P. Zipes
and J. Jalife, eds. Cardiac Electrophysiology: From Cell
to Bedside, 2nd ed. Philadelphia, Saunders, pp. 478–
488.

Delmar, M., H. S. Duffy, P. L. Sorgen, S. M. Taffet and
D. C. Spray (2004). Molecular organization and regula-
tion of the cardiac gap junction channel connexin43. In
D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology:
From Cell to Bedside, 4th ed. Philadelphia, Saunders, pp.
66–76.

Geddes, L. A., and J. D. Bourland (1985). The
strength-duration curve. IEEE Trans. Biomed. Eng. 32:
458–459.

Gulrajani, R. M. (1998) Bioelectricity and Biomag-
netism. New York, Wiley.



202 7. The Exterior Potential and the Electrocardiogram

Harris, J. W., and H. Stocker (1998). Handbook of
Mathematics and Computational Science. New York,
Springer.

Henriquez, C. S. (1993). Simulating the electrical be-
havior of cardiac tissue using the bidomain model. Crit.
Rev. Biomed. Eng. 21(1): 1–77.

Jeffrey, K. (2001). Machines in Our Hearts. Baltimore,
Johns Hopkins University Press.

Knisley, S. B., B. C. Hill, and R. E. Ideker (1994).
Virtual electrode effects in myocardial fibers. Biophys. J.
66: 719–728.

Lapicque, L. (1909). Definition experimentale de
l’excitabilite. Comptes Rendus Acad. Sci. 67(2): 280–283.

Lindemans, F. W. and J. J. Denier van der Gon (1978).
Current thresholds and liminal size in excitation of heart
muscle. Cardiovasc. Res. 12: 477–485.

Malmivuo, J., and R. Plonsey (1995). Bioelectromag-
netism. Oxford, Oxford University Press.

Miller, C. E. and C. S. Henriquez. (1990). Finite ele-
ment analysis of bioelectric phenomena. Crit. Rev. Bio-
med. Eng. 18(3): 207–233.

Mitrani, R. D., L. S. Klein, D. P. Rardon, D. P. Zipes
and W. M. Miles (1995). Current trends in the im-
plantable cardioverter–defibrillator. In D. P. Zipes and J.
Jalife, eds. Cardiac Electrophysiology: From Cell to Bed-
side, 2nd ed. Philadelphia, Saunders, pp. 1393–1403.

Moses, H. W., B. D. Miller, K. P. Moulton, and J. A.
Schneider (2000). A Practical Guide to Cardiac Pacing.
5th ed. Philadelphia, Lippincott Williams and Wilkins.

Neunlist, M. and L. Tung (1995). Spatial distribution
of cardiac transmembrane potentials around an extracel-
lular electrode: Dependence on fiber orientation. Biophys.
J. 68: 2310–2322.

Nunez, P. L. and R. Srinivasan (2005). Electric Fields
of the Brain. 2nd. ed. Oxford, Oxford University Press.

Oudit, G. Y., R. J. Ramirez and P. H. Backx (2004).
Voltage-regulated potassium channels. In D. P. Zipes and
J. Jalife, eds. Cardiac Electrophysiology: From Cell to
Bedside, 4th ed. Philadelphia, Saunders, pp. 19–32.

Plonsey, R. (1969). Bioelectric Phenomena. New York,
McGraw-Hill.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B.
P. Flannery (1992). Numerical Recipes in C: The Art of
Scientific Computing, 2nd ed., reprinted with corrections,
1995. New York, Cambridge University Press.

Rardon, D. P., W. M. Miles, and D. P. Zipes (2000).
Atrioventricular block and dissociation. In D. P. Zipes
and J. Jalife, eds. Cardiac Electrophysiology: From Cell
to Bedside, 3rd ed. Philadelphia, Saunders, pp. 451–459.

Rattay, F. (1987) Ways to approximate current-
distance relations for electrically stimulated fibers. J.
Theor. Biol. 125: 339–349.

Rosenbaum, D. S. and J. Jalife (2001). Optical Map-
ping of Cardiac Excitation and Arrhythmias. Armonk,
NY, Futura.

Roth, B. J. (1992). How the anisotropy of the intracel-
lular and extracellular conductivities influences stimula-
tion of cardiac muscle. J. Math. Biol. 30: 633–646.

Roth, B. J. (1994). Mechanisms for electrical stimula-
tion of excitable tissue. Crit. Rev. Biomed. Eng. 22(3/4):
253–305.

Roth, B. J. (1997). Electrical conductivity values used
with the bidomain model of cardiac tissue. IEEE Trans.
Biomed. Eng. 44: 326–328.

Roth, B. J. and J. P. Wikswo, Jr. (1994). Electrical
stimulation of cardiac tissue: A bidomain model with ac-
tive membrane properties. IEEE Trans. Biomed. Eng.
41(3): 232–240.

Rudy, Y. and J. E. Burnes (1999). Noninvasive electro-
cardiographic imaging. Ann. Noninvasive Electrocardiol.
4(3): 340–359.

Sepulveda, N. G., B. J. Roth, and J. P. Wikswo,
Jr. (1989). Current injection into a two-dimensional
anisotropic bidomain. Biophys. J. 55: 987–999.

Stanley, P. C., T. C. Pilkington, and M. N. Morrow
(1986). The effects of thoracic inhomogeneities on the re-
lationship between epicardial and torso potentials. IEEE
Trans. Biomed. Eng. 33(3): 273–284.

Tai, C., and D. Jiang (1994). Selective stimulation of
smaller fibers in a compound nerve trunk with single
cathode by rectangular current pulses. IEEE Trans. Bio-
med. Eng. 41: 286–291.

Trayanova, N., C. S. Henriquez, and R. Plonsey
(1990). Limitations of approximate solutions for com-
puting extracellular potential of single fibers and bun-
dle equivalents. IEEE Trans. Biomed. Eng. 37(1): 22–
35.

Ungar, I. J., J. T. Mortimer, and J. D. Sweeney (1986).
Generation of unidrectionally propagating action poten-
tials using a monopolar electrode cuff. Ann. Biomed. Eng.
14: 437–450.

Voorhees, C. R., W. D. Voorhees III, L. A. Geddes,
J. D. Bourland, and M. Hinds (1992). The chronaxie for
myocardium and motor nerve in the dog with surface
chest electrodes. IEEE Trans. Biomed. Eng. 39(6): 624–
628.

Watanabe, A., and H. Grundfest (1961). Impulse prop-
agation at the septal and commisural junctions of crayfish
lateral giant axons. J. Gen. Physiol. 45: 267–308.

Wikswo, J. P., Jr. (1995). Tissue anisotropy, the car-
diac bidomain, and the virtual cathode effect. In D. P.
Zipes and J. Jalife, eds. Cardiac Electrophysiology: From
Cell to Bedside, 2nd ed. Philadelphia, Saunders, pp. 348–
361.



8
Biomagnetism

The field of biomagnetism has exploded in recent
decades. Magnetic signals have been detected from the
heart, brain, skeletal muscles, and isolated nerve and
muscle preparations. Measurements of the magnetic sus-
ceptibility of the lung show the effect of dust inhalation.
Susceptibility measurements of the heart can determine
blood volume, while the susceptibility of the liver can
measure iron stores in the body. Bacteria and some an-
imals contain aggregates of magnetic particles, often at-
tached to neural tissue. Bacteria use these magnetic par-
ticles to determine which way is down. Magnetism is used
for orientation by birds and other animals.

Sections 8.1 and 8.2 review the basics of magnetism.
Section 8.3 calculates the magnetic field of an axon in
an infinite conducting medium. This result, which shows
that the field is due primarily to the current dipole in
the interior of the axon, is approximately true for the
magnetocardiogram and evoked responses from the brain,
described in Secs. 8.4 and 8.5.

Section 8.6 reviews electromagnetic induction. Sec-
tion 8.7 describes the use of varying magnetic fields
to stimulate nerves or muscles. Section 8.8 introduces
diamagnetic, paramagnetic, and ferromagnetic materials
and describes biomagnetic effects that depend on mag-
netic materials. Section 8.9 reviews instrumentation for
measuring these weak magnetic signals.

8.1 The Magnetic Force on a Moving
Charge

Lodestone, compass needles, and other forms of mag-
netism have been known for centuries, but it was not until
1820 that Hans Christen Oersted showed that an electric
current could deflect a compass needle. We now know
that magnetism results from electric forces that moving

charges exert on other moving charges and that the ap-
pearance of the magnetic force is a consequence of special
relativity. An excellent development of magnetism from
this perspective is found in Purcell (1985). The develop-
ment here is more traditional and is incomplete.

Suppose that a beam of electrons is accelerated in a
cathode-ray tube (as in an oscilloscope, computer display,
or television receiver) and causes a spot of light to be
emitted where it strikes a fluorescent screen. The electron
source is cathode C in Fig. 8.1. The accelerating electrode
is E. The fact that the beam is accelerated toward a
positively charged electrode confirms that the electrons
are negatively charged. The beam normally strikes the
screen at point X. Placing a battery between plates A
and B creates an electric field that deflects the beam
as it passes between the plates. If plate A is positively
charged, the beam is deflected upward to point Y . If the
battery is removed and the north pole of a bar magnet is
brought to the position shown, the beam is deflected to
point Z.

We say that a magnetic field exists in the space sur-
rounding the bar magnet and that the direction of the
magnetic field at any point is the direction a small com-
pass needle located there would point. Experiment shows
that the force is at right angles to both the direction of
the magnetic field and the velocity of the charged parti-
cle. Detailed experiments show that the magnitude of the
force F is proportional to the charge, the magnitude of
the velocity v, and the strength of magnetic field B. (In
fact, modern definitions of the magnetic field are based
on this proportionality.) The magnitude of the force is
greatest when v and B are perpendicular. We have seen
a relationship like this between three vectors before: the
vector product or cross product, which was associated
with torque and defined in Sec. 1.4. We write

F = q(v × B). (8.1)
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FIGURE 8.1. An electron beam generated at cathode C and
accelerated through electrode E strikes the fluorescent screen
on the right. (a) A positive charge on plate A and negative
charge on plate B deflects the beam from X to Y . (b) A bar
magnet brought close as shown deflects the beam to point Z.

The SI unit of B is the tesla, T. An earlier name was
the weber per square meter. The cgs unit is the gauss,
G: 1 T = 104 G. If a coordinate system is set up so that
v is along the x axis and B is along the y axis, then
v×B and the force on a positive charge are along the +z
axis. For negatively charged electrons F is in the opposite
direction. Combining Eq. 8.1 with the electric force gives
the full expression for the electromagnetic force, often
called the Lorentz force:

F = q(E + v × B). (8.2)
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FIGURE 8.2. A current-carrying loop is in a uniform magnetic
field. The dashed line from the center of the loop to the center
of edge FG, vector B and vector m all lie in the same plane.
The sum of angles θ and φ is π/2. The forces on opposite sides
add to zero. There is a torque on the loop unless its plane is
perpendicular to the field (φ = π/2). The magnetic moment
m is perpendicular to the plane of the loop.

Since current in a wire is the result of moving charges,
there is a force on a segment of wire carrying a current.
Suppose that there are C particles per unit volume, each
with charge q, drifting with speed v along a segment of
wire of length ds and cross-sectional area S. In time dt
the total charge passing a given plane is CvqS dt [see
Eq. 4.11] so that the current is i = CvqS. If there is a
magnetic field perpendicular to the wire, the magnitude
of the force on each particle is qvB and the total force
is CS ds qvB = iB ds. If vector ds is defined along the
wire in the direction of the positive current, then the
contribution to the magnetic force from this segment of
the wire is

dF = i(ds × B). (8.3)

If a small rectangular loop of wire is placed in a uni-
form magnetic field and a current is made to flow in the
wire, there is a magnetic force on each arm of the loop.
(The current can be led to and from the rectangle by two
parallel closely spaced wires, in which the forces cancel
because the currents are in opposite directions. Forces
not considered here maintain the position of the loop.)

Figure 8.2 shows the orientation of the loop in the hor-
izontal magnetic field. The magnetic moment m is per-
pendicular to the loop and makes an angle θ with the
direction of B. Sides HE and FG are of length a and per-
pendicular to the field. The other two sides have length b.
The force on side EF has magnitude iBb sin φ and is di-
rected as shown. Side GH has a force of equal magnitude
in the opposite direction. On side FG the force is down
and on side HE it is up, both with magnitude iBa. The
vector sum of all the forces is zero. There is a torque,
however. If the torque is taken about the center of the
loop, the FG force and HE force each exert a torque of
magnitude (iBa)(b/2) cos φ. The total torque is therefore
iBab cos φ. The loop is said to have a magnetic moment
m of magnitude iS, where S = ab is the area of the loop.
Vector m is defined to point perpendicular to the loop in
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FIGURE 8.3. The magnetic field around a current-carrying
wire is at right angles to the wire and the perpendicular from
the observation point to the wire. The magnitude is inversely
proportional to the distance from the wire.

the direction of the thumb of the right hand when the fin-
gers curl in the direction of the current around the loop.
The units of m are A m2 or J T−1. In terms of angle θ
between m and B, the torque τ exerted by the magnetic
field on the magnetic moment has magnitude iabB sin θ,
so

τ = m × B. (8.4)

The torque is zero when m and B are parallel or antipar-
allel. When they are parallel the equilibrium is stable: if
there is a small rotation of m the torque acts to return it
to equilibrium. When they are antiparallel, the equilib-
rium is unstable.

A small current loop can be used to test for the pres-
ence of a magnetic field. At equilibrium m points in the
same direction that a small compass needle would point
and gives the direction of B. Measuring the torque for a
known displacement of m from this direction gives the
magnitude of B.

8.2 The Magnetic Field of a Moving
Charge or a Current

8.2.1 The Divergence of the Magnetic Field Is
Zero

With a compass needle or small sensing coil we can in
principle map the magnetic field surrounding a bar mag-
net or a wire carrying a current. If we examine the field
near a long straight wire carrying current i, we find that
B is always at right angles to the wire and at distance r
has magnitude

B =
µ0i

2πr
. (8.5)

The constant µ0 is analogous to ε0 in electrostatics and
is exactly 4π × 10−7 T m A−1 (or Ω s m−1). Figure 8.3
shows the direction of B at various locations around a
wire. The direction of the force is consistent with Eq. 8.2
if the direction of B is defined to be the direction in which
the fingers of the right hand curl when the thumb points
along the wire in the direction of the (positive) current.

θ

B

d s

FIGURE 8.4. The line integral of B · ds is calculated by mul-
tiplying ds by the component of B parallel to ds, that is
B cos θ.

Close to the wire B is always at right angles to the wire,
in contrast to the electric field, which close to a charge
always points toward or away from it. In the electric case,
the flux of E through a closed surface is proportional
to the charge within the volume enclosed by the surface
(Gauss’s law). In contrast, the flux of B through a closed
surface is always zero. In the notation of Sec. 4.1,

∫∫

closed surface

Bn dS =
∫∫

closed surface

B · dS = 0. (8.6)

If single magnetic charges (magnetic monopoles) existed,
the flux would be proportional to the magnetic charge
within the volume. Magnetic monopoles have never been
observed, in spite of considerable effort to find them.

As in the electric case, we can construct lines of B.
The tangent to the line always points in the direction
of B. For the long wire, the lines of B are circles. One
can show from Eq. 8.6 that lines of B always close on
themselves.

Equation 8.6 has the form of the continuity equation,
Eq. 4.4, with B substituted for j and with C = 0. The
differential version of Eq. 8.6 can therefore be obtained
from Eq. 4.8. It is

div B = ∇ · B = 0. (8.7)

8.2.2 Ampere’s Circuital Law

It is also interesting to consider the line integral of B
around a closed path. That is, for any element of the path
ds shown in Fig. 8.4 take the projection of B in the direc-
tion of ds, B cos θ. Sum up all the contributions B cos θ ds
along the entire closed path. For path ABCD in Fig.
8.5(a), the result is zero. The reason is that B cos θ ds
is zero on segments AB and CD. On segment DA it is
(µ0i/2πa)(aφ) = µ0iφ/2π, while on segment BC it is
−(µ0i/2πb)(bφ) = −µ0iφ/2π. In Fig. 8.5(b) the path is
circular with the wire at the center, and the line integral
is B(2πa) = µ0i. This result is general:

∮
B cos θ ds =

∮
B · ds = µ0i. (8.8)
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FIGURE 8.5. Two paths of integration. In (a) the path does
not encircle the wire carrying the current, and

∮
B · ds = 0.

In (b) the path encircles the wire and
∮

B · ds = µ0i.
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Path

FIGURE 8.6. Since the total current or flux of j through any
closed surface is zero, the current through surface S is equal
to the current through surface S′.

The circle on the integral sign means that the integral
is taken around a closed path. The line integral of the
magnetic field around a closed path is equal to µ0 times
the current through a circuit enclosed by that path. If two
wires carrying equal and opposite currents are enclosed
by the path of the line integral, the integral is zero. It
does not mean that B is zero everywhere on the path.

A more general statement is that for steady currents
the line integral of B around a closed path is equal to
the integral of the current density j through any surface
enclosed by the path:

∮
B · ds = µ0

∫∫
j · dS. (8.9)

This is known as Ampere’s circuital law. Like Gauss’s
law, it is always true but not always useful. It is true for
currents that do not vary with time, but it can be used
to calculate the magnetic field only if symmetry can be
used to argue that B is always parallel to the path and
has the same magnitude at all points on the path.

The surface used to calculate the right-hand side can
be any surface bounded by the path used on the left.
Since we are dealing with steady currents for which there
is no charge accumulation, the continuity equation, Eq.

x = 0

θ r

a P

dx

FIGURE 8.7. The Biot–Savart law is used to calculate the
magnetic field at point P due to an infinite wire.

4.4, shows that the flux of j (the total current) through
any closed surface is zero. Two surfaces S and S′, both
bounded by the path, form a closed surface as shown in
Fig. 8.6. The total current through surface S is the same
as the total current through S′.

8.2.3 The Biot-Savart Law

In situations where the symmetry of the problem does
not allow the field to be calculated from Ampere’s law,
it is possible to find the field due to a steady current in
a closed circuit using the Biot–Savart law. The contribu-
tion dB to the magnetic field from current i flowing along
a line element ds is

dB =
µ0i

4π

ds × r
r3

. (8.10)

Vector r is from the current element to the point where
the field is to be calculated. The field is found by inte-
grating over the entire circuit.

Figure 8.7 shows how this integration is done for an
infinitely long straight wire along the x axis. The contri-
bution at point P is obtained by dropping a perpendicular
from P to the wire to define x = 0. The distance from P
to the wire is a. The contribution from an element dx at
point x is

dB =
µ0i

4π

dx sin θ

r2
=

µ0i

4π

a dx

r3
.

Since r2 = a2 + x2 the total field is

B =
µ0i

4π

∫ ∞

−∞

a dx

(a2 + x2)3/2

=
µ0ia

4π

[
x

a2(x2 + a2)1/2

]∞

−∞
=

µ0i

2πa
.

This agrees with Eq. 8.5 and the result obtained using
Ampere’s circuital law.

A steady current from a point source that spreads uni-
formly in all directions generates no magnetic field. To
see why, consider Fig. 8.8. The source of current is at O.
The magnetic field at P can be calculated using the Biot–
Savart law. For any element ds a symmetric element ds′



8.2 The Magnetic Field of a Moving Charge or a Current 207

P

r' r

O

i d si d s'

FIGURE 8.8. The magnetic field from a spherically symmetric
radial distribution of current is zero. The source at O sends
current uniformly in all directions. P is the observation point.
For any element ds there is a corresponding ds′ such that
ds×r = −ds′×r′. The current through a small area dA around
ds is i. The same current flows through a corresponding area
around ds′. Can you obtain the same result by a symmetry
argument?

can be selected, such that ds× r = −ds′ × r′. Associated
with each element is a small area dA, and the current
along ds is i = jdA. We can set dA = dA′ so i is the
same in each case. Therefore, B = 0. (This can also be
shown using Ampere’s law; see Problem 10.)

8.2.4 The Displacement Current

Derivation of Ampere’s law requires that there be no
charge buildup, so that the total current through a closed
surface is zero. However, we will consider an action po-
tential in which the membrane capacitance charges and
discharges. To see how this affects Ampere’s law, consider
current i charging the two shaded capacitor plates in Fig.
8.9. The area of each capacitor plate is A. The region be-
tween the plates, of thickness b, is filled with dielectric of
dielectric constant κ. The integral

∫∫
j · dS is i for sur-

face S and zero for surface S′. Because of the current, the
charge density σ on the left-hand plate is increasing at a
rate given by i = Adσ/dt, while on the right-hand plate
the charge is decreasing because i = −Adσ/dt. Since the
electric field between the plates is E = σ/κε0 we can say
that i = Ad(κε0E)/dt. The quantity D = κε0E is called
the electric displacement, and

jd =
∂D

∂t

is called the displacement current density. More care-
ful consideration shows that Ampere’s law is valid when

S

A

i iE

b

σ σ

S'

'

FIGURE 8.9. A wire and capacitor plates are shown. The inte-
gral of the current density through surface S, which is pierced
by the wire, is i. Through surface S′, which is between the
capacitor plates, the integral is zero. If the displacement cur-
rent density is included, both surface integrals are the same.
(If surfaces S and S′ are not large enough, there is also a
net displacement current through S, as can be seen from Fig.
8.10.)

FIGURE 8.10. The conduction current (white arrows) and
displacement current (black arrows) in a discharging capaci-
tor are shown. The conduction current decreases with distance
out the capacitor plates. The displacement current includes
the fringing field. [From E. M. Purcell. Electricity and Mag-
netism, 2nd ed. Berkeley Physics Series, Vol. 2. New York,
McGraw-Hill, 1985. Used by permission.]

there is charge buildup if we replace j by j + jd:
∮

B · ds = µ0

∫∫
(j + jd) · dS. (8.11)

With this change, if S and S′ are circles of radius a,
Ampere’s law gives B = µ0i/2πa for either one. (The
radius of the circle must be very large; see the discussion
in the next paragraph.)

What current should be used in the Biot–Savart law? A
very surprising answer is that as long as the fields are rel-
atively slowly varying (so that the emission of radio waves
is not important), the displacement current contributes
nothing. We are free to include it or ignore it. Purcell
(1985, p. 328) and Shadowitz (1975, p. 416) discuss why
this is so. It is not always easy to calculate the entire dis-
placement current. For example, Fig. 8.10 shows how the
conduction current and displacement current vary when
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current charges a capacitor. Notice that some of the dis-
placement current flows to and from the back sides of
the capacitor plates. This is why we said in the previous
paragraph that the radius of the curve defining surfaces
S and S′ must be very large in order that one surface
have no net flux of displacement current and the other
have all of it. Whatever their size, however, Eq. 8.11 is
valid.

It was mentioned above that a steady current from
a point source that spreads uniformly in all directions
generates no magnetic field according to the Biot–Savart
law. Yet any circular loop has current flowing through
it, so Ampere’s law suggests that there is a field. The
discrepancy is resolved by noting that the current comes
from a charge q at the origin that is being drained off by
i = −dq/dt. This gives rise to a displacement current jd
that cancels j (see Problem 10).

8.3 The Magnetic Field Around an
Axon

We can use the Biot–Savart law to calculate the magnetic
field due to an action potential propagating down an infi-
nitely long axon stretched along the x axis and embedded
in an infinite homogeneous conducting medium. Section
7.1 showed that there are three components to the cur-
rent: ii along the interior of the axon, dio out through the
membrane (including both displacement current and con-
duction current), and current in the surrounding medium.

The principle of superposition allows us to calculate the
field due to the exterior current by finding the magnetic
field dB from current dio into the surrounding medium
from axon element dx, and then integrating along the
axon.

We saw in Chapter 7 that the current in the external
medium from a small element dx flows uniformly in all di-
rections from a point source. We learned in the preceding
section that the magnetic field generated by a spherically
symmetric radial current is zero. Therefore, in the ap-
proximation that the axon is very thin, we can ignore the
external current from each element dx. We can do this
only because the medium is infinite, homogeneous, and
isotropic. When the exterior conductor has boundaries or
structure, the symmetry is broken and the external cur-
rents contribute to the magnetic field. Our calculation
breaks down very close to the axon. Distortions from the
field due to the external current because the axon is not
infinitely thin are about 1% close to the axon. The current
through the cell membrane gives a very small contribu-
tion to the magnetic field—roughly 1 part in 106.

The major contribution is therefore from ii. We use
the law of Biot–Savart, Eq. 8.10. The observation point
is in the xy plane at (x0, y0, 0) and the axon lies along
the x axis so that ds = x̂ dx, as shown in Fig. 8.11. The

B
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px

Line
of B

,y0 ,0)(x 0

FIGURE 8.11. The geometry for calculation of the mag-
netic field due to a current element i dx or current dipole px

stretched along the x axis.

product ds × r can be evaluated using Eq. 1.8 or 1.9:

ds × r =

∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ
dx 0 0

x0 − x y0 0

∣
∣
∣
∣
∣
∣
= dx y0 ẑ.

The term in the denominator is r3 =
[
(x0 − x)2 + y2

0

]3/2.
The magnetic field in the xy plane is in the z direction
and has magnitude

Bz =
µ0y0

4π

∫
ii(x) dx

[(x0 − x)2 + y2
0 ]3/2

.

It was shown in Eq. 7.17 that ii = −πa2σi(dvi/dx). The
final expression for Bz is

Bz = −µ0a
2σiy0

4

∫
[dvi(x)/dx] dx

[(x0 − x)2 + y2
0 ]3/2

. (8.12)

The computer program in Fig. 8.12 evaluates the field
for the same crayfish axon whose external potential was
studied in Sec. 7.4. The field at a distance 2a from the
axon is plotted in Fig. 8.13. Again, the results agree
well with more sophisticated calculations [Swinney and
Wikswo (1980); Woosley et al. (1985)]. The latter refer-
ence is particularly clear and should be accessible to those
who have studied the convolution integral in Chapter 12.
A three-dimensional plot of their results is shown in Fig.
8.14.

It is worth repeating that a calculation this simple suc-
ceeds only because the axon and the exterior medium are
infinite. If there are boundaries, or if there are regions
in the external medium where the conductivity changes,
then current in the external medium does contribute to
the magnetic field. For example, an isolated nerve prepa-
ration in air would have the external current flowing in a
thin layer of ionic solution along the outside of the axon,
where it would generate a field that almost completely
cancels that from ii.

An approximation valid at large distances can be ob-
tained from Eq. 8.12 by expanding the denominator in
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FIGURE 8.12. The program used to calculate the magnetic
field outside an axon in an infinite homogeneous conductor
using Eq. 8.12. It uses the Romberg integration routine qromb

from Press et al. (1992).

much the same way we did to obtain Eqs. 7.26 and 7.27.
The observation point is (R, θ) in the xy plane. In this
case we need the expansion of

1
r3

=
1

R3

(
1 − 2

x

R
cos θ +

x2

R2

)−3/2

≈ 1
R3

(
1 +

3x cos θ

R
+ · · ·

)
.

The final result is

Bz =
µ0 πa2 σi sin θ

4πR2
(vi(x1) − vi(x2))

+
µ0 πa2 σi3 sin θ cos θ

4πR3

[
xvi(x)|x2

x1
+
∫ x2

x1

vi(x) dx

]
.

(8.13)

The first term is proportional to the current dipole, p
defined for the depolarization in the previous chapter. For
a complete pulse the first term vanishes and the second
term is used.
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FIGURE 8.13. The magnetic field Bz 0.12 mm from a cray-
fish axon in an infinite homogeneous conducting medium is
shown. The field was calculated using the program of Fig. 8.12.
The exterior potential for this configuration was calculated in
Sec. 7.4.

FIGURE 8.14. A three-dimensional plot of the magnetic field
around the crayfish axon. The minimum distance from the
axon is 0.5 mm.

8.4 The Magnetocardiogram

It is now feasible to measure magnetic fields arising from
the electrical activity of the heart (the magnetocardio-
gram or MCG) and the brain (the magnetoencephalogram
or MEG). The models developed in Sec. 8.3 and in Chap-
ter 7 can be used to compare the electric and magnetic
signals from a current dipole p. The instrumentation for
these measurements is described in Sec. 8.9.

For a single cell at the origin in a homogeneous con-
ducting medium, the exterior potential at observation
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point r is given by Eq. 7.13:

v =
p · r

4πσor3
.

The current dipole p points along the cell in the direction
of the advancing depolarization wave and has magnitude
[Eq. 7.12] p = πa2σi∆vi. An expression analogous to Eq.
7.13 describes the magnetic field of a depolarizing cell.
We consider the field due to current along the x axis and
then generalize the result. The derivation begins with Eq.
8.13 and uses the geometry of Fig. 8.11. The region of
depolarization occupies only a millimeter or so along the
cell. Since the measurements are made much farther away,
the denominator can be removed from the integral, which
is then just

∫
(dv/dx) dx. If the depolarization is at the

origin, then the expression for Bz for z = 0 is

Bz = −µ0a
2σiy0 [v(x2) − v(x1)]

4(x2
0 + y2

0)3/2
=

µ0

4π

py0

(x2
0 + y2

0)3/2
.

(8.14)
Figure 8.11 shows that y0 = r sin θ, so that py0 =
p r sin θ = |p × r|. The direction of B is also consistent
with the cross product. Generalizing, we have for a single
cell,

B = µ0
p × r
4πr3

. (8.15)

Note the remarkable similarity between Eqs. 7.13 and
8.15. One involves the dot product, and the other the
cross product. For both, the field falls as 1/r2. If we are
considering the cardiogram, either field from the entire
heart is the superposition of the field from many cells. As
with the electrocardiogram, the first approximation for
the magnetocardiogram is to ignore changes in 1/r2 and
speak of the total current-dipole vector.

Measurements of either the potential or the magnetic
field can be used to determine the location of p. We will
adopt the coordinate system usually used for the magne-
tocardiogram. The x axis points to the patient’s left, the
y axis points up, and the z axis points toward the front
of the patient, roughly perpendicular to the chest wall.
Assume that p is at the origin and the anterior chest sur-
face is the xy plane at some fixed value of z. We ignore
distortions to the field which arise because no current
can flow in the region beyond the body, and we assume
that the conductivity of the body is homogeneous and
isotropic. From Eq. 8.15, we obtain the three components
of B along the line (x, 0, z):

Bx =
µ0pyz

4πr3
,

By =
µ0 (pzx − zpx)

4πr3
,

Bz = −µ0pyx

4πr3
.

(8.16)

Compare these results to the lines of B in Fig. 8.15,
which were drawn for the three components of p us-
ing the right-hand rule. Along the line being considered
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FIGURE 8.15. The magnetic field produced by the three com-
ponents of a current dipole at the origin. The coordinate sys-
tem is that customarily used for magnetocardiography. The
x axis points toward the subject’s left, the y axis is vertical,
and the z axis points forward through the subject’s chest. The
coordinate system is viewed over the subject’s right shoulder.

(y = 0, z = const), px contributes only to By, and By is
always negative. Component py contributes to both Bx

and Bz; the latter changes sign while the former does not,
as we change the value of x. Component pz gives only a
y component of B that changes sign as x changes sign.
The component normal to the body surface, Bz is given
by

Bz(x, 0, z) = −µ0

4π

pyx

(x2 + z2)3/2
.

Figure 8.16 plots contours for the potential and the
magnetic field component Bz perpendicular to the body
surface when p points along the y axis. Again, distortions
because of changes in conductivity are ignored. The sim-
ilarity of the two sets of contours is clear. The contours
of constant potential are proportional to pyy/r3, while
the contours for Bz are proportional to −pyx/r3. Either
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FIGURE 8.16. Contour plots in the xy plane for (a) the po-
tential and (b) the z component of the magnetic field from a
current dipole p pointing along the y axis, calculated for an
infinite, isotropic conducting medium.

contour map can be used to determine the location and
depth of p. To be specific, consider the contours for Bz.
The field is proportional to the function x/(x2 + z2)3/2,
which changes sign right over the source and has a max-
imum and a minimum at x = ±z/

√
2. The depth of the

source z is related to the spacing ∆x along the x axis
between the maximum and minimum by

z =
∆x√

2
. (8.17)

The source is located directly beneath the point on the
axis where Bz = 0, and its strength is related to the
maximum value of Bz by

Bz(max) =
µ0py

6π
√

3z2
. (8.18)

Figure 8.17 shows real maps of the potential and the
magnetic field on the surface of the chest. While the basic
features are described by the simple current dipole model,
the exact shape of the contours in Fig. 8.17 differs from
the shape in Fig. 8.16. This is due to variations in conduc-
tivity of the body. The surface potential is distorted by
conductivity differences throughout the thorax; the mag-
netic field is particularly susceptible to return currents
flowing just below the surface of the body. Hosaka et al.
(1976) did an early calculation of the effect of currents at
the surface of the torso on the magnetocardiogram. They
found that the return current modifies the component of
B perpendicular to the body surface by about 30%. Tan-
gential components of B are influenced more; this is why
the normal component Bz is usually measured. Other cal-
culations have been done by Purcell et al. (1988). Tan et
al. (1992) show that using a model of the conductivities
that matches the geometry of the patient’s thorax allows
accurate localization of the current dipole source from
the surface measurements. Stroink (1993) reviews mag-
netic field maps; surface potential maps are reviewed by
Taccardi and Punske (2004) and by Stroink et al. (1996).

The magnetic field close to the heart is affected by
the anisotropy of the tissue conductivity. Figure 8.18
shows measurements made 1.5 mm from a 1-mm-thick

FIGURE 8.17. Maps of the magnetic field perpendicular to
the body (left) and the body surface potential (right) in two
patients. The upper row is for a normal patient, and the lower
row for a patient with an anterior myocardial infarction. The
dashed rectangle in the potential map corresponds to the area
for which the magnetic field was measured. The dot in the
upper row shows where the midline intersects the level of the
fourth intercostal space. Note how the constant contours for
the magnetic field are oriented at right angles to the isopo-
tential lines, as in the previous figure. From G. Stroink, Car-
diomagnetic Imaging. In R. A. Dunn and A. S. Berson, eds.
Frontiers in Cardiovascular Imaging. Raven Press, 1992. pp.
161–177. Used by permission.

slice of canine myocardium by Staton et al. (1993). Panel
A shows the time course of simultaneous recordings from
three pickup coils 3 mm in diameter and separated by 4
mm. There are striking differences over 4 mm. Panel B
shows a magnetic field contour map during stimulus from
another experiment. Instead of having one peak and one
valley as in Figs. 8.16 and 8.17, it shows a cloverleaf or
quatrefoil pattern. Panels C and D show the field con-
tours and the current flow in a third experiment, 6 ms
after stimulation. This field and current pattern is pre-
dicted by bidomain calculations [Wikswo (1995b)].

8.5 The Magnetoencephalogram

The magnetic signals from a nerve action potential are
weaker than those from the heart for two reasons. First,
the current-dipole vector associated with the repolariza-
tion follows close behind the depolarization and reduces
the field. (The largest unmyelinated axons in the body
have a conduction speed of about 1 m s−1 and the pulse
is about 1 mm long. Myelinated fibers have a pulse length
up to 8–10 times longer.) Second, the cross-sectional area
of the advancing wavefront is much smaller. However,



212 8. Biomagnetism

FIGURE 8.18. The results of magnetic field measurements
very close to a slice of canine myocardium. The panels are
described in the text. Part of the figure is reproduced from
J. P. Wikswo, Jr. Tissue anisotropy, the cardiac bidomain,
and the virtual cathode effect. In D. P. Zipes and J. Jalife,
eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd ed.
pp. 348–361, c©1995 Elsevier, Inc., with permission of Else-
vier. The rest is from D. J. Staton, R. N. Friedman, and J.
P. Wikswo, Jr. (1993). High-resolution SQUID imaging of oc-
tupolar currents in anisotropic cardiac tissue. IEEE Trans.
Appl. Superconduct. 3(1):1934–1936. c©1993 IEEE.

the magnetic fields accompanying action potentials have
been measured in nerve [Barach et al. (1985); Roth and
Wikswo (1985)] and in muscle [Gielen et al. (1991)]. They
have also been measured in green algae [Trontelj et al.
(1994)].

We saw in Sec. 6.1 that nerve cells have an input
end (dendrites), a cell body, and an axon. The signal
that propagates from a synapse through the dendrites
to the cell body and axon is much smaller (about 10
mV) and longer (10 ms) than an action potential that
travels along the axon. The cells at the surface of the
cerebral cortex have dendrites that are like the trunk of
a tree perpendicular to the surface of the cortex, with
branches from several directions coming to the trunk.
The signal from the trunk is the primary contributor to
the magnetoencephalogram (MEG)and electroencephalo-
gram (EEG). The problems show that the magnetic field
associated with the rise of the post-synaptic potential is
more easily observed outside the brain than is the action
potential.

p
B

FIGURE 8.19. A current dipole p is oriented radially inside a
homogeneous conducting sphere. The return current is inde-
pendent of the azimuthal angle, φ. By symmetry the magnetic
field, if any, must be in the φ direction; the current in Am-
pere’s circuital law, which is the sum of the current in p and
the return current, is zero.

One can see from the symmetry argument in the cap-
tion of Fig. 8.19 that in a spherically symmetric conduct-
ing medium the radial component of p and its return
currents do not generate any magnetic field outside the
sphere. Therefore the MEG is most sensitive to detecting
activity in the fissures of the cortex, where the trunk of
the post-synaptic dendrite is perpendicular to the surface
of the fissure. A tangential component of p does produce
a magnetic field outside a spherically symmetric conduc-
tor. The extracellular current does not contribute to the
radial component of the magnetic field [Hämäläinen et al.
(1993)], so Eq. 8.15 gives Br correctly. Extracellular cur-
rent does influence the tangential components of the mag-
netic field. Since the skull is not a perfect sphere, there
is some effect of the radial component of p on the MEG.
The EEG is sensitive to both radial and tangential com-
ponents of p. The information available from the EEG
and MEG has been reviewed by Wikswo et al. (1993).

Measurements of the magnetoencephalogram are often
based on evoked responses. A repetitive stimulus is pre-
sented to the subject—audible, visual, or tactile—or the
subject is asked to perform a repetitive task such as flex-
ing a finger. Signal-averaging techniques are used to iden-
tify the associated changes in magnetic field (see Chapter
11). Figure 8.20 shows averaged magnetic field contours
measured over the scalp of a subject who heard a string of
words presented in random order every 2.3 s. Sometimes
the subject was asked to read something else and ignore
the words. At other times the subject was asked to pay
attention and count how many of the words were on a list.
The first peak, 100 ms after presentation of the word, was
the same in both cases. The sustained field peak, SF, was
considerably stronger when the subject was paying at-
tention to the list. Magnetic contours and the equivalent
current dipole source are also shown.

Magnetic measurements have also been made of slower
signals. Grimes et al. (1985) found ion currents in the



8.6 Electromagnetic Induction 213

FIGURE 8.20. Magnetic field maps recorded over the scalp of
a subject who heard a series of words and either ignored them
by reading something else or listened carefully and counted
how many of the words were in a predetermined list. The
features are discussed in the text. Reprinted with permission
from M. Hämäläinen, R. Harri, R. J. Ilmoniemi, J. Knuutila
and O. V. Lounasmaa. Magnetoencephalography—theory, in-
strumentation, and applications to noninvasive studies of the
working human brain. Revs. Mod. Phys. 65(2): 413–497 1993.
Copyright 1993 by the American Physical Society.

human leg that change over an hour or so. Thomas et al.
(1993) found a quasistatic ionic current in the chick em-
bryo, probably associated with active-transport pumps.
Richards et al. (1995a) have measured a magnetic sig-
nal associated with slow currents in the small intestine
of the rabbit and its supporting mesentery. The signal
changes appreciably if the blood supply to the intestine
is cut off. These measurements could be clinically useful,
because mesenteric ischemia is difficult to diagnose early
[Richards et al. (1995b), Petrie et al. (1996)].

8.6 Electromagnetic Induction

In 1831 Faraday discovered that a changing magnetic
field causes an electric current to flow in a circuit. It does
not matter whether the magnetic field is from a perma-
nent magnet moving with respect to the circuit or from
the changing current in another circuit. The results of
many experiments can be summarized in the Faraday in-
duction law :

∮
E · ds = − d

dt

∫∫
B · dS = −dΦ

dt
. (8.19)

It states that the line integral of E around a closed path
is equal to the negative of the rate of change of the mag-
netic flux through any surface bounded by the path. The
relationship between the direction of S and ds is given
by a right-hand rule: if the fingers of the right hand curl
around the circuit in the direction of ds, the thumb of
the right hand points in the direction of a positive nor-
mal to S. The units of magnetic flux Φ =

∫∫
B ·dS are T

m2 or weber (Wb). Rapidly changing magnetic fields can
induce currents large enough to trigger nerve impulses.
This is discussed in Sec. 8.7.

The differential form of the Faraday induction law is
(see Problem 20)

curlE = ∇× E = −∂B
∂t

. (8.20)

The result of the vector operation curl is another vector.
In Cartesian coordinates the components of ∇× E are

(∇× E)x =
∂Ez

∂y
− ∂Ey

∂z
,

(∇× E)y =
∂Ex

∂z
− ∂Ez

∂x
,

(∇× E)z =
∂Ey

∂x
− ∂Ex

∂y
.

These can be abbreviated by using determinant notation
as

(∇× E) =

∣
∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂z
Ex Ey Ez

∣
∣
∣
∣
∣
∣
∣
. (8.21)

Similarly (Problem 21) the differential form of Ampere’s
law is

curlB = ∇× B = µ0

(
j +

∂D
∂t

)
. (8.22)

The integral form of the Faraday induction law can be
used to determine E only if the symmetry is such that E
is always parallel to ds and has the same magnitude all
along the path. One situation where it can be used is a
circular loop of wire in the xy plane centered at the origin.
The radius of the loop is a and its normal is along the
+z axis. Suppose that everywhere in the xy plane within
the boundary of the circle the field points along z and
depends only on time: B(x, y, z, t) = B(t)ẑ. Symmetry
shows that E has the same magnitude everywhere in the
wire and is always tangent to the loop. Equation 8.19
gives

E = −a

2
dB

dt
. (8.23)

If the loop is made of material that obeys Ohm’s law,
there is a current of density j = σE = −(σa/2)(dB/dt).
If the radius of the wire is b (b � a), then i =
−(σπab2/2)(dB/dt). Figure 8.21 shows the direction of
the induced current if dB/dt is positive. The induced
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i

FIGURE 8.21. A magnetic field increasing in the direction
shown induces a current in the loop. This current generates a
magnetic field in the opposite direction, opposing the change
in the magnetic field.

current sets up its own magnetic field which points in
the −z direction within the loop, opposing the primary
field increase within the loop. The induced current al-
ways opposes the change of magnetic field that produces
it. This is called Lenz’s law. If it were not true, the in-
duced current, once started, would increase indefinitely.

This result does not require that the ring be hollow; it
can be part of a much larger conductor. The larger the
conductor, the greater the radius of the path along which
the induced current can flow. The currents that chang-
ing magnetic fields induce in conductors are called eddy
currents and cause heating losses in the conductor. Iron,
which is a conductor, is often used as a core in transformer
windings to increase the intensity of the magnetic field.
To reduce the eddy-current losses, the cores are made of
thin layers of iron insulated from one another by varnish.
This limits the radius of the path in which the eddy cur-
rents can flow. Some coils and transformers are wound on
cores of powdered iron dispersed in an insulating binder.
Rooms with thick conducting walls (aluminum, about 2
cm thick) have been used to shield against 60 Hz mag-
netic fields from power wiring. The eddy currents induced
in the aluminum attenuate the field by about a factor of
200 [Stroink et al. (1981)].

The quantity
∫ b

a
E ·ds is the work done per unit charge

in moving from a to b and is called the electromotive
force along the path from a to b. Terminology is not al-
ways consistent; see the discussion by Page (1977). The
details of how a changing magnetic field causes a current
to flow were shown above for a circular conductor. The
force on a moving charge due to the induced electric field
is balanced by the drag force as the charge drifts through
the conductor. Energy supplied by the changing magnetic
field is dissipated as heat. If a voltmeter is attached to
two points on the circle, the voltmeter reading may seem
paradoxical, until one realizes that there may be changing
flux in the voltmeter leads as well. An additional compli-
cation is that when there is any region of space in which
∇ × E 
= 0, then it is possible for

∫ b

a
E · ds to depend

on the path (rather than just the end points), even if the

magnetic field is zero at all points on the path. This is
described clearly and in detail by Romer (1982).

8.7 Magnetic Stimulation

Since a changing magnetic field generates an induced elec-
tric field, it is possible to stimulate nerve or muscle cells
without using electrodes. The advantage is that for a
given induced current deep within the brain, the currents
in the scalp that are induced by the magnetic field are far
less than the currents that would be required for electri-
cal stimulation. Therefore transcranial magnetic stimu-
lation (TMS) is relatively painless. Magnetic stimulation
can be used to diagnose central nervous system diseases
that slow the conduction velocity in motor nerves without
changing the conduction velocity in sensory nerves [Hal-
lett and Cohen (1989)]. It could be used to monitor mo-
tor nerves during spinal cord surgery, and to map motor
brain function. Because TMS is noninvasive and nearly
painless, it can be used to study learning and plasticity
(changes in brain organization over time). Recently, re-
searchers have suggested that repetitive TMS might be
useful for treating depression and other mood disorders.

One of the earliest investigations was reported by
Barker et al. (1985) who used a solenoid in which the
magnetic field changed by 2 T in 110 µs to apply a stim-
ulus to different points on a subject’s arm and skull. The
stimulus made a subject’s finger twitch after the delay
required for the nerve impulse to travel to the muscle.
For a region of radius a = 10 mm in material of conduc-
tivity 1 S m−1, the induced current density for the field
change in Barker’s solenoid was 90 A m−2. (This is for
conducting material inside the solenoid; the field falls off
outside the solenoid, so the induced current is less.) This
current density is large compared to current densities in
nerves (Chap. 6).

Magnetic stimulators are relatively high-power devices,
requiring thousands of amps passed through coils for a
few hundred microseconds. Most magnetic stimulators
are capacitor discharge devices, in which a large capacitor
is charged to a high voltage (several kV) and then dis-
charged through the coil. Different coil geometries have
been examined; the most common one is a figure-of-eight
shape. Several theoretical analyses and models have been
made, including those by Heller and van Hulsteyn (1992)
and Esselle and Stuchly (1995). Magnetic stimulation is
included in the review by Roth (1994) and is compared to
other brain imaging methods by Ilmoniemi et al. (1999).

8.8 Magnetic Materials and Biological
Systems

Just as the electric field can be altered by the polariza-
tion of a dielectric, the magnetic field can be altered by
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FIGURE 8.22. A current loop in an inhomogeneous magnetic
field experiences a force toward the region of stronger mag-
netic field. The circular loop lies in a plane perpendicular to
the z axis. Current flows into the page on the right and out
of the page on the left.

matter. Biological measurements can be based on alter-
ations of the field by an organ in the body. Some cells ex-
hibit permanent magnetism, which is important for mea-
suring direction in some bacteria, birds and other organ-
isms.

8.8.1 Magnetic Materials

The effects of magnetic fields on material are more com-
plicated than those of electric fields. Since there are no
known magnetic charges (monopoles), we must consider
the effect of magnetic fields on current loops or magnetic
dipoles. Figure 8.22 shows a current loop in a magnetic
field that decreases as z increases. As a result the lines
of B spread apart. The loop has radius a, carries cur-
rent i, and has magnetic moment1 m. For the orientation
shown, there is a force on the loop in the −z direction
that is toward the region where the field is stronger. If
the magnetic moment of the loop were not parallel to
B, there would also be a torque on the loop. For ease
in calculation, imagine that the loop has been placed in
the field in such a way that along the axis of the loop, B
points in the z direction. Then the spreading of the lines
of B means that B has a component radially outward
all around the loop. Because of the symmetry Br has a
constant magnitude everywhere around the loop, and the
force on the loop is −2πa iBr(a).

Field Br(a) is found by considering the fact that the
total magnetic flux through all surfaces of the pillbox in
Fig. 8.23 is zero (Eq. 8.6). The net outward flux is

[Bz(z + dz) − Bz(z)] πa2 + Br(a)2πa dz = 0.

1Be careful. We are talking about two different kinds of dipoles

in this chapter. The current dipole p is a source and sink of current
and has units A m. The magnetic dipole m, equivalent to a small
magnet with north and south poles, has units A m2. The magnetic
field from a magnetic dipole falls off as 1/r3.

  a 
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FIGURE 8.23. Gauss’s law for B is applied to a pillbox of
radius a and thickness dz.

This can be rearranged to give
[
∂Bz

∂z
+

2
a
Br(a)

]
πa2 dz = 0,

from which

Br(a) = −a

2
∂Bz

∂z
.

The force on the loop is therefore

Fz = πa2i
∂Bz

∂z
= mz

∂Bz

∂z
. (8.24)

If m is parallel to B the force is toward the region of
stronger field; if m is antiparallel to B the force is toward
the region of weaker field.

An atom can have a magnetic moment because of two
effects.2 The motion of the electrons in orbit about the
nucleus constitutes a current, as a result of which there
may be an orbital magnetic moment. The intrinsic spin
of each electron gives rise to a spin magnetic moment,
independent of any orbital motion. In most atoms, the
orbital magnetic moments average to zero, and most of
the electrons are arranged in pairs whose spins cancel.
The atom therefore usually has no net magnetic moment.

Most substances placed in an inhomogeneous field ex-
perience a weak force away from the region of strong
field, and the force is roughly proportional to the square
of the field strength, an effect called diamagnetism. It
can be understood with a simple classical model. As the
atom is moved into the magnetic field, the Faraday induc-
tion effect distorts the orbits of the electrons to induce
a magnetic dipole moment proportional to B and in the
opposite direction, consistent with Lenz’s law. The force
is therefore proportional to Bz(∂Bz/∂z). Purcell (1985)
has a quantitative treatment of this model.

A few substances are attracted to the region of stronger
field, again with a force that is often proportional to the
square of the field. Each atom of these paramagnetic sub-
stances has a permanent magnetic moment associated
with the spin of an unpaired electron. Thermal motion
normally keeps the magnetic moments of different atoms

2Much weaker magnetic moments of the atomic nucleus are con-

sidered in Chapter 18.
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oriented randomly. As the substance is brought into the
magnetic field the spin magnetic moments of different
atoms begin to align with the magnetic field. A magnetic
dipole moment is induced in the substance, but this time
it is in the direction of B, and the substance is attracted
to the magnet.

Some substances placed in an inhomogeneous magnetic
field experience much stronger attraction than do para-
magnetic substances. In these substances some of the
atomic moments are aligned even in the absence of an ex-
ternal field. They are permanent magnets. Further align-
ment of the atomic moments may take place in an exter-
nal field, but complete alignment often takes place in rel-
atively weak external fields. These substances are called
ferromagnets. The individual atoms have magnetic mo-
ments, and there are forces between atoms which cause
the spins to align. Section 14-4 of Eisberg and Resnick
(1985) provides a relatively simple explanation of the
quantum-mechanical effects underlying this spin align-
ment. Ferrimagnets are similar to ferromagnets, but the
crystals contain two different kinds of ions with different
magnetic moments.

The magnetization M is the average magnetic moment
per unit volume. It is defined by considering volume ∆V
that has total magnetic moment ∆m =

∑
mi, where the

summation is taken over all atoms in the volume, and
taking the ratio

M =
∆m
∆V

. (8.25)

We have seen that a current loop possesses a magnetic
moment of magnitude m = iS. One can imagine a cur-
rent giving rise to any magnetic moment, even one asso-
ciated with electron spin. Such currents are called bound
currents and must be included in Ampere’s law. The cur-
rents that flow due to conduction—that we can control
by changing the conductivity of the material or throwing
a switch—are called free currents. One can show that if
we define the new vector

H = B/µ0 − M, (8.26)

it depends only on the free currents:
∮

H · ds =
∫∫

jfree · dS. (8.27)

Vector H is called the magnetic field intensity. It has
units A m−1. It does not have the physical significance of
B (it does not appear in the Lorentz force or the Faraday
induction law). However, it often simplifies computations,
because we control free current in the laboratory.

In a vacuum, B = µ0H. It has been traditional to
define the magnetic permeability of a medium in which
B, M, and H are all proportional to one another by the
equation

B = µH, (8.28)

in which case
µ

µ0
= 1 +

M

H
= 1 + χm. (8.29)
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FIGURE 8.24. A typical curve of B vs H for a ferromagnetic
material. The curve shows hysteresis, and the arrows show the
direction of travel around the curve WXY Z. Points W and Y
show where M saturates. Points X and Z show the remanent
magnetic field when H = 0.

In diamagnetic materials the magnetic susceptibility χm

is negative and µ < µ0. A typical diamagnetic suscepti-
bility is ≈ −1 × 10−5. In paramagnetic materials χm is
positive and µ > µ0. A typical paramagnetic susceptibil-
ity is ≈ 1 × 10−4.

The relationship between B and H in ferromagnetic
substances is nonlinear and is characterized by a BH
curve. A typical curve is shown in Fig. 8.24. The fact that
the curves for increasing and decreasing H do not coin-
cide is called hysteresis. The arrows show the direction
in which H changes on each branch of the curve. Satu-
ration takes place beyond points W and Y . The value of
M saturates and B = µ0 (Msaturated + H) . When H = 0
there is a remanent magnetic field (points X and Z). If
the temperature of the sample is raised above a critical
temperature called the Curie temperature, the magnetism
is destroyed.

8.8.2 Measuring Magnetic Properties in
People

Several kinds of measurements can be based on mag-
netic effects in materials. A common component of dust
inhaled by miners and industrial workers is magnetite,
Fe3O4, which is ferrimagnetic. By placing the thorax in
a fixed magnetic field for a few seconds, the particles can
be aligned. The field is turned off and the remanent field
measured. The use of magnetopneumography in occupa-
tional health is described by Stroink (1985). Cohen et al.
(1984) have modeled the process by which the particles
are magnetized, as well as the relaxation process by which
the magnetization disappears after the external field is re-
moved. Relaxation curves are used to estimate intracellu-
lar viscosity and the motility of macrophages (scavenger
white cells) in the alveoli [Stahlhofen and Moller (1993)].

The magnetic susceptibility of blood and myocardium
is different from the susceptibility of surrounding lung
tissue. An externally applied magnetic field induces a field
that changes as the volume of the heart changes. It can
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FIGURE 8.25. The small black dots are magnetosomes,
small particles of magnetite in the magnetotactic bacterium
Aquaspirillum magnetotacticum. The vertical bar is 1 µm long.
The photograph was taken by Y. Gorby and was supplied by
N. Blakemore and R. Blakemore, University of New Hamp-
shire.

be measured externally. The theory and experiments have
been described by Wikswo (1980).

Susceptibility measurements can also be used to mea-
sure the total iron stores in the body. Normally the body
contains 3–4 g of iron. Approximately a quarter of it is
stored in the liver. The amount of iron can be elevated
from a large number of blood transfusions or in certain
rare diseases such as hemochromatosis and hemosidero-
sis. The liver is an organ whose susceptibility can easily
be measured. The susceptibility varies linearly with the
amount of iron deposited. Magnetic susceptometry has
been used to estimate body iron stores [Brittenham et al.
(1983); Nielsen et al. (1995)].

8.8.3 Magnetic Orientation

Magnetism is used for orientation by several organisms.
A history of studies in this area is provided in a very read-
able book by Mielczarek and McGrayne (2000). Several
species of bacteria contain linear strings of up to 20 par-
ticles of magnetite, each about 50 nm on a side encased
in a membrane [Frankel et al. (1979); Moskowitz (1995)].
Over a dozen different bacteria have been identified that
synthesize these intracellular, membrane-bound particles
or magnetosomes (Fig. 8.25). Bacteria in the northern
hemisphere have been shown to seek the north pole. Be-
cause of the tilt of the earth’s field, they burrow deeper
into the environment in which they live. Similar bacte-
ria in the southern hemisphere burrow down by seeking
the south pole. In the laboratory the bacteria align them-
selves with the local field.

In the problems you will learn that there is sufficient
magnetic material in each bacterium to align it with
the earth’s field just like a compass needle. Other bac-
teria that live in oxygen-poor, sulfide-rich environments
contain magnetosomes composed of greigite, (Fe3S4)
rather than magnetite (Fe3O4). In aquatic habitats, high
concentrations of both kinds of magnetotactic bacteria

are usually found near the oxic–anoxic transition zone
(OATZ). In freshwater environments the OATZ is usually
at the sediment–water interface. In marine environments
it is displaced up into the water column.

Since some bacteria prefer more oxygen and others pre-
fer less, and they both have the same kind of propulsion
and orientation mechanism, one wonders why one kind of
bacterium is not swimming out of the environment favor-
able to it. Frankel and Bazylinski (1994) proposed that
the magnetic field and the magnetosomes keep the or-
ganism aligned with the field, and that they change the
direction in which their flagellum rotates to move in the
direction that leads them to a more favorable concentra-
tion of some desired chemical.

Magnetosomes are found in other species and are likely
also to be used for orientation. One species of algae con-
tains about 3000 magnetic particles, each of which is
about 40×40×140 nm [de Araujo et al. (1986)]. Bees, pi-
geons, and fish contain magnetic particles. It is more diffi-
cult to demonstrate their function, because of the variety
of other sensory information available to these animals.
For example, homing pigeons with magnets attached to
their heads could orient well on sunny days but not on
cloudy ones [Walcott et al. (1979)]. There is evidence that
bees orient in a magnetic field [Frankel (1984).] The net
magnetic moment in the bees is oriented transversely in
the body [Gould, Kirschvink and Deffeyes (1978)]. In pi-
geons the magnetic material is located in the dura (the
outer covering of the brain) or skull. In all of these cases,
the material has been identified as magnetite. In the yel-
lowfin tuna, data are compatible with about 8.5 × 107

magnetic particles, each of which is a single domain of
magnetite in the shape of an approximately 50-nm cube
[Walker et al. (1984)].

There is now evidence that birds may actually have
three compasses. Since the magnetic and geographic poles
are fairly far apart, migratory birds must correct their
magnetic compasses as they fly. The Savannah sparrow
is known to have a magnetic compass and a star compass
and to take visual cues from the sky at sunset. Able and
Able (1995) have shown that adult Savannah sparrows
that are subjected to a field pointing in a different direc-
tion than the earth’s field will at first trust their magnetic
compasses, but over a few days they recalibrate their
magnetic compasses with their star compasses. An ac-
companying editorial [Gould (1995)] places their work in
context. More recently, Cochran et al. (2004) have shown
that if migrating thrushes are placed in an eastward-
pointing magnetic field at twilight and then released, they
fly west instead of south. This strongly suggests that the
birds recalibrate their magnetic compass at twilight each
day.

The fact that the magnetite particles seem to be about
50 nm on a side is physically significant. Frankel (1984)
summarizes arguments that if the particles are smaller
than about 35 nm on a side, thermal effects can destroy
the alignment of the individual particles. If they are larger
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Winding

Axon

Toroid

FIGURE 8.26. A nerve cell preparation is threaded through
the magnetic toroid to measure the magnetic field. The chang-
ing magnetic flux in the toroid induces an electromotive force
in the winding. Any external current that flows through the
hole in the toroid diminishes the magnetic field.

than about 76 nm, multiple domains can form within a
particle, decreasing the magnetic moment.

8.9 Detection of Weak Magnetic Fields

The detection of weak fields from the body is a techno-
logical triumph. The field strength from lung particles is
about 10−9 T; from the heart it is about 10−10 T; from
the brain it is 10−12 T for spontaneous (α-wave) activity
and 10−13 T for evoked responses. These signals must be
compared to 10−4 T for the earth’s magnetic field. Noise
due to spontaneous changes in the earth’s field can be as
high as 10−7 T. Noise due to power lines, machinery, and
the like can be 10−5–10−4 T.

If the signal is strong enough, it can be detected with
conventional coils and signal-averaging techniques that
are described in Chapter 11. Barach et al. (1985) used a
small detector through which a single axon was threaded.
The detector consisted of a toroidal magnetic core wound
with many turns of fine wire (Fig. 8.26). Current passing
through the hole in the toroid generated a magnetic field
that was concentrated in the ferromagnetic material of
the toroid. When the field changed, a measurable voltage
was induced in the surrounding coil.

The signals from the body are weaker, and their mea-
surement requires higher sensitivity and often special
techniques to reduce noise. Hämäläinen et al. (1993)
present a detailed discussion of the instrumentation prob-
lems. Sensitive detectors are constructed from supercon-
ducting materials. Some compounds, when cooled below a
certain critical temperature, undergo a sudden transition
and their electrical resistance falls to zero. A current in
a loop of superconducting wire persists for as long as the
wire is maintained in the superconducting state. The rea-
son there is a superconducting state is a well-understood
quantum-mechanical effect that we cannot go into here.
It is due to the cooperative motion of many electrons
in the superconductor [Eisberg and Resnick (1985), Sec.
14.1; Clarke (1994)].

i

Φ

FIGURE 8.27. A dc SQUID is shown. The solid lines represent
superconducting wires, broken by Josephson junctions at the
top and bottom. The total current through both wires depends
on Φ, the magnetic flux through the circle.

The integral
∮

E · ds around a superconducting ring is
zero, which means that dΦ/dt is zero, and the magnetic
flux through a superconducting loop cannot change. If
one tries to change the magnetic field with some external
source, the current in the superconducting circuit changes
so that the flux remains the same.

The detector is called a superconducting quantum in-
terference device (SQUID). The operation of a SQUID
and biological applications are described in the Scientific
American article by Clarke (1994). Wikswo (1995a) sur-
veys the use of SQUIDs for applications in biomagnetism
and nondestructive testing. A technical discussion is also
available [Hämäläinen et al. (1993)]. The dc SQUID re-
quires a superconducting circuit with two branches, each
of which contains a very thin nonsuperconducting “weak
link” known as a Josephson junction (Fig. 8.27). As the
magnetic field is changed, these weak links allow the
flux in the loop to change. The phase of the quantum-
mechanical wave function of the collectively moving elec-
trons differs in the two branches by an amount depending
on the magnetic flux linked by the circuit. The total cur-
rent depends on the interference of these two wave func-
tions and is of the form I = 2I0 cos(πΦ/Φ0), where Φ
is the flux through the circuit. The quantity Φ0 = h/2e,
where h is Planck’s constant (see Chapter 14) and e is the
electron charge, is the quantum-mechanical unit of flux
and has a value equal to 2.068 × 10−15 T m2. Because
interference changes corresponding to a small fraction of
this can be measured, the SQUID is very sensitive. The
SQUID must be operated at temperatures where it is su-
perconducting. It used to be necessary to keep a SQUID
in a liquid-helium bath, which is expensive to operate
because of the high evaporation rate of liquid helium.
With the advent of high-temperature superconductors,
SQUIDS have the potential to operate at liquid-nitrogen
temperatures, where the cooling problems are much less
severe.

A typical magnetometer for biomagnetic research con-
tains a flux transporter, a superconducting detector coil d
a centimeter or so in radius, coupled to a very small mul-
titurn output coil o that matches the size of the SQUID
and is placed right next to it. This is shown schematically
in Fig. 8.28. The wires between the two loops are close
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d o

FIGURE 8.28. A superconducting loop shaped as shown be-
comes a flux transporter. Because the total flux in the loop is
constant, a change of flux in the detecting loop d is accompa-
nied by an equal and opposite flux change in the output loop
o. The diameter of the output loop is matched to the size of
the SQUID. Sensitivity is increased because the detecting loop
has a larger area.

To SQUID

(a) (b)

To SQUID

FIGURE 8.29. Gradiometers are sensitive to nearby sources
of the magnetic field but are much less sensitive to distant
sources. (a) A first-order gradiometer. (b) A second-order gra-
diometer.

together and have negligible area between them. The to-
tal flux, which is constant because the entire circuit is
superconducting, is Φ = Φd + Φo. The large area of the
detecting coil increases its sensitivity. Any change in the
magnetic field at the detector causes an opposite change
in the flux and magnetic field at the output coil.

Because ambient natural and artificial background
magnetic fields are so high, measurements are often made
in special shielded rooms. These can be built of ferro-
magnetic materials, or of conductors to take advantage
of eddy current attenuation, or they may have active cir-
cuits to cancel the background fields. It has proven pos-
sible in some cases to eliminate the need for these expen-
sive rooms by using specially designed flux transporters
that are less sensitive to distant sources but measure the
nearby source with almost the same sensitivity as a single
loop. If a distant background source can be represented

by a magnetic dipole, the field falls as 1/r3. The signal
in a magnetometer (Fig. 8.28) would be proportional to
this.

Problem 35 shows that the signal from a distant dipole
detected by a first-order gradiometer [Fig. 8.29(a)] is pro-
portional to 1/r4 and that the signal in a second-order
gradiometer [Fig. 8.29(b)] is proportional to 1/r5. Both
gradiometers are insensitive to background that does not
vary with position. Yet the loop closest to the nearby sig-
nal source detects a much stronger signal than the loops
that are further away. With modern multichannel detec-
tor systems, one need not use gradiometer coils. Hundreds
of coils are used at different locations, and the signals
from them are combined to give the same suppression of
background from distant sources.

Symbols Used in Chapter 8

Symbol Use Units First
used on
page

a, b Distance m 204
e Elementary charge C 218
h Planck’s constant J s 218
i Current A 204
j, j Current density A m−2 206
jd Displacement current

density
A m−2 207

m, m Magnetic moment A m2 204
p Current dipole

moment
A m 209

q Charge C 203
r, r Distance m 205
s, s Linear displacement m 203
t Time s 207
v, v Velocity m s−1 203
v Electrical potential V 208
x, y, z Coordinates m 206
x̂, ŷ, ẑ Unit vectors 208
A Area m2 207
B, B Magnetic field T 203
C Particle concentration m−3 204
D, D Electric

“displacement”
C m−2 207

E, E Electric field V m−1 204
F,F Force N 203
H, H Magnetic field

intensity
A m−1 216

I Current A 218
M, M Magnetization A m−1 216
R Position m 209
S, S Surface area m2 204
V Volume m3 216
ε0 Electrical permittivity

of free space
N−1 m−2 C2 205

θ Angle 204
κ Dielectric constant 207
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Symbol Use Units First
used on
page

µ Magnetic
permeability

Ω s m−1 216

µ0 Magnetic
permeability of free
space

Ω s m−1 205

σ Charge per unit area C m−2 207
σi, σo Electrical

conductivity
S m−1 208

τ, τ Torque N m 204
φ Angle 204
χm Magnetic

susceptibility
216

Φ Magnetic flux T m2 or Wb 213
Φ0 Quantum of magnetic

flux
T m2 or Wb 218

Problems

Section 8.1

Problem 1 An electric dipole consists of charges ±q
separated a distance b. Show that the torque τ on an
electric dipole p in a steady electric field E is given by
τ = p × E, where p has magnitude qb, pointing in the
direction from −q to +q.

Problem 2 Show that the units of m, A m2 or J T−1,
are equivalent.

Problem 3 Show that the units of µ0, T m A−1, are
equivalent to Ω s m−1.

Problem 4 It is possible that the Lorentz force law al-
lows marine sharks, skates, and rays to orient in a mag-
netic field [Frankel (1984)]. If a shark can detect an elec-
tric field strength of 0.5 µV m−1, how fast would it have
to swim through the earth’s magnetic field to experience
an equivalent force on a charged particle? The earth’s field
is about 5 × 10−5 T.

Problem 5 The introduction to this section says that
magnetism is a consequence of special relativity. Consider
the following thought experiment. (a) A line of positive
charge lies along the x axis and moves in the positive x
direction. Is there a magnetic field present? (b) Change
to a frame of reference moving with the charge. In this
frame, where the charge is stationary, is there a magnetic
field present? So is there really a magnetic field present,
or not?

Problem 6 The speed of blood in an artery or vein can
be measured using an electromagnetic blood flow meter.
A blood vessel of radius R is oriented perpendicular to
a magnetic field B. Ions in the blood, which is moving
with speed U , experience a Lorentz force. Positive ions

move to one side of the vessel and negative ions move to
the other side, establishing an electric field E whose force
just balances the magnetic force.

(a) Draw a diagram showing the vessel and the direc-
tions of U, E, and B.

(b) Find an expression for U in terms of E and B.
(c) The electric field can be approximated as a voltage

v across the vessel divided by the width of the vessel. Find
an expression for v in terms of U , B and R.

(d) If B = 0.1T, U = 0.01m s−1and R = 1mm, what
is v?

Section 8.2

Problem 7 A very long solenoid of radius a has current
i in the windings. The windings are closely spaced and
there are N turns per meter. What is the magnetic field
in the solenoid? (Hint: if the solenoid is very long, the
field inside is uniform and the field outside is zero. Use
Ampere’s law.)

Problem 8 Show that dD/dt has the dimensions of cur-
rent density.

Problem 9 A circular loop of radius a and area S car-
ries current i. The loop is at the origin and lies in the xy
plane. Calculate the magnetic field at any point on the
z axis using the Biot-Savart law. Show that it is propor-
tional to the magnetic moment of the loop, |m| = iS, and
falls off as z−3 if z � a.

Problem 10 Show that a point source of current in an
infinite, homogeneous conducting medium discharges at
such a rate that the displacement current density every-
where cancels the current density, so that Ampere’s law
also predicts that the magnetic field is zero.

Section 8.3

Problem 11 Derive Eq. 8.13 from Eq. 8.12.

Problem 12 The current along an axon is ii(x) =
i0, 0 < x < x1 and is zero everywhere else. The axon
is in an infinite homogeneous conducting medium.

(a) What is vi(x)?
(b) Find B at a point (x0, y0).

Problem 13 One can obtain a very different physical
picture of the source of a magnetic field using the Biot–
Savart law than one gets using Ampere’s law, even though
the field is the same. A ring of radius a is perpendicu-
lar to the x axis and centered at x0. Current flows along
the x axis from x = 0 to x = x2. There is a spheri-
cally symmetric current in at x = 0 and a spherically
symmetric current out from x2. Calculate the magnetic
field at a point on the ring using Ampere’s law and using
the Biot–Savart law. Discuss the difference in interpre-
tation; your expression for the field should be the same
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as Prob. 12. A more extensive discussion of three differ-
ent ways the source of the magnetic field can be viewed is
given by Barach (1987).

a
x 20

0x

Problem 14 Suppose that ii(t) is determined by mea-
surement of the magnetic field around an axon. Numeri-
cal differentiation of the data gives derivatives of ii also.
Use the arguments of Sec. 6.11 and Problem 6.58 to show
that for an action potential traveling without change of
shape, one can determine the membrane current density
from

jm =
1

2πau

∂ii
∂t

− cmuriii.

For an application of this technique, see Barach et al.
(1985).

Section 8.4

Problem 15 Use the same technique as in Chapter 7 to
estimate the magnitude of the magnetocardiogram signal.

Problem 16 (a) Derive Eqs. 8.17 and 8.18.
(b) What effect will y and z components of p have for

measurements taken along an axis with y = 0?

Problem 17 Consider a two-dimensional sheet of car-
diac tissue represented using the bidomain model (Sec.
7.9.3). The intracellular and extracellular conductivity
tensors are given by

σ̃i =
(

σixx σixy

σixy σiyy

)

=
(

σiL cos2 θ + σiT sin2 θ (σiL − σiT ) sin θ cos θ
(σiL − σiT ) sin θ cos θ σiL sin2 θ + σiT cos2 θ

)

σ̃e =
(

σexx σexy

σexy σeyy

)

=
(

σeL cos2 θ + σeT sin2 θ (σeL − σeT ) sin θ cos θ
(σeL − σeT ) sin θ cos θ σeL sin2 θ + σeT cos2 θ

)

where “L” means parallel to the fibers, “T” means perpen-
dicular to the fibers, and θ is the angle between the fiber
direction and the x axis. The intracellular and extracellu-
lar current densities are given by ji = σ̃i · E = −σ̃i · ∇vi

and je = −σ̃e ·∇ve. Assume that the intracellular and ex-
tracellular potentials are given by vi = σexxvm(x)/(σixx+
σexx) and ve = −σixxvm(x)/(σixx + σexx), where vm(x)
is the transmembrane potential and is only a function of
x, corresponding to a plane wave front propagating in the
x direction.

(a) Draw a picture showing the 2-D sheet of tissue,
the x and y axes, the fiber direction, and the direction of
propagation.

(b) Show that jx = jix + jex is identically zero.
(c) Derive an expression for jy = jiy + jey in terms of

σiL, σiT , σeL, σeT , θ, and vm.
(d) Under what conditions is jy identically zero?
(e) Describe qualitatively the magnetic field produced by

a wave front in a sheet of cardiac tissue. For additional
features of this model see Roth and Woods, IEEE Trans.
Biomed. Eng. 46: 1288–1292 (1999).

Section 8.5

Problem 18 Consider two cylindrical cells of radius 1
µm. One is an axon with an action potential lasting 1 ms
and traveling at 1 m/s with a depolarization amplitude of
100 mV. The other is a dendrite with a post-synaptic po-
tential depolarization of 10 mV. The conductivity within
both cells is 1 S m−1.

(a) Compare the magnetic field 5 cm away from the
dendrite with depolarization only and the axon with a
complete pulse.

(b) If the minimum magnetic field that can be detected
is 100 × 10−15 T, how many dendrites must be simulta-
neously excited to detect the signal?

(c) Pyramidal cells in the cortex are aligned properly
to generate this kind of signal. Assume the dendrite is
2 mm long. There are about 50,000 neurons/mm3 in the
cortex, of which 70% are pyramidal cells. Find the volume
of the smallest excited region that could be detected if all
the pyramidal cells in the volume simultaneously had a
post-synaptic depolarization of 10 mV.

Problem 19 The magnetic field B(r) produced by a cur-
rent dipole p located at r0 in a spherical conductor is
given by [Sarvas (1987)]

B(r) =
µ0

4πF 2
[F (p × r0) − (p × r0 · r)∇F ] ,

where a = r−r0, a = |a| , r = |r| , F = a(ra+r2−r0 ·r),

∇F =
(

a2

r
+

a · r
a

+ 2a + 2r

)
r −

(
a + 2r +

a · r
a

)
r0,

and both r and r0 are measured from the center of the
sphere.

(a) Show that if p is radial, B = 0.
(b) Show that the equation for the radial component of

B reduces to Eq. 8.15. Note that the radius of the sphere
does not enter into these equations.

Section 8.6

Problem 20 Consider a rectangular current loop with
one corner at (0, 0, 0) and the diagonally opposite corner
at (dx, dy, 0), in a changing magnetic field that has com-
ponents (0, 0, dB/dt). Show that for this configuration the
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differential form of the Faraday induction law Eq. 8.20
follows from Eq. 8.19.

Problem 21 Obtain the differential form of Ampere’s
circuital law, Eq. 8.22 from Eq. 8.11.

Problem 22 Write down in differential form (a) the
Faraday induction law, (b) Ampere’s law including the
displacement current term, (c) Gauss’s law, and (d) Eq.
8.7. (Ignore the effects of dielectrics or magnetic mate-
rials. That is, assume D = ε0E and B = µ0H.) These
four equations together constitute “Maxwell’s equations.”
Together with the Lorentz force law (Eq. 8.2), Maxwell’s
equations summarize all of electricity and magnetism.

Problem 23 Consider a square loop of wire in the xy
plane that is moving in the positive x direction. There is
a static magnetic field with a z component that increases
linearly with x. Special relativity implies that the physics
should be the same in any inertial frame of reference: that
is, the physics should be the same in a reference frame
moving with a constant velocity as it is in a frame at
rest.

(a) Consider the frame described above, in which the
loop moves and the magnetic field is static. Show quali-
tatively that the Lorentz force on the electrons in the wire
induces a current.

(b) Now consider the situation from a frame of refer-
ence moving with the loop. Show qualitatively that Fara-
day induction will induce a current in the wire. Which
“really” caused the current: the Lorentz force or Faraday
induction?

Problem 24 Suppose one is measuring the EEG when a
time-dependent magnetic field is present (such as during
magnetic stimulation). The EEG is measured using a disk
electrode of radius a = 5 mm and thickness d = 1 mm,
made of silver with conductivity σ = 63 × 106 S m−1.
The magnetic field is uniform in space, is in a direction
perpendicular to the plane of the electrode, and changes
from zero to 1 T in 200 µs.

(a) Calculate the electric field and current density in
the electrode due to Faraday induction.

(b) The rate of conversion of electrical energy to ther-
mal energy per unit volume (Joule heating) is the product
of the current density times the electric field. Calculate
the rate of thermal energy production during the time the
magnetic field is changing.

(c) Determine the total thermal energy change caused
by the change of magnetic field.

(d) The specific heat of silver is 240 J kg−1 ◦C−1, and
the density of silver is 10 500 kg m−3. Determine the
temperature increase of the electrode due to Joule heating.
The heating of metal electrodes can be a safety hazard
during rapid (20 Hz) magnetic stimulation [Roth et al.
(1992)].

Problem 25 Suppose that during rapid-rate magnetic
stimulation, each stimulus pulse causes the temperature

of a metal EEG electrode to increase by ∆T (see Prob.
24). The hot electrode then cools exponentially with a time
constant τ (typically about 45 s). If N stimulation pulses
are delivered starting at t = 0 m with successive pulses
separated by a time ∆t, then the temperature at the end
of the pulse train is T (N,∆t) = ∆T

∑N−1
i=0 e−i∆t/τ . Find

a closed-form expression for T (N,∆t) using the summa-
tion formula for the geometric series: 1 + x + x2 + · · · +
xn−1 = (1 − xn)/(1 − x). Determine the limiting values
of T (N,∆t)for N∆t � τ and N∆t � τ . [See Roth et al.
(1992).]

Section 8.7

Problem 26 Suppose that a magnetic stimulator con-
sists of a single-turn coil of radius a = 2 cm. It is desired
to have a magnetic field of 2 T on the axis of the coil at
a distance b = 2 cm away.

(a) Calculate the current required, using symmetry and
the Biot–Savart law. (Hint: Use the results of Problem 9.)

(b) Assume that the magnetic field rises from 0 to 2 T
in 100 µs. Assume also that the flux through the coil is
equal to the field at the center of the coil multiplied by the
area of the coil. Calculate the emf induced in the coil.

Section 8.8

Problem 27 Magnetite, Fe3O4, has a density of 5.24 g
cm−3 and a magnetic moment of 3.75 × 10−23 A m2 per
molecule. If a cubic sample 50 nm on a side is completely
magnetized, what is the total magnetic moment? What is
the magnitude of M?

Problem 28 The magnetic moment of a magnetosome,
one of the small particles of magnetite in a bacterium,
is about 6.40 × 10−17 A m2. Assume that the magnetic
activity in all the species listed is due to a collection of
magnetosomes of this size. The table shows values given
in the references cited in the text. The earth’s magnetic
field is about 5× 10−5 T. Fill in the remaining entries in
the table.

Number of Total magnetic mBearth/
Organism magnetosomes moment (Am2) kBT

Bacterium 20
Bee 1.2 × 10−9

Pigeon 5.0 × 10−9

Tuna 8.5 × 107

Problem 29 In this problem you will work out the orien-
tation of a bacterium if the entire organism simply aligns
like a compass needle in the earth’s field of 5 × 10−5 T.

(a) Show that τ = m×B implies an orientation energy
U = −mB cos θ.
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(b) The bacterium has a single flagellum that causes
it to swim in the direction of its long axis with speed
v0. The component of its velocity in the direction of
the earth’s field is vx = v0 cos θ. In the absence of the
magnetic torque, the probability that a bacterium is at
an angle between θ and θ + dθ with the earth’s field is
dΩ = 2π sin θ dθ. With the torque, the probability that
a bacterium is at angle with the earth’s field is modi-
fied by a Boltzmann factor exp(−U/kBT ). Find the av-
erage velocity in the direction of the earth’s field. Use
m = 1.28 × 10−15 A m2.

Problem 30 Suppose that the bacterium of Problem 29
is swimming in a tank aligned with the earth’s field. An
external coil suddenly reverses the direction of the field
but leaves the magnitude unchanged. Assume that the bac-
terium is a sphere of radius a. A torque on a small sphere
of radius a in a medium of viscosity η causes the sphere
to rotate at a rate dθ/dt, such that τ = 8πa3η(dθ/dt).
For simplicity, assume that all motion takes place in a
plane.

(a) Show that dθ/dt = sin θ/t0, where t0 = 8πa3η/mB.
(b) Evaluate t0 for a bacterium of radius 2 µm in the

earth’s magnetic field. Use m = 1.28 × 10−15 A m2

(c) The velocity component perpendicular to the field is
vy = v0 sin θ. Show that when the bacterium rotates from
angle θ1 to θ2 it has moved a distance y = v0t0(θ2 − θ1).

(d) Show that the time required to change from angle ε
to π − ε is t0 ln [(1 + cos ε)/(1 − cos ε)].

Problem 31 Magnetic cell sorting is a way to isolate
cells of a particular type. Small superparamagnetic parti-
cles (about 50 nm diameter) are bound to an antibody that
attaches specifically to the cell type of interest. (“Super-
paramagnetic” means that they behave linearly but have
a magnetic susceptibility χm � 1.) These cells are then
placed in a magnetic field gradient, and the resulting force
is used to manipulate the cell. What is the force if 100
spherical 50 nm diameter particles are attached to a cell
that is in a magnetic field of 1 T with a magnetic field
gradient of 10 T m−1?

Section 8.9

Problem 32 The spatial gradient in the earth’s field is
about 10−11 T m−1. How much lateral movement can be
tolerated in measuring a magnetoencephalogram of about
10−13 T?

Problem 33 Show that the units of h/2e are V s, and
that this is also a unit of magnetic flux.

Problem 34 Suppose that a SQUID of area 0.1 cm2 can
resolve a magnetic flux change ∆Φ = 10−3Φ0. What is
the corresponding change in B?

Problem 35 The first difference of B is B(x+a)−B(x).
What is the second difference? Compare the first and

second differences to what is detected by a first-order
and second-order gradiometer. Assume that B is constant
over the area of each gradiometer loop. Use these results
to determine the signal resulting from a distant but un-
wanted dipole source with a magnetic field that falls as
1/r3.

Problem 36 A first-order gradiometer is used to mea-
sure the magnetic field at a point (x0, 0, z0) from a current
dipole described by Eq. 8.16. The gradient is measured at
position z = x0/

√
2. The coils are at x0 and x0 + a and

are perpendicular to the z axis. Find the net flux in the
gradiometer in terms of x0 and a and the radius b of the
coils. Assume B is uniform across each coil.

Problem 37 Figure 8.29(a) shows a gradiometer for
measuring ∂Bz/∂z. Sketch a gradient coil for measuring
∂Bz/∂x.

Problem 38 Consider a nerve threaded through the cen-
ter of a toroid of magnetic permeability µ, wound with N
turns of wire, as shown in Fig. 8.26. The inner radius of
the toroid is c, the outer radius is d, and the width is e.
Assume a current I flows inside the axon and is uniform
along its length.

(a) Calculate the magnetic flux Φ =
∫

B · dS through
the toroid winding caused by the current in the axon.

(b) The magnetic flux divided by the current is called
the mutual inductance, M , of the axon and coil. Show
that the mutual inductance is M = µNe ln(d/c)/2π.

(c) By Faraday’s induction law, the electromotive force
(EMF ) induced in the windings is EMF = −M(dI/dt).
Calculate the EMF when µ = 10, 000µ0, N = 100, c = 1
mm, d = 2 mm, e = 1 mm, and I changes from zero to
1 µA in 1 ms. For additional information about using a
toroid to detect currents along an axon, see Gielen et al.
(1986).

Problem 39 A coil on a magnetic toroid as in Problem
38 is being used to measure the magnetic field of a nerve
axon.

(a) If the axon is suspended in air, with only a thin
layer of extracellular fluid clinging to its surface, use Am-
pere’s law to determine the magnetic field, B, recorded by
the toroid.

(b) If the axon is immersed in a large conductor such as
a saline bath, B is proportional to the sum of the intracel-
lular current plus that fraction of the extracellular current
that passes through the toroid (see Problem 13). Suppose
that during an experiment an air bubble is trapped be-
tween the axon and the inner radius of the toroid? How
is the magnetic signal affected by the bubble? See Roth et
al. (1985).

Problem 40 When comparing calculated and measured
magnetic fields, the calculated field should be integrated
over the area of the detector coil to give the magnetic
flux through the coil. Assume the detector coil is circular
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with radius a. The flux can be approximated by

∫∫
B · dS ≈ πa2

3

3∑

i=1

Bn

(
r =

a√
2
, θ = i

2π

3

)
,

where Bn is the component of B normal to the coil, and
r and θ are polar coordinates with the origin at the coil
center. Show that this equation is exact up to second or-
der. In other words, show that this equation is exact for
magnetic fields given by

Bn = c + dx + ey + fx2 + gxy + hy2,

where c, d, e, f, g, and h are constants, x = r cos θ, and
y = r sin θ. Higher-order formulas for averaging the mag-
netic field can be found in Roth and Sato (1992).
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9
Electricity and Magnetism at the Cellular Level

This chapter describes a number of topics related to
charged membranes and the movement of ions through
them. These range from the basics of how the presence of
impermeant ions alters the concentration ratios of per-
meant ions, to the movement of ions under the com-
bined influence of an electric field and diffusion, and to
simple models for gating in ion channels in cell mem-
branes. It also discusses mechanisms for the detection
of weak electric and magnetic fields and the possible ef-
fects of weak low-frequency electric and magnetic fields on
cells.

Section 9.1 discusses Donnan equilibrium in which the
presence of an impermeant ion on one side of a mem-
brane, along with other ions that can pass through, causes
a potential difference to build up across the membrane.
This potential difference exists even though the bulk so-
lution on each side of the membrane is electrically neu-
tral. Section 9.2 examines the Gouy–Chapman model for
the charge buildup at each surface of the membrane that
gives rise to this potential difference. This same model
is extended in three dimensions to the cloud of counteri-
ons surrounding each ion in solution—the Debye–Hückel
model of Sec. 9.3.

Since water molecules have a net dipole moment, they
align themselves so as to nearly cancel the electric field of
each ion. Very close to the ion the electric field is so strong
that even complete alignment is insufficient to cancel the
ion’s field. This saturation of the dielectric is described
in Sec. 9.4.

Ions move in solution by diffusion if there is a con-
centration gradient and by drift if there is an applied
electric field. The Nernst–Planck equation (Sec. 9.5) de-
scribes this motion. When several ion species are mov-
ing through a membrane, there can be zero total elec-
tric current, even though there is a flow of each species.
A constant-field model for this situation leads to the
Goldman equations of Sec. 9.6.

The next two sections describe channels in active cell
membranes. Section 9.7 describes a simple model for
gating—the opening and closing of channels—as well as
limitations to the conductance of each channel imposed
by diffusion to the mouth of the channel. Section 9.8 in-
troduces noise—the fluctuations in channel current that
limit measurement accuracy but also can be used to de-
termine properties of the channels.

Section 9.9 describes how channels can detect very
small mechanical motions, as in the ear, and how cer-
tain fish can detect very small electric fields in sea water.
Both of these processes are working near the limit of sen-
sitivity set by random thermal motion.

Section 9.10 introduces an area of great interest and
controversy: whether weak, low-frequency electric and
magnetic fields can have any effect on cells. We discuss
some of the physical aspects of the problem and conclude
that such effects are highly unlikely.

There are many similarities between the models for bi-
ological physics presented in this chapter and the models
used in plasma physics [Uehara et al. (2000)].

9.1 Donnan Equilibrium

There is usually an electrical potential difference across
the wall of a capillary. There is also a potential differ-
ence across the cell membrane, and the concentration of
certain ion species is different in the intracellular and ex-
tracellular fluid. In Chapter 3 we saw that if the poten-
tial difference across the membrane is v′ − v, an ion of
valence z is in equilibrium when C ′/C = e−ze(v′−v)/kBT .
With this concentration ratio there is no current, even if
the membrane is permeable to the species. This result is
a special case of the Boltzmann factor, more familiar in
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v = 0 v'

[K] [K']

[Cl] [Cl']

[M  ]+ +[M  ']

[M  ]- [M  ']-

FIGURE 9.1. Ion concentrations on either side of a membrane.
Species that can pass through the membrane are indicated by
double-headed arrows.

physiology as the Nernst equation (Eq. 3.34):

v′ − v = −kBT

ze
ln
(

C ′

C

)
= −RT

zF
ln
(

C ′

C

)
.

It is often said—incorrectly—that the Nernst equation
shows how the concentration of an ion species causes
the potential difference across the membrane. We saw in
Chapter 6 that the potential difference across the mem-
brane is caused by layers of charge on each side of the
membrane that create an electric field in the membrane.
The solutions on each side of the membrane are electri-
cally neutral except at the boundary with the membrane.
(If there were an electric field in the solution, ions would
move until the field was zero; then Gauss’s law could be
used to show that any volume contains zero charge.) We
will learn in Sec. 9.2 the typical distance from the mem-
brane occupied by the charged layer, and in Sec. 9.3 we
will find the distance scale over which there are micro-
scopic departures from neutrality in a bulk ionic solution.

The concentration differences do not directly cause the
potential difference. However, if the concentration of an
ion species on one side of the membrane is varied, the po-
tential often changes in a manner that is approximated
by the Nernst equation over a wide range of concentra-
tions. We will now explore one mechanism by which this
can happen. This is particularly important for the walls
of capillaries, where charged proteins in the blood are too
large to pass through the gaps between cells in the capil-
lary walls, but it is also applicable to the cell membrane.

In Donnan equilibrium, the potential difference arises
because one ion species cannot pass through the mem-
brane at all. Consider the hypothetical case of Fig. 9.1.
Permeant potassium ions exist on either side of the mem-
brane in concentrations [K] and

[
K′]. In this case potas-

sium is the only permeant cation; in a real situation there
might be several permeant ions. The membrane is also
permeable to chloride ions, which exist in concentrations
[Cl] and

[
Cl′
]
. Chloride is the only permeant anion. In ad-

dition, there are large charged molecules
[
M+
]

and
[
M−]

that cannot pass through the membrane. Their concen-
trations are

[
M+
]
,
[
M+′],

[
M−], and

[
M−′]. For simplic-

ity, we assume they are monovalent. The potential on the

left is 0; on the right it is v′. Assume that the concen-
trations of the large molecules are fixed. The potassium
concentration on the left side of the membrane will be as-
sumed known, and we must solve for four variables:

[
K′],

[Cl],
[
Cl′
]
, and v′. Therefore, four equations are needed.

The first two equations state that the solutions on ei-
ther side are electrically neutral:

[
M+
]
+ [K] = [Cl] +

[
M−] , (9.1)

[
M+′]+

[
K′] =

[
Cl′
]
+
[
M−′] . (9.2)

Equation 9.1 can be solved for [Cl]. It will be convenient
to define [M] =

[
M+
]
−
[
M−] and

[
M′] =

[
M+′]−

[
M−′]:

[Cl] = [K] + (
[
M+
]
−
[
M−]) = [K] + [M] . (9.3)

Note that adding any amount of KCl to the solution on
the left automatically satisfies this equation, since any
increase in [K] is accompanied by a like increase in [Cl].

The other two equations state that the concentrations
of potassium and chloride on the two sides of the mem-
brane are related by a Boltzmann factor. Since the va-
lence z = +1 for [K] and −1 for [Cl] we have

[
K′]

[K]
=

[Cl]
[
Cl′
] = e−ev′/kBT . (9.4)

The chloride concentration on the right is
[
Cl′
]

=
[Cl]

([
Cl′
]
/ [Cl]

)
= [Cl]

(
[K] /

[
K′]), so that from Eq. 9.2[

K′]+
[
M′] = [Cl]

(
[K] /

[
K′]). This can be rewritten as a

quadratic equation in
[
K′], since [K] and

[
M′] are known

and [Cl] is calculated from Eq. 9.3:

[
K′]2 +

[
M′] [K′]− [K] [Cl] = 0.

The solution is

[
K′] =

−
[
M′]+

√[
M′]2 + 4 [K] [Cl]

2
. (9.5)

(The negative square root is discarded because it would
give a negative potassium concentration.) Once we have
solved for

[
K′],

[
Cl′
]

and v′ are determined from Eq. 9.4.
Solutions for different values of [K] are shown in Table
9.1 and Figs. 9.2 and 9.3 for the conditions

[
M+
]

= 145 mmol l−1,
[
M+′] = 15 mmol l−1,

[
M−] = 30 mmol l−1,

[
M−′] = 156 mmol l−1,

[M] = 115 mmol l−1,
[
M′] = −141 mmol l−1.

The temperature T = 310 K, for which kBT/e = 26.75
mV.
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TABLE 9.1. Variation of concentrations and voltage as [K] is
varied.

[Cl]/[Cl′] =
[K] [Cl] [K′] [Cl′] [K′]/[K] v′ (mV)

0.01 115.01 141.01 0.01 14101 −255.57
0.10 115.10 141.08 0.08 1410.8 −193.99
0.20 115.20 141.16 0.16 705.8 −175.46
0.50 115.50 141.41 0.41 282.8 −151.00
1.00 116.00 141.82 0.82 141.8 −132.53
2.00 117.00 142.64 1.64 71.32 −114.15
5.00 120.00 145.13 4.13 29.03 −90.10

10.00 125.00 149.37 8.37 14.94 −72.33
20.00 135.00 158.08 17.08 7.904 −55.30
50.00 165.00 185.48 44.48 3.710 −35.07

100.00 215.00 233.20 92.20 2.332 −22.65
200.00 315.00 331.21 190.21 1.656 −13.49
500.00 615.00 629.49 488.49 1.259 −6.16
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FIGURE 9.2. Variation of [K′] and [Cl′] with [K] in the ex-
ample of Donnan equilibrium.

Several features of this solution are worth noting. First,
changing [K] does change the potential, but the mecha-
nism is indirect. The Boltzmann factor still applies; mi-
nuscule changes in concentration are sufficient to provide
layers of charge on the membrane surface that generate a
potential difference such that these concentrations are at
equilibrium. Table 9.1 shows that [K] can vary by three
orders of magnitude—from 0.01 to 10, and

[
K′] changes

very little. Therefore, the curve of v′ vs ln [K] in Fig. 9.3
is nearly a straight line. The dashed line in Fig. 9.3 shows
v′ vs ln [K] if

[
K′] is held constant. We could equally well

have regarded [Cl] as the independent variable.
The impermeable ions enter the equation only as their

net charge, [M] =
[
M+
]
−
[
M−] and

[
M′] =

[
M+′] −[

M−′]. As the concentrations [K] and [Cl] get larger, the
impermeant ions become less important, the potential ap-
proaches zero, and the ratios

[
K′] / [K] and

[
Cl′
]
/ [Cl]

approach unity.
Donnan equilibrium may well explain the potential

that exists across the capillary wall, which is imperme-
able to negatively charged proteins but is permeable to
other ions. There is evidence that it does not adequately
explain the potential across a cell membrane. For exam-

-250
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0

v'
  (
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)

0.01 0.1 1 10 100

[K] (mmole l-1)

Curve if [K'] were constant

FIGURE 9.3. Membrane potential v′ vs [K] for the example
of Donnan equilibrium. For [K] < 10 mM the curve is like
the Nernst equation because [K′] has a nearly constant value
of 141 mM. The dashed line shows the relationship if [K′] is
constant.

ple, the membrane is known to be slightly permeable to
sodium, although the sodium concentration is nowhere
near what it would be if the sodium were in equilibrium.

9.2 Potential Change at an Interface:
The Gouy–Chapman Model

In this section we study one model for how ions are
distributed at the interface in Donnan equilibrium. The
model was used independently by Gouy and by Chapman
to study the interface between a metal electrode and an
ionic solution. They investigated the potential changes
along the x axis perpendicular to a large plane electrode.
The same model is used to study the charge distribution
in a semiconductor. Biological applications are described
by Mauro (1962). We show the features of the model by
examining the transition region for the Donnan equilib-
rium example described in the preceding section.

An infinitely thin membrane at x = 0 is assumed to
be permeable to potassium and chloride ions. Their con-
centrations are K(x) and Cl(x). An impermeant positive
cation has concentration M(x) for x > 0. For negative
x, M(x) = 0. There are no impermeant anions. Far to
the left the potential is zero and the concentrations are
[K] and [Cl]. Far to the right they are v′,

[
K′],

[
Cl′
]
, and[

M′].
The first step is to relate the charge distribution to the

potential. If v and E change only in the x direction, then
Gauss’s law can be applied to a slab of cross-sectional area
S between x and x+dx as shown in Fig. 9.4. The net flux
out through the surface at x+dx is Ex(x+dx)S. The net
outward flux at x is −Ex(x)S. There is no contribution
to the flux through the other surfaces. The total ionic
charge in the volume is ρext(x)Sdx. We include the effect
of water polarization by using the dielectric constant for
water, which is about κ = 80. Applying Gauss’s law in
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x x + dx

E (x + dx )E (x )x x

ρ (x)ext

FIGURE 9.4. Gauss’s law is applied to the shaded volume to
derive Poisson’s equation in one dimension.

the form Eq. 6.21b, we obtain1

Ex(x + dx) − Ex(x) =
4πρext(x) dx

4πε0 κ
,

dEx

dx
=

4πρext(x)
4πε0 κ

.

Finally, since Ex = −∂v/∂x, we have the one-dimensional
Poisson equation,

d2v

dx2
= −4πρext(x)

4πε0 κ
. (9.6)

This equation was derived in much the same way that the
equation of continuity was combined with Fick’s first law
to derive Fick’s second law (Sec. 4.8). The same procedure
can be used in three dimensions to derive the general form
of Poisson’s equation:

∇2v = −4πρext(r)
4πε0 κ

. (9.7)

For the model being considered the ions are all uni-
valent, so the ionic charge density at x is related to the
concentrations by

ρext(x) = e [K(x) + M(x) − Cl(x)] . (9.8a)

More generally, for a series of ion species each with con-
centration Ci and valence zi,

ρext(r) = e
∑

i

ziCi(r). (9.8b)

The next step is to assume that the concentrations of
all ions are given by Boltzmann factors and are therefore
related to the potential by

K(x) = [K] e−ev(x)/kBT for all x,

Cl(x) = [Cl] eev(x)/kBT for all x, (9.9a)

M(x) =
[
M′] e−e(v(x)−v′)/kBT , x > 0.

1Throughout this section we keep 4π in both numerator and
denominator that could be canceled. We do this for two reasons.
First, the quantity 1/4πε0 has a numerical value of about 9 × 109,
which is easy to remember; second, for those who do not use SI
units, the factor 1/4πε0 does not appear, but the other factor of 4π
remains.

(Remember that M(x) = 0 to the left of the origin.) An
equivalent general expression is

ρext(r) = e
∑

i

zi [Ci] exp
[
−ziev(r)

kBT

]
, (9.9b)

where Ci is the concentration in the region where v = 0.
Combining Eqs. 9.7 and 9.9b gives the Poisson–

Boltzmann equation for a dielectric:

∇2v = − 4πe

4πε0 κ

∑

i

zi [Ci] exp
(
−ziev(r)

kBT

)
. (9.10)

For the specific problem at hand, the Poisson–Boltzmann
equation takes the form

d2v

dx2
=

−4πe

4πε0 κ

(
[K] e−ev(x)/kBT − [Cl] eev(x)/kBT

)
.

This applies for x < 0 only. While it is possible to solve
this using numerical techniques [see Mauro (1962)], we
will confine ourselves to the case in which ξ = ev/kBT �
1 and we can make the approximation eξ ≈ 1 + ξ. (This
is accurate to 0.5% for ξ = 0.1, to 10% for ξ = 0.5, and
to 25% for ξ = 0.8.) With this approximation

ρext = e
∑

[Ci] zi

(
1 − ziev

kBT

)
= (9.11)

e
∑

[Ci] zi −
e2

kBT

∑
[Ci] z2

i v. (9.12)

Far from the membrane the solution is electrically neu-
tral, so the first term vanishes. We are left with the linear
Poisson–Boltzmann equation:

∇2v(r) =
4πe2

∑
[Ci] z2

i

4πε0 κ kBT
v(r). (9.13)

The coefficient of v(r) on the right has the dimensions
of 1/(length)2. This length will also appear in other con-
texts. It is known as the Debye length, λD:

1
λ2

D

=
4πe2

∑
[Ci] z2

i

4πε0 κ kBT
. (9.14)

The linearized Poisson–Boltzmann equation is

∇2v =
v

λ2
D

. (9.15)

For the one-dimensional problem and x < 0, it is

d2v

dx2
=

v

λ2
D

, (9.16)

where
1

λ2
D

=
4πe2 ([K] + [Cl])

4πε0κkBT
. (9.17)

The methods of Appendix F can be applied to solve this
equation.2 The characteristic equation is s2 = 1/λ2

D, so

2We have seen this equation before in electrotonus when the
membrane capacitance is fully charged (Sec. 6.12).
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the solution for x < 0 is v(x) = Ae−x/λD + Bex/λD . The
potential is zero far to the left, so A = 0. Therefore, the
solution is

v(x) = Bex/λD , x < 0. (9.18)

It is most convenient to write the concentrations for
x > 0 in terms of the concentrations far to the right. It
is now necessary to include the impermeant ions.

K(x) =
[
K′] e−e[v(x)−v′]/kBT ,

Cl(x) =
[
Cl′
]
ee[v(x)−v′]/kBT ,

M(x) =
[
M′] e−e[v(x)−v′]/kBT .

(9.19)

The linearized Poisson–Boltzmann equation for x > 0 is
then

d2v

dx2
= − 4πe

4πε0κ

(
[
K′]−

[
K′] ev(x)

kBT
+

[
K′] ev′

kBT
−
[
Cl′
]

−
[
Cl′
]
ev(x)

kBT
+

[
Cl′
]
ev′

kBT
+
[
M′] (9.20)

−
[
M′] ev(x)

kBT
+

[
M′] ev′

kBT

)

.

Neutrality requires that
[
K′] +

[
M′] −

[
Cl′
]

= 0. With
the definition

1
λ′2

D

=
4πe2(

[
K′]+

[
Cl′
]
+
[
M′])

4πε0 κkBT
, (9.21)

Eq. 9.20 can be written as

d2v

dx2
− v(x)

λ′2
D

= − v′

λ′2
D

. (9.22)

This is an inhomogeneous linear differential equation with
constant coefficients. As pointed out in Appendix F, the
most general solution is the sum of the solution to the
homogeneous equation (that is, with the right-hand side
equal to 0) and any solution of the inhomogeneous equa-
tion, with the constants adjusted to satisfy whatever
boundary conditions exist. In this case v(x) = v′ sat-
isfies the inhomogeneous equation, so the most general
solution is v(x) = A′e−x/λ′

D + B′ex/λ′
D + v′. Far to the

right v = v′ so B′ = 0. Therefore, the solution we need is

v(x) = A′e−x/λ′
D + v′ x > 0. (9.23)

This solution for x > 0 must be combined with the
solution for x < 0, Eq. 9.18. At x = 0 the potential must
be continuous. Therefore B = A′ + v′. Also at x = 0
the electric field, and therefore dv/dx, is continuous. (If
dv/dx were not continuous, the second derivative and ρext

would be infinite.) This requirement gives the equation
B/λD = −A′/λ′

D. Solving these two equations, we obtain

A′ =
−v′λ′

D

λ′
D + λD

, B =
v′λD

λ′
D + λD

. (9.24)
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FIGURE 9.5. The potential and charge density in the vicinity
of the Donnan membrane. There is a layer of negative charge
on the left of the membrane and of positive charge on the
right. Each decays with the Debye length given by the ion
concentrations far from the membrane.
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Figures 9.5 and 9.6 show the potential, concentration,
and charge density for the case [K] = 100 and

[
M′] = 50

mmol l−1. The other parameters are given in Table 9.2.
The value of ev′/kBT is 0.23.

Since the radii of ions are about 0.2 nm, the De-
bye length is several ionic diameters, and the continuous
model we have used is reasonable.

The Poisson-Boltzmann equation is widely used to
study charged molecules in solution [Honig and Nicholls
(1995)]. However, in small-scale systems such as ion chan-
nels, which have a size similar to or smaller than the
Debye length, continuous models may not be entirely re-
liable [Moy et al. (2000)].

9.3 Ions in Solution: The
Debye–Hückel Model

In an ionic solution, ions of opposite charge attract one
another. A model of this neutralization was developed
by Debye and Hückel a few years after Gouy and Chap-
man developed the model in the previous section. The
Debye–Hückel model singles out a particular ion and
assumes that the average concentration of the counterions
surrounding it is given by a Boltzmann factor. Screening
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TABLE 9.2. Parameters for the Donnan interface when
[K] = 100, [M] = 0, and [M′] = 50 mmol l−1 at T = 310
K.

[Cl] 100 mmol l−1

[K] 100 mmol l−1

[M] 0 mmol l−1

[K′] 78.1 mmol l−1

[Cl′] 128.1 mmol l−1

[M′] 50 mmol l−1

v′ 6.617 mV
λD 0.991 nm
λ′

D 0.875 nm

by the counterions causes the potential to fall much more
rapidly than 1/r. One major difficulty with this assump-
tion is that each counterion is also a central ion; therefore,
the notion of a continuous cloud of counterions represents
some sort of average.

We consider a situation in which the electric field, po-
tential, and charge distribution are spherically symmet-
ric. We could begin with Eq. 9.7 and look up the Lapla-
cian operator in spherical coordinates. However, it is in-
structive to derive Poisson’s equation for the spherically
symmetric case. Consider two concentric spheres of radius
r and radius r+dr. Apply Gauss’s law to the volume con-
tained between the two surfaces. If E is spherically sym-
metric, the flux through the inner sphere is 4πr2E(r).
It points into the sphere and is therefore negative. The
outward flux at r + dr is

4π(r + dr)2E(r + dr)

= 4π
[
r2 + 2rdr + (dr)2

]
[
E(r) +

dE

dr
dr

]
.

If we keep only terms of order dr or less, the outward flux
through the outer sphere is

4πr2E(r) + 8πrE(r)dr + 4πr2 dE

dr
dr.

The net flux out of the volume is 8πrE(r)dr +
4πr2(dE/dr)dr. The total charge in the shell is ρext(r)
times the volume of the shell, 4πr2dr. Therefore, Gauss’s
law is

8πrE(r)dr + 4πr2 dE

dr
dr = ρext(r)

4πr2

κε0
dr

or
1
r2

d

dr

(
r2E(r)

)
=

4πρext(r)
4πε0 κ

. (9.25)

Since E(r) = −dv/dr, the final equation for the potential
is

1
r2

d

dr

(
r2 dv

dr

)
= −4πρext(r)

4πε0 κ
. (9.26)

The Poisson–Boltzmann equation in spherical coordi-
nates, the analog of Eq. 9.10, is

1
r2

d

dr

(
r2 dv

dr

)
= − 4πe

4πε0 κ

∑
zi [Ci] exp

(
−ziev(r)

kBT

)
.

(9.27)
We again make a linear approximation to the Boltzmann
factor to obtain the linear Poisson–Boltzmann equation
for spherical symmetry:

1
r2

d

dr

(
r2 dv

dr

)
=

1
λ2

D

v(r). (9.28)

The Debye length λD is defined in Eq. 9.14. With the
substitution v(r) = u(r)/r, the equation becomes

d2u

dr2
=

1
λ2

D

u(r), (9.29)

which is the same as Eq. 9.16. Therefore the solution is

v(r) =
u(r)

r
=

Ae−r/λD + Ber/λD

r
.

Requiring that v(r) approach 0 as r → ∞ means that
B = 0. For small r, the electric field (dv/dr) is that of
an unshielded ion of charge ze. Therefore A = ze/4πε0 κ,
and the final solution is

v(r) =
(

ze

4πε0 κ

)(
e−r/λD

r

)
. (9.30)

This is the potential of a point charge ze in a dielectric,
modified by an exponential decay over the Debye length.
From Eq. 9.14 one sees that the greater the concentration
of counterions, the shorter the Debye length.

Table 9.3 shows values of v(r), ξ = ev/kBT , and the
potential from an unscreened point charge in water of
dielectric constant 80, when the ion concentrations are
those given in Fig. 6.3. A typical ion radius is about 0.2
nm. We will discover in the next section that the dielectric
constant saturates for r < 0.25 nm. Therefore, values are
given in Table 9.3 only for r > 0.3 nm. The table shows
that the assumption eξ ≈ 1 + ξ is reasonable only for
r > 0.5 nm. The Debye length is λD = 0.77 nm.

The charge density of the ion cloud can be obtained
from Eqs. 9.26 and 9.30. The result is

ρext(r) =
−ze

4πλ2
Dr

e−r/λD . (9.31)

The total charge in the counterion cloud inside a sphere
of radius a is ∫ a

0

4πr2ρext(r) dr.

Adding to this a point charge ze at the origin gives the
total charge due to both the ion and the counterion cloud
inside radius a:

q(a) = ze

(
1 +

a

λD

)
e−a/λD . (9.32)
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TABLE 9.3. The Debye-Hückel potential for a monovalent ion
in a solution of ions at the concentration given in Fig. 6.2
for the interior of an axon. Also shown are the parameter
zev/kBT , the unscreened potential, and the charge inside a
sphere of radius r.

r (nm) v(r) (mV) e/(4πε0 κr) (mV) ev/kBT q(r)/e

0.3 40.6 59.9 1.52 0.94
0.4 26.8 44.9 1.00 0.90
0.5 18.8 36.0 0.70 0.86
0.6 13.8 30.0 0.51 0.82
0.7 10.4 25.7 0.39 0.77
0.8 8.0 22.5 0.30 0.72
0.9 6.2 20.0 0.23 0.67
1.0 4.9 18.0 0.18 0.63
1.2 3.2 15.0 0.12 0.54
1.4 2.1 12.8 0.08 0.46
1.6 1.4 11.2 0.05 0.39
1.8 1.0 10.0 0.04 0.32
2.0 0.7 8.99 0.03 0.27
2.2 0.5 8.17 0.02 0.22
2.4 0.3 7.49 0.01 0.18
2.6 0.2 6.91 0.01 0.15
2.8 0.2 6.42 0.01 0.12
3.0 0.1 5.99 0.00 0.10

This function approaches ze, the charge of the point ion,
as a → 0, and it approaches 0 as a → ∞. Table 9.3
also shows the values of q(a)/e. Ninety percent of the
counterion charge resides within 3 nm of the central ion.
The charge on the central ion is half neutralized by charge
in a sphere of radius 1.3 nm, about six ionic radii.

Figure 9.7 shows schematically an ion of radius 0.2 nm.
Since a monovalent ion will be neutralized by a single
counterion, it is clear that the assumption of a continuous
charge distribution equal to the average is a bit strained.
The shaded circle of radius 0.25 nm represents the region
in which the water molecules are completely polarized
and the dielectric constant is less than 80; this is discussed
in the next section. (We have ignored the fact that close
to the central ion the linear approximation is not valid.)

9.4 Saturation of the Dielectric

The electric field in a vacuum at distance r from a point
charge q is E = q/(4πε0r

2). If the charge is in a dielectric,
the field is reduced by a factor 1/κ, except at very small
distances, where the electric field is so strong that the
polarization of the dielectric is saturated.

A molecule of water appears schematically as shown
in Fig. 6.18. The radius of each hydrogen atom is about
0.12 nm; the radius of the oxygen is about 0.14 nm. Each
hydrogen nucleus is 96.5 pm from the oxygen; the angle
between them is 104 ◦. The hydrogen atoms share their
electrons with the oxygen in such a way that each hydro-

FIGURE 9.7. Schematic picture of the regions surrounding an
ion. The solid circle in the center represents the ion of radius
0.2 nm. The shaded circle shows the region in which the polar-
ization of the water is saturated. The outer circle of radius 1.3
nm represents the region within which the cloud of counteri-
ons has neutralized half of the charge on the ion, which means
that on the average a counterion will be in this region half of
the time. This radius depends on the ion concentrations that
are those for the interior of a squid axon. A scale drawing of
a water molecule is also shown.

gen atom has a net positive charge and the oxygen has
a net negative charge. A pair of charges ±q separated by
distance b has an electric dipole moment pe of magnitude
pe = qb. The vector points from the negative to the pos-
itive charge. The magnitude of the dipole moment of a
water molecule is 6.237 × 10−30 C m.

Each molecule of a dielectric in an applied electric field
has an induced dipole moment that reduces the field. This
dipole moment can be caused by a displacement of the
electron cloud with respect to the nucleus, or it can repre-
sent (as for a polar molecule like water) an average mole-
cular alignment against the tendency of thermal motion
to orient the water molecules randomly.

The average induced dipole moment gives rise to the
polarization field Epol [Eqs. 6.19–6.20]. To see the rela-
tionship, consider a small volume in the dielectric with
N molecules per unit volume. Each molecule has a dipole
moment pe = qb. Far from this volume, the potential is
due primarily to the dipole moment of each molecule.
This can be shown by arguments like those in Secs. 7.3
and 7.4. The potential depends on the total dipole mo-
ment of the volume. The total number of dipoles in the
volume is NSdx, so ptot = peNSdx. This is equivalent to
a charge q′ = peNS on the ends of the volume element,
or a surface of charge density

σ′
q =

q′

S
= peN. (9.33)

Now consider a parallel-plate capacitor as shown in Fig.
9.8. Imagine a series of small volume elements in the di-
electric. The induced charges ±σ′

q on adjacent surfaces of
each row of volume elements cancel except at the end of
each row. The polarization field is therefore due entirely
to the induced charge of surface density ±σ′

q at each end
of the dielectric. The magnitude of the field is

Epol =
σ′

q

ε0
=

Npe

ε0
. (9.34)
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E ext

+σ −σ−σ +σ

E pol

p tot

''

FIGURE 9.8. A dielectric is placed in a parallel-plate capac-
itor that has charge ±σ on each plate. A dipole moment of
magnitude ptot is induced in each volume element of the di-
electric. The total effect is the same as a charge density ±σ′

induced on the surfaces of the dielectric.

The quantity Npe is the dipole moment per unit volume
and is called the polarization P .

As the external electric field is increased, Epol, which
points in the opposite direction, also increases. This cor-
responds to the water molecules becoming more and more
aligned. From the definition of susceptibility and the di-
electric constant in Sec. 6.7, the magnitudes are related
by

|Epol| =
χ

1 + χ
|Eext| =

(
1 − 1

κ

)
|Eext| .

For a monovalent ion in water, Epol = (79/80)Eext =
(79/80)e/(4πε0r

2). When the dipoles are completely
aligned, Epol saturates at its maximum value, given by
Eq. 9.34 with the molecular dipole moment substituted
for pe. The number of water molecules per unit volume
is obtained from the fact that 1 mol has a mass of 18 g,
occupies 1 cm3 g−1, and contains NA molecules:

Epol(max)

=

[
(NA molecule/mol)(1 g/cm3)(106 cm3/m3)

(18 g/mol)ε0 C V−1 m−1

]

×
[
6.237 × 10−30 C m/molecule

]

= 2.36 × 1010 V m−1.

Figure 9.9 shows the fields Eext and Epol around a
monovalent ion. As Epol saturates, Etot rises toward the
value it would have without a dielectric. The dielectric
constant falls from 80 to 1 at about 0.23 nm. A more ac-
curate model predicts similar behavior, but with a more
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FIGURE 9.9. The electric field around a monovalent point
charge and the polarization electric field due to the water.
The polarization field saturates for r < 0.23 nm.

gradual transition of the dielectric constant from 80 to
1.3

Close to an ion the potential is larger than q/(4πε0 κ r).
This changes the Born charging energy [Eq. 6.22] and the
free energy change as an ion dissolves in a solvent [Bockris
and Reddy (1970), Chapter 2]. Also, close to an ion the
continuum approximation breaks down.

9.5 Ion Movement in Solution: The
Nernst–Planck Equation

Solute particles can move by diffusion. They can also
move if they have an average velocity Vsolute. There are
two ways they can acquire an average velocity. The first
is if they are at rest on average with respect to a moving
solution. This is called solvent drag. The second is for the
solute particles to be dragged through the solution by an
external force that acts on them, such as gravity or an
electric force, balanced by the viscous force on the par-
ticles. In both cases, the number per unit area per unit
time crossing a plane is CVsolute. The solute particle flu-
ence rate (particle current density) due to both diffusion
and the solute velocity in the x direction is4 (Sec. 4.12)

js = −D
dC

dx
+ CVsolute. (9.35)

Suppose that an external force F = zeE acts on the
solute particles in the x direction. They will be acceler-
ated until the viscous drag on them is equal to the magni-
tude of F . But we saw in Chapter 4 that the viscous drag
is f = −β(Vsolute − Vsolvent) where Vsolute − Vsolvent is the
relative velocity of the solute through the solvent. Coeffi-
cient β is related to the diffusion constant by β = kBT/D.

3A more sophisticated model for the alignment of the electric

dipoles in the electric field is analogous to that for magnetic mo-

ments in Sec. 18.3.
4We use x for the distance in the direction parallel to E because

z is used for valence.
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Therefore, the particles are no longer accelerated when

Vsolute − Vsolvent = zeE/β. (9.36)

Equation 9.35 can be rewritten as

js = −D
dC

dx
+ C [Vsolvent + (Vsolute − Vsolvent)] .

Now Vsolvent is the volume of solvent that flows per unit
area per unit time and is just jv. With this substitution
and using Eq. 9.36, the particle current density is

js = −D
dC

dx
+ Cjv + CzeE

D

kBT
. (9.37)

The first term represents solute motion due to diffusion,
the second represents solute dragged along with the bulk
flow of the solution (solvent drag), and the third repre-
sents drift due to the applied electric field.

We will consider only the case in which there is no bulk
flow of solution, so jv = 0. The equation then reduces to
the Nernst–Planck equation:

js = −D
dC

dx
+

zeE

kBT
DC. (9.38)

Diffusion is always toward the region of lower concentra-
tion, while for positive charge the Vsolute term is in the
direction of E. For negative charges it is in the opposite
direction.

Consider the current density in bulk solution between
planes at x = 0 where v(x) = 0 and x = L where v(x) =
v. If there is no concentration gradient and the potential
changes uniformly, then E = −dv/dx = −v/L points
in the −x direction, and the particle current density is
js = −zeDCv/kBTL. The electrical current density j is
obtained by multiplying js by the charge on each particle,
ze:

j = −z2e2DCS

kBTL

v

S
= −G(C)

S
v. (9.39)

If v(L) > v(0), the current is to the left and is negative.
Recalling that G = σS/L = 1/R = S/ρL, we obtain the
conductivity in bulk solution

σ =
1
ρ

=
z2e2DC

kBT
. (9.40)

If several ion species carry current and can be assumed
to move independently, then the total conductivity is the
sum of the conductivities for each ion. Table 9.4 shows
contributions to the conductivity for various species at
typical concentrations.

This model is satisfactory for material such as the in-
side of an axon where the concentrations are constant
and the material is electrically neutral, so that the ions
themselves do not on average contribute to the electric
field. We have assumed that the ions move independently,
which will happen only if the electric field of other ions
can be ignored.

TABLE 9.4. Conductivities of ions at various concentrations
at 25◦C, calculated using Eq. 9.40. Diffusion constants for
each ion are from Hille (2001, p. 317). Concentrations are
typical of mammalian nerve and are from Hille (2001, p. 17).
The conductivities of each species add, and ρ = 1/σ. Larger
ions with very small diffusion constants make the solutions
electrically neutral.

D (m2 s−1) C (mmol l−1) σ (S m−1) ρ (Ω m)

Extracellular squid axon
Na 1.33 × 10−9 143 0.723
K 1.96 × 10−9 4 0.029
Cl 2.03 × 10−9 123 0.936

1.688 0.592
Intracellular squid axon

Na 1.33 × 10−9 12 0.060
K 1.96 × 10−9 155 1.139
Cl 2.03 × 10−9 4.2 0.032

1.231 0.812

We can model ions flowing from a region of one concen-
tration to another (such as crossing the axon membrane)
with the Nernst–Planck equation. Writing it for the elec-
tric current density and using the fact that E(x) =
−dv/dx, we have

j = −zeD
dC

dx
− z2e2D

kBT

dv

dx
C. (9.41)

It is simpler to use the dimensionless variable u(x) =
zev(x)/kBT , which is the ratio of an ion’s energy to ther-
mal energy:

j = −zeD

(
dC

dx
+ C

du

dx

)
. (9.42)

If we assume that dv/dx is constant throughout the re-
gion, v(0) = 0 and v(L) = v, then the gradient is
dv/dx = v/L, and Eq. 9.41 becomes

dC

dx
− 1

λ
C = − j

zeD
, (9.43)

where the characteristic length for this model (not the
Debye length) is

λ =
L

u
=

kBTL

zev
. (9.44)

Equation 9.43 is the same as Eq. 4.58, except for the de-
nominator of the term involving j. Here the denominator
is zeD because j is the electric current density instead
of the particle current density. The solution analogous to
Eq. 4.62 is

j =
zeD

λ

C0e
L/λ − C ′

0

eL/λ − 1
=

zeD

λ

C0e
−u − C ′

0

e−u − 1
, (9.45)

where C0 is the ion concentration at x = 0 and C ′
0 is the

concentration at x = L.
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FIGURE 9.10. Sodium current versus applied potential for the
constant field Nernst–Planck model when the sodium concen-
tration is 145 mM on the left and 15 mM on the right. The
calculation was done using Eq. 9.46 for T = 293 K. The tan-
gent line was calculated using Eq. 9.48. The nonlinearity or
rectification occurs because of the different ion concentrations
on each side.

The current vanishes if C0e
L/λ − C ′

0 = 0, or C ′
0/C0 =

eL/λ = e−zev/kBT = e−u. This is the Boltzmann factor.
Equation 9.45 can be written in terms of the original

variables:

j = −z2e2Dv

kBTL

C0e
−zev/kBT − C ′

0

e−zev/kBT − 1
= −zeDu

L

C0e
−u − C ′

0

e−u − 1
.

(9.46)
It is interesting to compare this to Eq. 9.39. Since G de-
pends on concentration, it is useful to factor out a factor
C0 and write

j = −z2e2DC0

kBTL

e−zev/kBT − C ′
0/C0

e−zev/kBT − 1
v

= −G(C0)
S

e−zev/kBT − C ′
0/C0

e−zev/kBT − 1
v. (9.47)

If C0 = C ′
0, we recover Eq. 9.39. Figure 9.10 shows

the current density in A m−2 for a situation where C0 =
145 mmol l−1and C ′

0 = 15. The diffusion constant for
sodium from Table 9.4 has been used. Because C0 > C ′

0,
equilibrium occurs when v = +57.3 mV at 20 ◦C.

Note the nonlinearity of the current–voltage relation-
ship that arises because C0 
= C ′

0. For very negative po-
tentials the flow is almost entirely from left to right and
the current density approaches G(C0)v/S while for very
positive potentials the flow is from right to left and the
current density approaches G(C ′

0)v/S. This asymmetry is
fundamental. It occurs because there are different num-
bers of charge carriers on the left and right. When this
behavior is seen in channels in cell membranes, they are
often called rectifier channels. This same asymmetry in
differences in the concentration of charge carriers is re-
sponsible for rectification in semiconductors.

Near the Nernst potential the current density has the
form j = −(G/S)(v − vNernst) if

G

S
=

G(C0)(zevNernst/kBT )
S
(
ezevNernst/kBT − 1

) . (9.48)

This equation was used to derive the tangent line shown
in Fig. 9.10.

The constant-field model is an oversimplification. The
field can be distorted by fixed charges near the channel
through which the ions are flowing. Moreover, the model
is internally inconsistent. There are electric fields gener-
ated by the flowing ions, which become important at high
concentrations. The fact that j = 0 when the potential
is equal to the Nernst potential is fundamental and holds
for any ion or model for conduction. It can be derived
in the general case from Eq. 9.43 (see the Problems). A
self-consistent analytic solution for the case of a single
ion species has been known for 50 years. The solution
has been extended by many workers and has been gen-
eralized by Leuchtag and Swihart (1977) to the case in
which all the ions have the same charge.

9.6 Zero Total Current in a
Constant-Field Membrane: The
Goldman Equations

The Nernst-Planck equation can be used to calculate the
current due to movement of ions through a membrane
in which there is a constant electric field. We assume a
constant field because it leads to an analytic solution and
because we have no knowledge of internal structure or
the behavior of counterions which could change the field.
The resulting equations are called the Goldman or the
Goldman–Hodgkin–Katz (GHK) equations.

The GHK equations can be derived by assuming either
a homogeneous membrane, in which case the Nernst–
Planck equation is simply applied to each species, or
cylindrical pores of constant cross section. Since we know
that the pores do not have a constant electric field (Sec.
9.7) and it is quite unlikely that they have constant cross
section, the GHK equations are an approximation. Nev-
ertheless, they has been used widely in the study of ex-
citable membranes.

We will show the derivation for a cylindrical pore that
has a constant circular cross section. We use cylindrical
coordinates (r, φ, x), where x is the axis of the cylinder.
(Again, z denotes the valence of the ions.) Let the outside
of the membrane be at x = 0 and the inside at x = L,
where the potential is v and u = zev/kBT . The argu-
ments of Sec. 5.9 about the r and x dependence can be
applied to Eq. 9.42. The analog of Eq. 5.37 is

j(r) = −zeD(r, a,Rp)
(

∂C(r, x)
∂x

+
u

L
C(r, x)

)
. (9.49)

Again the concentration can be written as C(r, x) =
C(x)Γ(r). Equation 9.49 becomes

j(r) = −zeΓ(r)D(r, a,Rp)
(

∂C(x)
∂x

+
u

L
C(x)

)
. (9.50)



9.6 Zero Total Current in a Constant-Field Membrane: The Goldman Equations 237

This can be multiplied by 2πr dr and integrated over
the pore area. There are two integrals to consider. The
first defines the average current density for a particular
species: ∫ Rp

0

j(r)2πr dr = πR2
p j. (9.51)

The second defines an effective diffusion constant:
∫ Rp

0

Γ(r)D(r, a,Rp)2πr dr = πR2
pDeff. (9.52)

The integrated current density equation is

j = −zeDeff

(
dC(x)

dx
+

u

L
C(x)

)
. (9.53)

Consideration of the r dependence in the pore has given
an equation exactly like Eq. 9.42, but with Deff instead of
D. Equations 9.43 and 9.44 are still valid. The form of λ
is unchanged: λ = −kBTL/zev. Conversion from a single
pore to unit area of the membrane requires multiplying
j by nπR2

p. We define ωsRT = nπR2
pDeff/L and call the

concentration outside C1 and the concentration inside C2.
The electric current density per unit area of membrane is

J ′ =
z2e2ωsRTv

kBT

C1e
−zev/kBT − C2

1 − e−zev/kBT

= z2e2vωsNA
C1e

−zev/kBT − C2

1 − e−zev/kBT
. (9.54)

Suppose that three species can pass through the mem-
brane: sodium, potassium, and chloride. Equation 9.54
can be applied separately to each species to obtain the
GHK current equation for each ion species:

J ′
Na = e2vωNaNA

[Na1] e−ev/kBT − [Na2]
1 − e−ev/kBT

, (9.55a)

J ′
K = e2vωKNA

[K1] e−ev/kBT − [K2]
1 − e−ev/kBT

, (9.55b)

J ′
Cl = e2vωClNA

[Cl1] e+ev/kBT − [Cl2]
1 − e+ev/kBT

. (9.55c)

The reversal potential, vrev, is the potential for which
the total membrane current or fluence rate, that is the
sum of the three fluence rates, is zero. The amount of
charge within the cell does not change with time, but
the concentration of each species within the cell changes
with time. This less stringent requirement becomes J ′

Na+
J ′

K + J ′
Cl = 0. Adding Eqs. 9.55 together and factoring

out NAe2v/(1 − e−ev/kBT ) gives

(ωNa [Na1] + ωK [K1] + ωCl [Cl2]) e−ev/kBT

= ωNa [Na2] + ωK [K2] + ωCl [Cl1] ,

or the GHK voltage equation

vrev =
kBT

e
ln
(

ωNa [Na1] + ωK [K1] + ωCl [Cl2]
ωNa [Na2] + ωK [K2] + ωCl [Cl1]

)
.

(9.56)

As an example of the use of the GHK voltage equa-
tion, consider how the reversal potential depends on the
concentration of some external ion. We will use the con-
centrations of Fig. 6.2, except for the ion whose concen-
tration is being changed. The particle concentrations are
in mmol l−1 (any units can be used since ratios are taken):

[Na1] = 145, [Na2] = 15,

[K1] = 5, [K2] = 150,

[Cl1] = [Na1] + [K1] − 25, [Cl2] = [Na2] + [K2] − 156.

The permeabilities are not known. However, only the ra-
tio to ωK matters. If we take the ratio ωK : ωNa : ωCl to
be 1.0 : 0.04 : 0.45 and use T = 300 K, then Eq. 9.56 is
(in mV)

v =

25.88 ln
(

[K1] + 0.04 [Na1] + 0.45([Na2] + [K2] − 156)
[K2] + 0.04 [Na2] + 0.45([Na1] + [K1] − 25)

)
.

This has been plotted in Fig. 9.11 for variations of [K1]
and [Na1]. In each case Cl ions are also added to the
external solution in an equal amount. There is a region
of potassium concentration over which the behavior is
nearly exponential, and one could be misled into thinking
that the potential–concentration relation was given either
by the Nernst equation alone or by Donnan equilibrium.
The potential change with sodium concentration is much
less because of the low permeability of the membrane to
sodium.

The assumption that the total current through the
membrane is zero guarantees that there will be no charge
buildup inside the cell; however, the individual currents
are not zero, so there may be concentration changes with
time. We will next investigate the magnitude of this ef-
fect. Equation 9.54 can be converted to particle flux in-
stead of charge flux by dividing by ze. The result for ion
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FIGURE 9.11. The potential difference across a cell membrane
as a function of changes in the exterior concentration of KCl
or NaCl, calculated using the Goldman equation.
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s is

Js = zevωs
C1e

−zev/kBT − C2

1 − e−zev/kBT
.

The concentrations are converted from mmol l−1 to par-
ticles m−3 by multiplying by Avogadro’s number. (The
factors of 103 in the conversion happen to cancel out.)
Consider the previous example at T = 300 K, [K1] = 5,
[Na1] = 145, and v = −68.17 mV. The exponential fac-
tor for the positive ions is e−ev/kBT = 13.929, while for
the chloride ion it is the reciprocal, 0.0718. If we write
ωNa = 0.04ωK and ωCl = 0.45ωK, then the fluxes for the
three ions are

JK = +(6.55 × 103)ωK(6.215),

JNa = −(6.55 × 103)ωK(6.202),

JCl = −(6.55 × 103)ωK(0.013),

and the total current is zero.
Although the GHK equations are widely used because

of their simplicity, some cautions are in order. Their
derivation assumed independence of the moving ions. We
know that this is an oversimplification for several reasons.
Experiments show that the currents saturate for high con-
centrations. The distortion of the electric field by other
ions was ignored. The permeability (diffusion constant)
was assumed to be constant. The pore was assumed to
have a constant cross section and constant electric field.
A somewhat less restrictive model for the reversal poten-
tial (the potential at which the current density becomes
zero and changes sign) can be derived for a pair of ions
with the same valence if we assume that any variations
in D(x) for the two ions are similar (Problem 18). With
that assumption the reversal potential is

vrev =
kBT

ze
ln
(

ωaCa1 + ωbCb1

ωaCa2 + ωbCb2

)
. (9.57)

When ions have different valences, the GHK equation
becomes more complicated. Lewis (1979) has derived an
analogous equation for transport of sodium, potassium
and calcium.

9.7 Membrane Channels

In Chapter, 6 we described some of the properties of the
sodium and potassium channels in a squid axon. There
are many other kinds of channels. Variations exist not
only from one organism to another, but in different kinds
of cells in the same organism. The classic monograph on
ionic channels is the book by Hille (2001).

There are several different kinds of potassium channels.
Most open after depolarization; a few open after hyperpo-
larization. Potassium channels in axons (such as the ones
we encountered in Chapter 6) are called delayed rectifiers
because of their delay in opening after a voltage step.

The properties of sodium channels are more uniform
from one cell type to another.

Calcium channels pass much smaller currents than
sodium or potassium channels because calcium concen-
trations are much smaller; the calcium current density is
usually about 1

10 the current density for sodium or potas-
sium. Calcium channels typically activate with depolar-
ization. Since the concentration of calcium inside cells is
usually very small, the interior calcium concentration can
increase 20-fold in response to depolarization. This in-
crease in concentration can initiate a chemical reaction,
for example, to cause contraction of a muscle cell.

Chloride channels often have a large conductivity. The
chloride concentration ratio in some muscle cells is such
that the resting potential is close to the chloride Nernst
potential. As a result, small changes in the potential cause
relatively large chloride currents, which tend to stabilize
the resting potential.

The earliest voltage-clamp measurements were difficult
to sort out. Hodgkin and Huxley changed the concen-
tration of extracellular sodium, substituting impermeant
choline ions, to determine what part of the current was
due to sodium and what was due to potassium. Figure
9.12(a) shows typical currents.

In the mid-1960s, various drugs were found that at
very small concentrations selectively block conduction of
a particular ion species. We now know that these drugs
bind to the channels that conduct the ions. An example
is tetrodotoxin (TTX), which binds to sodium channels
and blocks them, making it a deadly poison.

The next big advance was patch-clamp recording [Ne-
her and Sakmann (1976)]. Micropipettes were sealed
against a cell membrane that had been cleaned of con-
nective tissue by treatment with enzymes. A very-high-
resistance seal resulted [(2–3)×107 Ω] that allowed one
to see the opening and closing of individual channels. For
this work Erwin Neher and Bert Sakmann received the
Nobel Prize in Physiology or Medicine in 1991. Around
1980, Neher’s group found a way to make even higher-
resistance (1010–1011 Ω) seals that reduced the noise
even further and allowed patches of membrane to be torn
from the cell while adhering to the pipette [Hamill et al.
(1981)]. The relationship of noise to resistance will be
discussed below.

The patch-clamp studies revealed that the pores open
and close randomly, as shown in Fig. 9.13. Thus, the
Hodgkin–Huxley model describes the average behavior
of many pores, not the kinetics of single pores. Note how
the current through an open pore changes as a function of
the applied potential. A single open pore can pass at least
1 pA of current or 6 × 106 monovalent ions per second.
Most can pass much more. While no perfectly selective
channel is known, most channels are quite selective: for
example, some potassium channels show a 100:1 prefer-
ence for potassium over sodium.

Gene splicing combined with patch-clamp recording
provided a wealth of information. Regions of the DNA
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FIGURE 9.12. Steady-state potassium current and peak sodium current for a squid axon subject to a voltage clamp vs the
transmembrane potential during the clamp. These are not real data, but were generated using the Hodgkin–Huxley model.
(a) Current density. (b) Current density divided by the difference between the potential and the Nernst potential, to give the
conductance per unit area [see Eq. 6.61.] (c) The same data as in (b) plotted on semi-log paper.

responsible for synthesizing the membrane channel have
been identified. One example that has been exten-
sively studied is a potassium channel from the fruit fly,
Drosophila melanogaster. The Shaker fruit fly mutant
shakes its legs under anesthesia. It was possible to iden-
tify exactly the portion of the fly’s DNA responsible for
the mutation. When Shaker DNA was placed in other
cells that do not normally have potassium channels, they
immediately made functioning channels.

The current view is that the Shaker potassium chan-
nel consists of four subunits that span the membrane.
The pore presumably runs along the fourfold-symmetry

axis, as shown in end view in Fig. 9.14. Sodium and cal-
cium channels are very similar. Voltage-gated channels
are reviewed by Sigworth (1993) and by Keynes (1994).

Recently, MacKinnon and his colleagues determined
the three-dimensional structure of a potassium channel
using X-ray diffraction [Doyle et al. (1998); Jiang et al.
(2003)]. The channel protein contains four identical sub-
units, arranged with fourfold symmetry around a central
pore (Fig. 9.14). Each subunit has two alpha helices that
cross the membrane and an inner pore region. One of the
remarkable features of this channel is that potassium ions
are 10,000 times more likely to pass through than sodium
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FIGURE 9.13. Opening of single K(Ca) channels. From B.
S. Pallotta, K. L. Magleby, and J. N. Barrett (1981). Single
channel recordings of Ca2+-activated currents in rat muscle
cell culture. Nature 293: 471–474. Reprinted with permission
from Nature (London).

Pore

FIGURE 9.14. Current understanding of the structure of a
Shaker potassium channel. There are four subunits that tra-
verse the membrane and create a pore at their center.

ions. Yet, potassium and sodium have similar chemistry
(they are in the same column of the Periodic Table), and
their ions are identical except for size (0.133 nm radius
for potassium, 0.095 nm for sodium).

The channel structure suggests that a narrow, 1.2 nm
long region of the pore is responsible for selectivity. As
the ion enters this region, there is not enough room for
the polar water molecules that normally surround it and
shield its charge. Instead, carbonyl oxygen atoms on the
channel protein come in close contact with the potassium
ion and provide the shielding. The size of the pore is
such that potassium ions fit snugly with the surrounding
carbonyl oxygen atoms, but sodium does not fit as well.

X-ray diffraction studies have also clarified the mech-
anism of voltage dependence in potassium channels. The
pore is surrounded by charged structures on the channel’s
perimeter that sense the transmembrane voltage. These
structures act somewhat like levers, opening and clos-
ing the pore in response to the voltage. The movement
of these structures is responsible for gating currents in
these channels. Roderick MacKinnon received the 2003
Nobel Prize in Chemistry for this work on the potassium
channel.

Let us now explore some of the physics of channels.
Combining the macroscopic current density with the cur-
rent in a single channel shows that there are not many
channels per unit area of the membrane (see Problems
19 and 20). It is illuminating to consider what effect cur-
rents of this magnitude and duration have on the trans-
membrane potential. The capacitance per unit area of
biological membranes is about 0.01 F m−2 (1 µF cm−2).
A channel conducting 1 pA for 1 ms allows 10−15 C to
pass. This is enough charge to change the potential 100
mV on an area of 10−12 m2 or 1 µm2. This charge transfer
corresponds to about 6,000 monovalent ions per µm2.

Figure 9.12(a) shows the steady-state potassium and
peak sodium current densities for a squid axon. The ion
concentrations are known, and we saw in Chapter 6 that
the Nernst potentials at 6.3 ◦C were +50 mV for sodium
and −77 mV for potassium. Figure 9.12(b) shows the con-
ductance per unit area, obtained by dividing the current
by v − vNernst. Figure 9.12(c) shows a semilogarithmic
plot of the conductance per unit area.

The sodium current density changes sign at the sodium
Nernst potential. While a measured zero crossing is an
accurate way to determine the Nernst potential, extrap-
olation to find the zero-crossing can be quite misleading.
The potassium current density appears to be linear over
a large region, and it is tempting to extrapolate to find
vK. The extrapolation shows zero current at about −40
mV, which is far from vK. The reason can be seen in Fig.
9.12(b), which shows that gK is varying considerably over
the region where jK appears to be linear; this distorts the
slope and changes the extrapolated intersection.

A simple two-state model can explain the shape of the
curves in Fig. 9.12(c). The conductance per unit area of a
membrane is the product of the conductance of an open
pore and the average number of pores per unit area that
are open. The model assumes that each channel has a
gate that is either open or closed. When the gate is open,
the channel has a conductance determined by the passive
properties of the rest of the channel. The rapid increase
of conductance between −60 and −30 mV corresponds to
a rapidly increasing probability that the gate is open.

Suppose that each channel has a gate with two states:
open and closed. When there is no average electric field
in the membrane (v = 0) the energy of the open state
is w = uokBT greater than the closed state. Suppose
also that as the gate opens and closes, a charge q asso-
ciated with the gate moves a small distance parallel to
the axis of the pore. When there is a potential v across
the membrane, the charge moves through a potential dif-
ference αv, where α < 1. The total energy change when
the gate opens with potential v across the membrane is
then w + qαv. The quantity qα is often written as ze and
called the equivalent gating charge. In terms of kBT the
energy change when the pore opens is u = uo +zev/kBT .

Let po be the probability that a pore is open and pc

be the probability that it is closed. The probabilities
are related by a Boltzmann factor: po = pce

−u. Since
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from Fig. 9.12(c) with fits by Eq. 9.58. For sodium uo = −10.5
and z = −7; for potassium uo = −19 and z = −10.

po + pc = 1, po = e−u/(1 + e−u) = 1/(1 + eu),

po =
1

1 + euo+zev/kBT
. (9.58)

For very large values of u (small values of po),

po ≈ e−(uo+zev/kBT ). (9.59)

The conductance per unit area of the membrane is the
conductance of an open pore times the number of pores
per unit area (that is g∞), times po.

Figure 9.15 shows plots of the “data” and lines gener-
ated from Eq. 9.58. The multiplicative constant has been
adjusted to fit the flat region of the “data” at high v.
Parameters uo and z have been adjusted to provide good
fits at the lowest conductances. For sodium uo = −10.5
and z = −7; for potassium uo = −19 and z = −10. The
fact that uo is very negative means that when v = 0,
the energy of an open gate is much less than the en-
ergy of a closed gate. Nearly all of the pores are open, as
can be seen from the v = 0 point in Fig. 9.15. The fact
that z = −7 or −10 means that when the pore opens
or closes, the equivalent of 7 (or 10) electron charges
must move through the full transmembrane potential dif-
ference. Many more charges could be displaced a much
smaller distance and experience a much smaller poten-
tial change. More sophisticated multilevel models are dis-
cussed by Sigworth (1993).

This charge movement constitutes a very small current
called the gating current. It is different from the current
to charge the membrane capacitance. We saw above that
during a 1-pA pulse lasting 1 ms, about 6,000 monova-
lent ions flow through the membrane. The gating charge
is about 10 monovalent charges, a ratio of about 600.
The gating current is so small that it has not yet been

FIGURE 9.16. The results of a set of experiments with Shaker
potassium channels. Panel A shows the macroscopic depo-
larizations to +20 and +80 mV for a patch with about 400
channels. Panel B shows the gating current recorded from an-
other patch containing about 8,000 channels. Potassium was
removed from the solution bathing the interior surface of the
membrane. Panels C and D show recordings similar to panel
A, but with many fewer channels in the patch. The results
from three successive depolarizing pulses are shown in each
case. From F. J. Sigworth (1993). Voltage gating of ion chan-
nels. Quart. Rev. Biophys. 27: 1–40. Reprinted with permis-
sion of Cambridge University Press.

measured in a single channel, but it can be measured by
manipulating the ions bathing the membrane in a patch-
clamp experiment.

Figure 9.16 shows the results of a set of experiments
with Shaker potassium channels. Panel A shows the
macroscopic depolarizations to +20 and +80 mV for a
patch with about 400 channels. The peak current at +80
mV is 1.25 pA per channel. Panel B shows the gating
current recorded from another patch containing about
8,000 channels. Potassium was removed from the solu-
tion bathing the interior surface of the membrane. The
gating current lasts slightly less than 1 ms and peaks at
about 4.5 × 10−15 A per channel, about 300 times less
than the channel current. The agreement with our first
estimate of 600 times less is satisfactory, given the accu-
racy of the data. Panels C and D show recordings sim-
ilar to panel A, but only a few channels in the patch.
The results from three successive depolarizing pulses are
shown in each case. The channel openings are similar to
those in Fig. 9.13, but are recorded at a much shorter
time scale. The increased current through an open chan-
nel and the higher probability of being open for a clamp
of +80 mV are both apparent. The smooth macroscopic
current shown in Fig. 9.16a is the sum of many discrete
channel currents like those shown in Fig. 9.16c.

A very simple approximate calculation shows that
there is not much ion–ion interaction in a channel. A
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current of 1 pA is 6.25×106 monovalent ions per second,
so that the average time between the passage of succes-
sive ions through the channel is 1.6×10−7 s. In a uniform
electric field giving 80 mV across the membrane, a mono-
valent ion would have a drift velocity of 0.6 m s−1 based
on the bulk diffusion constant. [See the discussion sur-
rounding Eq. 4.22.] Because ions in the pore are confined,
let us use 1

10 of this, or 0.06 m s−1. (The diffusion con-
stant is proportional to the solute permeability; see Sec.
5.9. Ignoring electric forces, we see from Fig. 5.19 that
ω/ω0 = 0.1 corresponds to a/Rp = 0.4. So this is proba-
bly still a high drift velocity.) Then the time it takes the
ion to pass through the channel is its length (assume 6
nm) divided by the average speed, or 10−7 s. The fraction
of the time there is an ion in the channel is f = 0.625.

We can make some other estimates of channel parame-
ters. Over some part of its length, the channel must be
narrow enough so the wall can interact directly with the
ion that is passing through, not shielded by water mole-
cules. The pore must therefore narrow to a radius of 0.3
to 0.7 nm in some region. Let us assume a cylindrical pore
of radius a = 0.7 nm and length h = 6 nm. The average
number of water molecules in the channel is 308; the av-
erage concentration of ions is f/(πa2h) = 113 mmol l−1,
which is about right. The resistance of a channel while
it is open is R = v/i = 80 mV/1 pA = 8 × 107 Ω. (We
should actually use v − vNernst, but this is a rough esti-
mate. If we were going to be more accurate, we should
also use the Nernst–Planck equation, recognizing that the
ions move by diffusion as well as drift.)

9.8 Noise

The current fluctuates while a channel is open, as can
be seen in Figs. 9.13 and 9.16. Some of the fluctuation
is due to noise in the measurement apparatus. However,
there are some fundamental physical lower limits to the
fluctuations resulting from noise in the membrane patch
itself. We discuss these briefly here, with a more exten-
sive discussion in Chapter 11. DeFelice (1981) wrote an
excellent book on noise in membranes.

9.8.1 Shot Noise

The first (and smallest) limitation is called shot noise.
It is due to the fact that the charge is transported by
ions that move randomly and independently through the
channels. Imagine a single open conducting channel with
an average current i of monovalent ions. During time ∆t
(which can be any interval shorter than the time the chan-
nel is open) the average charge flow is i∆t and the average
number of ions is n = i∆t/e. Since there are a very large
number of ions that might flow through the channel (oc-
currences) and the probability that any one ion moves
through the channel during ∆t is very small, we have the

Poisson limit of the binomial distribution (Appendix J).
The variance in the number of ions is σ2

n = n = i∆t/e.
Since the average charge transported is q = ne, the vari-
ance in the charge is σ2

q = e2σ2
n = ei∆t. When many

samples of length ∆t are measured, the variance in the
current is σ2

i = σ2
q/(∆t)2. The standard deviations are

σn =
(

i∆t

e

)1/2

,

σq =
(
ei∆t

)1/2
,

σi =
(

ei

∆t

)1/2

,

(9.60)

and the fractional standard deviations are

σn

n
=

σq

q
=

σi

i
=
(

e

i∆t

)1/2

. (9.61)

For a current of 1 pA, the fractional standard deviation
is 0.013 when the sampling time is 1 ms and 0.04 when
the sampling time is 0.1 ms. These are much smaller than
what is observed in the figures.

9.8.2 Johnson Noise

The next source of noise is called Johnson noise. It arises
from thermal fluctuations or Brownian movement of the
ions. It can be derived from a microscopic model of con-
duction (either in an ionic solution or a metal), but we
will do it using the equipartition of energy.

First, we need an expression for the energy U contained
in a charged capacitor. To obtain it, imagine that an
amount of charge +dq is transferred from the negative to
the positive conductor. This increases the amount of pos-
itive charge on the positive conductor and also increases
the amount of negative charge on the negative conductor.
The work required to transfer the charge when the po-
tential difference between the conductors is v is vdq. The
energy stored in the capacitor is the total work required
to charge the conductor from 0 to q. Remembering that
q = Cv, we have

U =
∫ q

0

v dq =
1
C

∫ q

0

q dq =
q2

2C
=

Cv2

2
. (9.62)

If the capacitor is completely isolated, there can be a
constant charge on each conductor with no fluctuations.
If the capacitor is in thermal contact with its surround-
ings and is in equilibrium, then the equipartition theorem
applies. The capacitor can be brought into thermal equi-
librium with its surroundings by connecting a resistance
R between the conductors. This will discharge the ca-
pacitor so q = v = 0. There will be fluctuations around
these zero values. Because the expression for the energy
depends on the square of the variables, the mean square
value is given by the equipartition of energy theorem,
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Eq. 3.38. We will assume that when the capacitor is
charged, thermal fluctuations give the same variances as
when it is discharged:

σ2
v =

(
v2 − v2

)
= v2 = kBT/C, (9.63a)

σ2
q =

(
q2 − q2

)
= q2 = CkBT. (9.63b)

In a simple RC circuit, i = v/R, so

σ2
i = σ2

v/R2 = kBT/R2C. (9.63c)

Since changes in current or voltage in an RC circuit occur
with time constant τ = RC, we can also write these as

σ2
v = RkBT/τ, σ2

i = kBT/Rτ. (9.64)

These are special cases of a more general relationship that
will be discussed in Chapter 11.

We can use these to determine some of the require-
ments for patch-clamp recording. In order to see the cur-
rent from a single channel with some accuracy, let us
require that the standard deviation of the current fluc-
tuation be less than 1

8 of the signal we want to measure.
(This signal-to-noise ratio, SNR, of 8 is arbitrary.) First
consider the limitation due to Johnson noise. We want
σi < i/8 or σ2

i <
(
i
)2

/64. From this we obtain

R >

(
kBT

C

)1/2 8
i
. (9.65)

The capacitance of a patch of membrane of 1 µm radius
is 3.1 × 10−14 F. At a temperature of 300 K and for an
average current of 1 pA, this gives R > 3× 109 Ω. Larger
values of R will give an even higher SNR. There are sev-
eral sources of thermal noise in a recording electrode, all
discussed in the paper by Hamill et al. (1981). These are
order-of-magnitude results; one must determine carefully
which capacitances and resistances provide the dominant
effects.

We can also see when shot noise is important. The ratio
of Johnson noise to shot noise is

σ2
i (Johnson)
σ2

i (shot)
=

kBT/Rτ

ei/∆t
=

kBT

Rei
. (9.66)

This ratio is less than 1 and shot noise is important when
R > kBT/ei = 2.6×1010 Ω. Shot noise has been detected
in channel gating currents and subjected to very sophis-
ticated analysis. See the paper by Crouzy and Sigworth
(1993) and the references therein.

9.9 Sensory Transducers

Animals have very sensitive senses. We will see (Prob-
lem 13.19) that the ear can hear sounds at 1,000 Hz
that are just greater than the pressure fluctuations due

Hair Cell

Ion 
Channel

FIGURE 9.17. A schematic diagram of two stereocilia linked
by a filament that opens a channel as the cillia move back and
forth.

to molecular collisions on the ear drum. An eye that is
adapted to the dark can detect flashes of light correspond-
ing to a few photons (Chapter 14). Many animals can
smell chemicals when only a few molecules strike their
sensory organs. The electric skate can detect extremely
small electric fields.

In each case a transducer converts the sensory stimulus
into a series of nerve impulses. The transducer must have
sufficient sensitivity to respond to the stimulus, and it
must also absorb an amount of energy from the stimulus
that is greater than what it receives from random thermal
bombardment (Brownian movement).5 We describe here
two transducers: the mechanoreceptors (hair cells) of the
inner ear and the electric organ of the skate.

Various transduction mechanisms are reviewed in
Chapter 8 of Hille (2001). The mechanoreceptors of the
bullfrog inner ear have been studied for many years. The
hair-cell current rises from 0 to 100 pA with an 0.5-µm
displacement. Each hair cell is cylindrical. On its end face
are found about 60 very small stereocilia, each 1–50 µm
long and with a 100–500-nm radius. The tips of these
stereocilia are linked by thin filaments. The hair cell and
stereocilia that detect sound in the ear are attached to
the basilar membrane in the cochlea of the ear and move
in a very viscous fluid as the basilar membrane vibrates.
Hair cells detecting accelerations of the entire animal are
attached to a suspended dense body. It is believed that
as the stereocilia move, these filaments pull open flaps at
the end of ion channels, allowing ions to enter the cell and
initiate the conduction process. This is shown schemat-
ically in Fig. 9.17. Denk and Webb (1989) have used a
laser interferometer to measure the motion of the hair
cells. They found that the spontaneous motion consists
primarily of thermal excitation (Brownian motion). Fluc-
tuations in the intracellular voltage were also measured.
They often correlated with the motion of the hair cells.

Freshwater catfish respond to electric fields as low as
10−4 V m−1. Saltwater sharks and rays can detect fields
of 5 × 10−7 V m−1. A brief review has been given by
Bastian (1994); Kalmijn (1988) provides a very complete

5For the detection of light, the amount of energy per photon is
so much greater than kBT that shot noise dominates.
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review. The saltwater fish have a more complicated sen-
sory apparatus than the freshwater fish, known as the
ampullae of Lorenzini. Kalmijn and his colleagues discov-
ered that the ocean flounder generates a current dipole
of 3× 10−7 A m. In sea water of resistivity 0.23 Ω m this
gives an electric field of 2× 10−5 V m−1 at a distance 10
cm in front of the flounder. They were able to show in
a beautiful series of behavioral experiments that dogfish
(a small shark) could detect the electric field 0.4 m from
a current dipole of 4 × 10−7 A m, corresponding to an
electric field of 5 × 10−7 V m−1. The fish would bite at
the electrodes, ignoring a nearby odor source. A field of
10−4 V m−1 would elicit the startle response. A field 1

10
as large caused a physiologic response. The animals re-
sponded to a constant field or a sinusoidally alternating
field up to 4 Hz. At 8 Hz the threshold increased by a
factor of 2.

In a series of experiments, Lu and Fishman (1994) dis-
sected out the ampulla of Lorenzini and measured its re-
sponse in the laboratory. They found that the resting rate
of firing of the organ is about 35 Hz (impulses per sec-
ond) and that an applied electric potential increases or
decreases the firing rate by about 1 Hz µV−1, depending
on its sign. The firing rate saturated for potential differ-
ences of 100 µV.

The behavioral experiments showed sensitivity to an
electric field of 0.5 µV m−1. The anatomy of the am-
pulla is such that the organ senses the potential difference
between the surface of the fish and deep in its interior.
Pickard (1988) shows that for a spherical fish of radius a,
this gives a potential of 3aE/2, where E is the external
electric field. The amplitude of the potential difference os-
cillation of a fish of length 1

3 m is therefore 0.25 µV. This
is enough to cause a 1% change in firing rate, which could
be detected by neuronal circuits [Adair et al. (1998)].

The Johnson noise is somewhat smaller than the signal
detected. To estimate it, use Eq. 9.63a with the ampullary
capacitance of 0.15 µF measured by Lu and Fishman. The
standard deviation of the noise is 0.17 µV.

9.10 Possible Effects of Weak External
Electric and Magnetic Fields

9.10.1 Introduction

There is a lingering controversy over whether radio-
frequency and power-line-frequency (50–60 Hz) electric
or magnetic fields can cause cancer. While the effect, if
any, is quite small, the literature is extensive, involving
both epidemiological and laboratory studies. Results are
conflicting, and the mechanisms by which such an effect
might occur are not yet understood. Mechanisms have
been proposed, some of which are inconsistent with ba-
sic physical principles such as the Boltzmann factor, the
mean free path of ions, and thermal fluctuations. It is be-

yond our scope to do more than provide pointers to the
field and discuss some basic underlying physics.

A review in the physics-teaching literature was pro-
vided by Hafemeister (1996). An excellent discussion of
the all aspects of the problem is available at a frequently
updated website, Powerlines and Cancer FAQ [Moulder
(Web)]. Similar websites for cell phones and for static
fields can be reached through this one.

We have seen that electric charges give rise to elec-
tric fields, and moving electric charges (currents) gener-
ate magnetic fields. The electric field lines start and end
on charges, and the magnetic field lines surround the cur-
rents. We will see in Chapter 14 that accelerated charges
generate electromagnetic radiation, in which the electric
and magnetic fields are interrelated and the field lines
close on themselves far from the source charges. Energy
is radiated: it leaves the source and never returns. This
radiated energy is in the form of discrete packets or pho-
tons, whose energy is related to the frequency of oscilla-
tion of the fields. The energy of each photon is E = hν,
where h is Planck’s constant and ν the frequency. At
room temperature, the energy of random thermal motion
is kBT = 4×10−21 J. At 60 Hz, the energy in each photon
is much smaller: 4× 10−32 J. At 100 MHz it is 7× 10−26

J. For electromagnetic radiation in the ultraviolet and
beyond, which certainly can harm cells, the photon en-
ergy is 5 × 10−19 J or greater, quite large compared to
kBT . At the very low frequencies we are considering, it
is the strength of the electric or magnetic field that is
important, not the energy of individual photons. A more
detailed discussion of the distinction between these low-
frequency “near fields” and “radiation fields” is found in
Polk (1996).

9.10.2 Effects of Strong Fields

We have seen electrical burns, cardiac pacing, and nerve
and muscle stimulation produced by electric or rapidly
changing magnetic fields. Even stronger electric fields
increase membrane permeability. This is believed to be
due to the transient formation of pores (electroporation).
Pores can be formed, for example, by microsecond-length
pulses with a field strength in the membrane of about
108 V m−1 [Weaver (2000)]. Microwaves are used to heat
tissue. Nerve stimulation requires a few millivolts across
the cell membrane, or about 105–106 V m−1. Both elec-
tric and magnetic fields are used to promote bone heal-
ing, with field strengths in tissue in the fracture region of
10−1 V m−1 [Tenforde (1995)], though these results are
still controversial [Adair (2000)].

9.10.3 Fields in Homes are Weak

Much weaker fields in homes are produced by power lines,
house wiring, and electrical appliances. Barnes (1995)
found average electric fields in air next to the body of
about 7 V m−1, with peak values of 200 V m−1. (We will
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find that since the body is a conductor, the fields within
the body are much less.) Average residential magnetic
fields are about 0.1 µT, with peaks up to four times as
large. Within the body they are about the same. Tenforde
(1995) reviews both power-line- and radio-frequency field
intensities.

9.10.4 Epidemiological Studies

Epidemiological studies have been very valuable in trac-
ing the cause of infectious outbreaks. They have also indi-
cated that smoking increases the probability of develop-
ing lung cancer by 3,000%—a factor of 30. However, there
are difficulties with epidemiological studies when the ef-
fect is small: there are inescapable statistical fluctuations
unless the number of subjects is huge; associations do not
prove causality; and there may be unrecognized variables
that are confusing the picture. The problem is exacer-
bated when positive findings receive widespread publicity
and negative findings are ignored by the press.

Epidemiological studies usually report “relative risk:”
the incidence in an exposed group divided by the inci-
dence in an unexposed group. A relative risk of one means
no effect. Moulder (Web, question 20A) says,

A strong association is one with a relative
risk (RR) of 5 or more. Tobacco smoking, for
example, shows a strong association, with the
risk of lung cancer in smokers being 10-30 times
that of nonsmokers. A relative risk of less than
about 3 indicates a weak association. A relative
risk below about 1.5 is essentially meaningless
unless it is supported by other data.

Most of the positive power-frequency stud-
ies have relative risks of 2 or less. The leukemia
studies as a group have relative risks of 0.8-1.9,
while the brain cancer studies as a group have
relative risks of 0.8-1.6. This is a weak associ-
ation. Interestingly, as the sophistication of the
studies has increased, the relative risks have not
increased.

One would also expect an increased response with in-
creasing dose. Moulder continues,

No published power-frequency exposure
study has shown a statistically significant dose–
response relationship between measured fields
and cancer rates, or between distances from
transmission lines and cancer rates. However,
there is some indication of a dose-response in
some of the older childhood leukemia stud-
ies when wire codes or calculations of historic
fields are used as exposure metrics. The lack of
a clear relationship between exposure and in-
creased cancer incidence is a major reason why
most scientists are skeptical about the signifi-
cance of much of the epidemiology.

9.10.5 Laboratory Studies

The many laboratory studies are also reviewed by Moul-
der (Web). He concludes:

Power-frequency fields show little evidence
of the type of effects on cells, tissues or animals
that point towards their being a cause of cancer,
or to their contributing to cancer. In fact, the ex-
isting laboratory data provides strong evidence
that power-frequency fields of the magnitude to
which people are exposed are not carcinogenic.6

9.10.6 Reviews and Panel Reports

Moulder (Web) lists a number of review articles and re-
ports by expert panels. We note only a few here. Reviews
by Moulder and Foster (1995, 1999) find that the associa-
tion between power-frequency fields and cancer is weak7

for magnetic fields and even weaker for electric fields.
Carstensen (1995) and Bren (1995) reach similar conclu-
sions.

A report by a committee of the National Research
Council concludes that

the current body of evidence does not show
that exposure to these fields presents a human-
health hazard.... The committee reviewed resi-
dential exposure levels to electric and magnetic
fields, evaluated the available epidemiological
studies, and examined laboratory investigations
that used cells, isolated tissues, and animals.”
[National Research Council (1997), p. 2]

There is no convincing evidence that expo-
sure to 60-Hz electric and magnetic fields causes
cancer in animals.... There is no evidence of any
adverse effects on reproduction or development
in animals, particularly mammals, from expo-
sure to power-frequency 50- or 60-Hz electric
or magnetic fields.” [National Research Coun-
cil (1997), p. 7].

6Foster (1996) has reviewed many of the laboratory studies and
describes cases where subtle cues meant the observers were not
making truly “blind” observations. Though not directly relevant
to the issue under discussion here, a classic study by Tucker and
Schmitt (1978) at the University of Minnesota is worth noting.
They were seeking to detect possible human perception of 60-Hz
magnetic fields. There appeared to be an effect. For 5 years, they
kept providing better and better isolation of the subject from subtle
auditory clues. With their final isolation chamber, none of the 200
subjects could reliably perceive whether the field was on or off. Had
they been less thorough and persistent, they would have reported
a positive effect that does not exist.

7That is, the carcinogenic effects are in International Association
for Research on Cancer group 2B (possibly carcinogenic), a group
that includes coffee and pickled vegetables [Moulder (Web) Q. 27F].
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FIGURE 9.18. An infinite slab of tissue is immersed in an
oscillating electric field of amplitude E0 in air.

9.10.7 Electric Fields in the Body

We now review some of the basic principles that govern
the interaction of electric and magnetic fields with the
body. One of the important principles is the relationship
between the electric field in air and the field within the
body, which is a conductor. A simple model that shows
how this coupling takes place is the one-dimensional prob-
lem shown in Fig. 9.18.

An infinite slab of tissue has dielectric constant κ
and conductivity σ. In the air perpendicular to the sur-
face of the slab is an external oscillating electric field
E(t) = E0 cos ωt. We assume that the dielectric constant
is independent of frequency and accounts for the polar-
ization of the tissue. An ionic current flows and causes
free charge per unit area ±σq to accumulate on the sur-
faces of the slab. Within the slab the field is E1(t) and
the current density is j = σE1. Gauss’s law (Eq. 6.21b)
applied to either surface gives

−ε0E0 cos ωt + κε0E1(t) = σq(t). (9.67)

Conservation of free charge at the surface requires that8

σE1 = j = −dσq

dt
. (9.68)

If we differentiate Eq. 9.67 and combine it with Eq. 9.68,
we obtain

dE1

dt
+

σ

κε0
E1 =

ω

κ
E0 sinωt. (9.69)

The factor κε0/σ is characteristic of the tissue and has
the dimensions of time. We will call it τt.

9 Typical tis-
sue conductivity is about 0.1 S m−1. We must be careful

8Readers who are familiar with the concepts of reactance and
complex impedance must be frustrated because we have not used

them. The reason is pedagogic. Because many in our intended au-

dience may have had only one year of calculus, we want to avoid

the use of complex numbers. In Chapter 11 we introduce them as a

parallel notation. They are widely used in the image reconstruction

described in Chapter 12.
9Recall that the membrane time constant τ , was used in Eq.

6.40. The values of conductivity or resistivity and dielectric constant

are different in this case.
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FIGURE 9.19. The electric fields in and around a spherical
cell. The cell has radius a and membrane thickness b. The
field far from the cell has amplitude E1.

about the value of the dielectric constant. We have used a
value of 80 for water. However, tissue is much more com-
plex than pure water and there are several effects that
alter the dielectric constant [Foster and Schwan (1996)].
It takes time for both the polarization charges and con-
ducting ions to move. As a result, both the conductivity
and the dielectric constant of tissue depend on the fre-
quency of the applied electric field and in fact are not in-
dependent of one another [see Foster and Schwan (1996),
especially pp. 31–41].

Several effects change the conductivity and dielectric
constant as a function of frequency. At power-line fre-
quencies the dominant effect is the slight movement of
the counterions and charge in the double layer at a cell
membrane in response to the applied electric field. As a
result, κ ≈ 106 and τt = 9.1 × 10−5 s.

We try a solution to Eq. 9.69 of the form E1(t) =
A sin ωt + B cos ωt. It satisfies the equation if

A =
ωτt

κ(1 + ω2τ2
t )

E0 ≈ ωε0
σ

E0,

B = −ωτtA = − (ωτt)
2

κ(1 + ω2τ2
t )

E0 ≈ 0.

(9.70)

For 60 Hz and a dielectric constant of 106, A = 33 ×
10−9E0, B = 1.1× 10−9E0. The amplitude of the field in
tissue is E1 ≈ A. The field in air is reduced by a factor
of about 3 × 10−8 in tissue because the tissue is a good
conductor. The total reduction is nearly the same for a
dielectric constant of 80, as can be seen from the fact that
the approximate form for A does not depend on κ.

9.10.8 Electric Fields in a Spherical Cell

Another important factor is the electric fields that exist
in and near a cell. Consider a spherical cell with inner ra-
dius a and membrane thickness b immersed in an infinite
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conducting medium in which there is an electric field E1

far from the cell. The potential can be determined ana-
lytically by solving Poisson’s equation (with zero charge
density) in the three regions and matching boundary con-
ditions much as we did to obtain Eq. 9.68. The results,
valid for slowly varying applied fields such as a 50- or
60-Hz power line field, are shown in Fig. 9.19.10

Only the amplitude of the electric field is shown. As-
sume the conductivities of the extracellular and intracel-
lular fluids are the same, that a = 10 µm and b = 6 nm,
and that σmembrane = 2.4×10−8σ. The important features
of this solution are that the field just outside the cell is
roughly the same as the field far away, the field inside the
membrane is magnified by a large factor (a/b), and the
field inside the cell is multiplied by a very small factor
(aσmembrane/bσ). Thus, the cell membrane shields the in-
tracellular space from extracellular electric fields, so these
fields are not likely to directly affect cell organelles and
important biomolecules such as DNA. This is reflected in
the last line of Table 9.5.

9.10.9 Electrical Interactions and Noise

If an organism is affected in some way by an external field,
then it can be regarded as a detector of that field. The ex-
ternal field can therefore be thought of as a signal. To be
detected, the signal must be greater than the noise. The
noise can be either thermal (Johnson) noise, shot noise, or
noise from the electric currents that normally flow in the
body due to nerve conduction and muscle contraction.
To have a signal that is not masked by Johnson noise, we
must have an electric field E such that

zev

kBT
=

zeEd

kBT
> 1, (9.71)

where z is the valence of an effective charge that moves
a distance d in the electric field E. Table 9.5 shows the
result of a calculation using a field in air of 300 V m−1.
We use a value z = 10e. For d we use the diameter of the
cell, d = 10 µm (though for the membrane perhaps the
much smaller thickness of the cell membrane should be
used). The values of zeEd/kBT are very small.

One proposal to overcome this signal-to-noise problem
is that the biological effect is due to the averaging of the
field over many cells or over time. This was first proposed
by Weaver and Astumian (1990), and a specific model has
been formulated by Astumian et al.(1995). The model
applies the Nernst-Planck equation (Eq. 9.38) and shows
that if the concentration of some substance outside the
cell is much larger than inside, the response to an oscil-
lating v is “rectification” or a net inward current. This
would allow an accumulation of the substance within the
cell. The averaging times in their model are 13 h. Weaver
and Astumian (1995) review the entire causality problem,

10Calculated using equations in Polk (1995), p. 62.

TABLE 9.5. Comparison of the signal in a cell to thermal
noise for an applied electric field in air of 300 V m−1. T = 300
K. z = 10e. d = 10−5 m.

Just outside In the cell Inside
Model the cell membrane the cell

E (V m−1) 1.01 × 10−5 1.62 × 10−2 5.40 × 10−10

kBT/eE (m) 2.57 × 103 1.59 4.79 × 107

zeEd/kBT 3.9 × 10−8 6.3 × 10−5 2.1 × 10−12

including the effects of shot noise. Adair (2000) reviews
many other aspects of the problem.

9.10.10 Magnetic Interactions and Noise

The magnetic field is not attenuated at the body surface,
as the electric field is. Kirschvink et al. (1992a) reported
that the human brain contains several million magneto-
somes per gram. Kobayashi et al. (1995) found that con-
tamination with magnetic particles could affect labora-
tory experiments with cell cultures, even if the cells being
studied do not normally contain magnetosomes. Commer-
cial disposable, presterilized plastic laboratory ware used
in tissue culture experiments were found to contain ferro-
magnetic particles smaller than 100 nm that are readily
taken up by white blood cells.

What about the signal-to-noise ratio for magnetic ef-
fects? The situation is somewhat more favorable than
for the electric case. We saw in Chapter 8 that a single
magnetosome has appreciable alignment with the earth’s
magnetic field, even in the presence of thermal bombard-
ment. The earth’s field is about 5 × 10−5 T. For a single
magnetosome

mBearth

kBT
=

(6.4 × 10−17)(5 × 10−5)
(1.38 × 10−23)(300)

= 0.77. (9.72)

For a larger magnetosome of radius 100 µm, m = 2 ×
10−15 A m2 and the energy ratio in the earth’s field is
24. The field due to a typical power line is about 100
times smaller: about 2 × 10−7 T.

Kirschvink (1992) proposed a model whereby a mag-
netosome in a field of 10−4–10−3 T could rotate to open
a membrane channel. As an example of the debate that
continues in this area, Adair (1991, 1992, 1993, 1994) ar-
gued that a magnetic interaction cannot overcome ther-
mal noise in a 60-Hz field of 5 × 10−6 T. However, Polk
(1994) argues that more biologically realistic parameters,
including a large number of magnetosomes in a cell, could
allow an interaction at 2 × 10−6 T.

The essential features of all the models are like this.
Imagine a particle with magnetic moment m in the



248 9. Electricity and Magnetism at the Cellular Level

θ
B earth

B0

m

(b)

m
B earth

(a)

FIGURE 9.20. A particle with magnetic moment m (a)
aligned with the earth’s magnetic field and (b) at an angle
θ with the earth’s field because of an applied field B0.

earth’s field. It will tend to align with the field as shown
in Fig. 9.20(a). The direction of the magnetic moment
with the earth’s field is θ. Apply an alternating field
B0 cos ωt at right angles to the earth’s field, as shown
in Fig. 9.20(b). There are three torques on the particle.
The first is viscous drag, which is proportional to the an-
gular velocity of the particle dθ/dt but in the opposite
direction. The second is the torque tending to align m
with the earth’s field, −mBearth sin θ. The third tends to
align m with the alternating field, mB0 cos ωt cos θ. As-
sume that the acceleration is so small that the particle
is in rotational equilibrium. (This is not necessary, but it
simplifies the math.) Then, from Eq. 1.14,

−β
dθ

dt
+ mBearth sin θ − mB0 cos ωt cos θ = 0. (9.73)

In order to linearize the equation, assume that θ is
small enough so that sin θ ≈ θ and cos θ ≈ 1. The lin-
earized equation is

β
dθ

dt
− mBearthθ = −mB0 cos ωt. (9.74)

This is a linear differential equation with constant coeffi-
cients that can be solved by the techniques of Appendix
F. Consider only the particular solution and try a solu-
tion of the form

θ = θ1 cos ωt + θ2 sinωt. (9.75)

Substitution of this in the equation shows that

θ1 =
m2B0Bearth

(ωβ)2 + (mBearth)2
,

θ2 = − ωβmB0

(ωβ)2 + (mBearth)2
,

and
θm =

mB0

[(ωβ)2 + (mBearth)2]1/2
, (9.76)

where θm is the maximum amplitude: θ2
m = θ2

1 + θ2
2. We

saw in Chap. 4 (Stokes’ law) that the translational viscous
drag on a spherical particle is 6πηav. Similarly, the vis-
cous torque on a rotating sphere is 8πηa3(dθ/dt) [Lamb

(1932), pp. 588-589]. The measured values for viscosity
inside a cell range from 0.003 to 0.015 N s m−2 [Polk
(1994)]. Using the average of these, β = 0.009a3. The
magnetic moment of a single-domain magnetosome is also
proportional to volume: m = 2 × 106a3. This leads to a
maximum amplitude that is independent of a:

θm =
2 × 106a3B0

[(377)2(0.23)2a6 + (2 × 106)2(5 × 10−5)2a6]1/2

= 1.5 × 104B0. (9.77)

Kirschvink originally argued from data about hair-cell de-
formation that a deflection of 16 ◦ or 0.3 radian is needed.
This would require B0 = 5 × 10−5 T. (He had a slightly
different value because he used a different viscosity. He
also included the torque due to the force on the channel
gate.)

In the absence of the applied field, the thermal fluctu-
ations in angle can be estimated as follows. In the linear
approximation, the work required to displace the particle
an amount θ from the direction of the earth’s field is

W =
∫

τ dθ =
∫

mBearthθ dθ = mBearth
θ2

2
. (9.78)

Equipartition of energy again gives us

θ2
thermal =

kBT

mBearth
=

kBT

(2 × 106)(5 × 10−5)a3
=

kBT

100a3
.

(9.79)
For a 50-nm magnetosome, this gives θrms = 0.58 radian.
For a 100-nm magnetosome it is 0.2 radian, comparable
to the maximum angles deduced from the model in the
preceding paragraph.

Symbols Used in Chapter 9

Symbol Use Units First

used on

page

a Radius m 232

b Spacing m 233

d Displacement of charge m 247

e Electron charge C 227

f Force N 234
f Fraction of time an ion

is in a channel

242

gK Potassium conductance

per unit area

S m−2 240

h Length of cylindrical

channel

m 242

h Planck’s constant J s 244

j, j Electric current density A m−2 235

js Particle current density m−2 s−1 234

jv Volume current density m s−1 235

kB Boltzmann constant J K−1 227

m Magnetic moment A m2 247

n Number of ions 242

pe,pe, ptot Electric dipole moment C m 233
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Symbol Use Units First
used on
page

p, pc, po Probability 240
q Charge C 233
r, r Position m 229

r Radius in cylindrical co-
ordinates

m 236

r Radius in spherical coor-

dinates

m 232

t Time s 242
u rv(r) V m 232
u, uo Energy (normalized to

kBT )

235

v, v′ Potential V 227
vNernst Nernst potential V 236
w Energy J 240
x Position m 229
x Distance along

cylindrical axis
m 236

z Valence 227
A, B, A′, B′ Constants V 231
Bearth Earth’s magnetic field T 247
B0 Amplitude of applied os-

cillating magnetic field

T 248

C, C′ Concentration m−3 227
Ci Concentration of species

i
m−3 230

[Cl] , [Cl′] Chloride concentration m−3 228
C Capacitance F 242
D, Deff, D0 Diffusion constant m2 s−1 234
E, Ex, E0, E1 Electric field V m−1 229
Eext External electric field V m−1 234
Epol Polarization electric

field
V m−1 233

E Photon energy J 244
F Faraday constant C mol−1 227
F,F Force N 234
G Conductance S 235
J Current per unit area of

membrane
A m−2 237

[K] , [K′] Potassium
concentration

m−3 228

L Separation m 235[
M+

]
,
[
M+′] Concentration of imper-

meant cations
m−3 228

[
M−] ,

[
M−′] Concentration of imper-

meant anions
m−3 228

[M] , [M′] Net concentration of im-
permeant ions

m−3 228

N Number per unit volume m−3 233
NA Avogadro’s number mol−1 234
[Na] , [Na′] Sodium concentration m−3 228

P Polarization C m−2 234
R Gas constant J K−1

mol−1
227

R Resistance Ω 235
Rp Pore radius m 236

S Area m2 229
T Temperature K 227
U, W Energy J 242
V Particle velocity m s−1 234
α Proportionality

constant

240

β Linear viscous drag coef-
ficient

N s m−1 234

β Rotational viscous drag
coefficient

N s m 248

ε0 Electrical permittivity
of vacuum

C2 N−1

m−2
229

κ Dielectric constant 229
η Coefficient of viscocity Pa s 248
λD Debye length m 230
λ Characteristic length m 235

ν Frequency Hz or s−1 244
ρ, ρext Charge density C m−3 229
ρ Resistivity Ω m 235

σq , σ′
q Charge per unit area C m−2 233

σ Conductivity S m−1 235
σi Standard deviation of

current
A 242

σn Standard deviation of

number of ions

242

σq Standard deviation of
charge

C 242

σq Charge per unit area C m−2 246
σv Standard deviation of

voltage
V 242

τ Time constant s 235
τ Torque N m 248
τt Tissue time constant s 246
θ Angle 248
φ Angle in cylindrical

coordinates
236

χ Susceptibility 234
ω, ωs, ω0 Solute permeability N−1 s−1 237
ω Angular frequency s−1 246
ωt Characteristic angular

frequency of tissue

s−1

ξ Energy in units of kBT 230
Γ Radial concentration

factor
236

Problems

Section 9.1

Problem 1 The chloride ratio between plasma and in-
terstitial fluid is 0.95. Plasma protein has a valence of
about −18. In the interstitial fluid,

[
Na′
]

=
[
Cl′
]

= 155
mmol l−1. Find the sodium, chloride and protein concen-
trations in the plasma and the potential difference across
the capillary wall, assuming Donnan equilibrium.

Problem 2 Suppose that there are two compartments
with equal volume V = 1 l, separated by a membrane that
is permeable to K and Cl ions. Impermeant positive ions
have a concentration 0 on the left and

[
M′] =

[
M+′] =10

mmol l−1 on the right. The initial concentration of potas-
sium is [K0] = 30 mmol l−1 on the left. T = 310 K.

(a) Find the initial concentrations of potassium and
chloride on both sides and the potential difference.

(b) A fixed amount of potassium chloride (10 mmol) is
added on the left. After things have come to equilibrium,
find the new concentrations and potential difference.

Problem 3 The extracellular space in cartilage contains
large, immobile, negatively charged molecules called gly-
coaminoglycans (GAGs). An early sign of osteoarthritis
is the loss of GAGs. The concentration of the GAGs is
difficult to measure directly, but Shapiro et al. (2002)
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measured the sodium ion concentration in cartilage using
magnetic resonance imaging (see Chapter 18). Assume
the interstitial fluid of the body consists of 150 mM of
sodium ions and 150 mM of chloride ions, and that both
of these ions can move freely between the body fluid and
the extracellular space of cartilage. The cartilage sodium
ion concentration is measured to be 250 mM. If Donnan
equilibrium holds, what is the concentration of the GAGs?
For simplicity, assume the GAGs are monovalent.

Section 9.2

Problem 4 Derive the Poisson equation from Gauss’s
law in Cartesian coordinates in three dimensions.

Problem 5 Consider ions uniformly dispersed in a so-
lution. Find the average linear separation of the ions for
concentrations of 1, 10, 100, and 1,000 mmol l−1.

Problem 6 Verify Eq. 9.20.

Problem 7 Verify the parameters presented in Table
9.2. How accurate is the approximation ex ≈ 1 + x in
this case?

Problem 8 Consider a solution consisting of an equal
concentration, C, of monovalent cations and anions.

(a) Show that ρext = −2Ce sinh
(

ev
kBT

)
.

(b) Let ξ = ev/kBT and r′ = r/λD, where λD is given
by Eq. 9.14. Show that the nonlinear Poisson-Boltzmann
equation (Eq. 9.13) becomes ∇′2ξ = sinh ξ.

Problem 9 Analytical solutions to the nonlinear
Poisson-Boltzmann equation are rare but not unknown.
Consider the case when the potential varies in one dimen-
sion (x), the potential goes to zero at large x, and there
exists equal concentrations of monovalent cations and
anions. Chandler et al. (1965) showed that the solution to
the 1-d Poisson-Boltzmann equation, d2ξ/dx′2 = sinh ξ

(see Prob. 8), is ξ(x′) = 4 tanh−1
[
tanh (ξ0/4) e−x′

]
,

where ξ0 is a constant and 0 < x′ < ∞.
(a) Verify that this expression for satisfies d2ξ/dx′2 =

sinh ξ . (You may need a math handbook with a collection
of hyperbolic function identities).

(b) Linearize the Poisson-Boltzmann equation and
show that its solution is ξ(x′) = ξ0e

−x′
.

(c) Show that both solutions are equal to ξ0 at x′ = 0
and equal to 0 at x′ = ∞.

(d) Compare the solutions for the linear and nonlinear
Poisson-Boltzmann equation at x′ = 0.5 for the cases
ξ0 = 0.1, 1, and 10.

Section 9.3

Problem 10 The value of A used to obtain Eq. 9.30 was
determined by saying that as r → 0, the electric field must
approach ze/κ4πε0r

2. An elaboration of the model would

be to say that the central ion has radius a and that the
electric field at r = a must be the same as the field at the
surface of the ion, ze/κ4πε0a

2. How does this change the
expression for v(r)?

Problem 11 Using the method in Sec. 9.3, derive the
Poisson–Boltzmann equation in cylindrical coordinates
(r, φ, z; see Appendix L) assuming the electric field is ra-
dial and does not depend on φ or z. Solutions to the lin-
earized version of this equation are zeroth order modified
Bessel functions [see Abramowitz and Stegun (1972)].

Section 9.4

Problem 12 A collection of molecular electric dipoles,
each of moment p, are in thermal equilibrium at tem-
perature T . If the dipoles experience an electric field
of strength E, then determine the average value of
cos θ, where θ is the angle between the dipole and the
electric field. Hint: Assume the dipole orientations fol-
low the Boltzmann distribution, which in this case is
exp (pE cos θ/kBT ), and integrate over all solid angles
dΩ = 2π sin θdθ. Show that if pE � kBT the average
of cos θ is proportional to E, but if pE � kBT the av-
erage of cos θ saturates at a value of one. Interpret this
physically.

Section 9.5

Problem 13 Find an expression for the slope of the
Nernst–Planck constant-field curve in Fig. 9.10 when v
is equal to the Nernst potential, v0. Hint: Expand the ex-
ponentials in Eq. 9.46 around v0.

Problem 14 Show that when j = 0, Eq. 9.41 gives
C(x) = C0e

−zev(x)/kBT , as we already know must be true
in equilibrium. Hint: Solve for dv/dx.

Problem 15 The discussion surrounding Eqs. 9.35–9.42
was for a model of ions in a pore with constant electric
field. It is also possible to write an integral version of
the Nernst–Planck equation. Consider a single channel
in which the current is the same for all values of x, the
distance along the channel. If the diffusion constant and
cross-sectional area of the channel are allowed to vary,
and with the usual substitution u(x) = zev(x)/kBT , Eq.
9.42 becomes

i = j(x)S(x) = −zeD(x)S(x)
(

dC

dx
+ C(x)

du

dx

)
.

(a) Show that if each term is multiplied by eu, this can
be written as

ieu(x)

D(x)S(x)
= −ze

(
eu(x) dC

dx
+ C(x)eu(x) du

dx

)
.
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(b) Show that if the integration is carried from x1 to
x2, then the current in the channel is

i = −
ze
[
C(x2)eu(x2) − C(x1)eu(x1)

]

I
,

where the integral

I =
∫ x2

x1

eu(x) dx

S(x)D(x)
,

contains all the information about the channel.

Problem 16 Cardiac cells have a potassium channel,
called “IK1,”which shows inward rectification (larger cur-
rent for potentials more negative than the potassium
Nernst potential, VK , than for potentials more posi-
tive than VK). This channel sometimes is said to show
“anomalous rectification,” Why is it anomalous? [The
mechanism of anomalous rectification is described by
Nichols et al. (1996)].

Section 9.6

Problem 17 Consider a channel that is 100 times more
permeable to potassium than to sodium (ignore all other
ions).

(a) Write an equation for the reversal potential as a
function of the intracellular and extracellular sodium and
potassium ion concentrations.

(b) Assume [Ki] = 150, [Nai] = 50, and [Nae] = 150
mM. Plot vr versus [Ke] using semilog paper. On the same
plot, draw the potassium Nernst potential as a function
of [Ke].

Problem 18 Calculation of the permeability ratios from
measurement of the reversal potential is difficult because
the concentrations inside the axon are not known. One
can overcome this by measuring how the reversal potential
(Eq. 9.57) changes as outside concentrations are varied.
Obtain an equation for the shift of reversal potential if two
measurements are made: one in which the concentration
Ca1 = 0, the other with Cb1 = 0.

Section 9.7

Problem 19 A patch-clamp experiment shows that the
conductance of a single Ca2+ channel is G = 25 pS. The
membrane thickness is b = 6 nm. Use v = 50 mV.

(a) Assuming that the resistivity of the fluid in the
channel is ρ = 0.5 Ω m, find an expression and numerical
value for the channel radius a.

(b) If the conductance per unit area is 1,200 S m−2,
find the number of pores per unit area.

(c) The current is i = Gv, where v is the applied volt-
age. Find an expression for n, the number of calcium
ions per second passing through the channel, in terms of
whichever of parameters G, v, b, and a are necessary.

(d) How many calcium ions are in the channel at one
time, if the calcium concentration is C mmol l−1?

Problem 20 A potassium channel might have a radius
of 0.2 nm and a length of 6 nm. If it contained potassium
at a concentration of 150 mmol l−1, how many potassium
ions on average would be in the channel?

Problem 21 How long does it take for a sodium ion to
drift in the electric field (assumed constant) through a
membrane of thickness L and applied potential v? How
long does it take to move by pure diffusion? Find numer-
ical values when the membrane is 6 nm thick and potential
difference is 70 mV.

Problem 22 Suppose that a sodium pore when open
passes 10 pA and jNa = 0.2 A m−2. Calculate the number
of open pores per unit area and the average linear spacing
between them.

Problem 23 Calculate the current density of sodium
ions in a region of length 6 nm due to (a) pure diffusion
when there is no potential difference and the concentra-
tions are 145 and 15 mmol l−1, (b) pure drift when the
concentration is 145 mmol l−1 and the potential difference
is 70 mV, and (c) both diffusion and drift if the electric
field is constant.

Problem 24 Patch-clamp recording is done with a mi-
cropipette of radius 1 µm.

(a) If the pipette encircles a single channel with con-
ductance 20 pS, what is the channel current when the
channel is open and the voltage across the membrane is
20 mV away from the Nernst potential for the ion in ques-
tion? Make a simple estimate using Ohm’s law.

(b) Assuming a capacitance of 0.01 F m−2, what cur-
rent charges the capacitance of the membrane patch under
the micropipette if a 20-mV change occurs linearly in 5
µs?

Problem 25 The following circuit illustrates the effects
that must be considered when an electrode is used to mea-
sure the properties of a patch of membrane. R1 is the re-
sistance of the electrode. R2 and C are properties of the
membrane. The applied voltage v0(t) is a step at t = 0.
The electrode current is i(t). The voltage across the mem-
brane patch is v(t).

+

−

+

−
Cv 0(t ) v(t )

R1
R2

i(t)

(a) Show that

v0(t) = R1C
dv

dt
+

R1 + R2

R2
v(t).

(b) Show that the time constant is τ = R1R2C/(R1 +R2)
and that τ → R1C if R1 � R2, τ → R2C if R1 � R2.
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(c) If v0(t) is a step of height v0 at t = 0, show that

v(t) = v0
R2

R1 + R2

(
1 − e−t/τ

)

and

i(t) =
v0

R1 + R2

(
1 +

R2

R1
e−t/τ

)
.

(d) Plot v(t) and i(t).
(e) The case R1 � R2 is called voltage-clamped. Find

expressions for v(t) and i(t) in that case and plot them.
Where does the transient current flow? For fixed R2, what
is the time constant?

(f) In the current-clamped case, R1 � R2 and i0 =
v0/R1. Find expressions for v(t) and i(t) and plot them.
For fixed R2, what is the time constant?

(g) Make numerical plots of v(t) and i(t) when v0 =
150 mV, R1 = 106 Ω, C = 5 pF, and R2 = 1011 Ω.

Problem 26 A patch-clamp experiment is done with a
micropipette having a resistance of 106 Ω. When 150 mV
is applied across the membrane, the current is 0 when the
pores are closed and 1 pA when one channel is open. The
membrane capacitance is 4×10−3 F m−2. The microelec-
trode tip has an inner radius of 20 µm. What is the time
constant for voltage changes? Does it depend on whether
the channel has opened or closed?

Section 9.8

Problem 27 Weaver and Astumian (1990) derived Eq.
9.63a for the thermal noise of the transmembrane poten-
tial using a different method than in Sec. 9.8. A resistor
has a voltage noise spectral density, σ2

e(f) (in units of
V2 Hz−1), such that σ2

e(f) = 4kBTR, where f is the fre-
quency. It corresponds to voltage e in the figure. Weaver
and Astumian represented the membrane as a parallel
combination of resistance R and capacitance C. The volt-
age across the capacitor, v, is the transmembrane poten-
tial.

C

R

i
ve

+

–

+

–

(a) For a particular frequency f , derive a relationship
between the spectral density of the voltage fluctuations of
the transmembrane potential, σ2

v(f), and σ2
e(f). (Hint:

Derive an equation governing the voltage in an RC cir-
cuit, and then solve it using the methods described in Ap-
pendix F.)

(b) Integrate σ2
v(f) over all frequencies to get the volt-

age fluctuations σ2
v.

(c) Estimate
√

σ2
v for a spherical cell of radius 10 mm,

having a membrane capacitance per unit area of 0.01 F
m−2.

Section 9.9

Problem 28 In some nerve membranes a region of
“negative resistance” is found, in which the current de-
creases as the voltage is increased.

(a) Where have we seen this behavior before?
(b) To see why it happens, consider two cases. The cur-

rent through the membrane is given by j = g(v)(v − v0),
where g(v) is a property of the membrane, and the Nernst
potential v0 depends on the ion concentration on either
side of the membrane. For this problem let v0 = +50
mV. Calculate j as a function of v for two cases: (a)
g(v) = 1; (b) the conductance increases rapidly with volt-
age: g(v) = (5.6 × 10−7)e0.288v (v in mV).

(c) Negative resistance increases the sensitivity of the
ampullae of Lorenzini, as measured by Lu and Fish-
man. To see why, calculate the output voltage in a two-
resistance voltage divider network (as in Fig. 6.23) and
discuss what happens if R2 is negative.

Section 9.10

Problem 29 Estimate the transmembrane potential that
corresponds to the threshold for electroporation. Compare
it to the normal cell resting potential.

Problem 30 Here is one way that signal-to-noise ratio
can be improved. Suppose that there are N receptors, con-
nected in the nervous system in such a way that an output
response requires a logical AND between all N receptors.
Whether or not there is a response is sampled every T sec-
onds. If the signal exists, all N receptors respond. If the
signal does not exist, each receptor responds to thermal
noise with a probability p (which might be p = e−U/kBT ,
where U is an activation energy). Assume that p is the
same for each receptor, and that whether a receptor has
responded to thermal noise is independent of the response
of all other receptors and also independent of its response
at any other time.

(a)What is the signal-to-noise (S/N) ratio as a func-
tion of N? Suppose that N = 8. Plot S/N as a function
of p.

(b) Find U/kBT vs N for S/N = 4.

Problem 31 Here is another way to look at the signal-
to-noise ratio.

(a) Show that the energy of a charged parallel-plate ca-
pacitor can be written as κε0E

2V/2, where V = Sd is
the volume between the plates. This is a special case of a
general relationship that the energy per unit volume as-
sociated with an electric field is κε0E

2/2.
(b) Use the information about the magnitude of the

electric field in the cell membrane from Fig. 9.19 to cal-
culate the total electrostatic energy in the membrane.

(c) Compare the ratio of the total electrostatic energy
to kBT when the air field is 300 V m−1. This overes-
timates the ratio, because the energy is spread over the
entire membrane and is not available to interact in one
place.
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Problem 32 Obtain Eq. 9.79 from the expression U =
−mB cos θ that was derived in Problem 8.29, by making
a suitable expansion for small angles.

Problem 33 Electric fields in the body caused by expo-
sure to power lines are produced by two mechanisms: di-
rect coupling to the power line electric field, and Fara-
day induction from the power line magnetic field. Con-
sider a high-voltage power line that produces an electric
field of 10 kV/m and a magnetic field of 50 mT [Barnes,
(1995)]. Estimate the electric field induced in the human
body by these two mechanisms. Which is larger? Com-
pare the strength of these powerline-induced electric fields
to the strength of naturally occurring electric field pro-
duced in the body by the heart (estimate the strength of
this endogenous field using the data in Fig. 7.23).

Problem 34 Derive the equations for the electric field
shown in Fig. 9.19. Use the following method. Let
the potentials be voutside = A cos θ/r2 − E1r cos θ and
vintracellular = Br cos θ, where A and B are unknown con-
stants. At the cell surface, the following boundary condi-
tion applies when the cell membrane is thin and obeys
Ohm’s law:

σoutside

(
∂voutside

∂r

)∣∣
∣
∣
r=a

= σintracellular

(
∂vintracellular

∂r

)∣∣
∣
∣
r=a

= (voutside − vintracellular)
σmembrane

b

∣
∣
∣
r=a

(a) Verify that the expressions for voutside and
vintracellular obey Laplace’s equation and behave properly
at r = 0 and r = ∞.

(b) Use the boundary condition to determine A and B.
(c) Use your expressions for the potential to determine

the electric fields given in Fig. 9.19.
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10
Feedback and Control

We now turn to the way in which the body regulates
such things as temperature, oxygen concentration in the
blood, cardiac output, number of red or white blood
cells, and blood concentrations of substances like calcium,
sodium, potassium and glucose. Each of these is regulated
by a feedback loop. A feedback loop exists if variable x de-
termines the value of variable y, and variable y in turn
determines the value of variable x.

Suppose that x is the deviation of a bullet from its de-
sired path. A bullet has no feedback; after it has left the
gun, its deviation from the desired path is determined by
the initial aim of the gun, fall due to gravity, drift caused
by the wind, and air turbulence. An accuracy of one part
in 104 (about a tenth of an inch in 50 ft) is quite good. A
car, on the other hand, is steered by the driver. If devi-
ation from the center of the lane x becomes appreciable,
the driver changes y, the position of the steering wheel.
The value of y determines x through the steering mech-
anism and the tires. It is possible to have a car deviate
less than 1 ft from the desired position within a lane after
driving 3,000 miles, an accuracy of one part in 107. This
is an example of negative feedback. If x gets too large, the
factors in the feedback loop tend to reduce it.

Negative-feedback systems can generate oscillations of
their variables. We see oscillations in physiological sys-
tems on many different time scales, from the rhythmic
activity of the heart, to changes in the rate of breathing,
to daily variations in body temperature, blood pressure,
and hormone levels, to monthly variations such as the
menstrual cycle, to annual variations such as hibernation,
coloring, fur growth, and reproduction.

It is also possible to have positive feedback. Two bick-
ering children can goad each other to new heights of
anger. Positive feedback initiates the action potential de-
scribed in Chapter 6: depolarization of the axon leads to
increased sodium permeability, which further speeds de-
polarization. Blood pressure is regulated in part by sen-

sors in the kidney. A patient with high blood pressure
may suffer damage to the blood vessels, including those
feeding the kidneys, which reduces the blood pressure at
the sensors. The sensors then ask for still higher blood
pressure, which accelerates the damage, which leads to
still higher blood pressure, and so on.

The simplest feedback loop consists of two processes:
one in which y depends on x and another in which x
depends on y. The loop can have many more variables.
Steering the car, in addition to the variables of lane po-
sition and steering wheel position, involves vision, neu-
romuscular processes, all of the variables in the automo-
bile’s steering mechanism, and the Newtonian mechanics
of the car’s motion—with external variables such as the
behavior of other drivers continually bombarding the sys-
tem.

Sections 10.1–10.3 deal with the relationships between
the feedback variables when the system is in equilibrium
or in the steady state, and none of the variables are chang-
ing with time. The techniques for determining the oper-
ating point—the steady-state values of the variables—are
graphical and can be applied to any system if the rela-
tionship among the variables is known.

When the system is not at equilibrium, it returns to
the equilibrium point if the system is stable. Although
the equations describing this return to equilibrium are
usually not linear, Secs. 10.4–10.6 discuss how linear sys-
tems behave when they are not at the operating point. A
linear system may “decay” exponentially to the steady-
state values, or it may exhibit oscillations.

Most systems are not linear. Section 10.7 discusses sys-
tems described by nonlinear equations in one or two di-
mensions, introducing some of the vocabulary and graphi-
cal techniques of nonlinear systems analysis. It closes with
an example of resetting the phase of a biological oscilla-
tor. Section 10.8 introduces the ideas of period doubling
and chaotic behavior through difference equations and
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FIGURE 10.1. Schematic curves of the relationship be-
tween thyroid hormone (T3) and thyroid stimulating hormone
(TSH) in the thyroid gland and in the pituitary.

the logistic map. It then describes a linear map that ap-
pears to be chaotic but is not. Section 10.9 shows how
a linear differential equation that depends on a fixed de-
lay in the variable can exhibit either damped or contin-
uous oscillations. Section 10.10 summarizes the earlier
sections, and Sec. 10.11 gives several biological examples.

A great deal of work was done on modeling physio-
logical feedback systems between 1950 and 1975. Books
from that era include Riggs (1970) and Stark (1968). A
contemporary book that describes physiological models
in detail, including computer modeling, is Khoo (2000).

10.1 Steady-State Relationships
Among Variables

Any feedback loop can be broken down, conceptually
at least, into separate processes that relate a depen-
dent variable to an independent variable and possibly
to some other parameters. Figure 10.1 shows an exam-
ple. In the first process the thyroid gland, in response to
thyroid-stimulating hormone (TSH) from the pituitary,
produces the thyroid hormones thyroxine (T4) and tri-
iodothyronine (T3). An increase of TSH increases produc-
tion of T3 and T4. These processes depend on other para-
meters, such as the amount of iodine available in the body
to incorporate into the T3 and T4. In the second process,
the pituitary increases the production of TSH if the con-
centration of T3 in the blood falls. It may also respond
to T4 and other variables as well. (This is an oversim-
plification. The pituitary actually responds to hormones
secreted by the hypothalamus. The hypothalamus is re-
sponding to the levels of T3 and T4.)

For a quantitative example, consider a simple model
relating the amount of carbon dioxide in the alveoli (air
sacs of the lung) and the rate of breathing (ventilation
rate). If the body is producing CO2 at a constant rate,
a given ventilation rate corresponds to a definite value
of PCO2 , the partial pressure of carbon dioxide in the
alveoli. In the steady state the amount of CO2 exhaled
(the volume of gas leaving the lungs per minute times
PCO2) is just equal to the amount produced in the body.
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FIGURE 10.2. The pressure of CO2 in the alveoli of the lungs
decreases as the ventilation rate is increased. The different
curves correspond to different total metabolic rates.

Figure 10.2 shows this relationship when the pH and PO2

of the blood are fixed. As ventilation rate rises, PCO2

falls. We are ignoring several other feedback loops [Riggs
(1970, pp. 401–418)]. If the metabolic rate rises, PCO2

also rises. Experiments show that ventilation rate y and
alveolar PCO2 (which we will call x) are related by (Riggs,
op. cit.)

x =
15.47p

y − 2.07
. (10.1)

In these equations y (the independent variable) is mea-
sured in l min−1, x (the dependent variable) is in torr,
and parameter p is the body’s oxygen consumption in
mmol min−1. A typical resting person requires p = 15
mmol min−1.

Equation 10.1 can be derived using a simple model for
respiration. Let the metabolic rate of the body be de-
scribed by o, the rate of oxygen consumption in mol s−1.
The respiratory quotient F relates o to the rate of CO2

production, so

Rate of CO2 production = Fo. (10.2)

A typical value of F is 0.8.
Carbon dioxide is removed from the body by breath-

ing. If the rate at which air flows through the alveoli is1

(dV/dt)alveoli in m3 s−1, then the rate of removal is ob-
tained from the ideal-gas law:

Rate of CO2 removal =
x(dV/dt)alveoli

RT
.

The rate (dV/dt)alveoli is less than the ventilation rate y
because air in the trachea and bronchi does not exchange

1Strictly speaking, (dV/dt)alveoli is not the derivative of a func-
tion V . (It always has a positive value, and the lungs are not ex-
panding without limit!) We use the notation to remind ourselves
that it is the rate of air exchange in the alveoli.
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FIGURE 10.3. When PCO2 in the blood rises above 40 torr,
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oxygen or carbon dioxide with the blood: (dV/dt)alveoli =
y − b. Therefore

Rate of CO2 removal =
x(y − b)

RT
. (10.3)

In equilibrium the rate of production is equal to the rate
of removal, so

Fo =
x(y − b)

RT
or

x =
RTFo

y − b
. (10.4)

With the proper conversion of units from p to o, this is
Eq. 10.1.

If the metabolic rate were to change without a change
in breathing rate, x = PCO2 would change drastically.
Suppose that someone exercises moderately so that p =
60 mmol min−1, y = 23 l min−1, and x = 44 torr (point
A in Fig. 10.2). If ventilation rate y remained constant
while p rose to 80 mmol min−1, x = PCO2 would soar to
about 60; if p fell to 40, x would drop to 30. Feedback
ensures that this does not happen. One of the feedback
mechanisms consists of an area of the brain stem that
senses the value of x = PCO2 and causes y to change.
Figure 10.3 shows a typical curve for a 70-kg male [Patton
(1989, p. 1034)]. (The concentration of CO2 in blood is
nearly the same as in the alveoli.)

10.2 Determining the Operating Point

We now have two processes relating the steady-state val-
ues of x and y. For alveolar gas exchange, we know x
as a function of y: x = g(y, p). For the regulatory mech-
anism, we know y = f(x). Together, these constitute a

FIGURE 10.4. A general feedback loop. Either box may in-
volve some parameters.
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FIGURE 10.5. Regulation of the breathing rate. A change of
metabolic rate (parameter p) causes a change in ventilation
rate y, so that x = PCO2 does not change as much.

feedback loop, Fig. 10.4. To find the operating point, these
two equations must be solved simultaneously. The easiest
way to do this is to plot them on the same graph as in Fig.
10.5. When p = 60 mmol min−1, the operating point is
at A. In a plot like this the horizontal axis represents the
independent variable for one process and the dependent
variable for the other.

If the feedback loop includes several variables, for ex-
ample

x = f(w), y = g(x), z = h(y), w = i(z),

we can combine three of these equations to get x = F (y)
and plot it with y = g(x).

10.3 Regulation of a Variable and
Open-Loop Gain

We can also see from Fig. 10.5 how feedback causes y to
change in response to a change in parameter p to reduce
the change in x. If y does not change, a change of p from
60 to 80 causes the operating point to go from A to B.
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FIGURE 10.6. The open loop gain is calculated by opening
the loop at any point. (a) Loop opened in y. (b) Loop opened
in x.

In fact, y increases so that the new operating point is at
D. The feedback loop is said to regulate the value of x.

The gain of a box is the ratio of the change in the
output variable to the change in the input variable. For
the first box in Fig. 10.4,

G1 =
(

∆x

∆y

)

box g, p fixed

=
(

∂x

∂y

)

box g, p fixed

=
(

∂g

∂y

)

p

.

(10.5)
For the second box,

G2 =
(

∆y

∆x

)

box f

=
(

∂y

∂x

)

box f

=
∂f

∂x
. (10.6)

The product G1G2 is called the open-loop gain (OLG).
Its name comes from the fact that if the feedback loop is
opened at any point and a small change is made in the
input variable at the opening, the change in the output
variable is the open-loop gain times the change in the
input variable:

OLG = G1G2 =
(

∂x

∂y

)

box g

(
∂y

∂x

)

box f

=
∂g

∂y

∂f

∂x
.

(10.7)
The open-loop gain can be calculated by taking the deriv-
atives in either order, which corresponds to breaking the
loop after either box (Fig. 10.6).

If the relationships between the derivatives have been
plotted as in Fig. 10.5, it may be easiest to evaluate the
derivatives graphically. In that case, it is easiest to work
with ∂y/∂x for box g. But ∂y/∂x = 1/(∂x/∂y). There-
fore,

OLG = G1G2 =
(∂y/∂x)box f

(∂y/∂x)box g
. (10.8)

It is important to calculate the gain in the direction that
causality operates. Going around the loop the wrong way
gives the reciprocal of the open-loop gain.

We can now calculate how much feedback reduces the
change in x, compared to the case in which there is no
feedback and the value of y going into box g is held fixed.
For box g, where x = g(y, p), we can write for small

changes in p and y

∆x =
(

∂x

∂p

)

y, box g

∆p +
(

∂x

∂y

)

p, box g

∆y

=
(

∂x

∂p

)

y, box g

∆p + G1∆y. (10.9)

When there is no feedback, ∆y is zero and

∆x =
(

∂x

∂p

)

y, box g

∆p.

When there is feedback, there is a value of ∆y to be
included. If the change in x with feedback is ∆x′, the
change in y can be calculated from the second box:

∆y =
(

∂f

∂x

)
∆x′ = G2∆x′. (10.10)

This can be combined with Eq. 10.9:

∆x′ =
(

∂x

∂p

)

y

∆p + G1(G2∆x′) = ∆x + G1G2∆x′

and solved for ∆x′:

∆x′ =
∆x

1 − G1G2
=

∆x

1 − OLG
. (10.11)

The effect of feedback is to cause a change in y which
reduces the change in x by the factor 1 − OLG. When
the feedback is negative, the open-loop gain is negative,
1 − OLG is greater than one, and there is a reduction in
∆x. If the feedback is positive and the open-loop gain is
less than one, ∆x′ is larger than ∆x.

For the respiration example, the equations for each box
are

x = g(y, p) =
15.47p

y − 2.07
,

y = f(x) =
{

10, x ≤ 40,
10 + 2.5(x − 40), x > 40.

(10.12)

The derivatives are
(

∂g

∂p

)

y

=
15.47

y − 2.07
,

G1 =
(

∂g

∂y

)

p

= − 15.47p

(y − 2.07)2
,

G2 =
(

∂f

∂x

)
= 2.5.

At operating point A in Fig. 10.5, the values are

x = 45.07, p = 60, y = 22.67,
(

∂g

∂p

)

y

= 0.757,

G1 = −2.19, G2 = 2.5, OLG = −5.48.

(10.13)

If p changes from 60 to 62, then without feedback ∆x =
(0.757)(2) = 1.5. With feedback, ∆x′ = 1.5/(1 + 5.48) =
0.23.
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10.4 Approach to Equilibrium without
Feedback

The technique described in the preceding section allows
us to determine the equilibrium state or operating point
of a system if we can measure the functions f and g. It
does not tell us how the system behaves when it is not
at the equilibrium point, nor does it tell us how the sys-
tem moves from one point to another when parameter p
is changed. To learn that, we need an equation of motion
for each process or box in the feedback loop. The equa-
tion of motion is usually a differential equation. In real
systems the differential equation is often nonlinear and
difficult to solve. We first consider models described by
linear differential equations, and then we consider some
of the behaviors of nonlinear systems.

The response of a system cannot be infinitely fast. At
equilibrium the rate of exhaling carbon dioxide is the
same as the rate of production throughout the body. If
the rate of production rises in a certain muscle group, the
extra carbon dioxide enters the blood and is distributed
throughout the body, and the carbon dioxide concentra-
tions in the blood and alveoli rise gradually.

To develop a quantitative model, assume that all the
carbon dioxide in the body is stored in a single well-
stirred compartment of volume Vc. This assumption of
uniform concentration is certainly an oversimplification.
The total number of moles is n and the concentration is
n/Vc. The concentration in the blood is related to the
partial pressure in the alveoli by a solubility constant
α: n/Vc = αx. Therefore dn/dt = αVcdx/dt. Moreover,
dn/dt is equal to the rate of production (Eq. 10.2) minus
the rate of removal (Eq. 10.3):

dx

dt
=

Fo

αVc
− x(y − b)

αVcRT
.

We change the definition of F to take account of the fact
that o and p are both the rate of oxygen consumption in
slightly different units (o is in mol s−1 and p is in mmol
min−1):

dx

dt
=

Fp

αVc
− x(y − b)

αVcRT
. (10.14)

This differential equation depends on both x and y and
in fact is nonlinear since the variables are multiplied to-
gether in the last term. At equilibrium dx/dt = 0 and Eq.
10.14 gives Eq. 10.4.

If y is constant (a constant breathing rate, which could
be accomplished by placing the subject on a respirator),
then there is no feedback and Eq. 10.14 is a linear differ-
ential equation with constant coefficients:

dx

dt
+

y0 − b

αVcRT
x =

Fp

αVc
.

It can be solved using the techniques of Appendix F. Sup-
pose that for t ≤ 0, p = p0, x = x0, and y = y0. For t > 0

the subject exercises, so that p = p0 + ∆p, x = x0 + ξ,
and y is unchanged. The equation then becomes

dξ

dt
+

y0 − b

αVcRT
ξ =

F∆p

αVc
. (10.15)

The homogeneous equation is

dξ

dt
+

1
τ1

ξ = 0, (10.16)

where the time constant is

τ1 =
RTαVc

y0 − b
. (10.17)

The homogeneous solution is ξ = Ae−t/τ1 . The particular
solution is

ξ =
FRT

y0 − b
∆p = a∆p,

so the complete solution is ξ = a∆p + Ae−t/τ1 . We now
use the initial condition to determine A. At t = 0 ξ = 0,
so A = −a∆p. The complete solution without feedback
that matches the initial condition is

x − x0 = a∆p(1 − e−t/τ1). (10.18)

Figure 10.7 shows how x changes with time on a plot of
x vs. t and a plot of y vs x. The dots are spaced at equal
times.

10.5 Approach to Equilibrium in a
Feedback Loop with One Time
Constant

Suppose now that y is allowed to change and that η =
y − y0. We can write the equation for the change in x,
Eq. 10.14 as

dξ

dt
=

dx

dt
=

Fp0

αVc
+

F∆p

αVc
− (x0 + ξ)(y0 − b + η)

αVcRT

=
Fp0

αVc
− x0(y0 − b)

αVcRT︸ ︷︷ ︸
=0

+
F∆p

αVc
− ξ(y0 − b)

αVcRT

− x0η

αVcRT
− ξη

αVcRT
.

Multiplying all terms by τ1 as defined in Eq. 10.17, and
identifying

G1 =
(

∂g

∂y

)

p

= − x0

y0 − b
,

we obtain

τ1
dξ

dt
= a∆p − ξ + G1η − ξη

y0 − b
. (10.19)
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FIGURE 10.7. The change in x without feedback in response
to a step change in parameter p. (a) Plot of x vs t. (b) Plot
of y vs x.

The product ξη in the last term makes the equation non-
linear. If we assume that the last term can be neglected,
we have a linear differential equation

τ1
dξ

dt
= a∆p − ξ + G1η. (10.20)

Now assume that the response of the second box is
linear and instantaneous, so that

η = G2ξ. (10.21)

If this is substituted in the linearized equation, Eq. 10.20,
the result is

τ1
dξ

dt
+ (1 − G1G2)ξ = a∆p. (10.22)

The steady-state solution before t = 0 is x0 = a p0/(1 −
G1G2). At t = 0 the oxygen demand is changed to p0 +
∆p. The new steady-state (inhomogeneous) solution is
ξ = a∆p/(1 − G1G2) and the homogeneous solution is
ξ = Ae−t/τ where the time constant is

τ =
τ1

1 − G1G2
. (10.23)

(You can show this by dividing each term in Eq. 10.22
by τ1 and comparing it to the equation for exponential

FIGURE 10.8. The change in x with feedback in response to
a step change in parameter p. (a) Plot of x vs t. The change
in x without feedback is shown for comparison. (b) Plot of y
vs x.

decay.) After combining the homogeneous and inhomoge-
neous solutions and using the initial condition ξ(0) = 0
to determine A, we obtain the final result:

ξ = x − x0 =
a∆p

1 − G1G2

(
1 − e−t/τ

)
. (10.24)

This solution has the same form as Eq. 10.18. Both the
total change in x and the time constant have been re-
duced by the factor 1/(1 − G1G2). The change in y can
be determined from η = G2ξ. The new solution is plotted
along with the old solution in Fig. 10.8. This plot is for a
system in which the open-loop gain is G1G2 = −1.3. The
time constant and the change in x are both reduced by
1/2.3.

It is important to realize that although the feedback re-
duced the time constant, it has not made x change faster.
The curve of x(t) with feedback has always changed
less than the curve without feedback, and it has always
changed more slowly. The reduction in time constant oc-
curs because x does not change as much with feedback
present, so it reaches its asymptotic value more quickly.
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FIGURE 10.9. Changes in x and y after a step change in para-
meter p. (a) The second time constant is negligible compared
to the first; x and y move exponentially to their new equilib-
rium values. (b) The first time constant is negligible; the slow
change in y means that there is no feedback at first. (c) The
second stage anticipates the change in y that will be required;
there is too much feedback at first.

This result assumes that box f has a negligible time
constant. Applied to the respiratory example, it means
that the carbon dioxide–sensing system responds rapidly
compared to the time it takes for carbon dioxide levels
within the blood to change after a change in p. Figure
10.9(a) repeats Fig. 10.8 and shows the changes in x and
y resulting from a step change in p. When the second
time constant is negligible, y is always proportional to x
and the system moves back and forth along line AB.

The CO2 sensors actually take a while to respond. To
see what effect this might have, imagine the extreme case
where the sensors are very slow compared to the change
of carbon dioxide concentration in the blood. In that case,
when p changes, y does not change right away. The system
behaves at first as if there were no feedback, moving from
point A to point C in Fig. 10.9(b). As the feedback slowly
takes effect, the system moves from C to B. When the
exercise ends, the system moves to point D because the

FIGURE 10.10. Change of arterial PCO2 and alveolar ventila-
tion in response to exercise. Note that x = PCO2 is in the up-
per graph and the ventilation rate y is in the lower graph, the
opposite of Fig. 10.9. Reprinted from A. C. Guyton. Textbook
of Medical Physiology, 9th ed. p. 569, c©1995, Saunders–Else-
vier, Inc. with permission of Elsevier. Data are extrapolated
to humans from dogs. The dog experiments are described in
C. R. Bainton (1972). J. Appl. Physiol. 33: 778–787.

subject is breathing too hard. Then it finally moves from
D back to A. The actual system behaves in a manner
somewhere between these two extremes, as we will see in
the next section.

Consider a third possibility, that a regulatory mecha-
nism anticipates the increased metabolic demand. This
might happen if we took deep breaths before we began to
exercise, or if additional muscle movement signaled the
respiratory control center before the carbon dioxide con-
centration had a chance to change. Suppose that such
anticipation is the only feedback mechanism. With the
initiation of exercise, y changes to its final value. The
level of carbon dioxide has not yet built up, so the in-
creased ventilation reduces x below its normal value. We
can approximate this by point D in Fig. 10.9(c). As the
increased activity drives x up, the system moves at con-
stant y to point B. When the exercise stops, y drops
immediately to the resting value, though carbon dioxide
is still coming out of the muscles. The result is that x
rises to point C before finally falling back to point A.

Figure 10.10 shows what actually happens in the con-
trol of respiration. There is a fast neurological control and
a slower chemical control. The result is a combination of
the processes in Figs. 10.9(a)–(c).

If we had not made the linear approximation we would
not have been able to solve the equation, but the behavior
would have been very similar. The nonlinear equation is
obtained by substituting the equation for the second box,
Eq. 10.21, in Eq. 10.19 instead of Eq. 10.20. The resulting
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FIGURE 10.11. Plots of τ1(dξ/dt) vs ξ. The straight dashed
line is the linear approximation, Eq. 10.22. The parabolas are
plots of the nonlinear equation, Eq. 10.25, for two different
values of parameter a∆p. The closed circles show stable fixed
points.

equation is

τ1
dξ

dt
= a∆p − (1 − G1G2)ξ −

G2ξ
2

y0 − b
. (10.25)

Both this and the linear version are plotted in Fig.
10.11 for a∆p = 0. In each case dξ/dt is positive when
ξ < 0 and negative when ξ > 0, so ξ approaches zero as
time goes on. The direction of evolution of ξ is shown by
the arrows on the nonlinear curve. This is often called
a one-dimensional flow. The variable ξ “flows” to the
origin, which is called a stable fixed point of the flow. If
we change a∆p to 10, the curve shifts as indicated by
the dotted line, and the fixed point moves to a slightly
different value of ξ.

This is a particular case of a differential equation in
one dependent variable of the form

dx

dt
= f(x).

A great deal about the solution to the general equation
can be learned by graphing it as we have done above.
When the derivative is positive the function increases
with time, and when it is negative it decreases. Figure
10.12(a) shows a more complicated function, with arrows
showing the direction of the flow. The stable fixed point
is indicated by a solid circle. There are two unstable fixed
points, indicated by open circles. If x has precisely the
value of an unstable fixed point, it remains there be-
cause dx/dt = 0. However, if it is displaced even a small
amount, it flows away from the unstable point. Figure
10.12(b) shows just the x axis with the fixed points and
the arrows. Stable fixed points are often called attractors

dx
/d

t

x

(a)

(b)

x

FIGURE 10.12. A more complicated flow on the line is shown.
(a) Plot of dx/dt vs x. The arrows show the direction that x
changes. The open circles show unstable fixed points, and the
filled circle is a stable fixed point. (b) The fixed points and
the direction of flow are shown on the x axis.

or sinks. The unstable fixed points are called repellers or
sources. Chapter 2 of Strogatz (1994) has an excellent
and detailed discussion of one-dimensional flows.

10.6 A Feedback Loop with Two Time
Constants

In the preceding section we considered a feedback loop in
which only one process had a significant time constant.
The other process responded “instantaneously;” its time
constant was much shorter. Here we consider the case in
which both processes have comparable time constants.
We will see that it is possible for such a (linear) sys-
tem to exhibit damped sinusoidal behavior in response
to an abrupt change in one of the parameters. Whether
it does or not depends on the relative values of the two
time constants and the open-loop gain. We consider both
graphical and analytical techniques for solving this prob-
lem.

In earlier sections we discussed control of breathing.
Equation 10.20 was the linear model for the departure of
one variable from equilibrium:

τ1
dξ

dt
= −ξ + G1η + a∆p.

For the second process, instead of η = G2ξ we assume
that the behavior is given by an analogous equation

τ2
dη

dt
= G2ξ − η. (10.26)
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For negative feedback either G1 or G2 must be negative.
We have a special case of a pair of first-order differential

equations
dx1

dt
= f1(x1, x2),

dx2

dt
= f2(x1, x2).

(10.27)

(Here x1 and x2 are general variables and have no rela-
tionship to the breathing problem considered earlier.)

We first combine the two first-order equations to make
a second-order equation which, because we are using lin-
ear equations, can be solved exactly. To do this, differen-
tiate Eq. 10.20:

τ1
d2ξ

dt2
+

dξ

dt
= a

dp

dt
+ G1

dη

dt
.

Substitute Eq. 10.26 in this and obtain

τ1
d2ξ

dt2
+

dξ

dt
= −G1

τ2
η +

G1G2

τ2
ξ + a

dp

dt
.

To eliminate η, solve Eq. 10.20 for G1η and substitute it
in this equation:

τ1
d2ξ

dt2
+

dξ

dt
= −τ1

τ2

dξ

dt
− 1

τ2
ξ +

a

τ2
p +

G1G2

τ2
ξ + a

dp

dt
.

After like terms are combined, the result is

d2ξ

dt2
+
(

1
τ1

+
1
τ2

)
dξ

dt
+

1 − G1G2

τ1τ2
ξ =

a

τ1τ2
p(t) +

a

τ1

dp

dt
.

(10.28)
This is another linear differential equation with constant
coefficients. The right-hand side is a known function of
time, since p(t) is known. The homogeneous equation is
very common in physics and is called the harmonic oscil-
lator equation. It is usually written in the form

d2ξ

dt2
+ 2α

dξ

dt
+ ω2

0ξ = 0, (10.29a)

with the identifications

2α =
1
τ1

+
1
τ2

=
τ1 + τ2

τ1τ2
(10.29b)

and
ω2

0 =
1 − G1G2

τ1τ2
. (10.29c)

Appendix F shows that as long as α ≥ ω0, the system
is critically damped or overdamped and there will be no
oscillation or “ringing.” This will be the case if

(τ1 + τ2)2

4τ2
1 τ2

2

≥ 1 − G1G2

τ1τ2

or
(τ1 + τ2)2

4τ1τ2
≥ 1 − G1G2. (10.30)

This equation is symmetric in τ1 and τ2. The important
parameter is x = τ1/τ2. There is no ringing when

(1 + x)2

4x
≥ 1 − G1G2.

Since the feedback is negative, G1G2 = − |G1G2|. Then
there is no ringing if

|G1G2| <
x

4
+

1
4x

− 1
2
, G1G2 < 0. (10.31)

If the two time constants are equal (x = 1), the right-
hand side of Eq. 10.31 is zero. There will be ringing if the
open-loop gain has a magnitude greater than zero. For
large values of x (say x > 10), the equation is approxi-
mately |G1G2| < x/4. If the magnitude of the open-loop
gain is larger than this, there will be ringing.

We can see the general behavior of Eqs. 10.20 and 10.26
by examining the behavior of the derivatives. Both deriv-
atives are zero and there is a fixed point when

ξ =
a∆p

1 − G1G2
, η =

G2a∆p

1 − G1G2
.

For ∆p = 0 the fixed point is at the origin. Figures 10.13
and 10.14 show plots of ξ and η for different values of the
gain and damping. The plots of η vs ξ are called state-
space plots or phase-space or phase-plane plots. The plots
shown here spiral to the fixed point. Depending on the
values of the gains and time constants (try positive feed-
back) there can also be exponentially growing solutions.
An extensive literature exists analyzing stability for both
Eqs. 10.27 and their linearized versions. See Chapters 5
and 6 of Strogatz (1994) or Chapter 3 of Hilborn (2000).

10.7 Models Using Nonlinear
Differential Equations

We have used many models in this book. In Chapter 2 we
introduced a linear differential equation that leads to ex-
ponential growth or decay. We used it to model tumor and
bacterial growth and the movement of drugs through the
body. We briefly examined some nonlinear extensions of
this model. In Chapter 4, we modeled diffusion processes
with linear equations—Fick’s first and second laws—and
we used a linear model to describe solvent drag. In Chap-
ter 5, we used the model of a right-cylindrical pore. In
Chapter 6, we used both a linear model—electrotonus—
and a nonlinear model—the Hodgkin–Huxley equations.
In this chapter we introduced a linear model for feedback,
and we saw how two linear processes in a feedback loop
could lead to oscillations, the linear harmonic oscillator.

Linear models have one advantage: they can be solved
exactly. But most processes in nature are not linear.
Jules-Henri Poincaré realized around 1900 that systems
described exactly by the completely deterministic equa-
tions of Newton’s laws could exhibit wild behavior.
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FIGURE 10.13. A solution to Eq. 10.28 is plotted that has a value 1 and time derivative zero when t = 0. The variable η is
obtained from ξ by using Eq. 10.26. Plots of ξ and η vs t are shown on the left. A state-space plot of η vs ξ is shown on the
right.

Poincaré was studying the three-body problem in astron-
omy (such as sun–earth–moon). While we are all familiar
with the fact that the motion of the sun–earth–moon sys-
tem is evolving smoothly with time and that eclipses can
be predicted centuries in advance, this smooth behavior
does not happen for all systems. For certain ranges of pa-
rameters (such as the masses of the objects) and initial
positions and velocities, the solutions can exhibit behav-
ior that is now termed chaotic. If we consider the mo-
tion that results from two sets of initial conditions that
differ from each other only by an infinitesimal amount
in one of the variables, we find that in chaotic behavior
there can be solutions that diverge exponentially from
each other as time goes on, even though the solutions
remain bounded. Poincaré developed some geometrical
techniques for studying the behavior of such systems.
Thorough study of nonlinear systems requires the use of
a digital computer. As a result, it has only been since the
1970s that we have realized how often chaotic behavior
can occur in a system governed by deterministic equa-
tions. With computers we have gained more insight into
the properties of chaotic behavior.

Just as the harmonic oscillator provides a model for
behavior seen in many contexts from electric circuits to
shock absorbers in automobiles to the endocrine system,
certain features of nonlinear models have wide applicabil-
ity. These include period doubling, the ability to reset the
phase (timing) of a nonlinear oscillator, and deterministic
chaos.

Some have said that Newtonian physics has been over-
thrown by chaos. This is not true. The same equations
hold; predictable motions with which we have long been
familiar still take place. Much of our current technology
is based on them. We build television sets and send a
spacecraft to explore several planets in succession. With
chaos, we have come to understand a rich set of solutions

to these same equations that we were not equipped to
study before.

Many books about nonlinear systems have been writ-
ten. A particularly interesting one for this audience is
by Kaplan and Glass (1995). It is written for biologists
and has many clear and relevant examples. Others are
by Glass and Mackey (1988), by Hilborn (2000), and by
Strogatz (1994).

Space limitations prevent more than a brief hint at
some of the features of nonlinear dynamics, here and in
Chapter 11. In this section we will discuss some one- and
two-dimensional nonlinear differential equations. These
will not lead to chaos, but will allow us to describe a
very simple model for phase resetting. In Sec. 10.8 we
will discuss equations that exhibit chaotic behavior.

10.7.1 Describing a Nonlinear System

Suppose that a nonlinear system with N variables can be
described by a set of first-order differential equations:

dx1

dt
= f1(x1, x2, . . . , xN ),

dx2

dt
= f2(x1, x2, . . . , xN ),

. . . ,
dxN

dt
= fN (x1, x2, . . . , xN ).

(10.32)

(These are an extension of the pair of differential equa-
tions we saw as Eqs. 10.27. Our model of breathing had
two variables. It would be more realistic to use a breath-
ing model with more variables, since alveolar ventilation
also depends on arterial pH, weakly on oxygen partial
pressure, and on the nervous factors that were described
earlier.)
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FIGURE 10.14. Additional state-space plots for the same initial conditions as in Fig. 10.13, but with different values of the
parameters.

If the equations are cast in this form with N variables,
then N initial conditions are required, corresponding to
the constant of integration required for each equation. It
is customary to say that there are N degrees of freedom.
This is the language of system dynamics. This definition
of degrees of freedom is different from what we used in
Chap. 3, where each degree of freedom was represented
by a second-order differential equation (d2x/dt2 = Fx/m,
for example) and two initial conditions were required for
each degree of freedom.

We can put Newton’s second law in this form by writ-
ing two first-order differential equations instead of one
second-order equation. For motion in one dimension, in-
stead of

m
d2x

dt2
= F (x, v),

we write a pair of first-order equations:

dv

dt
=

F (x, v)
m

,
dx

dt
= v.

This system has two degrees of freedom in our new ter-
minology. In either description, two initial conditions are
required.

In many situations the force (or more generally the
function on the right-hand side of Eqs. 10.32) is time
dependent. In standard form, the functions on the right
do not depend on time. This is remedied by introducing
one more variable, xN+1 = t. The additional differential
equation is dxN+1/dt = 1.

The evolution or “motion” of the system can be
thought of as a trajectory in N -dimensional space, start-
ing from the point that represents the initial conditions.

Time is a parameter. We have seen an example of this
for two dimensions in Figs. 10.13 and 10.14. It is possible
to prove that two distinct trajectories cannot intersect in
a finite period of time and that a single trajectory can-
not cross itself at a later time [see Hilborn (2000, p. 77)
or Strogatz (1994, p. 149).] This is true in the full N -
dimensional space; if we were to measure only two vari-
ables, we could see apparent intersections in the state
plane that we were observing. This means that chaotic
behavior, in which variables appear to change wildly and
two-dimensional trajectories appear to cross, does not oc-
cur for a pair of differential equations of the form in Eqs.
10.32. At least three variables are required. A system with
two degrees of freedom that is externally driven2 can ex-
hibit chaotic behavior because of the additional variable
xN+1 that is introduced.

10.7.2 An Example of Phase Resetting: The
Radial Isochron Clock

In Chapter 2 we studied the logistic differential equation

dy

dt
= by

(
1 − y

y∞

)
.

It is convenient to rewrite the logistic equation in terms
of the dimensionless variable x = y/y∞:

dx

dt
= bx(1 − x). (10.33)

2That is, one of the functions on the right-hand side of the set

of equations depends on time.
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FIGURE 10.15. Plot of dx/dt vs x for the logistic differential
equation.

This separates the scale factor y∞ from the dynamic fac-
tor b that tells how rapidly y and x are changing.3 A plot
of dx/dt vs x is shown in Fig. 10.15. There is an unstable
fixed point at x = 0 and a stable fixed point at x = 1.
The logistic equation is one of a whole class of nonlin-
ear first-order differential equations for which dx/dt as a
function of x has a maximum. It has been studied exten-
sively because of its relative simplicity, and it has been
used for population modeling. (Better models are avail-
able.4 The logistic model assumes that the population is
independent of the populations of other species, that the
growth of the species does not affect the carrying capac-
ity y∞, and that the population increases smoothly with
time.)

Many of the important features of nonlinear systems
do not occur with one degree of freedom. We can make
a very simple model system that displays the properties
of systems with two degrees of freedom by combining the
logistic equation for variable r with an angle variable θ
that increases at a constant rate:

dr

dt
= ar(1 − r),

dθ

dt
= 2π. (10.34)

This has the form of Eqs. 10.32. We can interpret (r, θ)
as the polar coordinates of a point in the xy plane. When
t has increased from 0 to 1 the angle has increased from
0 to 2π, which is equivalent to starting again with θ = 0.
This system has been used by many authors. Glass and
Mackey (1988) have proposed that it be called the radial
isochron clock. Typical behavior is shown in Fig. 10.16(a).
If r = 1 there is a circular orbit corresponding to the
stable fixed point of Eq. 10.33. Such a stable orbit is
called a stable limit cycle.5 There is an unstable limit
cycle, r = 0, corresponding to the unstable fixed point
of Eq. 10.33. Any initial conditions except r = 0 give
trajectories that move toward the stable circular limit
cycle as time progresses. The set of points in the xy plane
lying on orbits that move to the limit cycle as t → ∞

3We could also, if we wish, define a new time scale, t′ = bt, and

deal with the completely dimensionless equation dx/dt′ = x(1−x).
4See Begon et al. (1996).
5A stable limit cycle is an oscillation in the solutions to a set

of differential equations that is always reestablished following any

small perturbation.
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FIGURE 10.16. A system with two degrees of freedom. (a)
The limit cycle is represented by the solid circle. Systems
starting elsewhere in the plane have trajectories that approach
the limit cycle as t → ∞, as shown by the dashed lines. (b)
The value of x = r cos θ is plotted as a function of time. (c) A
timing pulse is generated every time θ is a multiple of 2π.

is called the basin of attraction for the limit cycle. In
this case the basin of attraction includes all points except
the origin. If we look at the time behavior, Fig. 10.16(b)
shows the behavior of x = r cos θ on the limit cycle. The
oscillator might provide timing information as the phase
moves through some value. Figure 10.16(c) shows a series
of pulses every time θ is a multiple of 2π.

In many cases the differential equations contain one
or more parameters that can be varied, and the number
and shape of the limit cycles change as the parameters are
changed. A point in parameter space at which the number
of limit cycles changes or their stability changes is called
a bifurcation. We will see examples of bifurcations in the
next section. See the references for a much more extensive
discussion.

One important characteristic of nonlinear oscillators is
that a single pulse can reset their phase. If they are sub-
ject to a series of periodic pulses they can be entrained to



10.7 Models Using Nonlinear Differential Equations 267

T0 T T0 T0

2π −θ' 2π

Ts

θs
t

FIGURE 10.17. Resetting the phase of an oscillation. The
oscillator fires regularly with period T0. A stimulus a time Ts

after it has fired causes a period of length T , after which the
periods are again T0.

oscillate at the driving frequency. (The nonlinear oscilla-
tors that sweep the electron beam across the screen of a
television tube are entrained by synchronization pulses in
the television signal.) Our simple two-dimensional model
exhibits phase resetting that is very similar to that ex-
hibited by cardiac tissue.6

Suppose that a cardiac pacemaker depolarizes every T0

seconds and that it can be modeled by our radial isochron
clock. Assume that depolarization occurs when θ = 0 or a
multiple of 2π. A stimulus is applied at time Ts after the
beginning of the cycle, as shown in Fig. 10.17. As a result
the time from the previous depolarization to the next one
is changed to T , after which the period reverts to T0. (In
a real experiment, it may be necessary to wait several
cycles before measuring so that any transient behavior
has time to decay, and then extrapolate back to find the
value of T .) Often a stimulus early in the cycle is found
to delay the next depolarization, while a stimulus late
in the cycle advances it. Our model provides a simple
geometric interpretation of this behavior, independent of
any knowledge of the detailed dynamics.

A delayed depolarization is shown in Fig. 10.17. Pulses
are occurring every T0 seconds when the phase is a mul-
tiple of 2π (that is, 0). A stimulus is applied at a time Ts

after the previous pulse, at which time the phase is θs.
Since the phase advances linearly, we have the proportion

Ts

T0
=

θs

2π
.

Suppose the stimulus causes the system to move to a
new state with a phase θ′, which we do not yet know.
Since dθ/dt is constant in our model, the phase advances
after the stimulus at the same rate as it would have with-
out the stimulus. The next pulse occurs when the phase
again reaches 2π. This occurs at a time T after the previ-
ous pulse, or a time T − Ts after the stimulus, when the
phase has increased from θ′ to 2π. Therefore

T − Ts

T0
=

2π − θ′

2π

6This discussion is based on Glass and Mackey (1988), p. 104ff.

See also the works by Winfree (1987, 1995, 2001). Strogatz (2003)

discusses phase resetting and other nonlinear phenomena in an en-

gaging and nonmathematical manner.
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FIGURE 10.18. The limit-cycle oscillator model for resetting
the phase of an oscillation. At phase θs a stimulus changes
the value of x by an amount +b. (a) For angles 0 < θs < π,
this places the system on a trajectory with a smaller phase
θ′, delaying the next pulse. (b) For angles π < θs < 2π, the
stimulus results in a larger phase and the next pulse occurs
earlier. The system returns to the limit cycle while θ continues
to increase at a constant rate.

and
T

T0
=

2π + θs − θ′

2π
. (10.35)

We use our limit cycle model to relate θs and θ′ as
shown in Fig. 10.18. The system has been moving on a
circle of unit radius representing the stable limit cycle.
Assume that the only effect of the stimulus is to shift
the value of x by a distance b along the +x axis. For the
angles shown in Fig. 10.18(a) this results in a point with
θ′ < θs, a delay in the phase or T > T0. For an initial
angle in the lower half plane [Fig. 10.18(b)] it results in
θ′ > θs and T < T0. The relation between the two angles
can be obtained from the triangles:

cos θ′ =
cos θs + b

[
(cos θs + b)2 + sin2 θs

]1/2

=
cos θs + b

(1 + b2 + 2b cos θs)1/2
.

The stimulus changed both θ and r. After the stimulus
each evolves independently according to its own differen-
tial equation. The trajectory returns to the limit cycle as
r returns to its attractor, but the phase is forever altered.
Figure 10.19(a) is a plot of θ′ vs θs for two values of b.
When b < 1, θ′ takes on all values, while for b > 1, θ′ is
restricted to values near 0 and 2π. The first case is called
a type-1 phase resetting, and the second is called a type-
0 phase resetting. Figure 10.19(b) combines these results
with Eq. 10.35 to determine T/T0 as a function of Ts/T0.
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FIGURE 10.19. Plots of (a) the new phase vs the old phase
and (b) the length of the period vs the time when the stimulus
is applied.

FIGURE 10.20. Phase resetting of a spontaneously oscillat-
ing Purkinje fiber by stimulation with an electrical impulse.
The abscissa is Ts/T0 expressed as a percentage. The ordi-
nate is T/T0 expressed as a percentage. Two different stimulus
strengths were used. Compare the smaller stimulus (the open
circles) to b = 0.95 and the larger stimulus (solid triangles) to
b = 1.05 in Fig. 10.19(b). Reproduced with permission from J.
Jalife and G. K. Moe (1976). Effect of electrotonic potential
on pacemaker activity of canine Purkinje fibers in relation to
parasystole. Circ. Res. 39: 801–808. Copyright 1976 American
Heart Association.

Figure 10.20 shows experimental data for electrotoni-
cally stimulated Purkinje fibers from the conduction sys-
tem of a dog. The fibers were undergoing spontaneous
oscillation with T0 = 1.575 s. Stimuli of two different
amplitudes were applied at different parts of the cycle,
Ts/T0. Two different curves were obtained. The one with
larger current looks like the curve with b = 1.05 in Fig.
10.19(b), while the one with smaller current looks like the
curve with b = 0.95.

FIGURE 10.21. Phase resetting in a Hodgkin–Huxley model.
The coupling interval is the delay from the previous pulse
to the stimulation pulse in fractions of a period. The ordinate
shows the size of the stimulus pulse in mV. The contours show
the latency or time from the stimulus to the next pulse, mea-
sured in twentieths of a period. From A. T. Winfree (1987),
When Time Breaks Down, Princeton, NJ, Princeton Univer-
sity Press. Copyright c©1987. Reproduced by permission of
Prof. Arthur Winfree.

10.7.3 Stopping an Oscillator

It is theoretically possible to apply a stimulus that would
put the system at the point r = 0 in the state space.
In that case it would not oscillate, though for this model
r = 0 is an unstable equilibrium point and any slight per-
turbation would lead the system back to the stable limit
cycle. In more complicated models it is possible to have a
region of state space corresponding to no oscillation and
a basin of attraction that leads to it.

Figure 10.21 shows the results of a calculation by Win-
free (1987) of the effect of stimuli on resetting the phase
of the Hodgkin–Huxley equations adjusted to oscillate
spontaneously. The abscissa is the coupling interval or
the time after the previous pulse at which the stimulus is
delivered. The ordinate is the height of the depolarizing
pulse in mV. The contour lines show different values of
the latency—the time in twentieths of a cycle period from
the stimulus to the next pulse. Winfree calls the shaded
region of state space where annihilation occurs a “black
hole.”7

10.8 Difference Equations and Chaotic
Behavior

We have alluded to the possibility of chaotic behavior,
but we have not yet seen it. Chaotic behavior of nonlin-
ear differential equations requires three degrees of free-
dom. It is possible to see chaotic behavior in difference
equations with a single degree of freedom because the

7See Winfree (1987), especially Chapters 3 and 4, or Glass and
Mackey (1988), pp. 93–97.
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restriction that the trajectory cannot cross itself or an-
other trajectory no longer applies. It arose from the con-
tinuous nature of the trajectories for a system of differ-
ential equations.

10.8.1 The Logistic Map: Period Doubling and
Deterministic Chaos

We considered the logistic differential equation as a
model for population growth. The differential equation
assumes that the population changes continuously. For
some species each generation is distinct, and a difference
equation is a better model of the population than a dif-
ferential equation. An example might be an insect popu-
lation where one generation lays eggs and dies, and the
next year a new generation emerges. A model that has
been used for this case is the logistic difference equation
or logistic map

yj+1 = ayj

(
1 − yj

y∞

)

with a > 0 and j the generation number. It can again be
cast in dimensionless form by defining xj = yj/y∞:

xj+1 = axj(1 − xj). (10.36)

While superficially this looks like the logistic differen-
tial equation, it leads to very different behavior. The sta-
ble points are not even the same. A plot of xj+1 vs xj

is a parabola, from which we can immediately see the
following properties of the logistic map:

xj < 0, xj+1 < 0,

xj = 0, xj+1 = 0,

0 < xj < 1, xj+1 > 0,

xj = 1, xj+1 = 0,

xj > 1, xj+1 < 0.

If we are to use this as a population model, we must
restrict x to values between 0 and 1 so the values do
not go to −∞. In order to keep successive values of the
map within the interval (0, 1) we also make the restriction
a < 4.

For the logistic differential equation, x = 1 was a point
of stable equilibrium. However, for the logistic map, if
xj = 1 the next value is xj+1 = 0. The equilibrium value
x∗ can be obtained by solving Eq. 10.36 with xj+1 = xj =
x∗:

x∗ = ax∗(1 − x∗) = 1 − 1/a. (10.37)

Point x∗ can be interpreted graphically as the intersec-
tion of Eq. 10.36 with the equation xj+1 = xj as shown
in Fig. 10.22. You can see from either the graph or from
Eq. 10.37 that there is no solution for positive x if a < 1.

1.0

0.5

0.0

x  
j+

1

1.00.50.0

xj

a = 1

a = 3

x* = 2/3

FIGURE 10.22. Plot of xj+1 vs xj for the logistic difference
equation or logistic map, for two values of parameter a.

For a = 1 the solution occurs at x∗ = 0. For a = 3 the
equilibrium solution is x = 2/3. Figure 10.23 shows how,
for a = 2.9 and an initial value x0 = 0.2, the values of xj

approach the equilibrium value x∗ = 0.655. This equilib-
rium point is called an attractor.

Figure 10.23 also shows the remarkable behavior that
results when a is increased to 3.1. The values of xj do
not come to equilibrium. Rather, they oscillate about the
former equilibrium value, taking on first a larger value
and then a smaller value. This is called a period-2 cycle.
The behavior of the map has undergone period doubling.
What is different about this value of a? Nothing looks
strange about Fig. 10.22. But it turns out that if we con-
sider the slope of the graph of xj+1 vs xj at x∗, we find
that for a > 3 the slope of the curve at the intersection
has a magnitude greater than 1. Many books explore the
implications of this feature.

The period doubling continues with increasing a. For
a > 3.449 there is a cycle of period 4. A plot of the
period-4 cycle for a = 3.5 is also shown in Fig. 10.23.
For a > 3.54409 there is a cycle of period 8. The period
doubling continues, with periods 2N occurring at more
and more closely spaced values of a. When a > 3.569946,
for many values of a the behavior is aperiodic, and the
values of xj never form a repeating sequence. Remarkably,
there are ranges of a in this region for which a repeating
sequence again occurs, but they are very narrow. The
details of this behavior are found in many texts. In the
context of ecology they are reviewed in a classic paper by
May (1976).

For a < 3.569946, starting from different initial values
x0 leads after a number of iterations to the same set of
values for the xj . For values of a larger than this, starting
from slightly different values of x0 usually leads to very
different values of xj , and the differences become greater



270 10. Feedback and Control

1.0

0.8

0.6

0.4

0.2

0.0

x j

50403020100
j

a = 2.9

1.0

0.8

0.6

0.4

0.2

0.0

x j

50403020100
j

a = 3.1

1.0

0.8

0.6

0.4

0.2

0.0

x j

50403020100
j

a = 3.5

FIGURE 10.23. Plots of xj vs j for different values of a, show-
ing how the sequence of values converges to one, two, or four
values of x called the attractors.
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FIGURE 10.24. For this value of a the solution is aperiodic.
There is no attractor.

and greater for larger values of j. This is shown in Fig.
10.24 for a = 3.9. The sequence is plotted from j = 301 to
j = 425. The solid circles represent the sequence starting
with x0 = 0.20; the open circles represent the sequence
for x0 = 0.21.

This is an example of chaotic behavior or deterministic
chaos. Deterministic chaos has four important character-
istics:

1. The system is deterministic, governed by a set of
equations that define the evolution of the system.

2. The behavior is bounded. It does not go off to infin-
ity.

3. The behavior of the variables is aperiodic in the
chaotic regime. The values never repeat.

4. The behavior depends very sensitively on the initial
conditions.

10.8.2 The Bifurcation Diagram

Figure 10.25 shows the values of xj that occur after any
transients have died away for different values of parame-
ter a. The diagram was made by picking a value of a. A
value of x0 was selected and the iterations were made.
After 50 iterations, the next 300 values of xj were plot-
ted. Then a was incremented slightly and the process was
repeated. This is called a bifurcation diagram. The figure
shows the range 1 < a < 4. The asymptotic value of xj

rises according to x∗ = 1− 1/a until period doubling oc-
curs at a = 3. A four-cycle appears for a > 3.449, and for
a > 3.569946 chaos sets in. Within the chaotic region are
very narrow bands of finite periodicity.

Figure 10.26 shows a feature of many chaotic systems
called self-similarity. The bifurcation diagram is plotted

 1   

 0   

x 

 1   a  4   

FIGURE 10.25. A bifurcation diagram for the logistic map,
showing 300 values of xj for values of a between 1 and 4. The
plot was made using the Macintosh software A Dimension of
Chaos by Matthew A. Hall.
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FIGURE 10.26. An example of self-similarity. The top
curve shows 3.4 < a < 4. The bottom curve shows
3.742 < a < 3.745. Note its similarity to the top curve. The
plot was made using the Macintosh software A Dimension of
Chaos by Matthew A. Hall.

for two ranges of a: 3.4–4.0 and 3.743–3.745. The x scale
is expanded in the second diagram. Note the similarity of
the two bifurcation diagrams.

Even though the plot of xj vs, j in Fig. 10.24 has no
obvious pattern, the values of xj were obtained from the
logistic map. When we plot xj vs xj+1 the points fall on
the map (Fig. 10.27).

The simplest systems in which chaotic behavior can be
seen are first-order difference equations in which xj+1 is a
function of xj . The function is peaked and “tunable” by
some parameter. Chaotic behavior occurs for some values
of the parameter. In fact, it appears that the ratios of
the parameter values involved in the period doubling and
approach to chaos may be independent of the particular
shape of the curve.8

8See Hilborn (1995), Chapter 2, Kaplan and Glass (1995), p. 30,

or Strogatz (1994), p. 370.
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FIGURE 10.27. A plot of xj+1 vs xj for the data of Fig. 10.24
recovers the logistic map.

10.8.3 Quasiperiodicity

Some systems exhibit quasiperiodicity. Consider the map
xj+1 = xj + b where b is a fixed parameter. Wrap the
function back on itself so that x remains in the interval
(0, 1). This is done by using the modulo or remainder
function.9 The map is

xj+1 = xj + b (mod 1) . (10.38)

The function is plotted in Fig. 10.28 for b = 0.3. The
map is plotted in (a). The apparent discontinuities are
due to the wrapping. A sequence of 50 points is plotted
in Fig. 10.28(b). Because b = 3/10 is a rational fraction,
the points repeat themselves exactly every 10 steps. This
can be seen in Fig. 10.28(c), which plots 128 consecutive
points on a circle. The angle counterclockwise from the
horizontal axis is θj = 2πxj . The 128 values all fall at
10 points on the circle. The plot of xj+1 vs xj in Fig.
10.28(d) has 10 points that fall on the map.

Compare this with Fig. 10.29, which is a plot of the
same map for an irrational value of the parameter, b =
1/π. The curve in (a) looks very similar. However, the
values of xj never repeat. This is difficult to see from Fig.
10.29(b), but can be seen in (c), where the 128 points are
all at different values of θ. If more points were plotted, the
circle would be completely filled. All of the points plotted
in (d) are also different, but of course they lie on the map
function. If we were to make a bifurcation diagram the
values of xj would fill all points on the graph, unless
b were a rational fraction, when there would be a finite
number of points. This appears at first sight to be chaotic

9The function x mod n gives the number that remains after sub-

tracting n from x enough times so that the result is less than 1. For

example, 1.5742 mod 1 = 0.5742; 7.5 mod 1 = 0.5.
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FIGURE 10.28. The linear map xj+1 = xj + 0.3 (mod 1). (a)
Plot of the map. (b) Plot of xj vs j for 50 points. (c) The
map plotted on a circle for 128 values of j, which lie on only
10 points. (d) A plot of 128 values of xj+1 vs xj falls on 10
points on the map.
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FIGURE 10.29. The linear map xj+1 = xj + 1/π (mod 1). (a)
Plot of the map. (b) Plot of xj vs j for 50 points. (c) The map
plotted on a circle for 128 points. (d) Plot of xj+1 vs xj gives
128 points on the map.

behavior, but it is not. The function is deterministic, it is
bounded, and the values of x never repeat. But it does not
satisfy the last criterion: sensitive dependence on initial
conditions. In chaotic behavior, two trajectories that start
from initial points that are very close diverge in time. If a

FIGURE 10.30. A two-stage feedback loop. The upper process
is described by a single time constant; the lower one introduces
a fixed time delay.

slightly different value of x0 is used for this map, all of the
values in the new sequence are shifted from the original
sequence by the same amount. There is no divergence of
the two solutions. In quasiperiodicity, the trajectories for
two points that are initially close remain close.

10.9 A Feedback Loop with a Time
Constant and a Fixed Delay

In Sec. 10.6 we saw that if both processes in a two-stage
feedback system had comparable time constants, there
was the possibility for damped oscillations or “ringing.”
Another possibility is that a portion of the system may
respond to values of a state variable at some earlier time.
The fixed time delay could be the time it takes a signal
to travel along a nerve or the time it takes for a chemical
to pass through a blood vessel.

We will consider a linear model for such a system, as
shown in Fig. 10.30:

τ1
dy

dt
+ y = G1x + p1,

x = G2y(t − td) + p2.
(10.39)

The first equation is like those in Sec. 10.6, except that
the factor a multiplying p1 is set equal to unity. The sec-
ond equation says that x(t) is proportional to the value
of y at the earlier time t − td, plus some other parame-
ter p2. These can be combined to give a delay-differential
equation:

τ1
dy

dt
= −y + G1G2y(t − td) + p1 + G1p2

or, defining p = p1 + G1p2 to eliminate clutter,

τ1
dy

dt
= −y + G1G2y(t − td) + p. (10.40)

This equation can give rise to sustained as well as damped
oscillations. It is not hard to see why. Suppose that y is
above some equilibrium value and that G1G2 < 0. The
first term on the right causes y to decrease toward equi-
librium. But when it is nearly at equilibrium the second
term, responding to an earlier positive value of y, con-
tinues to make y decrease so y goes negative. Now y is
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below the equilibrium value and the same arguments can
be applied as y increases. This paragraph could go on for
a long time.

Why do we now have oscillations for a system with
apparently only one degree of freedom? The reason is the
delay term. In order to specify the initial state of the
system at t = 0, we must specify the value of y for all
times −td < t < 0. This is effectively an infinite number
of values of y. Delay differential equations have an infinite
number of degrees of freedom.

The mathematics for such a system become quite in-
volved (even for the linear system we discuss here). The
techniques for solving the equation were first described
by Hayes (1950). The equation has been considered for
biological examples by Glass and Mackey (1988).

The derivative is zero and the equation has a fixed
point yf when yf = p/(1 − G1G2). It is convenient to
work with the new variable w = y − yf and rewrite Eq.
10.40 as

τ1
dw

dt
= −w + G1G2w(t − td).

We make another simplifying assumption; that the mag-
nitude of the open-loop gain G1G2 is so much greater
than 1 that the −w term can be neglected.10 Then the
equation becomes

dw

dt
=

G1G2

τ1
w(t − td).

Now recall that since G1G2 � −1, this coefficient is
approximately the negative of the reciprocal of the time
constant with no delay and with feedback [see Eq. 10.23].
Therefore the equation we will solve is

dw

dt
= −1

τ
w(t − td). (10.41)

If the delay time is zero, this is the familiar equation for
exponential decay. As we argued above, a delay can allow
oscillation. One can show by substitution that for certain
values of the parameters one possible solution has the
form w(t) = w0e

−γt cos ωt. We will find the conditions
for a steady oscillation of the form w(t) = w0 cos ωt. The
left-hand side of Eq. 10.41 is dw/dt = −ωw0 sin ωt. The
right-hand side is

−(1/τ)w0 cos(ωt − ωtd) = −(1/τ)w0 cos ωt cos ωtd

− (1/τ)w0 sin ωt sin ωtd.

Therefore the proposed solution will satisfy Eq. 10.41
only if

−ωw0 sin ωt = −(1/τ)w0 sinωtd sin ωt

and
0 = −(1/τ)w0 cos ωtd cos ωt,

10If you are considering a problem where this is not a reasonable
assumption, see the Appendix of Glass and Mackey (1988).

from which we get ω = 1/τ and cosωtd = 0 or ωtd = π/2.
Combining these gives td/τ = π/2. From these we see
exactly how the sustained oscillation occurs. The delay
time and frequency are such that the shift is exactly one-
quarter cycle. This is the same shift that would be ob-
tained by taking the second time derivative of the unde-
layed function, which would lead to the undamped har-
monic oscillator equation.

10.10 Negative Feedback Loops: A
Summary

The last several sections have been mathematically com-
plex. However, you do not need to memorize a large num-
ber of equations to carry away the heart of what is in
them. The essential features are as follows:

1. If the equations relating the input and output vari-
ables of each process of a negative feedback loop are
known, then their simultaneous solution gives the
equilibrium or steady-state values of the variables.
(In a biological system it may be very difficult to get
these equations.) The solution is called the operating
point or a fixed point of the system of equations.

2. If a single process in the negative feedback loop de-
termines the time behavior, and the rate of return
of a variable to equilibrium is proportional to the
distance of that variable from equilibrium, then the
return to equilibrium is an exponential decay and
the system can be characterized by a time constant.

3. In a negative feedback system one variable changes
to stabilize another variable. The amount of stabi-
lization and the accompanying decrease in time con-
stant depend on the open-loop gain.

4. It is possible to have oscillatory behavior with
damped or constant amplitude if the two processes
have comparable time constants and sufficient open-
loop gain, or if one of the processes depends on the
value of its input variable at an earlier time, or if the
process has three or more degrees of freedom.

5. A nonlinear system oscillating on a limit cycle can
have its phase reset by an external stimulus.

6. Nonlinear systems of difference equations with one
or more degrees of freedom or nonlinear systems of
differential equations with three or more degrees of
freedom may exhibit bifurcations and chaotic behav-
ior.
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10.11 Additional Examples

This section provides some additional examples of the
principles we have seen above. The details of the experi-
ments and modeling are given in the references.

10.11.1 Cheyne–Stokes Respiration

We have seen how the body responds to CO2 levels in the
blood by controlling the rate and amplitude of breath-
ing to maintain the CO2 concentration within a nar-
row range. The frequency and amplitude of breathing
can also undergo oscillation. Some patients almost stop
breathing for a minute or so and then breathe with much
greater amplitude than normal. This is called Cheyne–
Stokes breathing. Guyton et al. (1956) showed that di-
verting carotid artery blood in dogs through a long length
of tubing increased the transit time between heart and
brain and caused Cheyne–Stokes respirations. Cheyne–
Stokes respirations have been modeled with a nonlinear
delay-differential equation by Mackey and Glass (1977).
Their results are shown in Fig. 10.31.

10.11.2 Hot Tubs and Heat Stroke

Problems 10.10 and 10.11 discuss how the body perspires
in order to prevent increases in body temperature. At
the same time blood flows through vessels near the sur-
face of the skin, giving the flushed appearance of an over-
heated person. The cooling comes from the evaporation
of the perspiration from the skin. If the perspiration can-
not evaporate or is wiped off, the feedback loop is bro-
ken and the cooling does not occur. If a subject in a hot
tub overheats, the same blood flow pattern and perspi-
ration occur, but now heat flows into the body from the
hot water in the tub. The feedback has become positive
instead of negative, and heat stroke and possibly death
occurs. This has been described in the physics literature
by Bartlett and Braun (1983).

10.11.3 Pupil Size

The pupil changes diameter in response to the amount
of light entering the eye. This is one of the most eas-
ily studied feedback systems in the body, because it is
possible to break the loop and to change the gain of the
system. Let the variables be as follows: x is the amount
of light striking the retina, p is the light intensity, and y
the pupil area. In the normal case, x is proportional to y
and p: x = Apy. The body responds to increasing x by
decreasing y so y = f(x). These processes are shown in
Fig. 10.32.

The reason this system can be studied so easily is that
shining a very narrow beam of light into the pupil means
that the change of pupil radius no longer affects x; the
loop is broken in the upper box of Fig. 10.32. Shining a
light into the eye so that it is on the edge of the pupil

FIGURE 10.31. Cheyne–Stokes respirations. (a) The curve
used to model y = g(x(t − td)). (b) The results of the model
calculation. (c) Ventilation during Cheyne–Stokes respiration.
Panel (a) from L. Glass and M. C. Mackey (1988). From Clocks
to Chaos. Princeton, NJ, Princeton University Press. Copy-
right c©1988 by Princeton University Press. Reproduced by
permission. Panels (b) and (c) reprinted with permission from
M. C. Mackey and L. Glass (1977), Oscillation and chaos in
physiological control systems. Science 197: 287–289. Copy-
right 1977 AAAS.

FIGURE 10.32. The feedback system for controlling the size
of the pupil.

increases the gain in the upper box. These schemes are
shown in Fig. 10.33. Furthermore, it has been discovered
experimentally that the process in the lower box controls
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FIGURE 10.33. The feedback loop for pupil size can be
changed by changing the way in which light strikes the eye.
(a) In the normal situation x = Apy. (b) When the spot of
light is smaller than the pupil, the feedback loop is broken.
(c) When the spot of light strikes the edge of the pupil, the
gain is increased.

the size of both pupils, even though light is directed at
only one eye.

The properties of y = f(x) have been studied exten-
sively by Stark [see Stark (1957, 1968, 1984)]. The results
are consistent with a feedback loop having several time
constants and also a fixed delay. Increasing the open loop
gain as in Fig. 10.33(c) causes the pupil to oscillate at
a frequency of about 1.3 Hz (cycles per second). Stark
(1984) reviews this work, including the use of noise to
analyze the system and nonlinearities.

10.11.4 Oscillating White-Blood-Cell Counts

A delay-differential equation has been used to model the
production of red and white blood cells. Figure 10.34
shows the actual white count for a patient with chronic
granulocytic leukemia as well as the results of a model
calculation. The striking feature of the model is the emer-
gence of an aperiodic pattern when the delay time is in-
creased from 6 to 20 days.

10.11.5 Waves in Excitable Media

The propagation of an action potential is one example
of the propagation of a wave in excitable media. We saw
in Chapter 7 that waves of depolarization sweep through
cardiac tissue. The circulation of a wave of contraction
in a ring of cardiac tissue was demonstrated by Mines in
1914. It was first thought that such a wave had to circu-
late around an anatomic obstacle, but it is now recognized
that no obstacle is needed.

Waves in thin slices of cardiac tissue often have
the shape of spirals, very similar to simulations pro-
duced by a model similar to a two-dimensional Hodgkin–
Huxley model [for example, see Pertsov and Jalife
(1995)]. These waves turn out to occur in many con-
texts beside the heart. They have also been seen in
the Belousov–Zhabotinsky chemical reaction,11 in social
amoebae, in the retina of the eye, and as calcium waves in

11There are many references. See Mielczarek et al. (1983); Epstein
et al. (1983); and Winfree (1987).

FIGURE 10.34. A nonlinear model for white-blood-cell pro-
duction. (a) White-blood-cell count from a patient with
chronic granulocytic leukemia. (b) The results of a nonlin-
ear delay-differential equation model with a delay time of 6
days are an oscillation with a period of 20 days. (c) The re-
sults of using the same model with a delay time of 20 days are
aperiodic. Reprinted with permission from M. C. Mackey and
L. Glass (1977). Oscillation and chaos in physiological control
systems. Science 197: 287–289. Copyright 1977 AAAS.

oocytes. Beautiful photographs of all of these are found
in Winfree (1987). A simple reaction-diffusion model
that leads to a propagating chemical wave is found in
Problem 4.24

These spiral waves seem to be another ubiquitous phe-
nomenon (like period doubling) that depends primar-
ily on the coarse features of the model. They can be
generated with simple computer models called cellular
automata. The rules for such an automaton and pho-
tographs of the resulting spiral waves are shown in Chap-
ter 2 of Kaplan and Glass (1995).

The study of three-dimensional spiral waves in the
heart is currently a very active field [Keener and Pan-
filov (1995); Mercader et al. (1995); Pertsov and Jalife
(1995); Winfree (1994a, 1994b, 1995); Glass et al. (2002);
Bub et al. (2002)]. They can lead to ventricular tachycar-
dia, they can meander, much as a tornado does, and their
breakup into a pattern resembling turbulence is a possible
mechanism for the development of ventricular fibrillation
(see the next example).
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FIGURE 10.35. An aggregate of chick heart cells was peri-
odically stimulated. Follow the bottom of the beginning of
each sharp spike. The left part of the top strip shows phase
locking. The right-hand portion of the top strip shows period
doubling. The middle strip shows a period-4 behavior. The
bottom strip shows irregular behavior consistent with deter-
ministic chaos. Reprinted with permission from M. R. Gue-
vara, L. Glass, and A. Shrier (1981). Phase locking, period–
doubling bifurcations and irregular dynamics in periodically
stimulated cardiac cells. Science 214: 1350–1353. Copyright
1981 AAAS.

10.11.6 Period Doubling and Chaos in Heart
Cells

Guevara et al. (1981) have subjected small aggregates of
chick heart-cells to periodic stimulation. The stimulation
frequency was slightly greater than the natural frequency
of oscillation. The behavior of the preparation is shown
in Fig. 10.35 and can best be seen by examining the bot-
tom of the leading edge of the sharp positive pulse. The
top strip on the left is phase locking. This is followed on
the right in the top strip by an alternation characteristic
of period doubling. The middle strip shows a variation
of period 4. The bottom strip shows irregularity that is
consistent with deterministic chaos.

Garfinkel et al. (1992) have also observed period dou-
bling in a stimulated preparation of rabbit heart. Ar-
rhythmias were induced by adding drugs to the solution
perfusing the preparation. Figure 10.36 shows plots of the
recorded action potentials and a plot of the map of In vs
In−1, where I is the interval between beats. In panels A
and B there is a constant interbeat interval and one point
on the map. Panels C and D show period doubling. Pan-
els E and F show a period-4 pattern. Panels G and H are
completely aperiodic.

Ventricular fibrillation is “the rapid, disorganized, and
asynchronous contraction of ventricular muscle. ... It rep-
resents the final common pathway for death in most pa-
tients who experience out-of-hospital cardiac arrest, and
its rate of recurrence is on the order of 30% in the first
year in successfully resuscitated patients.” [Epstein and
Ideker (1995)]. It appears to be due to meandering waves,

FIGURE 10.36. The results of experiments on a prepara-
tion consisting of intraventricular septum from a rabbit heart.
Plots show the recorded action potentials and the map of In vs
In−1 where I is the interval between beats. In A and B there
is a constant interbeat interval and one point on the map.
Panels C and D show period doubling. Panels E and F show
a period-4 pattern. Panels G and H are completely aperiodic.
Reprinted with permission from A. Garfinkel, M. L. Spano, W.
L. Ditto, and J. N. Weiss (1992). Controlling cardiac chaos.
Science 257: 1230–1235. Copyright 1992 AAAS.

and it does not occur unless the myocardium is suffi-
ciently thick [Winfree (1994a, 1995)].

Witkowski et al. (1993, 1994) have made electrode ar-
rays with a spacing of about 200 µm that can be placed di-
rectly on the myocardium. The membrane current im can
be estimated from the spatial derivatives of the extracel-
lular (interstitial) potential. This technique has provided
evidence that ventricular fibrillation has a component
with simpler dynamics than had previously been thought
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[Witkowski et al. (1995)]. More recent studies point to-
ward more complex behavior [Hastings et al. (2000); Fox
et al. (2002).]

Symbols Used in Chapter 10

Symbol Use Units First

used on

page

a, b Arbitrary parameter 262

a Parameter in logistic

map

269

a, b Constant in logistic

equation

266

b Reduction in ventilation

rate because of dead

space in lungs

l min−1 257

b Amplitude of stimulus 267

f, g, h, i Functions 257

j Index for successive

values in difference

equation

269

m Mass kg 265

n Number of moles of

dissolved carbon dioxide

259

o Rate of oxygen

consumption

mol s−1 256

p Rate of oxygen

consumption

mmol min−1 256

p Light intensity 274

r Variable 266

t Time s 259

td Delay time s 272

v Velocity m s−1 265

w, x, y, z General variables 257

x, y General variables in a

feedback system

255

x Partial pressure of

carbon dioxide

torr 256

x Amount of light striking

the retina

274

x∗ Equilibrium value of x 269

y Ventilation rate l min−1 256

y Pupil area m2 274

y∞ Constant (carrying

capacity) in logistic

equation

265

A Proportionality

constant

259

A Pupil area m2 274

F Respiratory quotient 256

F General function 257

Fx x component of force N 265

G1, G2 Gain 258

I Interbeat interval s 276

N Number of variables 265

PCO2 Partial pressure of car-

bon dioxide

torr 256

R Gas constant J K−1 mol−1 256

T Temperature K 256

T, T0, Ts Time s 267

Vc Compartment in which

carbon dioxide is

distributed throughout

the body

m3 or l 259

α Solubility constant mol l−1

torr−1

259

α Damping constant s−1 263

θ, θ′, θs Angle 266

τ, τ1, τ2 Time constant s 259

ω, ω0 Angular frequency radian s−1 263

ξ, η Variables 259

Problems

Section 10.1

Problem 1 Make the unit conversions to show that Eq.
10.4 is equivalent to Eq. 10.1.

Section 10.2

Problem 2 The level of the thyroid hormone thyrox-
ine (T4) in the blood is regulated by a feedback system.
Thyroid-stimulating hormone (TSH) is released by the pi-
tuitary. The thyroid responds to increased levels of TSH
by producing more T4. The T4 then acts through the hy-
pothalamus and pituitary to reduce the amount of TSH.

(a) On a graph of T4 vs TSH, plot hypothetical curves
showing these two processes and indicate the equilibrium
or operating point.

(b) T4 contains four iodine atoms. If the body has an
insufficient supply of dietary iodine, the thyroid cannot
make enough T4. What changes in the graphs will result?
(This causes iodine deficiency goiter or thyroid hyperpla-
sia. With the advent of iodized table salt and the use of
iodine by bakers in bread dough to make their equipment
easier to clean, the disease has almost disappeared.)

Problem 3 For the feedback system x = [(y − p)/3]1/2,
y = 4 − x2 assume that the variable on the right in each
equation controls the variable on the left.

(a) Plot y vs x for each process.
(b) Find the operating point when p = 0.
(c) Find the operating point when p = 1.

Section 10.3

Problem 4 Find the open-loop gain for the system de-
scribed in Problem 10.3.

Problem 5 Find the open-loop gain for the system
shown.

y = 9 - x y = x/12
y

x
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Problem 6 A feedback loop has the three stages shown.
Find the operating point and the open-loop gain if these
variables are all positive.

Problem 7 Consider how thyroid hormone is removed
from the body by the kidneys. The variables are V , the
total plasma volume (l); C, the plasma concentration of
thyroid hormone (mol l−1); y, the total amount of hor-
mone (mol); and R, the rate of hormone production (mol
s−1). In the steady state, the rate of change is dy/dt =
R − KC = 0. Then R = KC and y is not changing with
time (see Chapter 2). The clearance K is a measure of
the kidneys’ ability to remove hormone, since the removal
process depends on the concentration.

(a) Plot K vs C for two different values of R. Show on
your graph what happens if K remains fixed as R changes.

(b) It has been found experimentally [D. S. Riggs
(1952). Pharmacol. Rev. 4: 284–370] that K increases
as C increases: K = aC. Plot this on your graph, too.

(c) Draw a block diagram showing the proper cause and
effect relationship between C and K.

(d) Calculate the open-loop gain. Show how changes in
C are altered by the feedback mechanism.

Problem 8 A substance is produced in the body and re-
moved at rate R. The concentration is C. The clearance is
defined to be K. In the steady state 0 = dy/dt = R−KC,
or K = R/C. It is found experimentally that the clear-
ance depends on the concentration as K = aCn, where
C is the independent variable. Find the open-loop gain,
eliminating K and a from your answer.

Problem 9 The kidney excretes phosphate in the follow-
ing way. The total plasma volume Vp contains phosphate
at concentration Cp: Qp = CpVp. A volume of plasma
(dV/dt)f is filtered through the renal glomeruli into the
nephrons each second. Within the nephron, phosphate is
either reabsorbed into the plasma or excreted into the
urine. Experiments show that virtually all phosphate is
reabsorbed up to some rate (dQ/dt)max:

(
dQ

dt

)

reabs

=






Cp (dV/dt)f , Cp (dV/dt)f < (dQ/dt)max

(dQ/dt)max , Cp (dV/dt)f ≥ (dQ/dt)max .

As in Problem 7(a), at equilibrium the clearance of
phosphate from the plasma is defined as

K =
(dQ/dt)excreted into urine

Cp
.

Suppose that exogenous phosphate is entering the plasma
at a fixed rate R and that steady state has been reached
so that R = (dQ/dt)excreted into urine.

(a) What value for reabsorption does this imply?
(b) Determine two equations relating K and Cp and

plot them.
(c) Calculate the open-loop gain of the feedback loop.

Problem 10 With considerable simplification, consider
the body to have a constant temperature T throughout and
a total heat capacity C. The total amount of thermal en-
ergy in the body is U . The heat capacity is defined so that
dU = CdT . The source of the thermal energy is the body’s
metabolism: (dU/dt)in = M . If sweating is ignored, the
rate of loss of energy by convection and radiation is ap-
proximately proportional to the amount by which the body
temperature exceeds the ambient or surrounding temper-
ature: (dU/dt)loss = K(T − Ta).

(a) What is the steady-state temperature as a function
of M and Ta?

(b) Write a differential equation for T as a function of
time. Suppose that M suddenly jumps by a fixed amount.
What is the time constant?

Problem 11 When the body temperature is above 37 ◦C,
sweating becomes important. The rate of energy loss is
proportional to the amount of water evaporated. If all
the perspiration evaporates, sweating loss can be approx-
imated by (dU/dt)sweat = L(T − 37).

(a) Modify the differential equation of the previous
problem to include (dU/dt)sweat as the input variable with
T as the output variable. Combine it with this new equa-
tion to make a feedback loop. Determine the new equilib-
rium temperature and the time constant.

(b) Make numerical comparisons for the previous prob-
lem and this one when M = 71 kcal h−1, C = 70 kcal
◦C−1, K = 25 kcal h−1 ◦C−1, L = 750 kcal h−1 ◦C−1,
Ta = 38 ◦C (high enough to ensure sweating).

Problem 12 A simplified model of the circulation is
shown. Normally we know that the arterial pressure is
the same as that in the carotid sinus: part = psinus. In
experiments on dogs whose vagus nerves were cut, the
carotid arteries were isolated and perfused by a separate
pump. This broke the feedback loop and allowed the curve
on the accompanying graph to be obtained. The empiri-
cal equation shown [based on the work of A. M. Scher and
A. C. Young, (1963). Serroanalysis of carotid sinus reflex
effects on peripheral resistance. Circ. Res. 12: 152–165,
summarized in Riggs (1970)] is (with pressures in torr)

part = 90 +
120

1 + exp [(psinus − 165)/5]
.
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(a) Draw a block diagram of the complete feedback sys-
tem. Label the blocks, show the functional relationship for
each one, and indicate the proper cause-and-effect rela-
tionship.

(b) Find the operating point.
(c) Find the open-loop gain.

Problem 13 Consider the following special case of lin-
ear feedback: ∆x = G1(∆p + ∆y), ∆y = G2∆x. Find the
ratio ∆x/∆p when G1 � −1, G2 < 1.

Problem 14 Differentiate Eq. 10.4 and show that the
expression for G1 is the same as in Eq. 10.19.

Problem 15 For the thyroid problem, Problem 10.7,
write a differential equation that can be solved to give C
as a function of time. Suppose that at t = 0, R suddenly
becomes 0. What is the differential equation then? Solve
the equation: note that it is not linear.

Section 10.5

Problem 16 The following is a vastly oversimplified
model of calcium regulation in dogs. Calcium is stored in
body fluids and bones. Experiments show that the calcium
concentration in the blood of a dog obeys approximately
the equation [Riggs (1970, p. 491)]

3.9
dC

dt
+ 1.4C = 81.2 +

(
dQ

dt

)

iv

+
(

dQ

dt

)

r

(t),

where C is the plasma concentration in mg l−1, t is the
time in h, (dQ/dt)iv is the rate of intravenous infusion
of calcium in mg h−1, and (dQ/dt)r is the rate of re-
absorption of calcium from bone into the blood in mg
h−1. (The numerical constants are consistent with these
units.) The rate of reabsorption depends on the level of
parathyroid hormone (PTH) concentration in the blood,
which in turn depends on the calcium concentration. In-
stead of measuring the PTH concentration, experimenters
found that (dQ/dt)r and C are related empirically by
(dQ/dt)r = 188−1.34C, where C is the independent vari-
able.

(a) Draw a block diagram with variables (dQ/dt)r and
C.

(b) Write equations to describe the steady state and find
steady-state values of (dQ/dt)r and C when (dQ/dt)iv =
0.

(c) Find the open-loop gain.
(d) Find the time constant for the change of C when

the parathyroid glands have been removed, in response to
a step change in (dQ/dt)iv.

(e) Find the time constant for the change in C in re-
sponse to a step change in calcium infusion when the
parathyroid glands are intact, so that the feedback loop
is closed.

Problem 17 This problem is a simplification by the au-
thors suggested by the data of Chick et al. [(1977). Arti-
ficial pancreas using living beta cells: Effects on glucose
homeostasis in diabetic rats. Science 197: 780–781]. Ex-
perimental data on diabetic rats show that the insulin level
is 0 and the glucose level is 500. When an artificial pan-
creas is installed, a new operating point is reached for
which i = 40 and g = 100.

(a) Make the simplest assumption possible: glucose level
responds to insulin level according to g = A + G1i, while
insulin responds to glucose as i = G2g. Find the open-loop
gain.

(b) The same series of experiments showed that when
the feedback loop is closed, the time constant for glucose
to fall is 1.67 h. When the artificial pancreas is removed,
the glucose level rises with a time constant of 10.67 h.
Estimate the open-loop gain, assuming that the insulin
level changes instantaneously.

Section 10.6

Problem 18 Multiply Eq. 10.28 by τ2 and show that it
reduces to Eq. 10.22 when τ2 � τ1.

Problem 19 For the two-stage feedback loop with equal
time constants τ , show that oscillation results with a fre-
quency ω = (|OLG|)1/2/τ .

Problem 20 Consider two substances in the plasma
with concentrations X and Y . (They might be glucose and
insulin.) Assume that experiment has established the fol-
lowing facts.
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(i) The steady-state values of each concentration are
X0 and Y0. Departures from them are x = X − X0 and
y = Y − Y0.

(ii) When y = 0, X is removed from the body at a
rate proportional to x. This is true for both positive and
negative values of x: dx/dt = −(1/τ1)x.

(iii) When x = 0, Y influences the rate at which X
changes in an approximately linear fashion. An increase
of Y above Y0 (y > 0) increases the rate of disappearance
of x.

(iv) When x = 0, y is cleared at a rate proportional to
y: dy/dt = −(1/τ2)y.

(v) When y = 0 and x is nonzero, a positive value of
x stimulates the production of Y , while a negative value
of x inhibits the production of Y .

Assume that the rate of production is a linear func-
tion of x. Write down two linear differential equations to
model these observations. That is, add a term to each of
the equations given that describes observations (iii) and
(v).

Problem 21 Combine the two equations obtained in the
previous problem into a single differential equation in x.
Show that it has the form

d2x

dt2
+
(

1
τ1

+
1
τ2

)
dx

dt
+

1 − OLG
τ1τ2

x = 0.

Use the result of Problem 17 to obtain 1−OLG and sup-
pose that τ1 = 50 min. For what value of τ2 will critical
damping occur? (If you find two values of τ2, which seems
more reasonable?) If τ2 is greater than the value you se-
lect, will the system be overdamped or underdamped? (Do
not take these results too seriously.)

Problem 22 This problem explores the response of a
simple linear system from the point of view of the system’s
response to sinusoidal signals of various frequencies.

(a) The differential equation describing a system with
time constant τ and gain G is

dx

dt
= −1

τ
x +

G

τ
y.

Show by substitution that if y = Y sin ωt, then x =
X sin(ωt+φ), where tanφ = ωτ and X(ωτ sin φ+cos φ) =
GY .

(b) Use the relation tan φ = ωτ to establish the triangle
shown, and use it to show that X = GY/(1 + ω2τ2)1/2.
These two relations give the response of the system in the
frequency domain.

Problem 23 The following model for the attrition of
troops in battle was developed by F. W. Lanchester and

has been found to work reasonably well in several battles.
The number of “friendly” troops is F (t) and the number
of “enemy” troops is E(t). The rates of change are given
by dF/dt = −aE, dE/dt = −bF , where a and b are the
“effectiveness” of each side. The initial number of troops
on each side is F0 and E0.

(a) What are the initial values of dF/dt and dE/dt?
(b) Obtain a differential equation for F .
(c) Find the most general solution to this differential

equation and determine the coefficients from the initial
conditions.

(d) Plot F and E for a = b = 0.05 and E0 = 2F0.

Problem 24 The equation dF/dt = −aE could also be
thought of as describing a predator–prey situation if a
represents the number of animals that the enemy eats per
unit time. Ignoring latent periods such as gestation and
infancy, what is the simplest way the equation could be
modified to take account of reproduction and other ways
of dying?

Section 10.7

Problem 25 Make a phase-space plot and discuss sta-
bility for dy/dt = by, dy/dt = −by, and dy/dt = a − by.

Problem 26 Make a drawing similar to Fig. 10.15 for
the differential equation dx/dt = x(c − x2) for different
values of c (positive and negative) and describe the sta-
bility of the fixed points as a function of c.

Problem 27 (a) Make drawings of the tip of the vector
that defines θ′ in Fig. 10.18 to show that when b < 1,
θ′ takes on all values, while for b > 1, θ′ is restricted to
values near 0 and 2π.

(b) Redraw Fig. 10.19(a) in the case that the angles are
not reset to zero when they reach 2π.

Problem 28 Consider the undamped harmonic oscilla-
tor in the form dx/dt = v, dv/dt = −ω2

0x.
(a) Make a phase-plane plot.
(b) Is the closed trajectory a limit cycle? Why or why

not?
(c) Add a damping force proportional to −v and redraw

the phase-plane plot.

Problem 29 In Fig. 10.19, the phase behavior changes
dramatically between b = 0.95 and b = 1.05. This change
is most apparent for θs = π, where θ′ = 0 for b = 0.95
and θ′ = π for b = 1.05. What happens for θs = π and
b = 1 exactly?

Problem 30 Reproduce qualitatively plots like Fig.
10.19 for b = −0.95 and b = −1.05. This corresponds
to a hyperpolarizing stimulus.

Problem 31 Write a simple computer program to solve
the two differential equations in Eq. 10.34 for r(t) and
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θ(t). (See Sec. 6.14 for some guidance on how to solve
differential equations numerically.)

(a) Make plots of x(t) = r(t) cos(θ(t)) as a function of
time for different stimuli.

(b) Reproduce a few points in the plots of Fig. 10.19
using your program. In particular, examine stimuli given
at or near θs = π with b approximately equal to 1.

(c) Try varying the parameter a, and see how it affects
the solution.

Problem 32 Use the program written in Problem 31 to
examine entrainment. Stimulate the radial isochron clock
periodically, with a frequency near but not exactly equal to
the natural frequency of oscillation. Find examples where
the clock is entrained to the stimulus (the oscillation has
the same frequency as the stimulus).

Problem 33 A simple model for excitation of cardiac
tissue is the FitzHugh–Nagumo model

dv

dt
=

1
ε

(
v − v3

3
− u

)

du

dt
= ε (v + β − γu) ,

where ε = 0.2, γ = 0.5 and β = 0.8.
(a) Make a plot in phase space (v versus u) of the

“nullclines” (the curves obtained when dv/dt = 0 and
du/dt = 0).

(b) Determine the steady-state solution (fixed point).
You may have to do this numerically or graphically.

(c) Write a simple program to solve these equations
on the computer. (See Sec. 6.14 for some guidance on
how to solve differential equations numerically.) Plot v(t)
and u(t) for the initial conditions v(0) = −0.70, u(0) =
−0.65.

Section 10.8

Problem 34 Show that for the logistic difference equa-
tion, the slope dxn+1/dxn at x∗ is given by 2− a, so that
for a > 3 the slope has magnitude > 1.

Use a spreadsheet to plot xn for different values of a
and explore the period doubling.

Plot xj+1 vs. xj, and show why we restricted a to values
less than four.

For the logistic map with a = 3.9, evaluate xj using
the two initial conditions x1 = 0.2000 and x1 = 0.2001.
Carry out the calculation for at least 20 iterations.

Problem 35 Cyclic variations in the population of a
species are often studied with a predator-prey model such
as the Lotka-Voltera equations (Chapter 2 Problem 34).
It is also possible to have cyclic variations of a single
species. This problem explores one such model and is
based on Appendix B of Ginzburg and Colyvan (2004).

Let Nt represent the population at generation t. Let
X represent the quality of the resources available to that

species. R is the maximum growth rate, and f(X) is a
monotonically increasing function that asymptotically ap-
proaches unity for large X. The population in the next
generation is

Nt+1 = NtRf(Xt).

If f is constant, we have exponential growth or decay, de-
pending on whether Rf is greater or less than 1. We will
model f by f(Xt) = Xt/(k + Xt),where parameter k de-
termines how rapidly f approaches its asymptotic value.

Now assume the total amount of food, S, does not
change with time and that X depends on the per capita
food supply S/N through a monotonically increasing func-
tion g:

Xt+1 = Xtg(S/Nt+1).

A crucial assumption is that the current quality depends
on both the present per-capita food supply and the qual-
ity in the previous generation. When there is more food
available to the mother, it increases the reproductive rate
of the mother. Ginzburg and Colyvan call this the “ma-
ternal effect.”

Model functions f and g by

Nt+1 = NtR
Xt

k + Xt

Xt+1 = XtM
S/Nt+1

p + S/Nt+1
.

(a) Show that with the change of variables n = pN/S
and x = X/k the equations reduce to

nt+1 = ntR
xt

1 + xt

xt+1 = xtM
1

1 + nt+1
.

(b) Use a spread sheet to model the behavior for a range
of values of R and M , starting with R = 20 and M = 10.
Use initial conditions n0 = x0 = 1. If M > 1, explore
what values of R lead to oscillations.

(c) Use the spread sheet to construct phase-plane plots
of ln(n) vs. ln(x).

Problem 36 Consider the two sets of data below, one
produced by the logistic map and the other produced from
a table of random numbers. Which is which?

Set 1 Set 2
0.9750 0.7464
0.0951 0.2349
0.3356 0.6017
0.8696 0.0213
0.4422 0.7935
0.9620 0.0336
0.1426 0.6476
0.4768 0.5630
0.9729 0.9116
0.1028 0.1748
0.3597 0.8706
0.8982 0.9058
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Problem 37 The onset of ventricular fibrillation in the
heart can be understood in part as a property of cardiac
“restitution.”The action potential duration (APD) de-
pends on the previous diastolic interval (DI): the time
from the end of the last action potential until the start of
the next one. The relationship between APD and DI is
called the“restitution curve.” In cardiac muscle, a typical
restitution curve has the form

APDi+1 = 300
(
1 − e−DIi/100

)

where all times are given in ms. Suppose we apply to the
heart a series of stimuli, with period (or “cycle length”)
CL.

APD DI
CL

Since APD+DI = CL, we have DIi+1 = CL−APDi+1.
(a) Suppose we stimulate with a long cycle length

(CL = 400 ms). Using an initial value of DI1 = 200,
calculate APDi and DIi for ten iterations. What hap-
pens?

(b) Shorten the cycle length to CL = 300 ms. Using
the same DI1, calculate APDi and DIi for ten iterations.
What happens now? (In the jargon of cardiac electrophys-
iology, this behavior is often called “alternans”).

(c) Shorten the cycle length further to CL = 200 ms.
Using the same DI1, calculate APDi and DIi for ten
iterations. If DIi+1 is negative (corresponding to tissue so
refractory that it fires no action potential), keep adding
CL to it until it becomes positive before calculating the
next APD. What happens now?

(d) Shorten the cycle length yet further to CL = 100
ms. Using the same DI1, calculate APDi and DIi for
twenty iterations. What happens now?

Your results in part (d) should be chaotic, resembling
ventricular fibrillation. We must not overinterpret this
simple model, however, because fibrillation consists of
propagating wave fronts, whereas this simple model does
not include spatial effects. For a more detailed account of
a model similar to this one, see Hastings et al. (2000).

Problem 38 In Problem 37, the onset of alternans oc-
curs when the slope of the restitution curve APDi+1 =
300

(
1 − e−DIi/100

)
becomes greater than 1.

(a) Calculate the slope of the restitution curve
d (APD) /d (DI) analytically.

(b) Set the slope equal to 1 and solve for the resulting
value of DI. Use the restitution curve to determine the
corresponding values of APD and CL.

(c) Calculate APDi and DIi for twenty iterations for
CL 10% above and 10% below the value determined in
part (b). What behaviors do you observe?

(d) Suppose you apply a drug to the heart that
can change the restitution curve to APDi+1 =
300

(
1 − be−DIi/100

)
. Plot APD as a function of DI for

b = 0, 0.5, and 1. What value of b ensures that the slope of
the restitution curve is always less than 1? Garfinkel et al.
(2000) have suggested that one way to prevent ventricu-
lar fibrillation is to use drugs that “flatten” the restitution
curve.

Problem 39 Elementary models of cellular excitable
media (sometimes called “cellular automata”) provide
valuable insight into the electrical behavior of the heart.
Winfree (1987, pp. 106–107) describes one such model.
A hexagonal array represents a sheet of cardiac tissue.

Each cell in the array can be in one of three states: excited
(E), refractory (R), or quiescent (Q). A cell changes state
by the following rules:

1. If in state E, then at the next time step it changes
to state R,

2. If in state R, then at the next time step it changes
to state Q,

3. If in state Q, then at the next time step it remains
in state Q; unless one of its six nearest neighbors is in
state E, in which case it changes to state E.

(a) Start with the central cell in state E, and the rest
of the cells in state Q. What happens in subsequent time
steps? You should get an outwardly propagating wave
front. Let the simulation run long enough to see what
happens when the wave front hits the edge of the array.
Does it “reflect” off the edge? Does the tissue ever go to
the state of all Q?

(b) Start with the top five and bottom five cells in state
E, and the rest in state Q. What happens when the two
resulting wave fronts collide? Does the tissue ever go to
the state of all Q?

(c) Start with the four black cells in state E, the three
gray cells in state R, and the rest in state Q.
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What happens? Does the tissue ever go to the state of
all Q? This result is called a “spiral wave,”and may be
responsible for some heart arrhythmias, such as a “ven-
tricular tachycardia.”

(d) In part (c), there is a special point called a “phase
singularity” where cells in states E, R, and Q all meet at
one point. Find the phase singularities in the results of
part (c). How many are there? Do they move?

Problem 40 In the cellular excitable medium described
in problem 39, what happens if you apply an electrical
stimulus? The stimulus is described by a fourth rule:

4. A stimulus changes the state to E, regardless of the
previous state.

Assume the stimulus is applied only to the central cell.
Start with the initial condition

which will initiate a wave front propagating upwards. At
a later time, apply the stimulus and see what happens.
If the initial condition is t = 1, then try applying the
stimulus at t = 4, 5, or 6. Are there any situations in
which you produce phase singularities? If so, how many?
Is the timing of the stimulus important?

Section 10.9

Problem 41 By substitution show that w(t) =
w0e

−γt cos ωt can be a solution of the delay-differential
equation, Eq. 10.41 if γ = (1/τ) eγtd cos ωtd,
ω = (1/τ) eγtd sinωtd. Introduce the dimensionless
variables α = td/τ , ξ = ωtd, and η = γtd and show that
the result is the simultaneous equations

ξ = αeη sin ξ, η = αeη cos ξ.

From these obtain the equivalent equations η = ξ cot ξ.
and ξ2 = α2e2η−η2. Show how these can be solved graph-
ically if α is known.

Section 10.11

Problem 42 Find an equation relating L, the total
amount of light energy per second reaching the retina, I,
the intensity of the light (W m−2), and R, the radius of
the pupil. Calculate the gain G = ∂L/∂R and the loga-
rithmic gain g = (1/L)(∂L/∂R). Consider the two cases
shown in the figure.

(a) There is uniform illumination of the pupil.

(b) The rectangle of illumination partially overlaps the
pupil so that the area within the pupil is a(R − b).

a

b

R
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11
The Method of Least Squares and Signal Analysis

This chapter deals with three common problems in ex-
perimental science. The first is fitting a discrete set of ex-
perimental data with a mathematical function. The func-
tion usually has some parameters that must be adjusted
to give a “best” fit. The second is to detect a periodic
change in some variable—a signal—which may be masked
by random changes—noise—superimposed on the signal.
The third is to determine whether sets of apparently un-
systematic data are from a random process or a process
governed by deterministic chaotic behavior.

These techniques are used in many fields, including
physiology and biophysics. The fitting techniques lead
naturally to Fourier series, which are used extensively
in image reconstruction and image analysis. Using least
squares or Fourier series normally requires extensive com-
putation. Commercial packages for making these calcula-
tions are readily available. The problems at the end of the
chapter are often artificially designed for simple computa-
tion, rather than being “real.” We hope that the chapter
will help you develop some intuition for the techniques
before you use the commercial packages.

This chapter is a self-contained discussion of signal
analysis. It is a prerequisite to Chapter 12 on image re-
construction.

We will find that a periodic signal can be built up of
sine waves of different frequencies, and that it is possible
to speak of the frequency spectrum of a signal. The first
five sections of the chapter show how to adjust the para-
meters in a polynomial or in a sum of sines and cosines to
fit experimental data. Sections 11.5 and 11.6 discuss sine
and cosine expansions for continuous periodic functions.
Sections 11.7 and 11.8 introduce the cross-correlation and
autocorrelation functions and their relation to the power
spectrum. Sections 11.9 through 11.12 extend these tech-
niques to pulses. Sections 11.13 and 11.14 introduce noise
and the use of correlation functions to detect signals that
are masked by noise.

Many linear feedback systems are most easily studied
by how they respond to sinusoidal stimuli at various fre-
quencies, and there are techniques using impulse or noise
stimuli that provide the same information. Section 11.15
explains the frequency response of a linear system, and
the next section describes the effect of a simple linear sys-
tem on the power spectrum of Johnson noise. The next
section introduces some of the concepts involved in test-
ing data for chaotic behavior. Finally, Section 11.18 intro-
duces a relatively new phenomenon, stochastic resonance,
where introducing noise into a nonlinear system can en-
hance a desired effect.

11.1 The Method of Least Squares
and Polynomial Regression

In this section we show how to approximate or “fit” a set
of discrete data yj with a polynomial function

yj = y(xj) =
∑

k

akxk
j .

Several criteria can be used to determine the “best” fit
[Press et al. (1992), Sec. 15.7]; the one described in this
chapter is called the method of least squares. Instead of
immediately deriving the general polynomial result, we
first consider the simple (and rather useless) fit y = x+ b
(the coefficient of x is unity), then the more useful linear
fit y = ax + b.

11.1.1 The Simplest Example

Suppose that we wish to describe the data in Table 11.1
by a fitting function y(x). A plot of the data suggests
that a straight line will be a reasonable approximation to
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FIGURE 11.1. Fits to the data of Table 11.1 by a curve of the form y = x + b. (a) Plots of y vs, x. (b) Plot of Q vs b. Q is
defined in Eq. 11.2.

TABLE 11.1. Sample data.

x y

1 2
4 6
5 7

the data. For mathematical simplicity, we first try a line
with unit slope but adjustable intercept:

y(xj) = xj + b. (11.1)

Figure 11.1(a) plots y vs. x for different values of b. It
is clear by inspection that the curves for b = 1 and b = 2
are closer to the points than those for b = 0 or b = 3. For
a quantitative measure of how good the fit is we will use
the quantity

Q =
1
N

N∑

j=1

[yj − y(xj)]
2
, (11.2)

which is called the mean square error. It is the square of
the residuals [the differences between the measured values
of y and the values of y calculated from the approximation
to the data, yj−y(xj)] summed over all N data points and
divided by N . It is reminiscent of the variance, with the
mean replaced by the fitting function y(xj). The least-
squares technique adjusts the parameters in the function
y(xj) to make Q a minimum. Table 11.2 shows the steps
in the calculation of Q for various values of b. Figure
11.1(b) shows how Q changes as b is changed.

It is tedious to calculate Q for many different values
of b; instead we can treat this as a maximum–minimum

problem in calculus. We write

Q =
1
N

N∑

j=1

(yj − xj − b)2

=
1
N

[
(y1 − x1 − b)2 + (y2 − x2 − b)2 + · · ·

]
.

The derivative is

dQ

db
= − 1

N

N∑

j=1

2(yj − xj − b)

=
1
N

[−2(y1 − x1 − b) − 2(y2 − x2 − b) + · · · ] .

Setting this equal to zero to find the extremum gives

N∑

j=1

yj =
N∑

j=1

xj +
N∑

j=1

b

or, not bothering to show explicitly that the index ranges
over all the data points,

∑

j

yj =
∑

j

xj + Nb.

Using this result for the example above gives 15 = 10+3b,
or b = 1.67 for the smallest value of Q.

11.1.2 A Linear Fit

The previous example was rather artificial, because for
simplicity we did not allow the slope of the line to vary.
The maximum–minimum procedure is easily extended to
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TABLE 11.2. Calculation of Q for the example of Eq. 11.1

Index b = 0 b = 1 b = 2
j xj yj y(xj) [yj − y(xj)]

2
y(xj) [yj − y(xj)]

2
y(xj) [yj − y(xj)]

2

1 1 2 1 1 2 0 3 1
2 4 6 4 4 5 1 6 0
3 5 7 5 4 6 1 7 0
Sum 9 2 1
Q 3 0.67 0.33

two or more parameters. If the fitting function is given
by y = ax + b, then Q becomes

Q =
1
N

N∑

j=1

(yj − axj − b)2.

At the minimum, both ∂Q/∂a = 0 and ∂Q/∂b = 0. The
former gives

∂Q

∂a
=

2
N

N∑

j=1

(yj − axj − b)(−xj) = 0

or ∑

j

xjyj − a
∑

j

x2
j − b

∑

j

xj = 0. (11.3)

The latter gives

∂Q

∂b
=

2
N

N∑

j=1

(yj − axj − b)(−1) = 0

or
N∑

j=1

yj − a

N∑

j=1

xj − Nb = 0. (11.4)

For the example in Table 11.1
∑

xj = 10,
∑

yj = 15,∑
x2

j = 42, and
∑

xjyj = 61. Therefore, Eqs. 11.3 and
11.4 become 42a+10b = 61 and 10a+3b = 15. These can
be easily solved to give a = 1.27 and b = 0.77. The best
straight-line fit to the data of Table 11.1 is y = 0.77 +
1.27x. The value of Q, calculated from Eq. 11.2, is 0.013.
The best fit is plotted in Fig. 11.2. It is considerably
better than the fit with the slope constrained to be one.

A general expression for the solution to Eqs. 11.3 and
11.4 is

a =

N

(
N∑

j=1

xjyj

)

−
(

N∑

j=1

xj

)(
N∑

j=1

yj

)

N

(
N∑

j=1

x2
j

)

−
(

N∑

j=1

xj

)2 , (11.5a)

b =

N∑

j=1

yj

N
−

a

(
N∑

j=1

xj

)

N
≡ y − ax. (11.5b)

8

6

4

2

0

y

86420

x

Q = 0.013

y = 0.77 + 1.27 x 

FIGURE 11.2. The best fit to the data of Table 11.1 with the
function y = ax + b. Both the slope and the intercept have
been chosen to minimize Q.

where x and y are the means. In doing computations
where the range of data is small compared to the mean,
better numerical accuracy can be obtained from

a = Sxy/Sxx, (11.5c)

using the sums

Sxx =
N∑

j=1

(xj − x)2 , (11.5d)

and

Sxy =
N∑

j=1

(xj − x)(yj − y). (11.5e)

11.1.3 A Polynomial Fit

The method of least squares can be extended to a poly-
nomial of arbitrary degree. The only requirement is that
the number of adjustable parameters (which is one more
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than the degree of the polynomial) be less than the num-
ber of data points. If this requirement is not met, the
equations cannot be solved uniquely; see Problem 8. If
the polynomial is written as

y(xj) = a0+a1xj +a2x
2
j + · · ·+anxn

j =
n∑

k=0

akxk
j , (11.6)

then the expression for the mean square error is

Q =
1
N

N∑

j=1

(

yj −
n∑

k=0

akxk
j

)2

. (11.7)

Index j ranges over the data points; index k ranges over
the terms in the polynomial. This expression for Q can be
differentiated with respect to one of the n+1 parameters,
say, am:

∂Q

∂am
=

2
N

N∑

j=1

[(

yj −
n∑

k=0

akxk
j

)

(−xm
j )

]

.

Setting this derivative equal to zero gives
N∑

j=1

yjx
m
j =

n∑

k=0

N∑

j=1

akxk
j xm

j =
n∑

k=0

ak

N∑

j=1

xk+m
j .

This is one of the equations we need. Doing the same
thing for all values of m, m = 0, 1, 2, . . . , n, we get n + 1
equations that must be solved simultaneously for the n+1
parameters a0, a1, . . . , an.

For m = 0:
N∑

j=1

yj = Na0 + a1

N∑

j=1

xj + a2

N∑

j=1

x2
j + · · · + an

N∑

j=1

xn
j .

(11.8a)
For m = 1:

N∑

j=1

xjyj = a0

N∑

j=1

xj + a1

N∑

j=1

x2
j + a2

N∑

j=1

x3
j

+ · · · + an

N∑

j=1

xn+1
j . (11.8b)

For m = n:
N∑

j=1

xn
j yj = a0

N∑

j=1

xn
j + a1

N∑

j=1

xn+1
j + a2

N∑

j=1

xn+2
j

+ · · · + an

N∑

j=1

x2n
j . (11.8c)

Solving these equations is not as formidable a task as
it seems. Given the data points (xj , yj), the sums are all
evaluated. When these numbers are inserted in Eqs. 11.8,
the result is a set of n + 1 simultaneous equations in the
n + 1 unknown coefficients ak. This technique is called
linear least-squares fitting of a polynomial or polynomial
regression. Routines for solving the simultaneous equa-
tions or for carrying out the whole procedure are readily
available.

11.1.4 Variable Weighting

The least-squares technique described here gives each
data point the same weight. If some points are measured
more accurately than others, they should be given more
weight. This can be done in the following way. If there
is an associated error δyj for each data point, then one
can weight each data point inversely as the square of the
error and minimize

Q =
1
N

N∑

j=1

[yj − y(xj)]
2

(δyj)2
. (11.9)

It is easy to show that the effect is to add a factor of
(1/δyj)2 to each term in the sums in Eqs. 11.8 [Gatland
(1993)]. This assumes that errors exist only in the y val-
ues. If there are errors in the x values as well, it is possible
to make an approximate correction based on an effective
error in the y values [Orear (1982)] or to use an iter-
ative but exact least-squares method [Lybanon (1984)].
The treatment of unequal errors has been discussed by
Gatland (1993) and by Gatland and Thompson (1993).

11.2 Nonlinear Least Squares

The linear least-squares technique can be used to fit data
with a single exponential y = ae−bx, where a and b are
to be determined. Take logarithms of each side of the
equation:

log y = log a − bx log e,

v = a′ − b′x.

This can be fit by the linear equation, determining con-
stants a′ and b′ using Eqs. 11.5.

Things are not so simple if there is reason to believe
that the function might be a sum of exponentials:

y = a1e
−b1x + a2e

−b2x + · · · .

When the derivatives of this function are set equal to
zero, the equations in a1, a2, etc., will be linear if we as-
sume that the values of the bk are known. However, the
equations for determining the b’s will be transcendental
equations that are quite difficult to solve. With a sum of
two or more exponentials, taking logs does not avoid the
problem.

The problem can be solved using the technique of non-
linear least squares. In its simplest form, one makes an
initial guess for each parameter1 b10, b20, . . . , bk0 and says
that the correct value of each b is given by bk = bk0 +hk.
The calculated value of y is written as a Taylor’s-series ex-
pansion with all the derivatives evaluated for b10, b20, . . . :

y(xj ; b1, b2, . . .) = y(xj ; b10, b20, . . .)+
∂y

∂b1
h1+

∂y

∂b2
h2+· · · .

1The parameters ak can either be included in the parameter list,
or the values of ak for each trial set bk can be determined by linear
least squares.
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FIGURE 11.3. Two different periodic functions.

Since y and its derivatives can be evaluated using the
current guess for each b, the expression is linear in the
hk, and the linear least-squares technique can be used to
determine the values of the hk that minimize Q. After
each hk has been determined, the revised values bk =
bk0 + hk are used as the initial guesses, and the process
is repeated until a minimum value of Q is found. The
technique is not always stable; it can overshoot and give
too large a value for hk. There are many ways to improve
the process to ensure more rapid convergence. The most
common is called the Levenberg–Marquardt method [see
Bevington and Robinson (1992) or Press et al. (1992)].

11.3 The Presence of Many
Frequencies in a Periodic
Function

A function y that repeats itself after a time2 T is said to
be periodic with period T . The mathematical description
of this periodicity is

y(t + T ) = y(t). (11.10)

Two examples of functions with period T are shown in
Fig. 11.3. One of these functions is a sine wave, y(t) =
A sin(ω0t−φ), where A is the amplitude, ω0 is the angular
frequency, and φ is the phase of the function. Changing
the amplitude changes the height of the function. Chang-
ing the phase shifts the function along the time axis. The
sine function repeats itself when the argument shifts by
2π radians. It repeats itself after time T , where ω0T = 2π.
Therefore the angular frequency is related to the period
by

ω0 =
2π

T
. (11.11)

(The units of ω0 are radian s−1, but radians are dimen-
sionless.) It is completely equivalent to write the function
in terms of the frequency as y(t) = A sin (2πf0t−φ). The

2Although we speak of t and time, the technique can be applied
to any independent variable if the dependent variable repeats as in
Eq. 11.10. Zebra stripes are (almost) periodic functions of position.

(e) y = sin t + 0.5 sin 3t + 0.2 cos 5t 

(d) y = sin t + 0.5 sin 3t + 0.2 sin 5t 

(c) y = sin t+ 0.5 cos 3t

(b) y = sin t + 0.5 sin 3t 

(a) y = sin t 

FIGURE 11.4. Various periodic signals made by adding sine
waves that are harmonically related. Each signal has an an-
gular frequency ω0 = 1 and a period T = 2π.

frequency f0 is the number of cycles per second. Its units
are s−1 or hertz (Hz) (hertz is not used for angular fre-
quency):

f0 =
1
T

=
ω0

2π
. (11.12)

It is possible to write function y as a sum of a sine term
and a cosine term instead of using phase φ:

y(t) = A sin(ω0t − φ) = A(sin ω0t cos φ − cos ω0t sin φ)
= (A cos φ) sin ω0t − (A sin φ) cos ω0t

= S sin ω0t − C cos ω0t. (11.13)

The upper function graphed in Fig. 11.3 also has period
T .

Harmonics are integer multiples of the fundamental
frequency. They have the time dependence cos(kω0t) or
sin(kω0t), where k = 2, 3, 4, . . . . These also have period
T . (They also have shorter periods, but they still satisfy
the definition Eq. 11.10 for a function of period T .)

We can generate periodic functions of different shapes
by combining various harmonics. Different combinations
of the fundamental, third harmonic, and fifth harmonic
are shown in Fig. 11.4. In this figure, (a) is a pure sine
wave, (b) and (c) have some third harmonic added with
a different phase in each case, and (d) and (e) show the
addition of a fifth harmonic term to (b) with different
phases.
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An even function is one for which y(t) = y(−t). For an
odd function, y(t) = −y(−t). The cosine is even, and the
sine is odd. A sum of sine terms gives an odd function. A
sum of cosine terms gives an even function.

11.4 Fourier Series for Discrete Data

11.4.1 Introducing the Fourier Series

The ability to adjust the amplitude of sines and cosines
to approximate a specific shape suggests that discrete
periodic data can be fitted by a function of the form

y(tj) = a0 +
n∑

k=1

ak cos(kω0tj) +
n∑

k=1

bk sin(kω0tj)

= a0 +
n∑

k=1

ak cos(k2πf0tj) +
n∑

k=1

bk sin(k2πf0tj).

(11.14)

It is important to note that if we have a set of data to
fit, in some cases we may not know the actual period of
the data; we sample for some interval of length T . In that
case the period T = 2π/ω0 is a characteristic of the fitting
function that we calculate, not of the data being fitted.

There are 2n+1 parameters (a0; a1, . . . , an; b1, . . . , bn).
Since there are N independent data points, there can be
at most N independent coefficients. Therefore, 2n + 1 ≤
N , or

n ≤ N − 1
2

. (11.15)

This means that there must be at least two samples per
period at the highest frequency present. This is known as
the Nyquist sampling criterion.

If the least-squares criterion is used to determine the
parameters, Eq. 11.14 is a Fourier-series representation
of the data. Using the least-squares criterion to determine
the coefficients to fit N data points requires minimizing
the mean square residual

Q =
1
N

N∑

j=1

[

yj − a0 −
n∑

k=1

ak cos(kω0tj) (11.16)

−
n∑

k=1

bk sin(kω0tj)

]2

.

The derivatives that must be set to zero are

∂Q

∂a0
= − 2

N

N∑

j=1

[(

yj − a0 −
n∑

k=1

ak cos(kω0tj)

−
n∑

k=1

bk sin(kω0tj)

)

(1)

]

,

∂Q

∂am
= − 2

N

N∑

j=1

[(

yj − a0 −
n∑

k=1

ak cos(kω0tj)

−
n∑

k=1

bk sin(kω0tj)

)

cos(mω0tj)

]

,

and

∂Q

∂bm
= − 2

N

N∑

j=1

[(

yj − a0 −
n∑

k=1

ak cos(kω0tj)

−
n∑

k=1

bk sin(kω0tj)

)

sin(mω0tj)

]

.

Setting each derivative equal to zero and interchanging
the order of the summations give 2n + 1 equations anal-
ogous to Eq. 11.8. The first is

N∑

j=1

yj = Na0 +
n∑

k=1

ak

N∑

j=1

cos(kω0tj) (11.17)

+
n∑

k=1

bk

N∑

j=1

sin(kω0tj).

There are n equations of the form

N∑

j=1

yj cos(mω0tj) = a0

N∑

j=1

cos(mω0tj)

+
n∑

k=1

ak

N∑

j=1

cos(kω0tj) cos(mω0tj)

(11.18)

+
n∑

k=1

bk

N∑

j=1

sin(kω0tj) cos(mω0tj)

for m = 1, . . . , n, and n more of the form

N∑

j=1

yj sin(mω0tj) = a0

N∑

j=1

sin(mω0tj)

+
n∑

k=1

ak

N∑

j=1

cos(kω0tj) sin(mω0tj)

+
n∑

k=1

bk

N∑

j=1

sin(kω0tj) sin(mω0tj).

(11.19)

Since the tj are known, each of the sums over the data
points (index j) on the right-hand side can be evaluated
independent of the yj .

11.4.2 Equally Spaced Data Points Simplify
the Equations

If the data points are equally spaced, the equations be-
come much simpler. There are N data points spread out
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over an interval T : tj = jT/N = 2πj/Nω0, j = 1, . . . , N .
The arguments of the sines and cosines are of the form
(2πjk/N). One can show that

N∑

j=1

cos
(

2πjk

N

)
=
{

N, k = 0 or k = N,
0 otherwise (11.20)

N∑

j=1

sin
(

2πjk

N

)
= 0, for all k, (11.21)

N∑

j=1

cos
(

2πjk

N

)
cos
(

2πjm

N

)
(11.22)

=
{

N/2, k = m or k = N − m,
0 otherwise,

N∑

j=1

sin
(

2πjk

N

)
sin
(

2πjm

N

)
(11.23)

=






N/2, k = m,
−N/2, k = N − m,

0 otherwise,

N∑

j=1

sin
(

2πjk

N

)
cos
(

2πjm

N

)
= 0 for all k. (11.24)

Because of these properties, Eqs. 11.17–11.19 become a
set of independent equations when the data are equally
spaced:

a0 =
1
N

N∑

j=1

yj , (11.25a)

am =
2
N

N∑

j=1

yj cos
(

2πjm

N

)
, (11.25b)

bm =
2
N

N∑

j=1

yj sin
(

2πjm

N

)
. (11.25c)

11.4.3 The Standard Form for the Discrete
Fourier Transform

It is customary to change the notation to make the equa-
tions more symmetric. Figure 11.5 shows the four dif-
ferent times corresponding to N = 4 with j = 1, 2, 3, 4.
Because of the periodicity of the sines and cosines, j = N
gives exactly the same value of a sine or cosine as does
j = 0. Therefore, if we reassign the data point corre-
sponding to j = N to have the value j = 0 and sum from
0 to N − 1, the sums will be unchanged:

a0 =
1
N

N−1∑

j=0

yj , (11.26a)

1 2 3 4j = t

 T 

1 2 30j = t

 T 

FIGURE 11.5. A case where N = 4. The values of time are
spaced by T/N and distributed uniformly. In the top case the
values of j range from 1 to N . In the lower case they range
from 0 to N − 1. The values of all the trigonometric functions
are the same for j = 0 and for j = N .

am =
2
N

N−1∑

j=0

yj cos
(

2πjm

N

)
, (11.26b)

bm =
2
N

N−1∑

j=0

yj sin
(

2πjm

N

)
. (11.26c)

For equally spaced data the function can be written as

yj = y(tj) = a0 +
n∑

k=1

ak cos
(

2πjk

N

)
+

n∑

k=1

bk

(
2πjk

N

)
.

(11.26d)
You can show (see the problems at the end of this chap-

ter) that the symmetry and antisymmetry in Eqs. 11.22
and 11.23 for k = N−m means that Eqs. 11.25 and 11.26
for k > N/2 repeat those for k < N/2. We can use this
fact to make the equations more symmetric by changing
the factor in front of the summations in Eqs. 11.26b and
11.26c to be 1/N instead of 2/N and extending the sum-
mation in Eq. 11.26d all the way to n = N − 1. Since
cos(0) = 1 and sin(0) = 0, we can include the term a0

by including k = 0 in the sum. We then have the set of
equations

yj = y(tj) =
N−1∑

k=0

ak cos
(

2πjk

N

)
+

N−1∑

k=0

bk sin
(

2πjk

N

)
,

(11.27a)

ak =
1
N

N−1∑

j=0

yj cos
(

2πjk

N

)
, (11.27b)

bk =
1
N

N−1∑

j=0

yj sin
(

2πjk

N

)
. (11.27c)

This set of equations is the usual form for the discrete
Fourier transform. We will continue to use our earlier
form, Eqs. 11.26, in the rest of this chapter.

11.4.4 Complex Exponential Notation

The Fourier transform is usually written in terms of com-
plex exponentials. We have avoided using complex expo-
nentials. They are not necessary for anything done in this
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R2

Q = 0.1907

R = y - ycalc

y
ycalc

FIGURE 11.6. A square wave y(tj) and the calculated func-
tion y(t) = b1 sin(ω0t) are shown, along with the residuals and
the squares of the residuals for each point. The value of b1 is
4/π, which minimizes Q for that term.

book. The sole advantage of complex exponentials is to
simplify the notation. The actual calculations must be
done with real numbers. Since you will undoubtedly see
complex notation in other books, the notation is included
here for completeness.

The numbers that we have been using are called real
numbers. The number i =

√
−1 is called an imaginary

number. A combination of a real and imaginary number
is called a complex number. The remarkable property of
imaginary numbers that make them useful in this context
is that

eiθ = cos θ + i sin θ. (11.28)

If we define the complex number Yk = ak − ibk, we can
write Eqs. 11.27 as

Yk =
1
N

N−1∑

j=0

yje
−i2πjk/N (11.29a)

and

yj =
N−1∑

k=0

Ykei2πjk/N . (11.29b)

Since our function y is assumed to be real, in the second
equation we keep only the real part of the sum. To repeat:
this gives only a more compact notation. It does not save
in the actual calculations.

11.4.5 Example: The Square Wave

Figures 11.6–11.9 show fits to a square wave with 128 data
points. The function is yj = 1, j = 0, . . . , 63 and yj = −1,

TABLE 11.3. Fourier coefficients obtained for a square wave
fit.

Term k ak bk

0 0.000
1 −0.031 1.273
2 0.000 0.000
3 −0.031 0.424
4 0.000 0.000
5 −0.031 0.253
6 0.000 0.000
7 −0.031 0.181

j = 64, . . . , 127. This is an odd function of t. Therefore,
the series should contain only sine terms; all ak should be
zero. The calculated coefficients are shown in Table 11.3.
Some of the ak values are small but not exactly zero.
This is due to the finite number of data points; the ak

become smaller as N is increased. The even values of the
bk vanish. We will see why below.

Figure 11.6 shows the square wave as dots and y(x) as
a smooth curve when b1 = 1.273 and all the other coeffi-
cients are zero. This provides the minimum Q obtainable
with a single term. Figure 11.7 shows why Q is larger for
any other value of b1. Figure 11.8 shows the terms for
k = 1 and k = 3. The value of Q is further reduced. Fig-
ure 11.9 shows why even terms do not reduce Q. In this
case b2 = 0.5 has been added to b1. The fit is improved for
the regions 0 < t < T/4 and 3T/4 < t < T , but between
those regions the fit is made worse.

11.4.6 Example: When the Sampling Time Is
Not a Multiple of the Period of the
Signal

The discussion just after Eq. 11.14 pointed out that in
some cases we may not know the actual period and fun-
damental frequency ω0 of the data. If we do know the
actual period and the data points yj are a sine or cosine
with exact frequency ω0 or a harmonic, and if no random
errors are superimposed on the data, then only the coeffi-
cients corresponding to those frequencies will be nonzero.
The reason is that if the function is exactly periodic, then
by sampling for one period we have effectively sampled
for an infinite time.

If the measuring duration T is not an integral multi-
ple of the period of the signal—that is, the frequency
of the signal y is not an exact harmonic of ω0—then
the Fourier series contains terms at several frequencies.
This is shown in Figs. 11.10 and 11.11 for the data
yj = sin [3.3 × 2πj/N ]. Figure 11.10 shows the yj for
N = 20 and N = 80 samples during the period of the
measurement. For 20 samples, n = 9; for 80 samples,
n = 39. Figure 11.11 shows (a2

k + b2
k)1/2 for both sam-

ple sets for k = 0 to 9, calculated using Eqs. 11.26. For
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R = y - ycalc

y 

ycalc

R2

Q = 0.227

(a)
ycalc

y

R = y - ycalc

(b)

R2

Q = 0.305

FIGURE 11.7. A single term is used to approximate the square
wave. (a) b1 = 1.00, which is too small a value. (b) b1 = 1.75,
which is too large. In both cases Q is larger than the minimum
value for a single term, shown in Fig. 11.6.

80 samples, the value of (a2
k + b2

k)1/2 is very small for
k > 9 and is not plotted. The frequency spectrum is vir-
tually independent of the number of samples. There is a
zero-frequency component because there is a net positive
area under the curve. The largest amplitude occurs for
k = 3. If one imagines a smooth curve drawn through the
histogram, its peak would be slightly above k = 3. We
will see later that the width of this curve depends on the
duration of the measurement, T .

Figure 11.12 shows the fit to the data of Fig. 11.10a.
Since the data points had no errors, the fitting function
with 20 parameters passes through each of the 20 data
points. However, it does not match y of Fig. 11.10a at

R = y - ycalc

y
ycalc

R2

Q = 0.102

FIGURE 11.8. Terms b1 and b3 have their optimum values. Q
is smaller than in Fig. 11.6.

y

ycalc

R = y - ycalc

R2

Q = 0.316

FIGURE 11.9. This figure shows why even terms do not con-
tribute. A term b2 = 0.5 has been added to a term with the
correct value of b1. It improves the fit for t < T/4 and t > 3T/4
but makes it worse between T/4 and 3T/4.

other points. Note particularly the difference between the
function near j = 1 and near j = 19.

11.4.7 Example: Spontaneous Births

Figure 11.13 shows the number of spontaneous births per
hour vs. local time of day for 600,000 live births in various
parts of the world. The basic period is 24 hr; there is
also a component with k = 3 (T = 8 hr). These data
were reported by Kaiser and Halberg (1962). More recent
data show peaks at different times [Anderka et al. (2000)].
Changes might be due to a difference in the duration of
labor.
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j
(b) N = 80

0 80

j0 20

(a) N = 20

FIGURE 11.10. Sine wave yj = sin [3.3 × 2πj/N ] (a) with 20
data points and (b) with 80 data points. The sampling time
is not an integral number of periods.
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k2  +
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86420

k

N = 20
N = 80

FIGURE 11.11. The amplitude of the mixed sine and
cosine coefficients (a2

k + b2
k)1/2 vs k for the function

yj = sin 3.3 × 2πj/N . The signal is sampled for 20 (open cir-
cles) or 80 (solid circles) data points. The amplitude spectrum
is nearly independent of the number of samples.

11.4.8 Example: Photosynthesis in Plants

Tobacco plant leaves were exposed to white light similar
to sunlight, with the amplitude varying sinusoidally with
a frequency ω0 corresponding to a period of 60 or 80 s
[Nedbal and Březina (2002)]. Fluorescence measurements
showed an oscillation with predominant frequencies of ω0,

200 j

FIGURE 11.12. The solid line shows the calculated fit for the
20 data points in Fig. 11.10a. The dashed line is the same as
the solid line in Fig. 11.10.
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FIGURE 11.13. Data on the number of spontaneous births
per hour, fit with terms having a period of 24 hr and 8 hr.

2ω0, and 3ω0. This is shown in Fig. 11.14. The authors
present a feedback model, very similar to those in Sec-
tions 10.10.6 and 11.15. A nonlinearity in the model is
responsible for generating the second and third harmon-
ics.

11.4.9 Pitfalls of Discrete Sampling: Aliasing

We saw in the preceding section that N samples in time
T allow the determination of unique Fourier coefficients
only for the terms from k = 0 to n = (N − 1)/2.
This means that for a sampling interval T/N , the max-
imum angular frequency is (N − 1)ω0/2. The period of
the highest frequency that can be determined is Tmin =
2T/(N−1). This is approximately twice the spacing of the
data points. One must sample at least twice per period
to determine the coefficient at a particular frequency.
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FIGURE 11.14. Tobacco leaves were exposed to sinusoidally varying light with a period of 60 s or 80 s (thin line, upper
panels). The leaves were also interrogated with a measuring flash of orange light which stimulated fluorescence. The large
circles show the resulting fluorescence. The lower panels show the frequencies in the fluorescence signal. From L. Nedbal and
V. Březina. Complex metabolic oscillations in plants forced by harmonic irradiance. Biophys. J. 83: 2180–2189 (2002). Used
by permission.

If a component is present whose frequency is more than
half the sampling frequency, it will appear in the analysis
at a lower frequency. This is the familiar stroboscopic
effect in which the wheels of the stagecoach appear to
rotate backward because the samples (movie frames) are
not made rapidly enough. In signal analysis, this is called
aliasing. It can be seen in Fig. 11.15, which shows a sine
wave sampled at regularly spaced intervals that are longer
than half a period.

This phenomenon is inescapable if frequencies greater
than (N − 1)ω0/2 are present. They must be removed by
analog or digital techniques before the sampling is done.
For a more detailed discussion, see Blackman and Tukey
(1958) or Press et al. (1992). An example of aliasing is
found in a later section, in Fig. 11.41. Maughan et al.
(1973) pointed out how researchers have been “stung” by
this problem in hematology.

11.4.10 Fast Fourier Transform

The calculation of the Fourier coefficients using our equa-
tions involves N evaluations of the sine or cosine, N mul-
tiplications, and N additions for each coefficient. There
are N coefficients, so that there must be N2 evaluations

FIGURE 11.15. An example of aliasing. The data are sampled
less often than twice per period and appear to be at a much
lower frequency.

of the sines and cosines, which uses a lot of computer
time. Cooley and Tukey (1965) showed that it is possible
to group the data in such a way that the number of mul-
tiplications is about (N/2) log2 N instead of N2 and the
sines and cosines need to be evaluated only once, a tech-
nique known as the Fast Fourier Transform (FFT). For
example, for 1024 = 210 data points, N2 = 1048 576,
while (N/2) log2 N = (512)(10) = 5120. This speeds
up the calculation by a factor of 204. The techniques
for the FFT are discussed by many authors [see Press
et al. (1992) or Visscher (1996)]. Bracewell (1990) has
written an interesting review of all the popular numer-
ical transforms. He points out that the grouping used
in the FFT dates back to Gauss in the early nineteenth
century.

11.5 Fourier Series for a Periodic
Function

It is possible to define the Fourier series for a continuous
periodic function y(t) as well as for discrete data points
yj . In fact, the function need only be piecewise continu-
ous, that is, with a finite number of discontinuities. The
calculated function is given by the analog of Eq. 11.14:

ycalc(t) = a0+
n∑

k=1

ak cos(kω0t)+
n∑

k=1

bk sin(kω0t). (11.30)

The quantity to be minimized is still the mean square
error, in this case

Q =
1
T

∫ T

0

[y(t) − ycalc(t)]
2

dt. (11.31)
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When Q is a minimum, ∂Q/∂am and ∂Q/∂bm must be
zero for each coefficient. For example,

∂Q

∂am
=

1
T

∂

∂am

∫ T

0

×
(

y(t) − a0 −
n∑

k=1

[ak cos(kω0t) + bk sin(kω0t)]

)2

dt

= − 2
T

∫ T

0[(

y(t) − a0 −
n∑

k=1

[ak cos(kω0t) + bk sin(kω0t)]

)

× cos(mω0t)

]

dt = 0.

This integral must be zero for each value of m from 1 to n.
If the order of integration and summation is interchanged,
the result is

∫ T

0

y(t) cos(mω0t) dt − a0

∫ T

0

cos(mω0t) dt

−
n∑

k=1

ak

∫ T

0

cos(kω0t) cos(mω0t) dt

−
n∑

k=1

bk

∫ T

0

sin(kω0t) cos(mω0t) dt = 0.

The integral of cos(mω0t) over a period vanishes. The last
two integrals are of the form given in Appendix E, Eqs.
E.4 and E.5:

∫ T

0

cos(kω0t) cos(mω0t) dt =
{

0, k 
= m
T/2, k = m,∫ T

0

sin(kω0t) cos(mω0t) dt = 0.

(11.32)
These results are the orthogonality relations for the
trigonometric functions. Inserting these values, we find
that only one term in the first summation over k remains,
and we have

∫ T

0

y(t) cos(mω0t) dt − am
T

2
= 0,

or

am =
2
T

∫ T

0

y(t) cos(mω0t) dt. (11.33a)

Minimizing with respect to bm gives

bm =
2
T

∫ T

0

y(t) sin(mω0t) dt, (11.33b)

and minimizing with respect to a0 gives

a0 =
1
T

∫ T

0

y(t)dt. (11.33c)

TABLE 11.4. Value of the kth coefficient and the value of Q
when terms through the kth are included from Eq. 11.34.

k bk Q

1 1.2732 0.19
3 0.4244 0.10
5 0.2546 0.07
7 0.1819 0.05
9 0.1415 0.04

These equations are completely general. Because of the
orthogonality of the integrals, the coefficients are inde-
pendent, just as they were in the discrete case for equally
spaced data. This is not surprising, since the continuous
case corresponds to an infinite set of uniformly spaced
data.

Note the similarity of these equations to the discrete
results, Eqs. 11.25. In each case a0 is the average of the
function over the period. The other coefficients are twice
the average of the signal multiplied by the sine or cosine
whose coefficient is being calculated.

The integrals can be taken over any period. Sometimes
it is convenient to make the interval −T/2 to T/2. As we
would expect, the integrals involving sines vanish when
y is an even function, and those involving cosines vanish
when y is an odd function.

For the square wave y(t) = 1, 0 < t < T/2; y(t) = −1,
T/2 < t < T , we find

ak = 0,

bk =
{

0, k even,
4/πk, k odd.

(11.34)

Table 11.4 shows the first few coefficients for the
Fourier series representing the square wave, obtained
from Eq. 11.34. They are the same as those for the dis-
crete data in Table 11.3. Figure 11.16 shows the fits for
n = 3 and n = 39. As the number of terms in the fit is in-
creased, the value of Q decreases. However, spikes of con-
stant height (about 18% of the amplitude of the square
wave or 9% of the discontinuity in y) remain. These are
seen in Fig. 11.16. These spikes appear whenever there is
a discontinuity in y and are called the Gibbs phenomenon.

Figure 11.17 shows the blood flow in the pulmonary
artery of a dog as a function of time. It has been fitted
by a mean and four terms of the form Mk sin(kω0t−φk).
The technique is useful because the elastic properties of
the arterial wall can be described in terms of sinusoidal
pressure variations at various frequencies [Milnor (1972)].

11.6 The Power Spectrum

Since the power dissipated in a resistor is v2/R or i2R,
the square of any function (or signal) is often called the
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n = 3; Q = 0.102

(a)

n = 39; Q = 0.013

Gibbs phenomenon

(b)

FIGURE 11.16. Fit to the square wave. (a) Fit with the terms
for k = 1 and k = 3. The value of Q is 0.102. (b) Fit with
terms through k = 39. Q is very small, but the Gibbs phe-
nomenon—spikes near the discontinuity—is apparent.

power. A periodic signal y(t) can be written as

y(t) = a0 +
n∑

k=1

[ak cos(kω0t) + bk sin(kω0t)] + εn(t),

(11.35)
where the error εn(t) is the difference between the signal
(represented by an infinite number of terms) and the sum
over n terms. [This equation defines εn(t). εn(t) does not
represent “noise,” which is discussed in a later section.]
The coefficients are given by Eqs. 11.33.

The average “power” in the signal is defined to be3

〈
y2
〉

= lim
T ′→∞

1
2T ′

∫ T ′

−T ′
y2(t) dt. (11.36)

For a periodic signal, the same result can be obtained by
integrating over one period:

〈
y2
〉

=
1
T

∫ T

0

y2(t) dt. (11.37)

To calculate this using Eq. 11.35 for y(t), we have to write
the sum twice and multiply both sums together:

1
T

∫ T

0

y2(t) dt =
1
T

∫ T

0(

a0 +
n∑

k=1

[ak cos(kω0t) + bk sin(kω0t)] + εn(t)

)

×



a0 +
n∑

j=1

[aj cos(jω0t) + bj sin(jω0t)] + εn(t)



 dt.

3The time average of a variable will be denoted by 〈〉 brackets.

FIGURE 11.17. Analysis of the pulmonary arterial blood flow
in a dog, in terms of a Fourier series. From W. R. Milnor,
Pulsatile blood flow. New Eng. J. Med. 287: 27–34. Copyright
c©Massachusetts Medical Society. All rights reserved. Drawing
courtesy of Professor Milnor.

When these terms are multiplied together and written
out, we have

〈y2〉 =
1
T

∫ T

0

dt

(
(i)

a2
0 + 2a0

n∑

k=1

[
(ii)

ak cos(kω0t) +
(iii)

bk sin(kω0t)

]

+
(iv)

2a0εn(t) +
n∑

k=1

[
(v)

a2
k cos2(kω0t) +

(vi)

b2
k sin2(kω0t)

]

+
n∑

k=1

∑

j 	=k

(vii)

akaj cos(kω0t) cos(jω0t)

+
n∑

k=1

∑

j 	=k

(viii)

bkbj sin(kω0t) sin(jω0t)

+ 2
n∑

k=1

n∑

j=1

(ix)

akbj cos(kω0t) sin(jω0t)

+ 2εn(t)
n∑

k=1

(x)[

ak cos(kω0t) + bk sin(kω0t)

]

+
(xi)

ε2n(t)

)

.
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1.0

0.8

0.6

0.4
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Φ
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 (
a k2 +

b k2 )/
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97531

k

FIGURE 11.18. The power spectrum Φk for the square wave
of Fig. 11.6 or Fig. 11.17, calculated using the values of bk

from Table 11.4.

Each term has been labeled (i) through (xi). Assume that
the function y is sufficiently well behaved so that the
order of integration and summation can be interchanged.
Term (i) gives a2

0. Terms (ii) and (iii) are integrals of
the cosine or sine over an integral number of cycles and
vanish. Term (iv) gives4

2a0
1
T

∫ T

0

εn(t) dt = 0.

Terms (v) and (vi) give a2
k/2 and b2

k/2. Terms (vii), (viii),
and (ix) all vanish because of Eq. 11.32. Terms like (x)
vanish because εn(t) can be approximated by a sum of
sine and cosine terms extending from k = n+1 to infinity
that are orthogonal to terms for 1 < k < n. Term (xi) is〈
ε2n
〉
. We finally have for the average power

〈
y2(t)

〉
= a2

0 +
1
2

n∑

k=1

(a2
k + b2

k) +
〈
ε2n
〉

=
n∑

k=0

Φk +
〈
ε2n
〉
.

(11.38)
The coefficients are defined by Eqs. 11.33. We could have
made a similar argument for the discrete Fourier series
of Eqs. 11.25 or 11.26 and obtained the same result. In
both cases the average power is a sum of terms Φk that
represent the average power at each frequency kω0. The
term Φ0 = a2

0 is the average of the square of the zero-
frequency or dc (direct-current) term; Φk = (a2

k + b2
k)/2

is the average of the squares of the terms ak cos(kω0t)
and bk sin(kω0t); and

〈
ε2n
〉

is the average of the square of
the error term. Figure 11.18 shows the power spectrum
of the square wave that was used in the example.

11.7 Correlation Functions

The correlation function is useful to test whether two
functions of time are correlated, that is, whether a change

4The quantity y(t)−a0 has an average of zero. Since all the sine

and cosine terms have an average of zero, εn also has an average of

zero.

y1(t)y2(t + τ)

86420 t

y2(t + τ) τ = 2.5

y1(t)y2(t + τ)

y1(t)y2(t + τ)

y2(t + τ) τ = 2.0

y2(t + τ) τ = 1.5

y1(t)y2(t + τ)

y2(t + τ) τ = 1

y2(t)

y1(t)

(a)

φ12(τ)

-4 -2 0 2 4τ

(b)

(c)

FIGURE 11.19. An example of the cross-correlation function.
(a) The two signals to be correlated. (b) Plots of y2(t+τ) and
the product y1(t)y2(t + τ) for different values of τ . (c) Plot
of φ12(τ). The peak occurs when signal y2 has been advanced
2 s.

in one is accompanied by a change in the other. Let the
two variables to be tested be y1(t) and y2(t). The change
in y2 may occur earlier or later than the change in y1;
therefore the correlation must be examined as one of the
variables is shifted in time. Examples of pairs of variables
that may be correlated are wheat price and rainfall, uri-
nary output and fluid intake, and the voltage changes at
two different points along the nerve axon. The variables
may or may not be periodic. Exhibiting a correlation does
not establish a cause-and-effect relationship. (The height
of a growing tree may correlate for several years with an
increase in the stock market.)

11.7.1 Cross-Correlation of a Pulse

To calculate the cross-correlation function of y1 and y2,
advance y2(t) by an amount τ , multiply y1 by the shifted
y2, and integrate the product. Figure 11.19 shows the
process for two pulses. The second pulse occurs 2 s later
than the first. As the second pulse is advanced the pulses
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begin to overlap. When the second pulse has been ad-
vanced by 2 s the overlap is greatest; as it is advanced
more, the overlap falls to zero. The cross-correlation func-
tion depends on τ and is plotted in Fig. 11.19(c). The
mathematical statement of this procedure for a pulse is

φ12(τ) =
∫ ∞

−∞
y1(t)y2(t + τ) dt. (11.39)

The integrand makes a positive contribution to the inte-
gral if y1(t) and y2(t + τ) are both positive at the same
time or both negative at the same time. It makes a neg-
ative contribution if one function is positive while the
other is negative.

11.7.2 Cross-Correlation of a Nonpulse Signal

If the signals are not pulses, then the cross-correlation
integral is defined as

φ12(τ) = 〈y1(t)y2(t + τ)〉 . (11.40)

As before, the average is the integral over a long time
divided by the time interval:

φ12(τ) = lim
T→∞

1
2T

∫ T

−T

y1(t)y2(t + τ) dt. (11.41)

If the signals have period T , the average can be taken by
integrating over a single period:

φ12(τ) =
1
T

∫ t′+T

t′
y1(t)y2(t + τ) dt. (11.42)

Note the difference in units between φ12 as defined for
pulses in Eq. 11.39 where the units of φ are the units of
y2 times time, and φ12 defined in Eqs. 11.40–11.42 where
the units are those of y2.

The cross correlation depends only on the relative shift
of the two signals. It does not matter whether y2 is ad-
vanced by an amount τ or y1 is delayed by the same
amount:

φ21(−τ) = φ12(τ). (11.43)

11.7.3 Cross-Correlation Example

As an example of the cross correlation, consider a square
wave that has value ±1 and a sine wave with the same
period (Fig. 11.20). When the square wave and sine wave
are in phase, the product is always positive and the cross
correlation has its maximum value. As the square wave
is shifted the product is sometimes positive and some-
times negative. When they are a quarter-period out of
phase, the average of the integrand is zero, as shown in
Fig. 11.20(b). Still more shift results in the correlation
function becoming negative, then positive again, with a
shift of one full period giving the same result as no shift.

y2(t+τ)

y1(t)y2(t+τ)
(a)  τ = 0;  φ12 > 0 

y2(t+τ)

y1(t)

y1(t)

y1(t)

y2(t+τ)

y1(t)y2(t+τ)

(b) τ = 3T/4 or -T/4;  φ12 = 0 

y1(t)y2(t+τ)

(c)  τ = ± T/2;  φ12 < 0

FIGURE 11.20. Cross correlation of a square wave and a sine
wave of the same period.

11.7.4 Autocorrelation

The autocorrelation function is the correlation of the sig-
nal with itself:

φ11(τ) =
∫

y1(t)y1(t + τ) dt (pulse), (11.44)

φ11(τ) = 〈y1(t)y1(t + τ)〉 (nonpulse). (11.45)

Since the signal is correlated with itself, advancing one
copy of the signal is the same as delaying the other. The
autocorrelation is an even function of τ :

φ11(τ) = φ11(−τ). (11.46)

11.7.5 Autocorrelation Examples

The autocorrelation function for a sine wave can be cal-
culated analytically. If the amplitude of the sine wave is
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FIGURE 11.21. Plots of y(t), y(t + τ), and their product for
a square wave.

A and the frequency is ω = 2π/T ,

φ11(τ) =
A2

T

∫ T

0

sin(ωt) sin(ωt + ωτ) dt

=
A2

T

∫ T

0

sin(ωt)

× [sin(ωt) cos(ωτ) + cos(ωt) sin(ωτ)] dt

= A2 cos(ωτ)

[
1
T

∫ T

0

sin2(ωt) dt

]

+ A2 sin(ωτ)

[
1
T

∫ T

0

sin(ωt) cos(ωt) dt

]

.

It is shown in Appendix E that the first term in square
brackets is 1

2 and the second is 0. Therefore the autocor-
relation function of the sine wave is

φ11(τ) =
A2

2
cos(ωτ). (11.47)

As a final example, consider the autocorrelation of a
square wave of unit amplitude. One period is drawn in
Fig. 11.21 showing the wave, the advanced wave, and the
product. The average is the net area divided by T . The
area above the axis is (2)(T/2− τ)(1) since there are two
rectangles of height 1 and width T/2− τ . From this must
be subtracted the area of the two rectangles of height
1 and width τ that are below the axis. The net area is
T − 4τ . The autocorrelation function is

φ11(τ) = 1 − 4τ/T, 0 < τ < T/2. (11.48)

The plot of the integrand in Fig. 11.21 is only valid for
0 < τ < T/2. We can use the fact that the autocorrelation
is an even function to draw φ for −T/2 < τ < 0. We then
have φ for the whole period. It is plotted in Fig. 11.22.

FIGURE 11.22. Plot of φ11(τ) for the square wave.

11.8 The Autocorrelation Function
and the Power Spectrum

We saw that the power spectrum of a periodic signal is
related to the coefficients in its Fourier series (Eq. 11.38):

〈
y2(t)

〉
= a2

0 +
1
2

n∑

k=1

(a2
k + b2

k),

with the term for each value of k representing the amount
of power carried in the signal component at that fre-
quency. The Fourier series for the autocorrelation func-
tion carries the same information. To see this, calculate
the autocorrelation function of

y1(t) = a0 +
n∑

k=1

[ak cos(kω0t) + bk sin(kω0t)] .

We can write

φ11(τ) = 〈y1(t)y1(t + τ)〉

=

〈(

a0 +
n∑

k=1

[ak cos(kω0t) + bk sin(kω0t)]

)

×
(

a0 +
n∑

j=1

{

aj cos[jω0(t + τ)]

+ bj sin[jω0(t + τ)]

})〉

.

The next step is to multiply out all the terms as we did
when deriving Eq. 11.38. We then use the trigonometric
identities5

cos(x + y) = cos x cos y − sinx sin y,

sin(x + y) = cos x sin y + sin x cos y.

For many of the terms, either the averages are zero or
pairs of terms cancel. We finally obtain

φ11(τ) = a2
0 +

n∑

k=1

1
2
(a2

k + b2
k) cos(kω0τ). (11.49)

This has only cosine terms, since the autocorrelation
function is even.

5One virtue of the complex notation is that these addition
formulae become the standard rule for multiplying exponentials:
ei(x+y) = eixeiy .
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Φ
k

y (t) ak ,bk

φ11(τ )

1
2(ak

2 + bk
2 )

Fourier series

Fourier series

Φk =Auto- 
correlation

Power 
spectrum 
(discrete)

FIGURE 11.23. The power spectrum of a periodic signal can
be obtained either from the squares of the Fourier coefficients
of the signal or from the Fourier coefficients of the autocorre-
lation function.

For zero shift,

φ11(0) = a2
0 +

n∑

k=1

1
2
(a2

k + b2
k).

Comparison with Eq. 11.38 shows that this is the power
in the signal. We can get this result directly from Eq.
11.36. The integral is the same as the definition of the
autocorrelation function when τ = 0.

The Fourier series for the autocorrelation function is
particularly easy to obtain. We need only pick out the
coefficients in Eq. 11.49. Write the Fourier expansion of
the autocorrelation function as

φ11(τ) = α0 +
n∑

k=1

αk cos(kω0τ). (11.50)

Comparing terms in Eqs. 11.49 and 11.50 shows that α0 =
a2
0 and αk = (a2

k +b2
k)/2. We can also compare these with

the definition of Φk in Eq. 11.38 and say that

Φ0 = average dc (zero-
frequency) power

= α0 = a2
0,

Φk = average power at
frequency kω0

= αk = 1
2 (a2

k + b2
k).

(11.51)
The autocorrelation function contains no phase informa-
tion about the signal. This is reflected in the fact that
αk = (a2

k + b2
k); the sine and cosine terms at a given

frequency are completely mixed together.
There are two ways to find the power Φk at frequency

kω0. Both are shown in Fig. 11.23. The function y(t) and
its Fourier coefficients are completely equivalent, and one
can go from one to the other. Squaring the coefficients and
adding them gives the power spectrum. This is a one-way
process; once they have been squared and added, there
is no way to separate them again. The autocorrelation
function also involves squaring and adding and is a one-
way process. The autocorrelation function and the power
spectrum are related by a Fourier series and can be cal-
culated from each other.

FIGURE 11.24. Various pulses. The common feature is that
they occur once. (a) Square pulse. (b) Half cycle of a sine
wave. (c) One cycle of a sine wave. (d) Gaussian. (e) Nerve
pulse. (f) Exponentially decaying pulse. (g) Gated sine wave.

11.9 Nonperiodic Signals and Fourier
Integrals

Sometimes we have to deal with a signal that is a pulse
that occurs just once. Several pulses are shown in Fig.
11.24; they come in an infinite variety of shapes. Noise is
another signal that never repeats itself and is therefore
not periodic. The Fourier integral or Fourier transform
is an extension of the Fourier series that allows us to deal
with nonperiodic signals.

11.9.1 Introduce Negative Frequencies and
Make the Coefficients Half as Large

The Fourier series expansion of a periodic function y(t)
was seen in Eq. 11.30. If we let the number of terms be
infinite, we have

y(t) = a0 +
∞∑

k=1

ak cos(kω0t) +
∞∑

k=1

bk sin(kω0t),

with the coefficients given by Eqs. 11.33. Since y(t) has
period T , the integrals in Eqs. 11.33 can be over any
interval that is one period long. Let us therefore make
the limits of integration −T/2 to T/2 and also remember
that 1/T = ω0/2π. With these substitutions, Eqs. 11.33
become

a0 =
ω0

2π

∫ T/2

−T/2

y(t) dt,

ak =
ω0

π

∫ T/2

−T/2

y(t) cos(kω0t) dt, (11.52)

bk =
ω0

π

∫ T/2

−T/2

y(t) sin(kω0t) dt.



302 11. The Method of Least Squares and Signal Analysis

Now allow k to have negative as well as positive val-
ues. If the coefficients for negative k are also defined by
Eqs. 11.52, they have the properties [since cos(kω0t) =
cos(−kω0t) and sin(kω0t) = − sin(−kω0t)],

a−k = ak, b−k = −bk.

Therefore the terms ak cos(kω0t) and bk sin(kω0t) in Eq.
11.30 are the same function of t whether k is positive
or negative. By introducing negative values of k we can
make the coefficients in front of the integrals for ak and
bk in Eqs. 11.52 become ω0/2π. This is the same trick
used to obtain the discrete equations, Eqs. 11.27. With
negative values of k allowed, we have

y(t) = a′
0 +

∞∑

k=−∞
k 	=0

[a′
k cos(kω0t) + b′k sin(kω0t)] ,

a′
0 =

ω0

2π

∫ T/2

−T/2

y(t) dt,

a′
k =

ω0

2π

∫ T/2

−T/2

y(t) cos(kω0t) dt,

b′k =
ω0

2π

∫ T/2

−T/2

y(t) sin(kω0t) dt.

Since cos(0ω0t) = 1 and sin(0ω0t) = 0, we can incor-
porate the definition of a′

0 into the definition of a′
k and

introduce b′0 which is always zero. The sum can then in-
clude k = 0:

y(t) =
∞∑

k=−∞
[a′

k cos(kω0t) + b′k sin(kω0t)] ,

a′
k =

ω0

2π

∫ T/2

−T/2

y(t) cos(kω0t) dt, (11.53)

b′k =
ω0

2π

∫ T/2

−T/2

y(t) sin(kω0t) dt.

A final change of variables defines Ck = 2πa′
k/ω0 and

Sk = 2πb′k/ω0. With these changes the Fourier series and
its coefficients are

y(t) =
ω0

2π

∞∑

k=−∞
[Ck cos(kω0t) + Sk sin(kω0t)] ,

Ck =
∫ T/2

−T/2

y(t) cos(kω0t) dt, (11.54)

Sk =
∫ T/2

−T/2

y(t) sin(kω0t) dt.

To recapitulate, there is nothing fundamentally new
in Eq. 11.54. Negative values of k were introduced so
that the sum goes over each value of |k| twice (except for
k = 0). This allowed the coefficients to be made half as
large.

FIGURE 11.25. (a) A periodic signal. (b) A nonperiodic sig-
nal.

FIGURE 11.26. An approximation to the nonperiodic signal
shown in Fig. 11.25(b).

11.9.2 Make the Period Infinite

These equations can be used to calculate the Fourier
series for a periodic signal such as that shown in Fig.
11.25(a). Suppose that instead we want to find the coef-
ficients for the nonperiodic signal shown in Fig. 11.25(b).
This signal can be approximated by another periodic
signal shown in Fig. 11.26. The approximation to Fig.
11.25(b) becomes better and better as T is made longer.
As T becomes infinite, the fundamental angular fre-
quency ω0 approaches 0. Define ω = kω0. The frequencies
ω are discrete with spacing ω0. Consider a small frequency
interval encompassing many values of k, as shown in Fig.
11.27. Since ω0 is approaching zero, there can be many
values of ω and k between ω and ω + ∆ω. The frequen-
cies will be nearly the same, so the values of Ck will be
nearly the same. All of the terms in the sum in Eq. 11.54
can be replaced by an average value of Ck or Sk multi-
plied by the number of values of k in the interval, which
is ∆ω/ω0. Finally, we set Ck=C(ω) and ∆ω = dω. The
sum becomes an integral with ∆ω = dω:

y(t) =
ω0

2π

∫ ∞

−∞
[C(ω) cos ωt + S(ω) sin ωt]

dω

ω0
,

FIGURE 11.27. A histogram of Ck vs k.
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or finally, since dω = 2πdf ,

y(t) =
1
2π

∫ ∞

−∞
[C(ω) cos ωt + S(ω) sin ωt] dω

=
∫ ∞

−∞
[C(f) cos(2πft) + S(f) sin(2πft)] df,

C(ω) =
∫ ∞

−∞
y(t) cos ωt dt,

S(ω) =
∫ ∞

−∞
y(t) sin ωt dt.

(11.55)

These equations constitute a Fourier integral pair or
Fourier transform pair. They are completely symmetric
in the variables f and t and symmetric apart from the
factor 2π in the variables ω and t. One obtains C(ω)
or S(ω) by multiplying the function y(t) by the appropri-
ate trigonometric function and integrating over time. One
obtains y(t) by multiplying C and S by the appropriate
trigonometric function and integrating over frequency.

11.9.3 Complex Notation

Using complex notation, we define

Y (ω) = C(ω) − iS(ω) (11.56)

and write

y(t) =
1
2π

∫∞
−∞ Y (ω)eiωt dω =

∫∞
−∞ Y (ω)eiωt df,

Y (ω) =
∫ ∞

−∞
y(t)e−iωt dt.

(11.57)

11.9.4 Example: The Exponential Pulse

As an example, consider the function

y(t) =

{
0, t ≤ 0

Ae−at, t > 0.
(11.58)

The functions C and S are evaluated using Eqs. 11.55.
Since y(t) is zero for negative times, the integrals extend
from 0 to infinity. They are found in all standard integral
tables:

C(ω) = A

∫ ∞

0

e−at cos ωt dt =
A/a

1 + (ω/a)2
,

S(ω) = A

∫ ∞

0

e−at sin ωt dt =
(A/a)(ω/a)
1 + (ω/a)2

.
(11.59)

These are plotted in Fig. 11.28. Function C is even, while
S is odd. The functions are plotted on log–log graph pa-
per in Fig. 11.29. Remember that only positive values of
ω/a can be shown on a logarithmic scale, so the origin
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FIGURE 11.28. The sine and cosine coefficients in the Fourier
transform of an exponentially decaying pulse.
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FIGURE 11.30. Function f(t) and its even and odd parts.

and negative frequencies cannot be shown. It is apparent
from the slopes of the curves that C falls off as (ω/a)−2

while S falls more slowly, as (ω/a)−1. One way of ex-
plaining this difference is to note that the function y(t)
can be written as a sum of even and odd parts as shown
in Fig. 11.30. The odd function, which is given by the
sine terms in the integral, has a discontinuity, while the
even function does not. A more detailed study of Fourier
expansions shows that a function with a discontinuity has
coefficients that decrease as 1/ω or 1/k, while the coeffi-
cients of a function without a discontinuity decrease more
rapidly. (Recall that the coefficients of the square wave
were 4/πk.)
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FIGURE 11.31. The δ function and its integral.

11.10 The Delta Function

It will be useful in the next sections to introduce a pulse
that is very narrow, very tall, and has unit area under
its curve. Physicists call this function the delta function
δ(t). Engineers call it the impulse function u0(t).

The δ function is defined by the equations

δ(t) = 0, t 
= 0
∫ ε

−ε

δ(t) dt =
∫ ∞

−∞
δ(t) dt = 1.

(11.60)

The δ function can be thought of as a rectangle of width a
and height 1/a in the limit a → 0, or as a Gaussian func-
tion (Appendix I) as σ → 0. Many other functions have
the same limiting properties. The δ function is not like
the usual function in mathematics because of its infinite
discontinuity at the origin. It is one of a class of “gener-
alized functions” whose properties have been rigorously
developed by mathematicians6 since they were first used
by the physicist P. A. M. Dirac.

Since integrating across the origin picks up this spike
of unit area, the integral of the δ function is a step of unit
height at the origin. The δ function and its integral are
shown in Fig. 11.31. The δ function can be positioned at
t = a by writing δ(t − a) because the argument vanishes
at t = a.

Multiplying any function by the δ function and inte-
grating picks out the value of the function when the ar-
gument of the δ function is zero:

∫ ∞

−∞
y(t)δ(t) dt = y(0)

∫ ∞

−∞
δ(t) dt = y(0),

∫ ∞

−∞
y(t)δ(t − a) dt = y(a)

∫ ∞

−∞
δ(t − a) dt = y(a).

(11.61)
The second integral on each line is based on the fact that
y(t) has a constant value when the δ function is nonzero
so it can be taken outside the integral.

6A rigorous but relatively elementary mathematical treatment
is given by Lighthill (1958).

The δ function has the following properties that are
proved in Problem 28:

δ(t) = δ(−t),

t δ(t) = 0

δ(at) =
1
a
δ(t).

(11.62)

11.11 The Energy Spectrum of a
Pulse and Parseval’s Theorem

For a signal with period T , the average power is
1
T

∫ T

0

y2(t)dt. We can also define the average power for

a signal lasting a very long time as

lim
T ′→∞

1
2T ′

∫ T ′

−T ′
y2(t)dt = a2

0 +
1
2

∑

k

(a2
k + b2

k).

In the limit of infinite duration, both the integral and the
denominator are infinite, but the ratio is finite.

For a pulse the integral is finite and the average power
vanishes. In that case we use the integral without dividing
by T . It is called the energy in the pulse.

Since y(t) is given by a Fourier integral, the energy in
the pulse can be written as

∫ ∞

−∞
y2(t) dt =

(
1
2π

)2 ∫ ∞

−∞
dt

∫ ∞

−∞
dω (11.63)

∫ ∞

−∞
dω′ [C(ω) cos ωt + S(ω) sin ωt]

× [C(ω′) cos ω′t + S(ω′) sin ω′t] .

If the terms are multiplied out, this becomes
∫ ∞

−∞
y2(t) dt =

(
1
2π

)2 ∫ ∞

−∞
dt

∫ ∞

−∞
dω

∫ ∞

−∞
dω′

[C(ω)C(ω′) cos ωt cos ω′t

+ C(ω)S(ω′) cos ωt sinω′t (11.64)
+ S(ω)C(ω′) sin ωt cos ω′t

+ S(ω)S(ω′) sin ωt sin ω′t] .

To simplify this expression, we interchange the order of
integration, carrying out the time integration first. We
assume that the function y(t) is sufficiently well behaved
so that this can be done.

Changing the order gives three integrals to consider:
∫ ∞

−∞
cos ωt cos ω′t dt,

∫ ∞

−∞
cos ωt sinω′t dt,

∫ ∞

−∞
sin ωt sin ω′t dt.
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These are analogous to the trigonometric integrals of Ap-
pendix E, except that they extend over all time instead of
just one period. Therefore we might expect that an inte-
gral such as

∫∞
−∞ cos ωt sinω′t dt would vanish for all pos-

sible values of ω and ω′. We might expect that the inte-
grals

∫∞
−∞ cos ωt cos ω′t dt and

∫∞
−∞ sin ωt sin ω′t dt would

vanish when ω 
= ω′ and be infinite when ω = ω′. Such is
indeed the case. This is reminiscent of the δ function, but
it does not tell us the exact relationship of these integrals
to it.

To find the exact values of the integrals we use the
following trick. Let y(t) be the function for which C(ω) =
δ(ω − ω′). Then, using Eqs. 11.55 and 11.61 we get

y(t) =
1
2π

∫ ∞

−∞
δ(ω − ω′) cos ωt dω =

1
2π

cos ω′t.

The inverse equation for C(ω) is

C(ω) =
∫ ∞

−∞
y(t) cos ωt dt =

1
2π

∫ ∞

−∞
cos ω′t cos ωt dt.

But C(ω) = δ(ω − ω′). Therefore
∫ ∞

−∞
cos ωt cos ω′t dt = 2π δ(ω − ω′). (11.65a)

A similar argument shows that
∫ ∞

−∞
sin(ωt) sin(ω′t) dt = 2π δ(ω − ω′). (11.65b)

The fact that both the sine and cosine integrals are the
same should not be surprising, since a sine curve is jut a
cosine curve shifted along the axis and we are integrating
from −∞ to ∞.

11.11.1 Parseval’s Theorem

The integrals in Eqs. 11.65 can be used to evaluate Eq.
11.64. The result is
∫ ∞

−∞
y2(t) dt =

1
2π

∫ ∞

−∞
dω

∫ ∞

−∞
dω′[C(ω)C(ω′)δ(ω − ω′)

+ S(ω)S(ω′)δ(ω − w′)]

∫ ∞

−∞
y2(t) dt =

1
2π

∫ ∞

−∞
dω
[
C2(ω) + S2(ω)

]
. (11.66)

This result is known as Parseval’s theorem. If we define
the function

Φ′(ω) = C2(ω) + S2(ω), (11.67a)

then Eq. 11.66 takes the form
∫ ∞

−∞
y2(t) dt =

∫ ∞

−∞
Φ′(ω)

dω

2π
=
∫ ∞

−∞
Φ′(f)df. (11.67b)
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FIGURE 11.32. The energy spectrum Φ′(ω) for an exponential
pulse.

The prime is to remind us that this is energy and not
power. The left-hand side is the total energy in the signal,
and y2(t) dt is the amount of energy between t and t +
dt. This suggests that we call Φ′(ω) dω/2π = Φ′(f) df
the amount of energy in the angular frequency interval
between ω and ω + dω or the frequency interval between
f and f + df .

11.11.2 Example: The Exponential Pulse

The energy spectrum of the exponential pulse that was
used earlier as an example is

Φ′(ω) = C2(ω) + S2(ω) =
(

A

a

)2 1
1 + (ω/a)2

. (11.68)

It is plotted in Fig. 11.32.

11.12 The Autocorrelation of a Pulse
and Its Relation to the Energy
Spectrum

The correlation functions for pulses are defined as inte-
grals instead of averages:

φ12(τ) =
∫ ∞

−∞
y1(t)y2(t + τ) dt,

φ11(τ) =
∫ ∞

−∞
y1(t)y1(t + τ) dt.

(11.69)

Consider the autocorrelation function of the exponen-
tial pulse, Eq. 11.58. Figure 11.33 shows the functions
involved in calculating the autocorrelation for a typi-
cal positive value of τ . Since the autocorrelation func-
tion is even, negative values of τ need not be considered.
The product of the function and the shifted function is
(Ae−at)(Ae−a(t+τ)) = A2e−aτe−2at. It can be seen from
Fig. 11.33 that the limits of integration are from zero to
infinity. Thus,

φ11(τ) = A2e−aτ

∫ ∞

0

e−2at dt =
A2e−aτ

2a
, τ > 0.
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FIGURE 11.33. Calculation of the autocorrelation of the ex-
ponential pulse. The figure shows y(t), y(t + τ), and their
product, for τ = 1.
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FIGURE 11.34. The autocorrelation function for an exponen-
tially decaying pulse.

Because φ11 is even, the full autocorrelation function is

φ11(τ) =
A2

2a
e−a|τ |. (11.70)

This is plotted in Fig. 11.34.
The autocorrelation function has a Fourier transform

Φ′. Only the cosine term appears, since φ11 is even:

Φ′(ω) =
A2

2a

∫ ∞

−∞
e−a|t| cos ωt dt

=
A2

a

∫ ∞

0

e−at cos ωt dt.

y (t)

φ11
(τ )

Fourier transform

Fourier transform

C(ω),  S(ω)

Φ )ω(

 Φ = C 2 +S 2Auto- 
correlation

Energy 
spectrum 
(continuous)

FIGURE 11.35. Two ways to obtain the energy spectrum of
a pulse signal.

We have seen this integral before, in conjunction with Eq.
11.59. The result is

Φ′(ω) =
(

A

a

)2 1
1 + (ω/a)2

.

Comparing this with Eq. 11.67, we again see that

Φ′(ω) = C2(ω) + S2(ω). (11.71)

This relationship between the autocorrelation and Φ′

can be proved in general by representing each function
in the definition of the autocorrelation function by its
Fourier transform, using the trigonometric addition for-
mulas, carrying out the time integration first, and using
the δ-function definitions. The result is

φ11(τ) =
1
2π

∫ ∞

−∞

[
C2(ω) + S2(ω)

]
cos ωτ dω

=
1
2π

∫ ∞

−∞
Φ′(ω) cos ωτ dω. (11.72)

As with the periodic signal, there are two ways to
go from the signal to the energy spectrum. The Fourier
transform is taken of either the original function or the
autocorrelation function. Squaring and adding is done ei-
ther in the time domain to y(t) to obtain the autocorre-
lation function, or in the frequency domain by squaring
and adding the coefficients. The Fourier transforms can
be taken in either direction. Squaring and adding is one-
directional and makes it impossible to go from the energy
spectrum back to the original function. These processes
are illustrated in Fig. 11.35.

11.13 Noise

The function y(t) we wish to study is often the result of
a measurement of some system: the electrocardiogram,
the electroencephalogram, blood flow, etc., and is called
a signal. Most signals are accompanied by noise. Ran-
dom noise fluctuates in such a way that we cannot pre-
dict what its value will be at some future time. Instead
we must talk about the probability that the noise has a
certain value. A key problem is to learn as much as one
can about a signal that is contaminated by noise. The
techniques discussed in this chapter are often useful.
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FIGURE 11.36. (a) The solid line shows function yj that was
calculated from a one-dimensional random walk with a Gaus-
sian-distributed step length. The dashed line shows the func-
tion calculated from the Fourier coefficients of yj based on the
first half of the time interval. It does not fit the second half
of the function. This is characteristic of random functions.
(b) The power spectrum calculated from the first half of yj .
The zero-frequency component has been suppressed because
it depends on the starting value of y.

A very important property of noise can be seen from
the data shown in Fig. 11.36(a). The data consist of 460
discrete values that appear to have several similar peaks.
A discrete Fourier transform of the first 230 values gives
fairly large values for the first few coefficients ak and
bk. Yet these values of ak and bk fail to describe subse-
quent values of yj . The reason is that the yj are actually
random. In this case they are the net displacement af-
ter j steps in a random walk in which each step length
is Gaussian distributed with standard deviation σ = 5.
The Fourier transform of a random function does not
exist. We can apply the recipe to the data and calcu-
late the coefficients. But if we apply the same recipe to
some other set of data points from the random function
we get different values of the coefficients, although the
sum of their squares, (a2

k + b2
k)1/2, would be nearly the

same. The sum of the squares of the coefficients is plotted
in Fig. 11.36(b). It is the phases that change randomly,
while the amount of energy at a particular frequency re-
mains constant or fluctuates slightly about some average
value.

Noise is not periodic, but neither is it a pulse. It has fi-
nite power, but it will have infinite energy if the noise goes
on “forever.” To describe noise we must use averages, cal-

FIGURE 11.37. Some possible autocorrelation functions of
noise.

culated over a time interval that is “long enough” so that
the average does not change. Suppose that we are mea-
suring the electrical potential between a pair of electrodes
on the scalp. Assume that there is no obvious periodicity,
and we think it is noise. If we measure the potential for
only a few milliseconds, we will get one average value. If
we measure for the same length of time a few minutes
later, we may get a different average. But if we average
for two or three minutes, then a repetition gives almost
the same average.

In general, random signals may vary with time in such
a way that this average changes. (If we repeat the mea-
surements on the scalp in a few hours, the averages may
be different.) We will assume that properties such as the
mean and standard deviation and power spectrum do
not change with time, so that if we average over a “long
enough” interval and repeat the average at a later time,
we get the same result. Processes that generate data with
these properties are called stationary. We limit our dis-
cussion to stationary random processes.

The correlation functions are not particularly useful for
well-defined periodic signals, but they are very useful to
describe noise or a signal that is contaminated by noise.
(In fact, they allow us to detect a periodic signal that is
completely hidden by noise. The technique is described
in the next section.)

Space limitations require us to state some properties
of the autocorrelation function of noise without proof,
though the results are plausible. Many discussions of
noise are available. An excellent one with a biological
focus is by DeFelice (1981).

The autocorrelation function is given by Eq. 11.45:

φ11(τ) = 〈y1(t)y1(t + τ)〉 = lim
T→∞

1
2T

∫ T

−T

y1(t)y1(t+τ) dt.

The properties of the autocorrelation function depend on
the details of the noise. Some possible shapes for the au-
tocorrelation function are shown in Fig. 11.37.

The following properties of the autocorrelation func-
tion can be proved:

1. The autocorrelation function is an even function of
τ . This follows from the definition.
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2. The autocorrelation function for τ = 0, φ11(0), mea-
sures the average power in the signal. This also fol-
lows from the definition.

3. For a random signal with no constant or periodic
components, the autocorrelation function goes to
zero as τ → ∞. This is plausible, since for large
shifts, if the signal is completely random, there is no
correlation.

4. The autocorrelation function has its peak value at
τ = 0. This is also plausible, since for any shift of a
random signal there will be some loss of correlation.

11.14 Correlation Functions and Noisy
Signals

11.14.1 Detecting Signals in Noise

The autocorrelation function is useful for detecting a pe-
riodic signal in the presence of noise. We assume that
the system that measures these is linear: the response to
two simultaneous signals is the sum of the responses to
each individually. Section 11.18 will consider what hap-
pens when the response is non-linear. Suppose that the
periodic signal is s(t), the random noise is n(t), and the
average of both is zero. The combination of signal and
noise is

y(t) = s(t) + n(t). (11.73)

The autocorrelation of the combination is

φyy(τ) = 〈[s(t) + n(t)] [s(t + τ) + n(t + τ)]〉
= 〈s(t)s(t + τ)〉 + 〈s(t)n(t + τ)〉
+ 〈n(t)s(t + τ)〉 + 〈n(t)n(t + τ)〉 .

Each term in the average can be identified as a correlation
function:

φyy(τ) = φss(τ) + φsn(τ) + φns(τ) + φnn(τ).

Since the noise is random, the cross correlations φns and
φsn should be zero if the averages were taken over a suf-
ficiently long time. Therefore,

φyy(τ) = φss(τ) + φnn(τ). (11.74)

The autocorrelation of a periodic signal is periodic in τ ,
while the autocorrelation of the noise approaches zero if
τ is long enough.

If we suspect that a periodic signal is masked by noise,
we can calculate the autocorrelation function. If the au-
tocorrelation function shows periodicity that persists for
long shift times τ , a periodic signal is present. The pe-
riod of the correlation function is the same as that of the
signal. Acquisition of the data and calculation of the cor-
relation function are done with digital techniques. Press
et al. (1992) have an excellent discussion of the techniques
and pitfalls.

FIGURE 11.38. An example of signal averaging. An evoked
response is recorded along with the EEG from a scalp elec-
trode. As the number of repetitions N is increased, the EEG
background decreases and the evoked response stands out.
Copyright c© 2000 from L. T. Mainardi, A. M. Bianchi, and
S. Cerutti (2000). Digital biomedical signal acquisition and
processing, in J. D. Bronzino, ed. Biomedical Engineering
Handbook. 2nd. ed. Boca Raton, FL, CRC Press. Vol. 1, pp.
53-1–53-25. Reproduced by permission of Routledge/Taylor &
Francis LLC.

11.14.2 Signal Averaging

If the period of a signal is known to be T , perhaps from
the autocorrelation function or more likely because one
is looking for the response evoked by a periodic stimulus,
it is possible to take consecutive segments of the com-
bined signal plus noise of length T , place them one on
top of another, and average them. One can also do this
for the response evoked by a stimulus. The signal will be
the same in each segment, while the noise will be uncor-
related. After N sampling periods, the noise is reduced
by 1/

√
N .

Examples of this are the visual or auditory evoked re-
sponse. The signal in the electroencephalogram (EEG)
or magnetoencephalogram is measured in response to a
flash of light or an audible click. (In other experiments
the subject may perform a repetitive task.) The stimu-
lus is repeated over and over while the signal plus noise is
recorded and averaged. The average reproduces the shape
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of the signal. Figure 11.38 shows an example of signal av-
eraging for an evoked response in the EEG for increasing
values of N .

The signal-averaging procedure can also be described in
terms of a cross correlation with a series of δ functions at
the stimulus times. Suppose a local signal l(t) is produced
in synchrony with the stimulus. The cross correlation of
l(t) with y(t) is

φyl(τ) = 〈[s(t) + n(t)] l(t + τ)〉 = φsl + φnl.

Whatever the local signal is, its cross correlation with the
noise approaches zero for long averaging times, so

φyl(τ) = φsl(τ). (11.75)

If the local signal is a series of narrow spikes approxi-
mated by δ functions, then

l(t) = δ(t) + δ(t − T ) + δ(t − 2T ) + · · · .

Since both s(t) and l(t) are periodic with the same period,
the average can be taken over a single period. The integral
then contains one δ function:

φyl(−τ) = φsl(−τ) =
1
T

∫ T

0

s(t)δ(t − τ) dt =
s(τ)
T

.

11.14.3 Power Spectral Density

We have already seen that the Fourier transform of a ran-
dom signal does not exist. Because the phases of a ran-
dom signal are continually changing, we were unable to
predict the future behavior of a time series in Fig. 11.36.
If the signal is stationary, averages, including the average
power, do not change with time and have meaning. The
autocorrelation function of a random signal does exist,
and so does the Fourier transform of the autocorrelation.
If Φ(ω) is the Fourier transform of the autocorrelation
function of a random signal, then

lim
T→∞

1
2T

∫ T

−T

y2(t) dt =
∫ ∞

−∞
Φ(ω)

dω

2π
, (11.76)

and we can think of Φ as giving the power between fre-
quencies f and f + df . This is called the Wiener theorem
for random signals. The quantity Φ is often called the
power spectral density or PSD. Figure 11.39 summarizes
how the power or energy spectrum can be obtained for a
periodic signal, a pulse, and a random signal.

In the digital realm there are several ways to calcu-
late the power spectral density.7 The Blackman–Tukey
method makes a digital estimate of the correlation func-
tion and takes its discrete Fourier transform, as de-
scribed in Fig. 11.39(c). The periodogram uses the dis-
crete Fourier transform directly. Though the Fourier

7See Press et al. (1992), Cohen (2000), or Mainardi et al. (2000).
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FIGURE 11.39. The relationships between the power spec-
trum or energy spectrum and (a) a periodic signal, (b) a pulse,
(c) a random signal. The Fourier transform and series are bidi-
rectional; the other processes are not.

transform of a random signal does not exist because of
the randomly changing phases, the sum of the squares
of the coefficients is stable. In fact, we plotted Φk calcu-
lated from the discrete Fourier transform in Fig. 11.36(b).
Figure 11.40 shows both ways of calculating Φ(f) for a
surface electromyogram—the signal from a muscle mea-
sured on the surface of the skin. Slight differences can be
seen, but they are not significant.

Figure 11.41 shows the power spectrum of an EEG
signal and also the effect of aliasing. The original signal
has no frequency components above 40 Hz. Sampling was
done at 80 Hz. A 50-Hz power frequency signal was added,
and the Fourier transform shows a spurious response at 30
Hz. The second panel also shows the mirror-image power
spectrum from 40 to 80 Hz that should be thought of as
occurring at negative frequencies (the factor of 2 again).

11.14.4 Units

It is worth pausing to review the units of the various func-
tions we have introduced. They become confusing because
we have three different cases: a periodic signal that is in-
finite in extent, a pulse signal that is of finite duration,
and a random-noise signal that is also infinite in extent
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FIGURE 11.40. The power spectrum from a surface elec-
tromyogram calculated two different ways. The top panel
shows the Blackman–Tukey method, which is a fast Fourier
transform of a digital estimate of the autocorrelation function.
The lower panel is the sum of the squares of the coefficients
in a direct fast Fourier transform of the discrete data. Copy-
right c© 2000 from A. Cohen (2000). Biomedical signals: origin
and dynamic characteristics; frequency-domain analysis, in J.
D. Bronzino, ed. Biomedical Engineering Handbook, 2nd. ed.
Boca Raton, FL, CRC PPress. Vol. 1, pp. 52-1–52-24. Repro-
duced by permission of Routledge/Taylor & Francis Group,
LLC.

FIGURE 11.41. The power spectrum of an electroencephalo-
gram signal showing the problem with aliasing, and also the
presence of negative frequencies appearing as positive frequen-
cies above the Nyquist frequency. Copyright c© 2000 from L.
T. Mainardi, A. M. Bianchi, and S. Cerutti. Digital biomed-
ical signal acquisition and processing, in J. D. Bronzino, ed.
Biomedical Engineering Handbook. 2nd. ed. Boca Raton, FL,
CRC Press. Vol. 1, pp. 53-1–53-25. Reproduced by permission
of Routledge/Taylor & Francis Group, LLC.

but not periodic. For both signals that are infinite in ex-
tent we must use the “power,” and for the pulse we must
use “energy.”

Often in signal analysis the units of “power” and “en-
ergy” may not be watts or joules. If the signal is a volt-

TABLE 11.5. Units used in the various functions in this chap-
ter, assuming that y is measured in [unit].
Type of function

Signal Expansion
coefficients

Correlation
functions

Power or en-
ergy

Discrete periodic Power [unit2]

y [unit] ak, bk [unit] φ [unit2] Φk [unit2]

Pulse Energy
y [unit] C, S [unit s] φ [unit2

s]
Φ′(ω) [unit2

s2]
Φ′(ω) dω
[unit2 s]

Random Power [unit2]

y [unit] φ [unit2] Φ(ω) [unit2 s]
Φ(ω) dω
[unit2]

age, then the power dissipated in resistance R is v2/R
in watts. Our “power” defined from the equations above
would be just v2.

Suppose that the signal y is measured in “units.” Then
the “power” is in (units)2 and the “energy” for a pulse
is in (units)2 s. The correlation functions for the infinite
signals are in (units)2 while those for pulses are in (units)2

s. Table 11.5 summarizes the situation.

11.15 Frequency Response of a Linear
System

Chapter 10 discussed feedback in a linear system in terms
of the solution of a differential equation that described the
response of the system as a function of time. The simplest
system treated there was described by Eq. 10.20:

τ1
dx

dt
+ x = ap(t) + G1y(t). (11.77)

Function p(t) is the input signal. This equation was com-
bined with Eq. 10.21 to obtain

τ1
dx

dt
+ (1 − G1G2)x = ap(t). (11.78)

It is often useful to characterize the behavior of a sys-
tem by its response to sine waves of different frequencies
instead of by its time response. The most familiar exam-
ple is the audio amplifier: the output signal x(t) is some
function of an input signal p(t) that is seldom a pure
sinusoid. An equation analogous to Eq. 11.78 relates x
and p. The amplifier is usually described as having “a
frequency response of −0.5 dB at 10 Hz and 30 kHz.” It
is easy to feed a sinusoidal signal of different frequencies
into the amplifier and measure the amplitude ratio of the
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output sine wave to the input sine wave.8 To describe
the amplifier completely, it is also necessary to measure
the phase delay or the time delay at each frequency. The
combination of amplitude and phase response is called
the transfer function of the amplifier.

In principle, once the properties of a linear system are
known, either in terms of a differential equation or the
transfer function, its response to any input can be cal-
culated. In the time domain, one solves the differential
equation with input p(t) on the right-hand side. In the
frequency domain, one computes the Fourier transform of
the input, makes the appropriate changes in amplitude
and phase at every frequency according to the transfer
function, and takes the inverse Fourier transform of the
result. The inverse transform gives the output response
as a function of time. Sometimes the differential equa-
tion may be impossible to solve analytically or the inverse
Fourier transform cannot be obtained, and numerical so-
lutions are all that can be obtained.

The frequency-response technique may be particularly
useful if the system has several stages (a microphone, an
amplifier, one or more loudspeakers); one can multiply
the amplitudes and add the phases of each stage.

If the differential equation is known, the frequency re-
sponse can be calculated. Conversely, if the frequency and
phase responses are known, the differential equation can
be deduced. We give an example of the former approach
in this section. The latter technique requires more math-
ematics than we have developed.

11.15.1 Example of Calculating the Frequency
Response

As an example of the frequency response method of de-
scribing the system, consider Eq. 11.78. With G2 = 0,
the results apply to the case without feedback, Eq. 11.77.
Let p(t) = cos ωt and a = 1. We want a solution of the
form

x(t) = G(ω) cos(ωt − θ), (11.79)

where G(ω) is the overall gain or amplitude ratio, and
θ(ω) the phase shift, at frequency ω. We can show by
substitution that Eq. 11.79 is a solution of Eq. 11.78 if

G(ω) =
1

1 − G1G2

(
1

1 + ω2τ2
1 /(1 − G1G2)

)1/2

,

tan θ =
ωτ1

1 − G1G2
.

(11.80)
The behavior of the gain is plotted in Fig. 11.42, both
without feedback (1−G1G2 = 1) and with feedback (1−
G1G2 = 3). At low frequencies the gain is constant. It
falls at high frequencies (ωτ1 � 1) as ω−1. When ω =
1/τ1 (without feedback) or ω = 3/τ1 (with feedback),

8The technique works only for a linear system. If the system is
not linear, the output will not be sinusoidal.
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FIGURE 11.42. Plot of G(ω) for a system described by Eq.
11.80. Two cases are shown: without feedback (1−G1G2 = 1)
and with feedback (1 − G1G2 = 3). The dots mark the
half-power frequencies (see text).

the gain is 1/
√

2 times its value at zero frequency. This
frequency is called the half-power frequency because the
power is proportional to the square of the signal and its
value at the half-power frequency is 1/2 times its value
at zero frequency.

Negative feedback reduces the gain and also raises the
half-power frequency from 1/τ1 to (1 − G1G2)/τ1. The
time constant is reduced by the feedback from τ1 to
τ1/(1 − G1G2). Recall Eq. 10.23.

11.15.2 The Decibel

The gain is often expressed in decibels9 (dB):

gain(dB) = 20 log10 G(ω). (11.81)

A gain ratio of unity is equivalent to 0 dB; a gain of 1,000
is 20 log10(1.000) = 60 dB. One advantage to expressing
gain in decibels is that the gains in dB for several stages
add. If the first process has a gain of 2 (6 dB) and the
second has a gain of 100 (40 dB), the overall gain is 200
(46 dB). For the amplifier whose gain has fallen by 0.5
dB at 10 Hz and 30 kHz, the ratio G(ω)/Gmax is given
by solving

−0.5 = 20 log10(G/Gmax),

G/Gmax = 10−0.025 = 0.944.

The gain has fallen to 94.4% of its maximum value at 10
Hz and 30 kHz. If the maximum gain were 1,000 (60 dB),

9The bel is the logarithm to the base 10 of the power ratio. The
decibel is one-tenth as large as the bel. Since the power ratio is the
square of the voltage ratio or gain, the factor in Eq. 11.81 is 20.
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then the gain would have fallen to 944 (59.5 dB) at 10
Hz and 30 kHz.

The fall in gain is called the roll-off, in this case the
high-frequency roll-off. At high frequencies the gain is
proportional to 1/ω, so it drops by a factor of 2 (6 dB)
when the frequency doubles (1 octave). Therefore the gain
has a high-frequency roll-off of 6 dB per octave. A roll-
off of 6 dB per octave is characteristic of systems with a
single time constant, as in Eq. 11.78.

11.15.3 Example: Impulse Response

As an example we show that the response of the system
to a δ function calculated in the time domain is consistent
with the frequency response. Let the input be p(t) = δ(t).
The Fourier transform of the input is

Cin(ω) =
∫ ∞

−∞
δ(t) cos ωt dt = 1,

Sin(ω) =
∫ ∞

−∞
δ(t) sin ωt dt = 0.

The δ function contains constant power at all frequen-
cies. The sine coefficients are zero because a δ function
at t = 0 is an even function. The gain and phase delay
are applied to C(ω) to get the Fourier transform of the
output signal. Although we started with a purely even
function (only cosine terms) the phase shift means that
the output contains both sine and cosine terms. To cal-
culate the output, we write Eq. 11.79 as

x(t) =
∫

[G(ω) cos θ cos ωt + G(ω) sin θ sinωt] dω,

from which

Cout (ω) = G(ω) cos θ,

Sout(ω) = G(ω) sin θ.

From Eq. 11.80 we get (letting G2 = 0 and doing a fair
amount of algebra)

Cout(ω) =
1

1 + ω2τ2
1

,

Sout(ω) =
ωτ1

1 + ω2τ2
1

.

(11.82)

It is easier to solve the differential equation, take the
Fourier transform of the solution, and compare it to Eq.
11.82 than it is to find the inverse transform with the
mathematical tools at our disposal. For G2 = 0 the equa-
tion to be solved is

τ1
dx

dt
+ x = δ(t).

For all positive t a steady-state solution is x(t) = 0. The
solution of the homogeneous equation is x(t) = Ae−t/τ1 .

The value A is obtained by integrating the equation from
−ε to ε as ε → 0:

τ1

∫ ε

−ε

dx

dt
dt +

∫ ε

−ε

x dt =
∫ ε

−ε

δ(t) dt.

The first term is x(ε) − x(−ε) → x(0) − 0. The second
term vanishes in the limit, since x is finite and the width
goes to zero. From the definition of the δ function the
right-hand side of the equation is 1. Therefore

x =
{

0, t < 0
(1/τ1)e−t/τ1 , t > 0.

(11.83)

The Fourier coefficients of this function were calculated
in Eqs. 11.59. They are

C(ω) =
1

1 + ω2τ2
1

,

S(ω) =
ωτ1

1 + ω2τ2
1

.

These agree with Eqs. 11.82. We have demonstrated that
the response of this particular linear system to a δ func-
tion is the Fourier transform of the transfer function of
the system.

Although the system is not linear, one can see the fre-
quency response of a physiological system in Figure 11.43.
Glucose was administered intravenously to two subjects
in a sinusoidal fashion with a period of 144 min, as shown
in the top panel. The middle panel shows the resulting
insulin secretion rate in a normal subject. Insulin secre-
tion adjusts rapidly to the changing glucose level, and the
normalized spectral power density has a peak at a period
of 144 min. (Note that the spectrum is plotted vs. period,
not frequency.) The bottom panel shows the results for a
subject with impaired glucose tolerance (diabetes). There
are oscillations in the insulin secretion rate, but they are
irregular and at a shorter period, as can be seen in the
normalized spectral power density.

11.16 The Frequency Spectrum of
Noise

In Sec. 9.8 we introduced Johnson noise and shot noise.
Both are inescapable. Johnson noise arises from the
Brownian motion of charge carriers in a conductor; shot
noise arises from fluctuations due to the discrete nature
of the charge carriers.

11.16.1 Johnson Noise

When we introduced Johnson noise we said nothing about
its frequency spectrum. We used the equipartition theo-
rem to argue that since the energy on a capacitor depends
on the square of the voltage, there would be fluctuations
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FIGURE 11.43. An example of the frequency response of a
system. Glucose was administered intravenously to two sub-
jects in a sinusoidal fashion with a period of 144 min, as shown
in the top panel. The responses of the two subjects are dis-
cussed in the text. From K. S. Polonsky, J. Sturis, and G. I.
Bell (1996). Non-insulin-dependent diabetes mellitus—A ge-
netically programmed failure of the beta cell to compensate
for insulin resistance. New Engl. J. Med. 334(12): 777–783.
Modified from N. M. O’Meara et al. (1993). Lack of control by
glucose of ultradian insulin secretory oscillations in impaired
glucose tolerance and in non-insulin-dependent diabetes mel-
litus. J. Clin. Invest. 92: 262–271. Used by permission of the
New England Journal of Medicine and the Journal of Clinical
Investigation.

in a capacitor whose average voltage is zero given by (in
the notation of this chapter)

1
2
C
〈
v2
〉

=
1
2
kBT. (11.84)

(In this section we will use T both for time and, when
immediately following the Boltzmann constant, for tem-
perature. We also have, briefly, C for capacitance as well
as for the Fourier cosine coefficient. We will eliminate the
use of C for capacitance as much as possible.)

If the capacitor is completely isolated the charge on
its plates, and hence the voltage between them, cannot
fluctuate. The equipartition theorem applies to the ca-
pacitor only when it is in thermal equilibrium with its
surroundings. This thermal contact can be provided by
a resistor R between the plates of the capacitor. It is ac-
tually the Brownian movement of the charge carriers in
this resistor that cause the Johnson noise. In analyzing

C

R

i
ve

+

–

+

–

FIGURE 11.44. The circuit for analyzing the noise produced
by a resistance R connected to capacitance C. The circuit
assumes that the noise is generated in a voltage source e(t) in
series with the resistance. The voltage across the capacitance
is v.

the noise in electric circuits, it is customary to imagine
that the noise arises in an ideal voltage source: a “bat-
tery” that maintains the voltage across its terminals—
fluctuating randomly with time—regardless of how much
current flows through it. It is placed in series with the
resistor. This is not a real source. It is a fictitious source
that gives the correct results in circuit analysis. We call
the voltage across this noise source e(t) and we want to
learn about its properties.

Imagine that we place the noise source and its associ-
ated resistor across the plates of a capacitor, as shown
in Fig. 11.44. We want to relate the voltage across the
capacitor, v, to the voltage across the noise source, e. We
know that e(t) = v(t) + Ri(t), and that i = Cdv/dt. (See
the discussion surrounding Eqs. 6.36 and 6.37.) Therefore

e(t) = v(t) + RC
dv

dt
= τ1

dv

dt
+ v. (11.85)

(By introducing τ1 = RC we eliminate the need to use
C for capacitance until the very end of the argument.
We use the subscript on τ1 to distinguish it from the
argument of the correlation function.)

Even though the voltage is random, let us assume we
can write it as a Fourier integral. Our final results depend
only on the power spectrum and not on the phases. We
write

v(t) =
1
2π

∫ ∞

−∞
[C(ω) cos ωt + S(ω) sin ωt] dω. (11.86)

Differentiating this gives an expression for dv/dt:

dv

dt
=

1
2π

∫ ∞

−∞
[−ωC(ω) sin ωt + ωS(ω) cos ωt] dω.

(11.87)
Combining these with Eq. 11.85 gives us the Fourier
transform of e(t):

e(t) =
1
2π

∫ ∞

−∞
{[C(ω) + ωτ1S(ω)] cos ωt

+ [S(ω) − ωτ1C(ω)] sin ωt} dω

=
1
2π

∫ ∞

−∞
[α (ω) cos ωt + β(ω) sin ωt)] dω.
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We now need to calculate
〈
v2(t)

〉
and

〈
e2(t)

〉
. The cal-

culation is exactly the same as what we did to derive
Parseval’s theorem, in Eqs. 11.63–11.66, except that we
are dealing with random signals instead of pulses and we
have to introduce

lim
T→∞

1
2T

on each side of the equation. When we do this, we find

〈
v2(t)

〉
=

1
2π

∫ ∞

−∞

[
C2(ω) + S2(ω)

]
dω

=
1
2π

∫ ∞

−∞
Φv(ω) dω,

〈
e2(t)

〉
=

1
2π

∫ ∞

−∞

[
α2(ω) + β2(ω)

]
dω

=
1
2π

∫ ∞

−∞
Φe(ω) dω.

(11.88)

If we expand Φe, we find that

Φe(ω) = α2(ω) + β2(ω)

=
[
C2(ω) + S2(ω)

]
(1 + ω2τ2

1 )

= Φv(ω)(1 + ω2τ2
1 ). (11.89)

Johnson noise was discovered experimentally by J. B.
Johnson in 1926. The next year Nyquist explained its ori-
gin using thermodynamic arguments and showed that un-
til one reaches frequencies high enough so that quantum-
mechanical effects are important, Φe is a constant inde-
pendent of frequency [Nyquist (1928)]. We will not re-
produce his argument; rather we will assume that Φe is
a constant and find the value of Φe for which the mean
square voltage across the capacitor satisfies the equipar-
tition theorem, Eq. 11.84.

The expression for Φv becomes

Φv(ω) =
Φe

1 + ω2τ2
1

, (11.90)

and from the first of Eqs. 11.88,

〈
v2(t)

〉
=

1
2π

∫ ∞

−∞
Φv(ω) dω =

Φe

2π

∫ ∞

−∞

dω

1 + ω2τ2
1

(11.91)

=
Φe

2πτ1

∫ ∞

−∞

dx

1 + x2

=
Φe

2πτ1

[
tan−1(∞) − tan−1(−∞)

]
=

Φe

2τ1
.

Putting this expression in the equipartition statement,
Eq. 11.84, and remembering that τ1 = RC, we obtain

C
〈
v2(t)

〉

2
=

1
2
C

Φe

2RC
=

kBT

2
,

Φe = 2RkBT. (11.92)
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FIGURE 11.45. The power spectrum of the noise source e and
the voltage across the capacitor v. The left panel plots Φ/R
vs f . The right panel plots vrms in each frequency interval.
The parameters are described in the text.

The units of Φe are V2 s or V2 Hz−1. This is for frequen-
cies that extend from −∞ to ∞. If we were dealing with
only positive frequencies, we would have

Φe = 4RkBT (using positive frequencies only).
(11.93)

Either way, this says that the power spectrum for the fic-
titious source e(t) is constant so there is equal power at
all frequencies (up to the limits imposed by quantum me-
chanical effects). For this reason, Johnson noise is called
white noise, in analogy with white light that contains all
frequencies. The voltage fluctuations across the capacitor
have the power spectrum

Φv(ω) =






2RkBT

1 + ω2τ2
1

, −∞ < ω < ∞

4RkBT

1 + ω2τ2
1

, 0 < ω < ∞.

(11.94)

Figure 11.45 shows the Johnson-noise power spectra
and rms voltage spectra plotted vs frequency. These are
based on T = 300 K, R = 106 Ω , C = 10−9 F, and
τ1 = RC = 10−3 s. The labels on the ordinates are worth
discussion. On the left we have Φ/R, which from Eq. 11.94
is in joules, which is W s or W Hz−1. The units for the
graph on the right that are consistent with this are W1/2

s1/2 = W1/2 Hz−1/2 = V Ω−1/2 Hz−1/2. The resistance
has been included to make the units V Hz−1/2. The 1/f2

falloff at high frequencies is due to the frequency response
of the RC circuit and is not characteristic of the noise.

Figure 11.46 shows an example: the spectral density
of the magnetic field from an article on the magne-
toencephalogram. The units are femtotesla Hz−1/2 (1
femtotesla = 1 fT = 10−15 T).

We can determine the autocorrelation functions Φee(τ)
and Φvv(τ). Equation 11.72 gave the Fourier transform
of the autocorrelation function for a pulse. For a random
signal the autocorrelation is very similar but involves the
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FIGURE 11.46. Spectral density of various sources of the mag-
netic field, expressed in terms of the magnetic field in fem-
totesla (1 fT = 10−15 T). Reprinted with permission from M.
Hämäläinen, R. Harri, R. J. Ilmoniemi, J. Knuutila, and O. V.
Lounasmaa. Magnetoencephalography—theory, instrumenta-
tion, and applications to noninvasive studies of the working
human brain. Rev. Mod. Phys. 65(2):413–497. 1993. Copy-
right 1993 by the American Physical Society.

power instead of the energy:

φee(τ) =
1
2π

∫ ∞

−∞
Φe(ω) cos ωt dω,

φvv(τ) =
1
2π

∫ ∞

−∞
Φv(ω) cos ωt dω.

(11.95)

For the voltage source the autocorrelation function is

φee(τ) =
2RkBT

2π

∫ ∞

−∞
cos ωt dω. (11.96)

To evaluate this, consider Eq. 11.65a, which shows the
Fourier transform of the δ function. The integral there
is over time. Interchange the time and angular frequency
variables to write

∫ ∞

−∞
cos ωτ cos ωτ ′ dω = 2πδ(τ − τ ′). (11.97)

Let τ ′ = 0: ∫ ∞

−∞
cos ωτ dω = 2πδ(τ). (11.98)

The final expression for the autocorrelation function of
the noise source is

Φee(τ) = 2RkBT δ(τ). (11.99)

To find φvv(τ), consider the discussion surrounding Eqs.
11.69 and 11.70. There we discussed the Fourier trans-
form pair (letting a = 1/τ1)

A2

1 + ω2τ2
1

Fourier transform←−−−−−−−−−−−−−−→ A2

2τ1
e−|τ |/τ1 , (11.100)

from which we obtain the autocorrelation function for the
voltage across the capacitor:

Φvv(τ) =
RkBT

τ1
e−|τ |/τ1 . (11.101)

Let us compare these two results. The autocorrelation
of the noise source is a δ function. Any shift at all destroys
the correlation. The noise equivalent voltage source and
resistor, isolated from anything else, respond instanta-
neously to random noise changes, the correlation func-
tion is infinitely narrow, and all frequencies are present.
When the source and resistor are connected to a capac-
itor, the voltage across the capacitor cannot change in-
stantaneously. There is a high-frequency roll-off, and the
voltage at one time is correlated with the voltage at sur-
rounding times. As the time constant of the circuit be-
comes smaller, φvv(τ) becomes narrower and taller, ap-
proaching the δ function.

The power spectrum across the capacitor has the same
form as the square of the magnitude of the gain (transfer
function) of Eq. 11.80. This is the transfer function for an
RC circuit, as can be seen by comparing Eq. 11.78 with
Eq. 11.85. This is a special case of a general result, that
linear systems can be analyzed by measuring how they
respond to white noise.

11.16.2 Shot Noise

Chapter 9 also mentioned shot noise, which occurs be-
cause the charge carriers have a finite charge, so the num-
ber of them passing a given point in a circuit in a given
time fluctuates about an average value. One can show
that shot noise is also white noise.

11.16.3 1/f Noise

Johnson noise and shot noise are fundamental and in-
dependent of the details of the construction of the re-
sistance. The former depends on the Brownian motion of
the charge carriers, and the latter depends on the number
of charge carriers required to transport a given amount of
charge. They are irreducible lower limits on the noise (for
a given resistance and temperature). If one measures the
noise in a real resistor in a circuit, one finds additional or
“excess” noise that can be reduced by changing the ma-
terials or construction of the resistor. This excess noise
often has a 1/f frequency dependence. For white noise
the power in every frequency interval is proportional to
the width of the interval, so there is 10 times as much
power in the frequency decade from 10 to 100 Hz as in
the decade from 1 to 10 Hz. For 1/f noise, on the other
hand, there is equal power in each frequency decade. This
kind of noise is sometimes called “pink noise” in allusion
to the fact that pink light has more power in the red
(lower frequency) part of the spectrum than the rest.

Noise with a 1/f spectrum had been discovered in
many places: resistors, transistors, and the fluctuations
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in the flow of sand in an hourglass, in traffic flow, in the
heartbeat, and even in human cognition. It is thought
that there might be some universal principle underlying
1/f noise, possibly related to chaos, but this is still an
area of active investigation.

11.17 Testing Data for Chaotic
Behavior

A major problem in data analysis is to find the meaning-
ful signal due to the physical or biological process in the
presence of noise. We have introduced some of the analy-
sis techniques in this chapter. A problem that has only
become important in recent years is to determine whether
a variable that is apparently random is due to truly ran-
dom behavior in the underlying process or whether the
process is displaying chaotic behavior. The techniques for
determining this are still under development and are be-
yond the scope of this book. An excellent introduction
is found in Chapter 6 of Kaplan and Glass (1995). We
close by mentioning two of the tools used in this analysis:
embedding and surrogate data.

One of the problems in analyzing data from complex
systems is that we may not be able to measure all of
the variables. For example, we may have the electrocar-
diogram or even an intracellular potential recording but
have no information about the details of the ionic currents
of several species through the membrane that change the
potential. We may measure the level of thyroid hormones
T3 and T4 but have no information about the other hor-
mones in the thyroid–hypothalamus–pituitary feedback
system. Fortunately, we do not need to measure all the
variables. There is a data-reduction technique that can be
applied to a few of the variables that shows the dynamics
of the full system.

11.17.1 Embedding

To see how embedding works, consider a system with two
degrees of freedom described by a set of nonlinear differ-
ential equations with the form of Eqs. 10.32. In order to
make the subscript on x available to index measurements
of the variable at different times, we write the variables
as x and y instead of x1 and x2:

dx

dt
= f1(x, y),

dy

dt
= f2(x, y).

A phase-space plot would be in the xy plane. Suppose we
only measure variable x, and that we obtain a sequence
of measurements xj = x(tj). The time derivative is ap-
proximately

xj+h − xj

th+j − tj
≈ dx

dt
= f1(x, y).

A series of measurements at different times gives us infor-
mation about how function f1 depends on x. A remark-
able result that we state without proof is that it also
gives information about the entire system. [See Kaplan
and Glass (1995) for a more detailed discussion and ref-
erences to the literature.] Figure 11.47 shows this in a
specific case. It is a calculation using the van der Pol os-
cillator. This nonlinear oscillator has been used to model
many systems since it was first proposed in the 1920s. It
can be written as the pair of first-order equations

dx

dt
=

1
a

(
y − x3

3
+ x

)
,

dy

dt
= −ax,

where a is a very small positive number. The top panel
of Fig. 11.47 shows values of xj vs j (labeled as Dt vs
t). The middle panel shows a phase-plane plot of y vs x.
The bottom panel plots xj+10 vs xj . Shading is used to
identify some of the early data points in all three pan-
els. The trajectory in the bottom panel has all the same
characteristics as the phase-plane plot.

This is an example of a general technique called time-
lag embedding. The set of differential equations with two
degrees of freedom has been converted into a nonlinear
map in one degree of freedom.

For a system with three degrees of freedom, we could
make a three-dimensional plot by creating sets of three
numbers from the n measured values, which we can think
of and plot as the three components of a vector

xj = (xj , xj−h, xj−2h), j = 2h, 2h + 1, . . . , n − 1.

In general, we can construct a p-dimensional set of vectors

xj = (xj , xj−h, . . . xj−ph), j = ph, . . . , n − 1.

We call p the embedding dimension and h the embedding
lag. There are a number of further calculations that can
be done to the embedded vector to help decide on the
behavior of the underlying system. These are described
in Kaplan and Glass (1995).

11.17.2 Surrogate Data

In general, a fully conclusive answer to the question of
whether the data are due to a random process or a chaotic
process cannot be obtained, though strong indications
can be. The most rigorous way to test for the presence
of chaotic behavior is to make the hypothesis—called the
null hypothesis–that the data are explained by a linear
process plus random noise. One then develops a test sta-
tistic (several standard tests are used) and compares the
value of the test statistic for the real data to its value
for sets of data that are consistent with the null hypoth-
esis. These sets are called surrogate data. We examined
one linear system with noise: the random walk of Fig.
11.36. The next value in the sequence was the previous
value plus random noise. We saw that the power spec-
trum was defined, but the phases changed randomly. We
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FIGURE 11.47. Plots of the solution to the van der Pol equa-
tion with a certain set of initial conditions. The top panel
shows values of xj vs j (labeled as Dt vs t). The middle panel
is a phase-plane plot of y vs x. The bottom panel plots xj+10

vs xj . Shading is used to identify some of the early data points
in all three panels. The trajectory in the bottom panel has the
same characteristics as the phase-plane plot. Used by permis-
sion from D. Kaplan and L. Glass. Understanding Nonlinear
Dynamics. New York, Springer-Verlag, 1995.

can think of any linear system driven by random noise
as having a defined transfer function G(ω) with random
phases. Therefore, one can generate sets of surrogate data
by taking the transform of the original data in the form
of an amplitude and phase, related to C and S by Eq.
11.13. One then randomizes the phases and calculates the
inverse Fourier transform of the randomized coefficients
to generate the surrogate data sequence. The surrogate
data have the same power spectrum and autocorrelation
function as the original data. One then applies the various
test statistics. If we were to do this to the data from Fig.

FIGURE 11.48. A sine wave of unit amplitude drives a thresh-
old detector. A spike is generated every time the signal rises
through 0.9.

11.36, we would find the tests the same for the original
data and the sets of surrogate data, because the original
data set is consistent with the null hypothesis.

11.18 Stochastic Resonance

A nonlinear phenomenon called stochastic resonance has
been recognized in recent years. In stochastic resonance,
random fluctuations increase the sensitivity to detect
weak signals or allow some other desirable process to take
place, such as ion transport. Stochastic resonance takes
many forms. It was first invoked in 1981 to explain why
the earth has periodic ice ages.10 It has been proposed
as a mechanism in biological processes, but the models
are rather complicated.11We discuss two simple physical
examples.

11.18.1 Threshold Detection

In a linear system, any amount of noise decreases the
signal-to-noise ratio. In a non-linear system, weak noise
can enhance signal detection. The simplest non-linear sys-
tem that shows this is a threshold detector: an output sig-
nal is generated when the input (signal + noise) exceeds
a fixed threshold.

Suppose that a sine-wave signal is sent to a threshold
detector. Every time the signal rises above the threshold,
a pulse is generated, as shown in Fig. 11.48. The output
signal is a series of pulses spaced by T , the period of
the sine wave. Problem 24 shows that for a series of

10References can be found in the articles by Wiesenfeld and

Jaramillo (1998) and by Astumian and Moss (1998).
11See Astumian (1997); Astumian and Moss (1998); Wiesenfeld

and Jaramillo (1998); Gammiatoni et al. (1998);Adair, Astumian
and Weaver (1998); Glass (2001).
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FIGURE 11.49. Power spectrum for a train of rectangular
pulses of width 2d when d/T = 1/20.

FIGURE 11.50. Stochastic resonance. (a) The two curves show
the sinusoidal signal and the combination of Gaussian noise
plus signal. The latter occasionally exceeds the threshold value
shown by the straight line. (b) The pulses generated when
the combination of signal plus noise rises above threshold.
(c) The averaged power spectrum of the pulse train. From
Z. Gingl, L. B. Kiss and F. Moss. Nondynamical stochastic
resonance: Theory and experiments with white and arbitrarily
coloured noise. Europhys. Lett. 29(3): 191–196 (1995). Used
by permission.

pulses of width 2d separated by time T , the power at
frequency kω0 = 2πk/T is Φk = (2/π2k2) sin2 (2πkd/T ).
This power spectrum is plotted in Fig. 11.49.

If the amplitude of the sine wave in Fig. 11.49 is less
than 0.9, the threshold will never be exceeded. However,
if sufficient noise is added to a sine wave that is below
threshold, the signal and noise combined will occasionally
exceed the threshold. This will happen more frequently
when the sine-wave signal is positive than when it is neg-

FIGURE 11.51. The results of an electronics experiment and a
theoretical calculation of threshold detection. One curve shows
the square of the output sinusoidal signal, Ps. The other shows
the signal-to-noise ratio. From Z. Gingl, L. B. Kiss, and F.
Moss. Non-dynamical stochastic resonance: Theory and ex-
periments with white and arbitrarily coloured noise. Europhys.
Lett. 29(3): 191–196 (1995). Used by permission.

ative so output pulses will occur more frequently during
peaks of the signal.

Experiments were done with an electronic circuit that
behaves as we have described. The results are shown in
Figures 11.50 and 11.51. Figure 11.50 shows the weak si-
nusoidal signal with and without the noise added to it,
along with the resulting pulses and the power spectrum.
Figure 11.51 shows the power in the pulse train at the sig-
nal frequency and the signal-to-noise ratio, as a function
of noise level. The amplitude of the sine wave is 0.1 V.
As the noise level increases, both the signal and the SNR
increase, reach a maximum, and decrease. The signal-to-
noise ratio peaks when the rms noise level is about 0.25 V;
the power at the signal frequency peaks at about 0.3 V.
As the noise increases above these values the SNR and
signal decrease. The lines are theoretical fits; both the
theory and the data are described by Gingl et al. (1995).

11.18.2 Feynman’s Ratchet

Perpetual motion machines violate either the first or sec-
ond law of thermodynamics (or both). In his Lectures on
Physics, Richard Feynman (1963) analyzed a microscopic
cog wheel (ratchet) and pawl as shown in Fig. 11.52.
Feynman’s analysis is elegant, full of insight, and well
worth reading. The analysis here follows that in Astumian
and Moss (1998). An amount of energy ∆U is required
to compress the spring enough to lift the pawl over the
tooth. This energy can come either from an imbalance
of the molecular bombardment of the paddle wheel at
temperature T1, or from molecular bombardment of the
pawl spring, which is at temperature T2. Clockwise ro-
tation will result if the pawl rides up the ramped side of
the ratchet and will occur with a probability proportional
to e−∆U/kBT1 ; counterclockwise rotation requires energy
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FIGURE 11.52. Feynman’s ratchet. (a) A cog wheel is at-
tached to a paddlewheel in a reservoir at temperature T1.
A pawl is attached to a spring located in a reservoir at
temperature T2. (b) The net rate of clockwise motion vs.
T = (T1 + T2)/2. The details are discussed in the text. Re-
produced by permission from Astumian, R. D. and F. Moss.
Overview: The constructive role of noise in fluctuation driven
transport and stochastic resonance. Chaos. 8(3): 533–538.
(1998). Copyright 1998 American Institute of Physics.

transfer to the pawl spring, with a probability propor-
tional to e−∆U/kBT2 . With T1 = T+∆T and T2 = T−∆T ,
one can show (see Problem 38), that the net rate is

net rate ∝ 2∆U∆T

kBT 2
e−∆U/kBT . (11.102)

Fig. 11.52b plots the net rate for the parameters ∆U =
0.05 eV and ∆T = 10K .While thermal gradients are
not found in the body, Astumian and Moss show that
particles in similar asymmetrically-shaped potentials can
be driven by having the barrier height vary randomly
with time.

Symbols Used in Chapter 11

Symbol Use Units First
used on
page

a Coefficient in polynomial fit 285
a Slope 285
a Coefficient of even (cosine) term 290
a Parameter in exponential 288
a Arbitrary constant 304
b Intercept 285
b Parameter in exponential 288

b Coefficient of odd (sine) term 290
e Noise voltage source V 313
f, f0 Frequency Hz 290
f Function 316

h Small quantity 288
h Shift index 316
i

√
−1 292

i Current A 296
j Index, usually denoting a data point 285
k Index denoting terms in a sum 285

kB Boltzmann constant J K−1 313
l, m Particular values of index k 290
l Local signal 309

n Maximum value of index k 290
n Noise 308
p Parameter or input signal 310
p Dimension of a vector 316

s Signal 308
t Time s 289
v log y 288
v Voltage V 296
x Independent variable 285
x Vector of data points 316
y Dependent variable 285
A Amplitude 289
C, Ck Amplitude of cosine term 289
C Capacitance F 313
G Gain 310

N Number of data points 286
Q Goodness of fit or mean square

residual
286

R Residual 292
R Resistance Ω 296
S, Sk Amplitude of sine term 289
Sxx, Sxy Sums of residuals and their products 287
T Period s 289
T Temperature K 313
U Energy J 318
Y, Yk Complex Fourier transform or series

of y
292

α Fourier coefficient in autocorrelation
function

301

α, β Fourier coefficients V
Hz−1/2

313

δy Uncertainty in y 288
δ Delta function 304
ε Error 297
ε Small number (limit of integration) 312
φ, θ Phase 289
φ Correlation function 299
τ Shift time s 299
τ1 Time constant s 310
ω, ω0 Angular frequency s−1 289
Φk Power at frequency kω0 298
Φ(ω) Power in frequency interval 309
Φ′(ω) Energy in frequency interval 305
〈〉 Time average 297

Problems

Section 11.1

Problem 1 Find the least squares straight line fit to the
following data:

x y

0 2
1 5
2 8
3 11
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Problem 2 Suppose that you wish to pick one number
to characterize a set of data x1, x2, . . . , xN . Prove that
the mean x, defined by

x =
1
N

N∑

j=1

xj ,

minimizes the mean square error

Q =
1
N

N∑

j=1

(xj − x)2.

Problem 3 Derive Eqs. 11.5.

Problem 4 Suppose that the experimental values y(xj)
are exactly equal to the calculated values plus random
noise for each data point: y(xj) = ycalc(xj)+nj . What is
Q?

Problem 5 You wish to fit a set of data (xj , yj) with an
expression of the form y = Bx2. Differentiate the expres-
sion for Q to find an equation for B.

Problem 6 Assume a dipole p is located at the origin
and is directed in the xy plane. The z component of the
magnetic field, Bz, produced by this dipole is measured at
nine points on the surface z = 50mm .The data are

i xi (mm) yi (mm) Bzi (fT)
1 −50 −50 −154
2 0 −50 −170
3 50 −50 −31
4 −50 0 −113
5 0 0 0
6 50 0 113
7 −50 50 31
8 0 50 170
9 50 50 154

The magnetic field of a dipole is given by Eq. 8.15, which
in this case is

Bz =
µ0

4π

[
pxyi

(x2
i + y2

i + z2
i )3/2

− pyxi

(x2
i + y2

i + z2
i )3/2

]

.

Use the method of least squares to fit the data to the equa-
tion, and determine px and py.

Problem 7 Consider the data

x y
100 4004
101 4017
102 4039
103 4063

(a) Fit these data with a straight line y = ax + b using
Eqs. 11.5a and 11.5b to find a.

(b) Use Eq. 11.5c to determine a. Your result should
be the same as in part (a).

(c) Repeat parts (a) and (b) while rounding all the in-
termediate numbers to 4 significant figures. Do Eqs. 11.5a
and 11.5b give the same result as Eq. 11.5c? If not, which
is more accurate?

Problem 8 This problem is designed to show you what
happens when the number of parameters exceeds the num-
ber of data points. Suppose that you have two data points:

x y

0 1
1 4

Find the best fits for one parameter (the mean) and two
parameters (y = ax + b). Then try to fit the data with
three parameters (a quadratic). What happens when you
try to solve the equations?

Problem 9 The strength-duration curve for electrical
stimulation of a nerve is described by Eq. 7.45: i =
iR(1 + tC/t), where i is the stimulus current, iR is the
rheobase, and tC is the chronaxie. During an experiment
you measure the following data:

t (ms) i (mA)
0.5 2.004
1.0 1.248
1.5 0.997
2.0 0.879
2.5 0.802
3.0 0.749

Determine the rheobase and chronaxie by fitting these
data with Eq. 7.45. Hint: let a = iR and b = iRtC , so
that the equation is linear in a and b : i = a + b/t. Use
the linear least squares method to determine a and b. Plot
i vs. t, showing both the theoretical expression and the
measured data points.

Section 11.2

Problem 10 (a) Obtain equations for the linear least-
squares fit of y = Bxm to data by making a change of
variables.

(b) Apply the results of (a) to the case of Problem 5.
Why does it give slightly different results?

(c) Carry out a numerical comparison of Problems 5
and (b) with the data points

x y

1 3
2 12
3 27

Repeat with
x y

1 2.9
2 12.1
3 27.1
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Problem 11 Consider the data given in Problem 2.36
relating molecular weight M and molecular radius R. As-
sume the radius is determined from the molecular weight
by a power law: R = BMn. Fit the data to this expres-
sion to determine B and n. Hint: Take logarithms of both
sides of the equation.

Problem 12 In Prob. 6 the dipole strength and orien-
tation were determined by fitting the equation for the
magnetic field of a dipole to the data, using the lin-
ear least squares method. In that problem the location
of the dipole was known. Now, suppose the location of
the dipole (x0, y0, z0) is not known. Derive an equation
for Bz(px, py, x0, y0, z0) in this more general case. Deter-
mine which parameters can be found using linear least
squares, and which must be determined using nonlinear
least squares.

Section 11.4

Problem 13 Write a computer program to verify Eqs.
11.20–11.24.

Problem 14 Consider Eqs. 11.17–11.19 when n = N
and show that all equations for m > N/2 reproduce the
equations for m < N/2.

Problem 15 The secretion of the hormone cortisol by
the adrenal gland is subject to a 24-hour (circadian)
rhythm [Guyton (1991)]. Suppose the concentration of
cortisol in the blood, K (in µg per 100ml) is measured
as a function of time, t (in hours, with 0 being midnight
and 12 being noon), resulting in the following data:

t K
0 10.3
4 16.1
8 18.3
12 13.7
16 7.9
20 6.0

Fit these data to the function K = a + b cos (2πt/24) +
c sin (2πt/24)using the method of least squares, and de-
termine a, b, and c.

Problem 16 Verify that Eqs. 11.29 follow from Eqs.
11.27.

Problem 17 This problem provides some insight into
the Fast Fourier Transform. Start with the expression for
an N -point Fourier transform in complex notation, Yk in
Eq. 11.29a. Show that Yk can be written as the sum of two
N/2-point Fourier transforms: Yk = Y e

k + W kY o
k , where

W = exp (i2π/N), superscript e stands for even values of
j, and o stands for odd values.

Section 11.5

Problem 18 Use Eqs. 11.33 to derive Eq. 11.34.

Problem 19 The following data from Kaiser and Hal-
berg (1962) show the number of spontaneous births vs.
time of day. Note that the point for 2300 to 2400 is much
higher than for 0000-0100. This is probably due to a bias:
if a woman has been in labor for a long time and the baby
is born a few minutes after midnight, the birth may be
recorded in the previous day. Fit these data with a 24-hr
period and again including an 8-hr period as well. Make
a correction for the midnight bias.

Time Births Time Births
0000-0100 23 847 1200-1300 24 038
0100-0200 28 088 1300-1400 22 234
0200-0300 28 338 1400-1500 21 900
0300-0400 28 664 1500-1600 21 903
0400-0500 28 452 1600-1700 21 789
0500-0600 27 912 1700-1800 21 927
0600-0700 27 489 1800-1900 21 761
0700-0800 26 852 1900-2000 21 995
0800-0900 26 421 2000-2100 22 913
0900-1000 26 947 2100-2200 23 671
1000-1100 26 498 2200-2300 24 149
1100-1200 25 615 2300-2400 27 819

Section 11.7

Problem 20 Suppose that y(x, t) = y(x− vt). Calculate
the cross correlation between signals y(x1) and y(x2).

Problem 21 Calculate the cross-correlation, φ12, for the
example in Fig. 11.20:

y1(t) =
{

+1, 0 < t < T/2
−1, T/2 < t < T

y2(t) = sin
(

2πt

T

)
.

Both functions are periodic.

Section 11.8

Problem 22 Fill in the missing steps to show that the
autocorrelation of y1(t)is given by Eq. 11.49.

Problem 23 Consider a square wave of amplitude A
and period T .

(a) What are the coefficients in a Fourier-series expan-
sion?

(b) What is the power spectrum?
(c) What is the autocorrelation of the square wave?
(d) Find the Fourier-series expansion of the autocorre-

lation function and compare it to the power spectrum.

Problem 24 The series of pulses shown are an approx-
imation for the concentration of follicle-stimulating hor-
mone (FSH) released during the menstrual cycle.
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(a) Determine a0, ak, and bk in terms of d and T .
(b) Sketch the autocorrelation function.
(c) What is the power spectrum?

Problem 25 Consider the following simplified model
for the periodic release of follicle-stimulating hormone
(FSH). At t = 0 a substance is released so the plasma con-
centration rises to value C0. The substance is cleared so
that C(t) = C0e

−t/τ . Thereafter the substance is released
in like amounts at times T , 2T , and so on. Furthermore,
τ � T .

(a) Plot C(t) for two or three periods.
(b) Find general expressions for a0, ak, and bk. Use the

fact that integrals from 0 to T can be extended to infinity
because τ � T . Use the following integral table:

∫ ∞

0

e−ax dx =
1
a
,

∫ ∞

0

e−ax cos mxdx =
a

a2 + m2
,

∫ ∞

0

e−ax sin mxdx =
m

a2 + m2
.

(c) What is the “power” at each frequency?
(d) Plot the “power” for k = 1, 10, 100 for two cases:

τ/T = 0.1 and 0.01. Compare the results to the results of
Problem 24

(e) Discuss qualitatively the effect that making the
pulses narrower has on the power spectrum. Does the use
of Fourier series seem reasonable in this case? Which de-
scription of the process is easier—the time domain or the
frequency domain?

(f) It has sometimes been said that if the transform for
a given frequency is written as Ak cos(kω0t−φk) that φk

gives timing information. What is φ1 in this case? φ2?
Do you agree with the statement?

Problem 26 Calculate the autocorrelation function and
the power spectrum for the previous problem.

Section 11.9

Problem 27 Calculate the Fourier transform of
exp[−(at)2] using complex notation (Eq. 11.57). Hint:
complete the square.

Section 11.10

Problem 28 Prove that

δ(t) = δ(−t),

t δ(t) = 0,

δ(at) =
1
a
δ(t).

Section 11.11

Problem 29 Rewrite Eqs. 11.59 in terms of an ampli-
tude and a phase. Plot them.

Problem 30 Find the Fourier transform of

f(t) =
{

1, −a ≤ t ≤ a,
0, everywhere else.

Problem 31 Find the Fourier transform of

y =
{

e−at sin ω0t, t ≥ 0,
0, t < 0.

Determine C(ω), S(ω), and Φ′(ω) for ω > 0 if the term
that peaks at negative frequencies can be ignored for pos-
itive frequencies.

Section 11.14

Problem 32 Here are some data.

t y t y t y

1 −1.18 13 1.84 25 0.43
2 1.39 14 5.01 26 0.91
3 0.67 15 0.75 27 1.32
4 −1.38 16 0.90 28 1.92
5 −0.76 17 −0.42 29 0.57
6 5.23 18 3.68 30 2.30
7 1.31 19 4.15 31 1.09
8 2.63 20 1.45 32 −0.71
9 1.03 21 −2.44 33 −1.72
10 4.62 22 4.44 34 4.22
11 1.98 23 −0.08 35 3.20
12 0.47 24 2.34 36 1.69

(a) Plot them.
(b) If you are told that there is a signal in these data

with a period of 4 s, you can group them together and
average them. This is equivalent to taking the cross cor-
relation with a series of δ functions. Estimate the signal
shape.

Section 11.15

Problem 33 Verify that Eqs. 11.79 and 11.80 are solu-
tions of Eq. 11.78.
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Problem 34 Equation 11.80 is plotted on log–log graph
paper in Fig. 11.42. Plot it on linear graph paper.

Problem 35 If the frequency response of a system were
proportional to 1/

[
1 + (ω/ω0)3

]
, what would be the high

frequency roll-off in decibels per octave for ω � ω0?

Problem 36 Consider a signal y = A cos ωt. What is
the time derivative? For a fixed value of A, how does the
derivative compare to the original signal as the frequency
is increased? Repeat these considerations for the integral
of y(t).

Section 11.16

Problem 37 Show that integration of Eq. 11.101 over
all shift times is consistent with the integration of the δ
function that is obtained in the limit τ1 → 0.

Section 11.18

Problem 38 Show that the net clockwise rate of rotation
of the Feynman ratchet is given by Eq. 11.102.
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12
Images

Images are very important in the remainder of this
book. They may be formed by the eye, a camera, an x-
ray machine, a nuclear medicine camera, magnetic res-
onance imaging, or ultrasound. The concepts developed
in Chapter 11 can be used to understand and describe
image quality. The same concepts are also used to recon-
struct computed tomographic or magnetic resonance slice
images of the body. A very complete, advanced mathe-
matical treatment of all kinds of images is found in a
1500-page book by Barrett and Myers (2004).

The convolution integral of Sec. 12.1 shows how the
response of a linear system can be related to the input to
the system and the impulse (δ-function) response of the
system. It forms the basis for the rest of the chapter. The
Fourier-transform properties of the convolution are also
described in this section. Section 12.2 introduces quanti-
tative ways to relate the image to the object, using the
techniques developed in Chapter 11 to describe the blur-
ring that occurs. Section 12.3 shows the importance of
different spatial frequencies in an image and their effect
on the quality of the image.

Sections 12.4 and 12.5 pose the fundamental problem
of reconstructing slices from projections and introduce
two techniques for solving it: the Fourier transform and
filtered back projection. Section 12.6 provides a numer-
ical example of filtered back projection for a circularly
symmetric object.

This chapter is quite mathematical. The key under-
standing to take from it is the relationship between spa-
tial frequencies and image quality in Sec. 12.3.

12.1 The Convolution Integral and its
Fourier Transform

12.1.1 One Dimension

We now apply the techniques developed in Chapter 11 to
describe the formation of images. An image is a function
of position, usually in two dimensions at an image plane.
We start with the simpler case of an image extending
along a line. Functions of time are easier to think about,
so let’s imagine a one-dimensional example that is a func-
tion of time: a high-fidelity sound system. A hi-fi system
is (one hopes) linear, which means that the relationship
between the output response and a complicated input
can be written as a superposition of responses to more
elementary input functions. The output might be the in-
stantaneous air pressure at some point in the room; the
input might be the air pressure at a microphone or the
magnetization on a strip of tape.

It takes a certain amount of time for the signal to prop-
agate through the system. In the simplest case the re-
sponse at the ear would exactly reproduce the response
at the input a very short time earlier. In actual prac-
tice the response at time t may depend on the input at
a number of earlier times, because of limitations in the
electronic equipment or echoes in the room. If the entire
system is linear, the output g(t) can be written as a su-
perposition integral, summing the weighted response to
inputs at other times. If f(t′) is the input and h is the
weighting, the output g(t) is
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g(t) =
∫ ∞

−∞
f(t′)h(t, t′) dt′. (12.1)

Variable t′ is a dummy variable. The integration is over
all values of t′ and it does not appear in the final result,
which depends only on the functional forms of f and h.
Note also that if f and g are expressed in the same units,
then h has the dimensions of s−1.

If input f is a δ function at time t′0, then

g(t) =
∫ ∞

−∞
δ(t′ − t′0)h(t, t′) dt′ = h(t, t′0). (12.2)

We see that h(t, t′) is the impulse response of the system
to an impulse at time t′. If the impulse response of a linear
system is known, it is possible to calculate the response
to any arbitrary input.

If, in addition to being linear, the system responds to
an impulse the same way regardless of when it occurs,
the system is said to be stationary. In the hi-fi example,
this means that no one is adjusting the volume or tone
controls. For a stationary system the impulse response
depends only on the time difference t − t′:

h(t, t′) = h(t − t′), (12.3)

and the superposition integral takes the form

g(t) =
∫ ∞

−∞
f(t′)h(t − t′) dt′. (12.4a)

This is called the convolution integral. It is often abbre-
viated as

g(t) = f(t) ⊗ h(t). (12.4b)

For the hi-fi system the function h(t − t′) is zero for
all t′ larger (later) than t; the response does not depend
on future inputs. For the images we will be considering
shortly, where the variables represent positions in the ob-
ject and image, h can exist for negative arguments.

We saw an example of the impulse response in Sec.
11.15, where we found that the solution of the differential
equation for the system was a step exponential, Eq. 11.83.
For that simple linear system we can write

h(t − t′) =

{
0, t < t′

(1/τ1)e−(t−t′)/τ1 , t > t′.
(12.5)

We have seen superposition integrals before: for one-
dimensional diffusion (Eq. 4.73) and for the potential (Eq.
7.21) and magnetic field (Eq. 8.12) outside a cell.

There is an important relationship between the Fourier
transforms of the functions appearing in the convolution
integral, which was hinted at in Sec. 11.15. If the sine and
cosine transforms of function h are denoted by Ch(ω) and
Sh(ω), with similar notation for f and g, the relationships
can be written

Cg(ω) = Cf (ω)Ch(ω) − Sf (ω)Sh(ω),

Sg(ω) = Cf (ω)Sh(ω) + Sf (ω)Ch(ω).
(12.6a)

This is called the convolution theorem. If we were us-
ing complex exponential notation, the Fourier transforms
would be related by

G(ω) = F (ω)H(ω). (12.6b)

The convolution of two functions in time is equivalent to
multiplying their Fourier transforms.

Equations 12.6a are similar to the addition formulas for
sines and cosines, which are of course used in the deriva-
tion. To derive them, we take the Fourier transforms of
f and h:

f(t′) =
1
2π

∫ ∞

−∞
[Cf (ω) cos ωt′ + Sf (ω) sin ωt′] dω,

h(t − t′) =
1
2π

∫ ∞

−∞
[Ch(ω) cos ω(t − t′) + Sh(ω) sin ω(t − t′)] dω.

Then

g(t) =
∫ ∞

−∞
f(t′)h(t − t′) dt′

=
(

1
2π

)2 ∫ ∞

−∞
dt′
[∫ ∞

−∞
dω [Cf (ω) cos ωt′ + Sf (ω) sin ωt′]

×
∫ ∞

−∞
dω′ [Ch(ω′) cos ω′(t − t′) + Sh(ω′) sin ω′(t − t′)]

]
.

We can use the trigonometric addition formulas and the
fact that sin(−ω′t′) = − sin ω′t′ to rewrite and expand
this expression, much as we did in the last chapter. Car-
rying out the integration over t′ first and using the prop-
erties of integrals of the δ function gives

g(t) =
1
2π

∫ ∞

−∞
dω [Cf (ω)Ch(ω) − Sf (ω)Sh(ω)] cos ωt

+
1
2π

∫ ∞

−∞
dω [Cf (ω)Sh(ω) + Sf (ω)Ch(ω)] sin ωt.

Comparison of this with Eqs. 11.55 proves Eq. 12.6a.
Fourier techniques need not be restricted to frequency

and time. The quality and resolution of the image on the
retina, an x-ray film, or a photograph are best described
in terms of spatial frequency. The distance across the im-
age in some direction is x, and a sinusoidal variation in
the image would have the form A(k) sin(kx−φ). The an-
gular spatial frequency k has units of radians per meter.
It is k = 2π/λ, where λ is the wavelength, in analogy
to ω = 2π/T . Alternatively, we can use the spatial fre-
quency 1/λ, with units of cycles per meter or cycles per
millimeter.

12.1.2 Two Dimensions

The convolution and Fourier transform in two dimensions
are needed to analyze the response of a system that forms
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a two-dimensional image of a two-dimensional object.
The object can be represented by function f(x′, y′) in
the object plane. The image is given by a function g(x, y)
in the image plane:

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x′, y′)h(x, x′; y, y′) dx′dy′. (12.7)

If the contribution of object point (x′, y′) to the image
at (x, y) depends only on the relative distances x − x′

and y − y′, then the two-dimensional impulse response is
h(x − x′, y − y′), and the image is obtained by the two-
dimensional convolution

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x′, y′)h(x − x′, y − y′) dx′dy′

(12.8a)
or

g(x, y) = f(x, y) ⊗⊗h(x, y). (12.8b)

The Fourier transform in two dimensions is defined by

f(x, y) =
(

1
2π

)2∫ ∞

−∞
dkx

∫ ∞

−∞
dky[C(kx, ky) cos(kxx+ kyy)

(12.9a)

+ S(kx, ky) sin(kxx + kyy)].

The coefficients are given by

C(kx, ky) =
∫ ∞

−∞
dx

∫ ∞

−∞
dyf(x, y) cos(kxx + kyy),

(12.9b)

S(kx, ky) =
∫ ∞

−∞
dx

∫ ∞

−∞
dyf(x, y) sin(kxx + kyy).

(12.9c)
The Fourier transforms of the functions in the convo-
lution are related by equations similar to those for the
one-dimensional convolution.

Cg(kx, ky) = Cf (kx, ky)Ch(kx, ky)
−Sf (kx, ky)Sh(kx, ky),

Sg(kx, ky) = Cf (kx, ky)Sh(kx, ky)
+Sf (kx, ky)Ch(kx, ky).

(12.10)

With complex notation we would define the two-
dimensional Fourier transform pair by

F (kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i(kxx+kyy) dxdy,

f(x, y) =
(

1
2π

)2 ∫ ∞

−∞

∫ ∞

−∞
F (kx, ky)ei(kxx+kyy)dkxdky,

(12.11a)
and the convolution theorem would be

G(kx, ky) = F (kx, ky)H(kx, ky). (12.11b)

12.2 The Relationship Between the
Object and the Image

12.2.1 Point-Spread Function

Suppose that an object in the x′y′ plane is described by
a function L(x′, y′) that varies from place to place on the
object. The image is

Eimage(x, y) =
∫∫

L(x′, y′)h(x, y;x′, y′) dx′dy′. (12.12)

Function h is called the point-spread function. The point-
spread function tells how information from a point source
at (x′, y′) spreads out over the image plane. It receives its
name from the following. If we imagine that the object
is a point described by L(x′, y′) = Lδ(x′ − x′

0)δ(y
′ − y′

0),
then integration shows that

Eimage = h(x, y;x′
0, y

′
0).

The point-spread function has the same functional form
as the image from a point source, just as did the impulse
response in one dimension.

You can verify that the point-spread function for an
ideal imaging system with magnification m is

h(x, y;x′, y′) = m2δ(x − mx′)δ(y − my′). (12.13)

The δ functions pick out the values (x′ = x/m, y′ = y/m)
in the object plane to contribute to the image at (x, y).
You can make the verification by substituting Eq. 12.13
in Eq. 12.12 and using the properties of the δ function
from Eq. 11.62.

This discussion assumes that intensities add. This is
true when the oscillations of the radiant energy (such
as the electric field for light waves) have random phases
lasting for a time short compared to the measurement
time. Such radiant energy is called incoherent.1

We have already seen that when the impulse response
in a one-dimensional system depends on coordinate dif-
ferences such as t − t′ (or x− x′ or x −mx′), the system
is stationary. In this case it is also said to be space in-
variant : changing the position of the object changes the
position of the image but not its functional form. Station-
arity is easier to obtain in a system such as a hi-fi system
than in an imaging system, but we usually assume that it
holds in an imaging system as well. For a space-invariant
system

Eimage(x, y) =
∫∫

L(x′, y′)h(x − mx′, y − my′) dx′ dy′.

(12.14)

1These arguments also work for coherent radiation, where the

phases are important, but the point-spread function is for the am-

plitude of the wave instead of the square of the amplitude (inten-

sity). The calculation then gives rise to interference and diffraction

effects.
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This is a two-dimensional convolution. The convolution
theorem is

Cimage(kx, ky) = Cobject(kx, ky)Ch(kx, ky)
−Sobject(kx, ky)Sh(kx, ky),

Simage(kx, ky) = Cobject(kx, ky)Sh(kx, ky)
+Sobject(kx, ky)Ch(kx, ky).

(12.15)

12.2.2 Optical-, Modulation-, and
Phase-Transfer Functions

The optical transfer function (OTF) is the Fourier
transform of the point-spread function, Ch(kx, ky) and
Sh(kx, ky). It is analogous to the transfer function for an
amplifier (Sec. 11.15). The modulation transfer function
(MTF) is the amplitude of the OTF:

MTF(kx, ky) =
[
C2

h(kx, ky) + S2
h(kx, ky)

]1/2
. (12.16)

The phase transfer function is

PTF(kx, ky) = tan−1

(
Sh(kx, ky)
Ch(kx, ky)

)
. (12.17)

Often the transfer functions are normalized by dividing
them by their value at zero spatial frequency.

The modulation transfer function can be measured by
using a set of objects for which L varies sinusoidally at
different spatial frequencies. The property L cannot be
negative and must be offset by a zero-frequency compo-
nent:

L(x, y) = a + b cos(kxx + kyy), 0 < b < a. (12.18)

The image is described by

E = MTF(0, 0)a + MTF(kx, ky)b cos
× [kxx + kyy + φ(kx, ky)]. (12.19)

The modulation of the object is defined to be

(modulation) =
Lmax − Lmin

Lmax + Lmin
=

(a + b) − (a − b)
(a + b) + (a − b)

=
b

a
.

(12.20)
A similar expression defines the modulation of the im-
age. The modulation transfer function is the ratio of the
modulation of the image divided by the modulation of
the object. The phase of the optical transfer function de-
scribes shifts of the phase of the image at each angular
frequency along the appropriate axis. It is fully as impor-
tant as the amplitude, since it describes the evenness or
oddness of the image about its stated origin.

The modulation transfer function of an ideal system
would be flat for all spatial frequencies. However, there
is an upper limit imposed by diffraction, if nothing else.
Figure 12.1 shows the point-spread function and MTF for
a diffraction-limited case. Figure 12.2 shows three possi-
ble modulation transfer functions for an imaging system.

FIGURE 12.1. The point-spread function and modulation
transfer function for a diffraction-limited circular aperture.
From C. S. Williams and O. A. Becklund. Optics: A Short
Course for Engineers and Scientists. New York, Wiley, 1972.
Used by permission of the authors.
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FIGURE 12.2. Three possible modulation transfer functions.
The top one is the diffraction limit for monochromatic light.
(Compare it with Fig. 12.1.) Curve 2 is higher than curve 1
at the highest value of k shown, but an image produced by
system 2 would not have as much “punch.” It has less content
at the middle spatial frequencies.

The upper one represents the diffraction limit. It has the
same general shape as in Fig. 12.1. Curves 1 and 2 might
be for real systems. While the second system transmits
more of the highest spatial frequencies, it transmits less
of the midrange frequencies, and its image would not have
as much “punch” as the first system. Figure 12.3 shows
the modulation transfer functions of several photographic
films, with (a) being the most sensitive and (e) the least
sensitive but with the highest resolution. Photographers
are well aware of the trade-off between speed and res-
olution in film. Fast films are “more grainy” than slow
films.

A complex imaging system may have several compo-
nents, just as the hi-fi system did. If the system is linear,
the modulation transfer function for the combined sys-
tem is the product of the modulation transfer functions
for each component. The optical transfer functions com-
bine according to equations like Eq. 12.10.
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FIGURE 12.3. Some representative modulation transfer func-
tions for various photographic films, showing how the resolu-
tion decreases as the film sensitivity increases. Film (a) has
the greatest sensitivity and worst resolution. Film (e) is the
least sensitive (“slowest”) and has the best resolution. With
permission from R. Shaw. Photographic Detectors. Chapter
5 of Applied Optics and Engineering, New York, Academic,
1979. Vol. 7, pp. 121–154.

FIGURE 12.4. The point-spread function. Two impulse
sources of different height are shown in the object plane. The
response to them is shown in the image plane.

FIGURE 12.5. The line-spread function. Two line sources are
shown in the object plane. The response to them is shown in
the image plane.

12.2.3 Line- and Edge-Spread Functions

The line-spread function is the response of a system to
a line object in a plane perpendicular to the axis of the
lens. In general, the system is not isotropic and the line-
spread function depends on the orientation of the line.
The Fourier transform of the line-spread function along
the y axis is Ch(kx, 0) and Sh(kx, 0). Figure 12.4 shows a
geometrical interpretation of the point-spread function.

Figure 12.5 shows the line-spread function. The edge-
spread function is the response to an object that has a
step in the radiance. All of these functions are interre-
lated. A discussion of how one can be obtained from an-
other is found in many places, including Chapter 9 of
Gaskill (1972).

12.3 Spatial Frequencies in an Image

There are some universal relationships between the spa-
tial frequencies present in an image and the character of
the image. These relationships hold whether the image
is a photograph, an x-ray film, a computed tomographic
scan, an ultrasound or nuclear medicine image, or a mag-
netic resonance image. In this section we describe these
general relationships, which we will use throughout the
rest of the book.

The first general relationship concerns the size of an
image and the lowest spatial frequency present. For sim-
plicity, consider the x direction and the corresponding
spatial frequencies k. The object is nonperiodic. But its
image is represented by a Fourier series which has period
L. We saw in Chapter 11 that if the lowest angular fre-
quency present is ω0, the period is T = 2π/ω0. The lowest
spatial frequency present (other than zero) is k0 = 2π/L.
The series has harmonics with separation ∆k = k0. This
leads to the fundamental relationship

L =
2π

k0
. (12.21)

The lowest spatial frequency present (which equals the
separation of the spatial frequencies) determines the size
of the image L (the “field of view” or FOV).

The second general relationship concerns the spatial
resolution in an image and the highest spatial frequency
present. If the image has N discrete samples, then the
sampling interval or spatial resolution is ∆x = L/N. This
allows (or requires) the determination of N/2 cosine co-
efficients and N/2 sine coefficients. The highest spatial
frequency present is kmax = N∆k/2. We obtain

∆x =
L

2
∆k

kmax
=

π

kmax
. (12.22)

The spatial resolution is inversely proportional to the
highest spatial frequency present. As we saw for the
Fourier series representing a square wave, the higher har-
monics give fine detail and sharpness to the image.

To reiterate: The lowest spatial frequency in the im-
age determines the field of view. The lower the minimum
spatial frequency, the larger the field of view. The highest
spatial frequency in the image determines the resolution.
The higher the maximum spatial frequency, the finer the
resolution.

Here are a number of pictures that show how chang-
ing the coefficients in certain regions of k space affect an
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FIGURE 12.6. A magnetic resonance imaging head scan: (a)
The squared amplitude C2 + S2 in k space. (b) The image.
This is a normal image to compare with the following fig-
ures. Prepared by Mr. Tuong Huu Le, Center for Magnetic
Resonance Research, University of Minnesota. Thanks also to
Professor Xiaoping Hu.

FIGURE 12.7. The sine and cosine coefficients for the image in
Fig. 12.6. (a) C(kx, ky). (b) S(kx, ky). Prepared by Mr. Tuong
Huu Le, Center for Magnetic Resonance Research, University
of Minnesota. Thanks also to Professor Xiaoping Hu.

image. Figure 12.6(b) shows a transverse scan of a head
by magnetic resonance imaging. This is a normal image
to compare with the following figures. It consists of 256
samples in each direction or 256 × 256 pixels. The mag-
nitude of its Fourier transform is shown in Fig. 12.6(a).
Figure 12.7 shows the cosine and sine coefficients in the
expansion.

Figures 12.8 and 12.9 show what happens when the
high-frequency Fourier components are removed. In the
first case they have been removed above kx max/2 and
ky max/2. In the second they are removed above kx max/4
and ky max/4. Compare the blurring in these figures with
the original image.

When the low-frequency coefficients are set to zero as in
Fig. 12.10, only the high-frequency edges remain. In this
case the Fourier components below kx max/4 and ky max/4
have been set to zero. (Keeping the same values of kx max

and ∆k and removing the information on those coeffi-
cients keeps the field of view the same.)

FIGURE 12.8. The image that results when the high-fre-
quency Fourier components above kx max/2 and ky max/2 are
removed. Note the blurring compared to Fig. 12.6. Prepared
by Mr. Tuong Huu Le, Center for Magnetic Resonance Re-
search, University of Minnesota. Thanks also to Professor Xi-
aoping Hu.

FIGURE 12.9. The image that results when the high-fre-
quency Fourier components above kx max/4 and ky max/4 are
removed. The blurring is even greater. Prepared by Mr. Tuong
Huu Le, Center for Magnetic Resonance Research, University
of Minnesota. Thanks also to Professor Xiaoping Hu.

FIGURE 12.10. The image that results when the low-fre-
quency Fourier components below kx max/4 and ky max/4 are
removed. Prepared by Mr. Tuong Huu Le, Center for Mag-
netic Resonance Research, University of Minnesota. Thanks
also to Professor Xiaoping Hu.
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FIGURE 12.11. The Fourier coefficients for every other value
of k have been set to zero. This has the effect of doubling
∆k in Eq. 12.21. Since the width of the image has not been
changed, this leads to aliasing, which shows up as the ghost
images. (a) Every other value of kx has been removed. (b)
Every other value of both kx and ky has been removed. Pre-
pared by Mr. Tuong Huu Le, Center for Magnetic Resonance
Research, University of Minnesota. Thanks also to Professor
Xiaoping Hu.

Figure 12.11 shows the aliasing that results from set-
ting every other Fourier coefficient to zero. This has the
effect of doubling ∆k in Eq. 12.21. Since the width of the
image has not been changed, this leads to aliasing, which
shows up as the “ghost” images. In the first case alter-
nate Fourier coefficients have been removed in kx space;
in the second they have been removed in both kx and ky.

12.3.1 Summary

In summary: The lowest spatial frequency in the image de-
termines the field of view. The lower the minimum spatial
frequency, the larger the field of view. Low spatial frequen-
cies provide shape, contrast, and brightness.

The highest spatial frequency in the image determines
the resolution. The higher the maximum spatial fre-
quency, the finer the resolution. High spatial frequencies
provide resolution, edges, and sharp detail.

12.4 Two-Dimensional Image
Reconstruction from Projections
by Fourier Transform

The reconstruction problem can be stated as follows. A
function f(x, y) exists in two dimensions. Measurements
are made that give projections: the integrals of f(x, y)
along various lines as a function of displacement perpen-
dicular to each line. For example, integration parallel to
the y axis gives a function of x,

F (x) =
∫ ∞

−∞
f(x, y) dy, (12.23)

FIGURE 12.12. (a) Function F (x) is the integral of f(x, y)
over all y. (b) The scan is repeated at angle with the x axis.

as shown in Fig. 12.12. The scan is repeated at many dif-
ferent angles θ with the x axis, giving a set of functions
F (θ, x′), where x′ is the distance along the axis at angle
θ with the x axis. The problem is to reconstruct f(x, y)
from the set of functions F (θ, x′). Several different tech-
niques can be used. A detailed reference is the book by
Cho et al. (1993).

We will consider two of these techniques: reconstruc-
tion by Fourier transform, where the Fourier coefficients
are obtained from projections (in this section), and fil-
tered back projection (Sec. 12.5).

The Fourier transform technique is easiest to under-
stand. Consider Eqs. 12.9. If ky = 0 in Eq. 12.9b, the
result is

C(kx, 0) =
∫ ∞

−∞
cos(kxx)dx

∫ ∞

−∞
f(x, y)dy

=
∫ ∞

−∞
cos(kxx)F (θ = 0, x)dx. (12.24)

Similarly

S(kx, 0) =
∫ ∞

−∞
sin(kxx)F (0, x)dx. (12.25)

To state this in words: the Fourier transform of F (0, x)
determines the sine and cosine transforms of f(x, y) along
the line ky = 0 (the kx axis) in the spatial frequency
plane. This is shown in Fig. 12.13.

A scan in another direction can be Fourier-transformed
to give C and S at an angle θ with the kx axis. The
Fourier transform of the projection at angle θ is equal
to the two-dimensional Fourier transform of the object,
evaluated in the direction θ in Fourier transform space.
This result is known as the projection theorem or the
central slice theorem (Problem 17). The transforms of a
set of projections at many different angles provide values
of C and S throughout the kxky plane that can be used
in Eq. 12.9a to calculate f(x, y). In Chapter 18 we will
find that the data from an MRI scan give the functions
C(kx, ky) and S(kx, ky) directly.

In practice, the transforms are discrete. Using the no-
tation that includes the redundant frequencies above N/2
and makes the coefficients half as large (Eqs. 11.27), the
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FIGURE 12.13. The Fourier transform of F (θ = 0, x) =∫
f(x, y)dy gives Fourier coefficients C and S along the kx

axis (ky = 0). The Fourier transform of scans at other angles
θ give C and S along corresponding lines in the kxky plane.

two-dimensional discrete Fourier transform (DFT) is2

fjk =
N−1∑

l=0

N−1∑

m=0

Clm cos
[
2π(jl + km)

N

]
(12.26a)

+
N−1∑

l=0

N−1∑

m=0

Slm sin
[
2π(jl + km)

N

]
.

The coefficients are given by

Clm =
1

N2

N−1∑

j=0

N−1∑

k=0

fjk cos
[
2π(jl + km)

N

]
, (12.26b)

Slm =
1

N2

N−1∑

j=0

N−1∑

k=0

fjk sin
[
2π(jl + km)

N

]
. (12.26c)

Making a DFT of the projections gives values for C
and S that lie on the circles in Fig. 12.14. But taking the
inverse transform to calculate the reconstructed image
requires values at the lattice points. They are obtained
by interpolation. The details of how the interpolation is
made are crucial when using the Fourier transform recon-
struction technique.

l

m

FIGURE 12.14. The two-dimensional Fourier reconstruction
requires values of C and S at the lattice points shown. The
Fourier transforms of the projections F (θ, x) give the coeffi-
cients along the circular arcs. Interpolation is necessary to do
the reconstruction.

A

B

Scan 2

 S
ca

n 
3 

 

 Scan 1 

FIGURE 12.15. The principle of back projection. Each point
in the image is generated by summing all values of F (θ, x′)
that projected through that point. For point A at the center
of rotation, the appropriate value of x′ is the same at each
angle. For other points such as B, the value of x′ is different
at each angle.

12.5 Reconstruction from Projections
by Filtered Back Projection

Filtered back projection is more difficult to understand
than the direct Fourier technique.3 It is easy to see that
every point in the object contributes to some point in each
projection. The converse is also true. In a back projection
every point in each projection contributes to some point
in the reconstructed image. This can be seen from Figure
12.15, which shows two points A and B and three projec-
tions. For point A, which is at the center of rotation, the

2In this notation the low frequencies occur for low values of the

indices l and m. Usually, as in Figs. 12.6–12.11, the indices are

shifted so k = 0 occurs in the middle of the sum.
3A simple experiment on back-projection using a laser pointer

is described by Delaney and Rodriguez (2002).



12.5 Reconstruction from Projections by Filtered Back Projection 333

θ

θ

y

x

x'

y'

  x cos θ  

 y sin θ  

P

FIGURE 12.16. By considering components of the coordinates
of point P in both coordinate systems, one can derive the
transformation equations, Eqs. 12.27 and 12.28.

relevant value of x′ is the same in each projection, while
for point B the value of x′ is different in each projection.

A very simple procedure would be to construct an im-
age by back-projecting every projection. The back pro-
jection fb(x, y) at point (x, y) is the sum of F (θ, x′) for
every projection or scan, using the value of x′ that cor-
responds to the original projection through that point.
That is, for Fig. 12.15, the back projection at point A
would be the sum of the three values for which the solid
projection lines intersect the scans, while for point B it
would be the sum of the values where the three dashed
lines strike the scans. This gives a rather crude image,
but we will see how to refine it.4

Figure 12.16 shows how to relate the values of x′ and
y′ for a projection at angle θ to the object or image co-
ordinates x and y. The transformations are

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ,
(12.27)

and the inverse transformations are

x = x′ cos θ − y′ sin θ,

y = x′ sin θ + y′ cos θ.
(12.28)

The projection at angle θ is integrated along the line y′:

F (θ, x′) =
∫

f(x, y) dy′

=
∫

f(x′ cos θ − y′ sin θ, x′ sin θ + y′ cos θ)dy′.

(12.29)

4To see why it is crude, suppose the original object is a disk at
the origin. Every projection will be the same because of the symme-
try in angle. Every back projection will lay down a contribution to
the image along a stripe. Even though the reconstructed image will
be largest where the original circle was, the image will have nonzero
values throughout the image plane. We will see this example in Sec.
12.6.
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-1

0
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y

-2 -1 0 1 2

x

x0 = 2,  y0 = 1

x'

Path of integration
to obtain F( ,x')

-2 -1 0 1 2
x'

0

(a) (b )

FIGURE 12.17. An object and its sinogram. The object is
a δ function at (x0, y0). (a) The object and the path of a
projection at angle θ. (b) A sinogram of the object F (θ, x′).
The value of F would be plotted on an axis perpendicular to
the x′θ plane. The line shows the values of θ and x′ for which
F is nonzero.

 θ '  y '

(a) (b)

FIGURE 12.18. Integration for the back projection is over y′

from −∞ to +∞,as shown in (a). This can be converted to an
integral from 0 to ∞ if the angular integration is taken from
0 to 2π, as shown in (b).

The process of calculating F (θ, x′) from f(x, y) is some-
times called the Radon transformation. When F (θ, x′) is
plotted with x′ on the horizontal axis, θ on the vertical
axis, and F as the brightness or height on a third perpen-
dicular axis, the resulting picture is called a sinogram. For
example, the projection of f(x, y) = δ(x − x0)δ(y − y0)
is F (θ, x′) = δ(x′ − (x0 cos θ + y0 sin θ)). A plot of this
object and its sinogram is shown in Fig. 12.17.

The definition of the back-projection is

fb(x, y) =
∫ π

0

F (θ, x′) dθ, (12.30)

where x′ is determined for each projection by using Eq.
12.27. The limits of integration are 0 and π since the
projection for θ + π repeats the projection for angle θ.

We will now show that the image fb(x, y) obtained by
taking projections of the object F (θ, x′) and then back-
projecting them is equivalent to taking the convolution of
the object with the function h(x−x′, y−y′) = 1/r, where
r is the distance in the xy plane from the object point to
the image point. Function h depends only on the distance
between the object and image points. This is discussed
in greater detail by Barrett and Myers (2004, p. 280). To
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simplify the algebra, we find the back projection at the
origin. We want the set of projections for x′ = 0 as a
function of scan angle θ. They are, from Eq. 12.29,

F (θ, 0) =
∫ ∞

−∞
f(−y′ sin θ, y′ cos θ) dy′. (12.31)

In terms of angle θ′ = θ + π/2 which is the angle from
the x axis to the y′ axis,

F (θ′, 0) =
∫ ∞

−∞
f(y′ cos θ′, y′ sin θ′) dy′.

The arguments of f look very much like components of
a vector, with magnitude r′ and components r′ cos θ′ and
r′ sin θ′. This suggests expressing the integral in polar co-
ordinates. Since y′ is a dummy variable, call it r′. In terms
of r′ and θ′ the projection is

F (θ′, 0) =
∫ ∞

−∞
f(r′, θ′) dr′ . (12.32)

Inserting this expression in Eq. 12.30 gives for the back
projection

fb(0, 0) =
∫ π

0

F (θ′, 0)dθ′ =
∫ ∞

−∞

∫ π

0

f(r′, θ′) dr′ dθ′.

(12.33)
Figure 12.18(a) shows how y′ (that is, r′) is integrated
from −∞ to ∞ while θ′ goes from 0 to π. For the purposes
of Eq. 12.33 the limits of integration can be changed as in
Fig. 12.18(b). Variable r′ can range from 0 to ∞ while θ′

goes from 0 to 2π. Then the expression for fb looks even
more like an integration in polar coordinates:

fb(0, 0) =
∫ ∞

0

∫ 2π

0

f(r′, θ′) dr dθ′.

There is still one difference between this and polar coor-
dinates. The element of area, which is dx′dy′ in Cartesian
coordinates, is r′dr′dθ′ in polar coordinates. Therefore,
let us rewrite this as

fb(0, 0) =
∫ ∞

0

∫ 2π

0

(
f(r′, θ′)

r′

)
r′ dr′ dθ′. (12.34)

We now change to the Cartesian variables x′ and y′. The
back-projected image at the origin is

fb(0, 0) =
∫ ∞

−∞

∫ ∞

−∞

f(x′, y′)
(x′2 + y′2)1/2

dx′ dy′. (12.35)

For an arbitrary point (x, y) the result is similar:

fb(x, y) =
∫ ∞

−∞

∫ ∞

−∞

f(x′, y′)

[(x − x′)2 + (y − y′)2]1/2
dx′ dy′.

(12.36)
We have shown that the image obtained by taking pro-
jections of the object F (θ, x′) and then back projecting
them is equivalent to taking the convolution of the ob-
ject with the function h(x − x′, y − y′) = 1/r, where r is

the distance in the xy plane from the object point to the
image point.

The back-projected image is not a faithful reproduc-
tion of the object. But it is possible to manipulate the
projections F (θ, x′) to produce a function G(θ, x′) whose
back projection is the desired f(x, y). This is the process
of filtering before making the back projection. To find
the relationship between F and the desired function G,
note that there is some function g(x, y) that we do not
know, but which, when projected and then back pro-
jected, yields the desired function f(x, y). That is,

f(x, y) = gb(x, y) = (12.37)
∫ ∞

−∞

∫ ∞

−∞

g(x′, y′)

[(x − x′)2 + (y − y′)2]1/2
dx′ dy′.

Equations 12.10 relate the Fourier coefficients of f , g, and
h(r) = 1/r:

Cf (kx, ky) = Cg(kx, ky)Ch(kx, ky) − Sg(kx, ky)Sh(kx, ky),

Sf (kx, ky) = Cg(kx, ky)Sh(kx, ky) + Sg(kx, ky)Ch(kx, ky).

These can be solved for

Sg =
ChSf − ShCf

C2
h + S2

h

,

Cg =
ChCf + ShSf

C2
h + S2

h

.

(12.38)

One can show by direct integration (see problem 28) that
the Fourier transform of h(r) = 1/r is

Ch(kx, ky) = 2π(k2
x + k2

y)−1/2,

Sh(kx, ky) = 0,
(12.39)

so that

Cg(kx, ky) =
1
2π

(k2
x + k2

y)1/2Cf (kx, ky),

Sg(kx, ky) =
1
2π

(k2
x + k2

y)1/2Sf (kx, ky).
(12.40)

If function g(x, y) were known and were projected to
give G(θ, x′), then back-projecting G would give the de-
sired f(x, y). The final step is to relate G(θ, x′) and
F (θ, x′) so that we do not have to know g(x, y). To es-
tablish this relationship, consider a projection on the x
axis. Equations 12.24 and 12.25 show that

F (0, x) =
1
2π

∫ ∞

−∞
[Cf (kx, 0) cos(kxx) + Sf (kx, 0) sin(kxx)] dkx,

while

G(0, x) =
1
2π

∫ ∞

−∞
[Cg(kx, 0) cos(kxx) + Sg(kx, 0) sin(kxx)] dkx.
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Equations 12.40 relate the Fourier coefficients for F and
G. For ky = 0, (k2

x + k2
y)1/2 = |kx|. Therefore

G(0, x) =
(

1
2π

)2 ∫ ∞

−∞
[Cf (kx, 0) cos(kxx)

+ Sf (kx, 0) sin(kxx)] |kx| dkx. (12.41)

This result is independent of the choice of axis, so it must
be true for any projection. There is a function h(x) which
can be convolved with any F (θ, x) to give the desired
function G(θ, x). Equation 12.41 shows that

Cg(kx, 0) = Cf (kx, 0) |kx| /2π,

Sg(kx, 0) = Sf (kx, 0) |kx| /2π.

Comparison with Eqs. 12.9 shows that

Ch = |kx| /2π, Sh = 0.

Therefore

h(x) =
(

1
2π

)2 ∫ ∞

−∞
|kx| cos(kxx) dkx.

Because the integrand is an even function, we can multi-
ply by 2 and integrate from zero to infinity. The integral
to infinity does not exist. However, there is some maxi-
mum spatial frequency, roughly the reciprocal of the res-
olution we want, which we call kx max. We can therefore
cut the integral off at this maximum spatial frequency
and obtain

h(x) =
1

2π2

∫ kx max

0

kx cos(kxx) dkx

=
1

2π2

[
cos(kxx)

x2
+

kx sin(kxx)
x

]kx max

0

=
k2

x max

(2π)2
[
2 sinc(ξ) − sinc2(ξ/2)

]
, (12.42)

where ξ = kx maxx and sinc(ξ) = sin(ξ)/ξ. The function
h(x) is plotted in Fig. 12.19. Using a sharp high-frequency
cutoff introduces some problems, which are described be-
low and which are easily overcome.

To summarize: If each projection F is convolved with
the function h of Eq. 12.42 and then back-projected, the
back-projected image is equal to the desired image.

Figure 12.20 summarizes the two methods of recon-
structing an image from projections.

12.6 An Example of Filtered Back
Projection

It is not difficult to write a computer program to perform
filtered back projection if execution speed is not a con-
cern. For our example we will use an object with circular
symmetry, so that every projection is equivalent and only

h(
ξ)

, a
rb

itr
ar

y 
un

its

20151050
ξ

k = 0
k = 1 k = 3 k = 5

FIGURE 12.19. The weighting function h(x) of Eq. 12.42. The
bars show the nonzero values for the example in Section 12.6.

F(  ,x') f(x,y)θ

θG(   ,x')

1-d Fourier 
transform at 
each angle

Interpolate 
from polar 
to Cartesian 
coordinates

Convolve with 
function h(x) 
at each angle

Back 
project

2-d inverse 
Fourier 
transform

C(   ,k) 
S(   ,k)

θ
θ

C(k  ,k  ) 
S(k  ,k  )

x
y
y

x

FIGURE 12.20. A summary of the two methods for recon-
structing an image.

one projection needs to be convolved with the weighting
function h. Because of the circular symmetry the back
projection is needed only along one diameter. The pro-
gram shown in Fig. 12.21 was used to reconstruct the
image.

The “top-hat” function is used as the object:

f(x, y) =
{

1, x2 + y2 < a2

0, otherwise. (12.43)

The projection is independent of θ: F (x) = 2(a2 − x2)1/2

for x2 < a2. Procedure CalcF evaluates F (x) for 100
points. Variables x and i are related by x = 2i/N − 1, so
that x ranges from −1 to 1 as index i goes from 0 to 100.
The value of a is 0.5.

The convolution is done by procedure Convolve, which
uses convolving function h to operate on function F
to produce G. The discrete form of h is obtained from
Eq. 12.42 by the following argument, originally due to
Ramachandran and Lakshminarayanan [see Cho et al.,
(1993), p. 80]. Variable x is considered on the interval
(−1, 1), so the period is 2 and ω0 = π. The maximum
spatial frequency is kx max = Nπ/2. The value of x in
the weighting function h(x) depends on the value of in-
dex k = i − j: xi − xj = 2(i − j)/N = 2k/N . There-
fore ξ = kx maxx = (Nπ/2)(2/N)k = πk, where k is an



336 12. Images

FIGURE 12.21. The program used to make a filtered back
projection of a circularly symmetric function.

integer. From Eq. 12.42 we obtain

h(k) =






N2/16, k = 0

0, k even

−N2/4k2π2 k odd.

(12.44)

Procedure Convolve replaces the integral of Eq. 12.4a by
a sum. The factor dx in the integral becomes 1/N in the
sum.

Procedure BackProject forms the image from G. One
hundred eighty projections are done in 1 ◦ increments
from 0 to 179. The value of x is determined from x =
i cos θ, but it is shifted so that the rotation takes place
about i = 50. Unless x is at the end points, the value
of G is obtained by linear interpolation. The value of ∆θ
used to convert the integral to a sum is π/180.

Procedure PrintData writes the data for the plots
shown in Fig. 12.22. One can see from inspection of Fig.
12.22 how the convolution converts the semicircular pro-
jection F into a function G that is flat-topped over the
region of nonvanishing f and has a negative contribution
in the wings. Figure 12.23 shows what the image looks

FIGURE 12.22. Reconstruction of a circularly symmetric im-
age by filtered back projection. (a) The projection F (x). (b)
The convolved projection G(x). (c) The image from back-pro-
jecting the convolved data.

FIGURE 12.23. Reconstruction by simple back projection
without convolution. The object is the same as in Fig. 12.22.

like if the back projection is done without first perform-
ing the convolution.

One can also see from Fig. 12.22 that ringing is intro-
duced at the sharp edges. This is characteristic of the
sharp high-frequency cutoff at kx (similar to the Fourier
series representation of a square wave with only a fi-
nite number of terms). Early computer tomography (CT)
scans created with the convolution function presented
here showed a dark band just inside the skull where there
was an abrupt change in f(x, y) upon going from bone
to brain (Fig. 12.24). A gradual high-frequency cutoff
changes the details of h(k) and eliminates this ringing
(Fig. 12.25).
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FIGURE 12.24. An early CT brain scan, showing ringing in-
side the skull. Photograph courtesy of St. Paul Radiology As-
sociates, St. Paul, MN.

FIGURE 12.25. A set of brain scans using a gradual high-fre-
quency cutoff to eliminate ringing. Photograph courtesy of
Professor J. T. Payne, Department of Diagnostic Radiology,
University of Minnesota.

Symbols Used in Chapter 12

Symbol Use Units First

used on

page

a, b Constants 328

a Radius of “top-hat”

function

m 335

b′ Length of object m 326

f, g Arbitrary functions 326

fb, gb Back-projected images

of f, g

333

h Point-spread function;

impulse response for

convolution

326

i
√
−1 327

j, k Subscript indices for

data

332

k, kx, ky Spatial frequencies m−1 326

l, m Subscript indices for

Fourier coefficients

332

m Magnification 327

t, t′ Time or arbitrary vari-

able

326

x, y, x′, y′ Distance; coordinates

in image or object

plane; rotated

coordinate system for

image reconstruction

m 327

A Amplitude 326

Cf Fourier cosine

transform of function

f

326

D Length of image m 329

E Function describing an

image

327

F Projection of function

f

331

F, G, H Complex Fourier

transforms of f, g, h

327

L Property describing

an object

327

L Width of image or

field of view (FOV)

m 329

N Total number of data

points; number of

discrete values in one

dimension of an image

329

Sf Fourier sine transform

of function f

326

T Period s 326

δ Dirac delta function 326

λ Wavelength m 326

φ Phase 326

θ, θ′ Angle 331

τ1 Time constant s 326

ω, ω0 Angular frequency (radian) s−1 326

ξ Dummy variable 333

Problems

Section 12.1

Problem 1 Compare Eq. 12.4a to Eqs. 4.73 and 7.21
and deduce the impulse response for those two systems.
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FIGURE 12.26. Anatomic features shown in Fig. 12.25

Problem 2 Except for the minus sign, Eq. 12.4a is the
same integral that defines the cross-correlation function.
There are some important differences, however. Show that
the convolution function is commutative—interchanging
the order of variables gives the same result—but that the
cross-correlation function is not.

Problem 3 (a) Use the convolution integral, Eq. 12.4a,
to calculate the convolution g(t) of the function h(t−t′)in
Eq. 12.5 with

f(t) =
{

1,
0,

0 < t < T,
otherwise .

Plot f(t) and g(t).
(b) Calculate the Fourier transform of g(t), h(t − t′),

and f(t) from part (a), and show that they obey Eq. 12.6a.

Problem 4 Fill in the details in the derivation of Eq.
12.6a.

Problem 5 Use the convolution integral to calculate
g(x) from h(x − x′) = a/[a2 + (x − x′)2] and f(x) =
cos(kx). Interpret this physically as a spatial frequency
filter. Hint:

∫ ∞

−∞

cos(ky)dy

y2 + b2
=

π

b
e−kb,

∫ ∞

−∞

sin(ky)dy

y2 + b2
= 0.

Problem 6 If you are familiar with complex variables,
use the definition of the Fourier transform in Eq. 12.11a
to prove the convolution theorem, Eq. 12.11b.

Problem 7 What are the two-dimensional images whose
Fourier transforms are shown?

C = δ(kx
− k0)δ(ky )

S = 0

kx

ky

C

= δ(kx
− k0)δ(ky )S

= 0

kx

ky

kx

ky

(a)

(b)

(c)

θ

C

S = 0

Problem 8 Calculate the two-dimensional Fourier
transform of the function

f(x, y) =
{

1,
0,

−a/2 < x < a/2, −b/2 < y < b/2,
otherwise.

Plot f(x, y)vs. x and y and Cf (kx, ky)vs. kx and ky for
a = 2b.

Problem 9 Calculate the two-dimensional Fourier
transform of the function

f(x, y) = sech
(x

a

)
sech

(y

b

)
.

You may need the relationship
∫ ∞

0

sech(uz) cos(vz)dz =
π

2u
sech

(πv

2u

)
.

Problem 10 Calculate the two-dimensional Fourier
transform of the function

f(x, y) =
{

1,
0,

√
x2 + y2 < a,√
x2 + y2 > a.

Hint: convert to polar coordinates in both the xy and kxky

planes, and use the facts that

J0(u) =
1
2π

∫ 2π

0

cos(u cos v)dv,

∫
uJ0(u)du = J1(u),

where J0 and J1 are Bessel functions of order zero
and order one. Bessel functions are tabulated and have
known properties, similar to trigonometric functions. See
Abramowitz and Stegun (1972), p. 360.
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Section 12.2

Problem 11 Complete the verification of Eq. 12.13 sug-
gested in the text.

Problem 12 Find the Fourier transform of the point-
spread function for the ideal imaging system, Eq. 12.13.

Problem 13 Use Eq. 12.15 to show that the sum of the
squares of the Fourier coefficients of the image is equal to
the sum of the squares of the Fourier coefficients of the
object times the square of the modulation transfer func-
tion, for a given set of spatial frequencies (kx,ky).

Problem 14 Write the modulation of the image in
terms of the variables in Eq. 12.19.

Problem 15 How does magnification m change the spa-
tial frequencies in going from object to image? Since one
is concerned about seeing detail in the object, resolution
and spatial frequencies are usually converted to object co-
ordinates in medical imaging, while they are left in terms
of the detector coordinates in photography.

Section 12.3

Problem 16 This problem shows how increasing the de-
tail in an image introduces high-frequency components.
Find the continuous Fourier transform of the two func-
tions

f1(x) =






0, x < 0,

1, 0 < x < 1,

0, x > 1

f2(x) =






0, x < 0,
√

3/2, 0 < x < 1/3,

0, 1/3 < x < 2/3,
√

3/2, 2/3 < x < 1,

0, x > 1.

Plot a(kx) =
[
C2(kx) + S2(kx)

]1/2 for each function
using a spreadsheet or plotting package, for the range
−45 < kx < 45. Compare the features of each plot. Both
functions have the same value of

∫∞
−∞ f2(x)dx.

Section 12.4

Problem 17 Prove the central slice theorem analyti-
cally. Consider the cosine term of the two-dimensional
Fourier transform C(kx, ky) in Eq. 12.9b. Rotate to the
primed coordinates given by Eq. 12.28. Note that the area
element dxdy transforms to dx′dy′. Express C as a func-
tion of polar coordinates in k-space, kx = k cos θ and

ky = k sin θ. Show that

C(θ, k) =
∫ ∞

−∞
F (θ, x′) cos(kx′)dx′,

S(θ, k) =
∫ ∞

−∞
F (θ, x′) sin(kx′)dx′.

Problem 18 Suppose that f(x, y) is independent of y.
Find expressions for C(kx, ky) and S(kx, ky) and insert
them in the expression for f(x, y) to verify that f(x, y) is
recovered. You will need Eqs. 11.65.

Problem 19 Suppose that the object is a point at the ori-
gin, so that f(x, y) = δ(x)δ(y). Find the projection F (x)
and the transform functions C(kx, 0) and S(kx, 0). Use
these results to reconstruct the image using the Fourier
technique.

Problem 20 Figure 12.14 shows that taking the Fourier
transform of the projection F (θ, x′) gives the Fourier coef-
ficients C(k, θ) at points along circular arcs in frequency
space. In order the get these coefficients at equally spaced
points in x and y, interpolation is necessary. One sim-
ple method is to use “bilinear” interpolation (Press et al.,
1992). Suppose you know the Fourier coefficients at points
ri = i∆r, θj = j∆θ, and you want to get the Fourier co-
efficients at points xn = n∆x, ym = m∆y. For a given
xn, ym, convert to polar coordinates to get r and θ, then
find the four known points that “surround” the desired
point. The value of the coefficient is

C(xn, ym) =
1

∆r∆θ
[C(ri, θj)(ri+1 − r)(θj+1 − θ)

+ C(ri+1, θj)(r − ri)(θj+1 − θ)
+ C(ri, θj+1)(ri+1 − r)(θ − θj)
+ C(ri+1, θj+1)(r − ri)(θ − θj)].

Suppose C(r, θ) = sin(r)/r, which is also called sinc(r).
If C is known at points with ∆r = 0.5 and ∆θ = π/8,
evaluate C at point x = 2, y = 3 using bilinear in-
terpolation. Compare this result to the exact value of
C = sinc((x2+y2)1/2). Try this for other points (xn, ym).

Section 12.5

Problem 21 Derive Eqs. 12.27 and 12.28.

Problem 22 An object is described by the function
f(x, y) = e−(x2+y2)/b2 .

(a) Find the Fourier transform C(kx, ky) and S(kx, ky)
directly from Eqs. 12.9 b and c.

(b) Find the projection F (θ, x′) using Eq. 12.29.
Then take the one-dimensional Fourier transform of
F (θ, x′)using the equations

C(θ, k) =
∫ ∞

−∞
F (θ, x′) cos kx′dx′

S(θ, k) =
∫ ∞

−∞
F (θ, x′) sin kx′dx′.
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Use k =
(
k2

x + k2
y

)1/2 to express C and S in terms of
kx and ky. Your answer should be the same as part (a).

Use the following integral table:
∫ ∞

−∞
e−az2

dz =
√

π

a
∫ ∞

−∞
e−az2

cos bz dz =
√

π

a
e−b2/4a

∫ ∞

−∞
e−az2

sin bz dz = 0.

Problem 23 Assume you have just measured the projec-
tion function F (θ, x′) = π1/2be−(x′−a cos θ)2/b2 . (For this
problem, ignore the fact that your measuring device would
only give F at discrete values of θ and x′.) Find f(x, y).
You may need the integrals from Problem 22.

Problem 24 Repeat Prob. 23 using

F (θ, x′) =
a
√

π

2
e−x′2/a2

[
1 + cos2 θ

(
2
x′2

a2
− 1
)]

.

Look up any integrals you need.

Problem 25 Suppose an object is a point at the ori-
gin, f(x, y) = δ(x)δ(y).The projection is also a point:
F (θ, x′) = δ(x′). Calculate the back projection fb(x, y)
(without filtering) using Eq. 12.30. To solve the problem,
use this property of δ functions:

δ(g(u)) =
∑

i

δ(u − ui)
|dg/du|u=ui

,

where the ui are the points such that g(ui) = 0. Note that
the back projection is not a point. Back projection without
filtering does not recover the object.

Problem 26 This problem is an extension of Prob. 25,
but the object is no longer at the origin. Let f(x, y) =
δ(x − x0)δ(y − y0).

(a) Calculate F (θ, x′). You may need the following
properties of the δ function:

∫
δ(b−z)δ(z−a)dz = δ(b−a),

δ(az) = δ(z)/|a|.
(b) Use the function F (θ, x′) you found in part (a) to

calculate the back projection fb(x, y) using Eq. 12.30. You
will need the property of the δ function given in Prob. 25.

(c) Show that fb(x, y)is equivalent to the convolution
of f(x, y)with the function 1/

√
(x − x′)2 + (y − y′)2.

Problem 27 Here is an easy way to show that the
back projection fb(x, y)cannot be equivalent to the object
f(x, y). If f(x, y) is dimensionless, determine the units
of F (θ, x′) and fb(x, y). Do f(x, y) and fb(x, y) have the
same units?

Problem 28 Consider the Fourier transform of 1/r.
The coefficients are given by

C(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞

dx dy cos(kxx + kyy)
(x2 + y2)1/2

,

S(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞

dx dy sin(kxx + kyy)
(x2 + y2)1/2

.

Transform to polar coordinates (x = r cos θ, y =
r sin θ). Show from symmetry considerations of the an-
gular integral that S = 0. Use the facts about the Bessel
functions in Problem 10 and

∫ ∞

0

J0(kr)dr = 1/k

to derive Eqs. 12.39. The function J0(x) is a Bessel func-
tion of order zero. It is tabulated and has known proper-
ties, similar to a trigonometric function. [See Abramowitz
and Stegun (1972, p. 360).]

Problem 29 An object consists of three δ functions at
(0, 2), (

√
3,−1), and (−

√
3,−1). Draw the sinogram of

the object.

Problem 30 Let f(x, y) = 1/[(x−a)2 + y2 + b2]. Calcu-
late F (θ, x′).

Problem 31 Let f(x, y) = x/(x2 + y2)2. Calculate
F (θ, x′). Hint:
∫

du

(u2 + v2)2
=

u

2v2 (u2 + v2)
+

1
2 |v|3

tan−1
(u

v

)
.

Problem 32 Consider the object f(x, y) =
a/
√

a2 − x2 − y2 for |x| < a, and 0 otherwise.
(a) Plot f(x, 0) vs. x.
(b) Calculate the projection F (θ, x′). Plot F (0, x′) vs.

x′.
(c) Use the projection from part (b) to calculate the

back projection fb(x, y). Plot fb(x, 0)vs. x.
(d) Compare the object and the back projection. Explain

qualitatively how they differ.

Section 12.6

Problem 33 Verify that

F (θ, x) =
{

2
√

a2 − x2, |x| < a
0, |x| > a

is the projection of the function in Eq. 12.43.

Problem 34 Verify Eqs. 12.44.

Problem 35 Modify the program of Fig. 12.21 and run
it without the convolution.

Problem 36 Modify the program of Fig. 12.21 to recon-
struct an annulus instead of a top-hat function.
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13
Sound and Ultrasound

Sound (or acoustics) plays two important roles in our
study of physics in medicine and biology. First, ani-
mals hear sound and thereby sense what is happening in
their environment. Second, physicians use high-frequency
sound waves (ultrasound) to image structures inside the
body. This chapter provides a brief introduction to the
physics of sound and the medical uses of ultrasonic imag-
ing. A classic textbook by Morse and Ingard (1968) pro-
vides a more thorough coverage of theoretical acoustics,
and books such as Hendee and Ritenour (2002) describe
the medical uses of ultrasound in more detail.

In Sec. 13.1 we derive the fundamental equation gov-
erning the propagation of sound: the wave equation. Sec-
tion 13.2 discusses some properties of the wave equation,
including the relationship between frequency, wavelength,
and the speed of sound. The acoustic impedance and
its relevance to the reflection of sound waves are intro-
duced in Sec. 13.3. Section 13.4 describes the intensity
of a sound wave and develops the decibel intensity scale.
The ear and hearing are described in Sec. 13.5. Section
13.6 discusses attenuation of sound waves. Physicians use
ultrasound imaging for medical diagnosis, as described in
Section 13.7. Ultrasonic imaging can provide information
about the flow of blood in the body by using the Doppler
effect, as shown in Sec. 13.8.

13.1 The Wave Equation

In Chapter 1, we assumed that solids and liquids are in-
compressible. If a long rod were truly incompressible, a
displacement of one end would instantly result in an iden-
tical displacement of the other end. In fact, the displace-
ment does not propagate instantaneously. It travels at the
speed of sound in the rod.

The propagation of sound involves small displacements
of each volume element of the medium from its equilib-

x x + dx

  ξ (x + dx,t)  

s  (x,t)n

(a)

(b)

s  (x + dx,t)n

  ξ (x,t)

FIGURE 13.1. An elastic rod. (a) The rod in its equilibrium
position. (b) Each point on the rod has been displaced from its
equilibrium position by an amount ξ which depends on x and
t. As a result there is a normal stress sn which also depends
on x and t.

rium position. In this section we consider sound waves
propagating along the x axis. The results can be general-
ized to three dimensions [See Morse and Ingard (1968)].
We first consider an elastic rod, and then a fluid in which
viscous effects are not important.

13.1.1 Plane Waves in an Elastic Rod

The simplest case to consider is an elastic rod which is
forced to move longitudinally at one end. This results in
the propagation of a sound wave along the rod.1 We set up
a coordinate system where x measures distance along the
rod from a fixed origin when no sound wave is traveling
along the rod. We also assume that the disturbance of
the rod depends only on the position along the rod, x,

1This simple geometry assures that all motion is parallel to the x
axis. In general, motion in an elastic solid involves both longitudinal
waves and transverse waves.
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and not on y or z, which are perpendicular to x. A wave
in three dimensions that depends only on one dimension
is called a plane wave.

When the sound travels along the rod, the material at
point x is displaced from its undisturbed position by a
small amount ξ(x, t), as shown in Fig. 13.1. The material
originally at x + dx is displaced by amount ξ(x + dx, t).
Since ξ(x+dx, t) is in general different from ξ(x, t), there
is a strain in the rod (Eq. 1.24)

εn(x, t) =
∆l

l
=

ξ(x + dx, t) − ξ(x, t)
dx

=
∂ξ

∂x
. (13.1)

Young’s modulus, E, relates the stress in the rod, sn,
to the strain, εn (Eq. 1.25):

sn(x, t) = Eεn(x, t) = E
dξ

dx
. (13.2)

The difference between the stress at each end, multiplied
by the cross-sectional area of the rod, S, provides a net
force that accelerates the shaded volume element in Fig.
13.1. The net force on the volume element is

Fnet = S [sn(x + dx, t) − sn(x, t)] = S
∂sn

∂x
dx = SE

∂εn

∂x
dx.

Fnet = SE
∂2ξ

∂x2
dx. (13.3)

The mass of the shaded volume is ρSdx, where ρ is the
density, and the acceleration of the volume is ∂2ξ/∂t2.
[Since we are not subtracting a value at one end from
the value at the other, and since we are taking the limit
as dx → 0, we can ignore changes in ξ in the interval
(x, x + dx).] Therefore, Newton’s second law becomes

∂2ξ

∂x2
=

ρ

E

∂2ξ

∂t2
. (13.4)

This is the wave equation, and it is seen in many con-
texts, from the vibrations of a string to the propagation
of electromagnetic waves. It is usually written as

∂2ξ

∂x2
=

1
c2

∂2ξ

∂t2
, (13.5)

where c is the speed of propagation of sound in the rod.
In this case

c =

√
E

ρ
. (13.6)

As Young’s modulus becomes very large or the density
of the rod becomes very small, the speed with which a
disturbance travels from one end of the rod to the other
becomes larger and larger.

13.1.2 Plane Waves in a Fluid

Now we consider a sound wave propagating in a fluid,
where shear can be neglected. We also neglect viscous

x x + dx

  ξ(x + dx,t)  

SP(x,t) SP(x + dx,t)

(a)

(b)

0SP0

  ξ (x,t)

SP

FIGURE 13.2. Sound propagates in one dimension in a fluid
in a tube of cross-sectional area S. (a) In equilibriuim the
pressure is p0 and the force on the shaded volume of fluid has
magnitude p0S on each end. (b) When the sound is propagat-
ing, the forces on each end are as shown.

effects. Changes in the fluid caused by the sound wave
depend only on x and t.2 To make it easier to imagine the
situation, suppose the fluid is confined in a tube. Then we
can construct a figure very similar to Fig. 13.1. A small
volume of fluid at rest extends from position x to x+ dx,
with cross-sectional area S as shown in Fig. 13.2(a). The
force pushing on the left side of the volume is SP0, and the
force on the right is −SP0.3 Here P0 is the pressure when
the fluid is undisturbed by a sound wave. In equilibrium
there is no net force on the volume element.

When the fluid element is displaced, as in Fig. 13.2(b),
the net force to the right on the fluid element is

Fnet = S [P (x, t) − P (x + dx, t)] = −S
∂P

∂x
dx. (13.7)

The change of pressure from the equilibrium value P0

is related to the change of volume of the fluid by the
compressibility, κ (Eq. 1.33):

P − P0 = p = − 1
κ

dV

V0
= − 1

κ

dξ

dx
, (13.8)

from which

Fnet =
S

κ

∂2ξ

∂x2
dx. (13.9)

To obtain the mass we use the volume Sdx times the
equilibrium density ρ0. We multiply by the acceleration
of the fluid element, ∂2ξ/∂t2, to obtain

∂2ξ

∂x2
= ρ0κ

∂2ξ

∂t2
. (13.10)

2We might be looking at a wave whose properties depend on
all three coordinates, x, y, and z, but where, in the region we are

studying, the dependence on y and z is very slight. This is like the
one-dimensional electrostatic approximations in Chapter 6.

3See Sec. 1.11; we ignore any forces arising from viscosity, grav-
ity, or surface tension.
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This is the wave equation, Eq. 13.5, with

c =
√

1
κρ0

. (13.11)

In both of these cases, the wave equation has been writ-
ten in terms of the displacement of elements of the rod or
the fluid from their equilibrium positions. It is also possi-
ble to show that the pressure, fluid density, and velocity
of the fluid element also satisfy the wave equation. The
pressure is discussed in Problem 2. The velocity of the
fluid due to the sound wave is

v =
dξ

dt
. (13.12)

Another important relationship is obtained by combining
Eq. 13.12 with Eq. 13.8 and interchanging the order of
differentiation (Appendix N):

∂v

∂x
= −κ

∂p

∂t
. (13.13)

Equations 13.8 and 13.10 can also be used to show that

∂v

∂t
= − 1

ρ0

∂p

∂x
. (13.14)

Finally, since the density is ρ = M/V , we can show that

dρ

ρ0
= κdp. (13.15)

In this section we have considered Young’s modulus E
and compressibility κ. Remember from Chapter 3 that
we can compress a gas at a constant temperature, and
we can also do it adiabatically, when there is no heat
flow and the temperature rises as the gas is compressed.
The compressibility is different in these two cases. When
static measurements of these parameters are made, there
is usually time for the system being studied to remain
isothermal. The pressure changes in a sound wave usually
occur so rapidly that there is not time for heat to flow,
and the adiabatic compressibility must be used. Values
of Young’s modulus are also different for isothermal and
adiabatic stresses and strains.

13.2 Properties of the Wave Equation

The parameter c in the wave equation has units of speed.
To appreciate its physical interpretation, consider the de-
parture from the undisturbed pressure p(x, t) = P (x, t)−
P0 = f(x − ct), where f is any function. This solution
obeys the wave equation (see Prob. 5). It is called a trav-
eling wave. A point on f(x−ct), for instance its maximum
value, corresponds to a particular value of the argument
x − ct. To travel with the maximum value of f(x − ct),
as t increases x must also increase in such a way as to
keep x − ct constant. This means that the pressure dis-
tribution propagates to the right with speed c, as shown

f(x - ct)

x

t

FIGURE 13.3. A wave f(x−ct) travels to the right with speed
c.

in Fig. 13.3. Solutions p(x, t) = g(x + ct), where g is any
function, also are solutions to the wave equation, corre-
sponding to a wave propagating to the left

The wave speed c is one of the most important para-
meters governing the propagation of sound waves. The
density of water is about ρ0 = 1, 000 kg m−3, and the
compressibility of water is approximately 5×10−10 Pa−1,
so the speed of sound in water is about 1,400 m s−1. The
speed of sound in tissue is similar but slightly higher;
1,540 m s−1 is often taken as an average speed of sound
in soft tissue. The speed of sound in air is about 344 m
s−1. See Denny (1993) for a more detailed comparison of
the speed of sound in air and water.

One very useful traveling wave is p(x, t) =
p0 sin

[
2π
λ (x − ct)

]
= p0 sin

[
2π(x

λ − t
T )
]

= p0 sin(kx −
ωt). The pressure distribution oscillates sinusoidally with
frequency

f = c/λ (13.16)

cycles per second (Hz) or angular frequency ω = 2πf
(radians) s−1. Equation 13.16 relates the frequency and
wavelength. For instance, middle C has a frequency of
261.63 Hz. In air, the wavelength is (344 m s−1)/(261.63
Hz) = 1.315 m. The wave number is

k =
2π

λ
=

ω

c
. (13.17)

Standing waves such as

p(x, t) = p cos(ωt) sin(kx) (13.18)

are also solutions to the wave equation. An example is
shown in Fig. 13.4. The standing wave in Eq. 13.18 has
nodes fixed in space where sin(kx) is zero. Standing waves
can occur, for example, in an organ pipe and in the ear
canal (Problem 7).

A standing wave can also be written as the sum of two
sinusoidal traveling waves, one to the left and one to the
right. Conversely, two standing waves can be combined
to give a traveling wave (Problem 8).
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FIGURE 13.4. A standing wave f(x, t) = sin πx cos πt, plotted
for 0 < x < 2 and 0 < t < 4.

Since the fluid velocity v obeys the wave equation, it
can also be represented as a sinusoidal wave. It is impor-
tant to realize that the fluid oscillates back and forth.
The fluid itself does not propagate with the wave. What
propagates is the disturbance in the fluid. Sound in a
fluid is a longitudinal wave, which means that the fluid
oscillates along the same axis that the disturbance prop-
agates (in this case, both move in the x direction). Other
types of waves exist in nature, such as electromagnetic
waves studied in Chapter 14. Electromagnetic waves are
transverse waves, because the electric field oscillates in a
direction perpendicular to the direction of wave propaga-
tion. Solids, such as bones, can support shear stresses and
can propagate both longitudinal and transverse acoustic
waves. But fluids and soft tissue cannot support sig-
nificant shear stresses and only propagate longitudinal
waves.

13.3 Acoustic Impedance

13.3.1 Relationships Between Pressure,
Displacement and Velocity in a Plane
Wave

For a plane wave traveling to the right, the pressure, dis-
placement and speed of the fluid have simple relation-
ships. If the pressure change is

p(x, t) = p0 sin(kx − ωt), (13.19)

one can use Eqs. 13.8 and 13.12 to show that the fluid
displacement is

ξ = ξ0 cos(kx − ωt), (13.20)

the fluid velocity is

v = v0 sin(kx − ωt), (13.21)

Transmitted

pt(x)

Reflected

pr(x)

pi(x)

Incident

FIGURE 13.5. A sound wave with pressure amplitude pi trav-
eling to the right is incident on a boundary separating tissue
1 on the left from tissue 2 on the right. Each tissue has a
different density ρ0 and compressibility κ. Part of the wave
is transmitted to the right with amplitude pt, and part is re-
flected to the left with amplitude pr. The drawing shows one
instant in time when Z2 = 2Z1.

and the amplitudes are related by

ξ0 = p0
κ

k
= p0

κλ

2π
= p0

κc

ω
, (13.22)

v0 =
p0

ρ0c
=

p0

Z
. (13.23)

The quantity Z = ρ0c =
√

ρ0/κ is called the acoustic
impedance of the medium.4 The acoustic impedance of
water is about (103 kg m−3)(1, 400 m s−1) = 1.4 × 106

Pa s m−1. The acoustic impedance of air is about 400 Pa
s m−1, so Zair � Zwater (Denny, 1993).

13.3.2 Reflection and Transmission of Sound
at a Boundary

Consider next what happens at the boundary between
two different media. Suppose a traveling wave is propa-
gating to the right in a fluid with sound speed c1 and
acoustic impedance Z1. At x = 0, it encounters a sec-
ond fluid, with speed c2 and impedance Z2. In general,
the interaction of the incoming wave with the boundary
between the first and second fluids results in a reflected

4Strictly speaking, the acoustic impedance is the ratio Z =
p0/v0, and carries information about both the amplitude ratio and
the relative phase of the pressure and velocity. If the waves are in
phase, Z is said to be “resistive;” if they are π/2 out of phase, Z
is said to be “reactive.” The characteristic acoustic impedance is a

property of the medium: Z0 = ρ0c. Both have units Pa m s−1 or kg
m−2s−1. For a plane wave the impedance is resistive and Z = Z0.
For other waves, such as standing waves, there is a reactive compo-
nent.
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wave traveling to the left in fluid 1 and a transmitted
(or refracted) wave traveling to the right in fluid 2 (Fig.
13.5). The acoustic impedances determine how much of
the incoming wave is reflected and how much is transmit-
ted. The waves must oscillate with the same frequency
in both media. The pressure at the boundary must be
the same in each medium, and the fluid velocity must
also be continuous across the boundary. Let pi(x, t) =
pi sin

[
ω
c1

(x − c1t)
]
, pr(x, t) = pr sin

[
ω
c1

(x + c1t)
]
, and

pt(x, t) = pt sin
[

ω
c2

(x − c2t)
]

be the incoming, reflected,
and transmitted pressures. The velocities are related to
the pressures by the acoustic impedances. At the bound-
ary, the pressure and the velocity must be continuous. In
fluid 1 the amplitude of the pressure is pi + pr, and in
fluid 2 it is pt. In fluid 1 the amplitude of the velocity is
(pi − pr)/Z1, and in fluid 2 it is pt/Z2. (The minus sign
arises because the reflected wave is traveling to the left.)
Therefore

pi + pr = pt (13.24)

and
(pi − pr)/Z1 = pt/Z2. (13.25)

We can solve these two equations for pr and pt in terms
of pi :

pr =
Z2 − Z1

Z2 + Z1
pi, (13.26)

pt =
2Z2

Z2 + Z1
pi. (13.27)

The intensity I of a sound wave is a measure of the
power per unit area (W m−2). The instantaneous power
per unit area transmitted by the wave in Eq. 13.19 at
some point is

I(t) = p(t)v(t) = p0v0 sin2 ωt. (13.28)

The average power per unit area is

I =
1
2
p0v0 =

1
2

p2
0

Z
. (13.29)

Problems 13–15 show that the reflection and transmission
coefficients are

R =
Ir

Ii
=
(

Z2 − Z1

Z2 + Z1

)2

, (13.30)

and

T =
It

Ii
=

4Z1Z2

(Z1 + Z2)
2 , (13.31)

and that R + T = 1.
If the acoustic impedance of the two fluids is the same,

Z1 = Z2, there is no reflected wave and the entire in-
coming wave is transmitted. If Z1 � Z2 (for example,
sound going from air to water), almost all of the sound is
reflected.

13.4 Comparing Intensities: Decibels

13.4.1 The Decibel

When comparing two intensities, the range of differences
is often so great that a logarithmic comparison scale is
used. We first saw the decibel when discussing the fre-
quency response of a linear system in Chapter 11. Inten-
sity levels in decibels (dB) have meaning only in terms of
ratios:

Intensity difference (dB) = 10 log10

(
I2

I1

)
. (13.32)

The intensity difference can also be written in terms of
pressure (or displacement or velocity) ratios:

Intensity difference (dB)

= 10 log10

(
I2

I1

)
= 10 log10

(
p2

p1

)2

= 20 log10

(
p2

p1

)
. (13.33)

This assumes that p1 and p2 are measured in the same
medium, so the acoustic impedance does not change. If
the intensity of a wave falls to 1% of its original value,
the intensity difference is 10 log10(0.01) = −20 dB.

13.4.2 Hearing Response

In auditory acoustics, intensities are measured with re-
spect to a reference intensity I0 = 10−12 W m−2. This
is the intensity of the faintest sound that a person can
typically hear:

Intensity level = 10 log10

(
I

I0

)
. (13.34)

A sound that is 10 times as intense as the threshold for
hearing has an intensity level of 10 dB. A sound with an
average intensity I = 1 W m−2 is perceived as painful,
so the threshold for pain has an intensity level of about
120 dB. Table 13.1 gives the intensity in decibels for some
common sounds.

The sensitivity of the ear depends on frequency. A typ-
ical hearing response curve for a young person is shown
in Fig. 13.6. The minimum auditory field (MAF) is mea-
sured with a loudspeaker; the slightly different minimum
auditory pressure (MAP) is measured with headphones.
The ear is most sensitive to sounds between about 100
and 5,000 Hz. A sound at 20 Hz will not be perceived
to be as loud as one at 1,000 Hz with the same inten-
sity. Commercial sound level meters typically have two
“weightings.” The “C” weighting has almost the same
sensitivity at all frequencies. The “A” weighting more
nearly mimics the response of the normal ear. Sounds
with the same level when the meter is on “A” weighting
will be perceived as having the same loudness..
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FIGURE 13.6. Hearing response (MAF) curve for a young
adult.

FIGURE 13.7. A cross section of the ear. From J. R. Cameron,
J. G. Skofronick, and R. M. Grant. Physics of the Body. Madi-
son, WI. Medical Physics Publishing. 1999. Used by permis-
sion.

13.5 The Ear and Hearing

A cross section of the ear is shown in Fig. 13.7. The ear
can be thought of as having three different sections, each
with a unique purpose: the external ear gathers sound, the
middle ear transfers energy from the air (low acoustic im-
pedance) to the liquid of the inner ear (high acoustic im-
pedance); the inner ear transforms the signal into nerve
impulses going to the brain.

The external ear consists of the pinna, the visible part
of the ear, and an air-filled tube called the ear canal.

The middle ear is a small chamber filled with air that
contains three small bones, or ossicles (Fig. 13.8). It is
separated from the ear canal by the ear drum. The bone
in contact with the ear drum is called the malleus (it is
shaped a bit like a mallet or hammer). The next bone is
the incus (from the Latin for anvil, which it resembles
slightly). The third bone, in contact with the oval win-
dow to the inner ear, is the stapes (again from the Latin,
for stirrup.) The eustachian tube leads from the middle

TABLE 13.1. Approximate intensity levels of various sounds.

Sound Intensity
(W m−2)

Level (dB,
A weight-
ing)

Rocket launch pad 105 170
104 160
103 150
102 140

F-84 jet at takeoff, 25 m
from the tail; Large
pneumatic riveting
machine (1 m); boiler
shop (maximum level);
peak sound level at a rock
concert

10 130

Sound that produces pain 1 120
Woodworking shop 10−1 110
Near a pneumatic drill
(“jack hammer”)

10−2 100

Inside a motor bus 10−3 90
Urban dwelling near
heavy traffic

10−4 80

Busy street 10−5 70
Speech at 1 meter 10−6 60
Office 10−7 50
Average dwelling 10−8 40
Maximum background
sound level tolerable in a
broadcast studio

10−9 30

Whisper; maximum
background sound level
tolerable in a motion
picture studio

10−10 20

10−11 10
Minimum perceptible
sound

10−12 0

ear to the mouth and throat (nasopharynx ). Since the
ear is sensitive to very small pressure changes, the eu-
stachian tube serves the important function of keeping
the pressure on both sides of the ear drum the same for
slow changes, such as when we climb stairs or the weather
changes. The walls of the eustachian tube are often col-
lapsed together. Swallowing helps to open them up and
equalize the pressure if necessary.

Sound arrives at the ear as a vibration in air. Sound
energy must enter the inner ear in order to be converted
into a nerve signal to the brain. Yet, the inner ear is filled
with liquid. The acoustic impedance of the liquid in the
inner ear is about 3, 500 times larger than the acoustic im-
pedance of air. This means that without the impedance
transformation by middle ear, the intensity in the inner
ear would be only about 1/1, 000 of the pressure ampli-
tude in air—a loss of about 30 dB (Problem 14).
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FIGURE 13.8. Details of the middle ear. From J. R. Cameron,
J. G. Skofronick, and R. M. Grant. Physics of the Body. Madi-
son, WI. Medical Physics Publishing. 1999. Used by permis-
sion.
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FIGURE 13.9. A schematic representation of the cochlea.

The middle ear transforms the impedance by two mech-
anisms. The first is a simple area change. The ear drum
vibrates in response to the pressure changes in the sound
wave. If a sound wave with pressure amplitude pair im-
pinges on the ear drum of area Sear drum, the total excess
force on the ear drum is F = pairSear drum. For this sim-
plest model, assume that the three bones behave like a
single rigid rod and there are no effects of the boundary
at the circumference of the ear drum. Then the bones
transmit this force to the membrane at the oval window,
which has area Soval window. The pressure induced in the
liquid in the inner ear is then pinner ear = F/Soval window =
pairSear drum/Soval window. The area of the ear drum is
about Sear drum = 64 mm2, while the area of the area
of the base of the stapes is 3.2 mm2 [Newman (1957)].
Therefore pinner ear = 20pair. Actually, the ear drum and
the membrane at the oval window are not connected by
a simple rigid rod. The malleus, incus, and stapes are
pivoted in such a way that they serve as a set of levers
multiplying the force at the oval window by an additional
factor of 1.3. Therefore the total pressure amplification
by the middle ear is 26. This corresponds to a 28 dB
change in sound intensity, which almost compensates for
the 30 dB loss going from air to the liquid of the in-
ner ear. The bones of the middle ear have muscles that
change their stiffness, so they can reduce the amount of
pressure amplification to protect the inner ear from very
loud, low-frequency noises.

Tectorial Membrane

Basilar Membrane

Hair Cells

Cilia on Ends 
of Hair Cells

Basilar Membrane 
Movement

FIGURE 13.10. A cross section of the cochlea. The hair cells
are deformed as the basilar membrane moves.

The inner ear contains three semicircular canals, which
help control our sense of balance, and the cochlea, which
changes the sound to nerve impulses. All are filled with
liquid. The cochlea is a small spiral about the size of the
tip of your little finger. If it is unwound, it is about 3
cm long. Figure 13.9 shows it schematically. There are
three chambers. The vestibular chamber connects to the
stapes in the middle ear through the oval window. At the
other end of the cochlea the vestibular chamber connects
to the tympanic chamber. The round window opens onto
the middle ear and allows the pressure to be equalized at
low frequencies. The third chamber is the cochlear duct.

When the stapes moves the oval window, it generates a
sound wave that travels through the liquid in the cochlea.
This produces a displacement of the basilar membrane in
the third chamber, the cochlear duct. Two types of hair
cells sit on the basilar membrane: one row of inner hair
cells and three rows of outer hair cells. The hair cells
in turn have very fine “hairs” on them, called cilia. The
cilia of the outer hair cells touch another membrane, the
tectorial membrane, but the cilia of the inner hair cells
do not. A cross section of this is shown schematically in
Figure 13.10. When the basilar and tectorial membranes
are displaced by the sound wave, the cilia on the inner
hair cells move in the liquid that fills the region between
the membranes. It is just as if you submerged your head
in a swimming pool and shook your head back and forth.
Your hair would move in the water, but the motion of
your hair would be altered as the water “dragged” it. As
a result of this motion of the cilia in the liquid, the inner
hair cells generate nerve impulses that then travel to the
brain and provide our sensation of sound. The mechanism
was discussed briefly in Sec. 9.9

13.6 Attenuation

A plane wave of sound propagating through a medium
is attenuated : there is a decrease in intensity because of
dissipative factors such as viscosity and heat conduction,
which we did not include in Sec. 13.1. The attenuation
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is exponential. The amplitude attenuation coefficient5 is
defined by

α = −1
p

dp

dx
, (13.35)

where x is the distance the wave travels in the medium.
The sound pressure amplitude decays exponentially:

p(x) = p(0)e−αx. (13.36)

Since the intensity is proportional to p2,

I(x) = I(0)e−2αx. (13.37)

The intensity attenuation coefficient is µ = 2α. In
acoustics, the attenuation is usually expressed in deci-
bels per meter, which is then independent of whether µ
or α is used.6

The wave equation for acoustics is an approximation,
because the basic equations of fluid dynamics are non-
linear. Therefore effects that we have ignored, such as
waveform distortion, the generation of harmonics, and in-
creased attenuation may occur, particularly at high sound
intensities.

In air, the attenuation depends on the frequency of the
sound and the temperature and humidity of the air [Lind-
say and Beyer (1989); Denny (1993)]. Sound that we can
hear (in the frequency range of 20 Hz to 20 kHz) is atten-
uated by about 0.1–10 dB km−1. Water transmits sound
better than air, but its attenuation is an even stronger
function of frequency. It also depends on the salt con-
tent. At 1, 000 Hz, sound attenuates in fresh water by
about 4×10−4 dB km−1. The attenuation in sea water is
about a factor of ten higher [Lindsay and Beyer (1989)].
The low attenuation of sound in water (especially at low
frequencies) allows aquatic animals to communicate over
large distances [Denny (1993)].

The attenuation of sound depends strongly on fre-
quency. Figure 13.11 shows some representative values.
As a rule of thumb, at ultrasonic frequencies the atten-
uation is proportional to frequency, with the constant
of proportionality being 100 dB m−1 MHz−1. There are
large variations in attenuation in tissue, depending on the
age of the subject and other factors. Values can be found
in Appendix A of ICRU 61 (1998).

There can also be scattering of the sound from some
object, just as there is for light. The total scattering cross
section for the object is defined by

σs =
Ws

I0
, (13.38)

where Ws is the total power scattered and I0 is the inci-
dent intensity. As in Chapter 14, the differential scatter-
ing cross section can also be defined.

5ICRU 61 (1998).
6Sometimes the attenuation coefficient is expressed in nepers

m−1, in which case the natural logarithm of the intensity or pressure
ratio is used.
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FIGURE 13.11. Representative values of the attenuation co-
efficient for ultrasound.

13.7 Medical Uses of Ultrasound

Ultrasound has several uses in medicine. The most com-
mon is to provide diagnostic images that complement
those made with x-rays, nuclear medicine, and magnetic
resonance. Another is to heat tissue (diathermy). It is
also used to break up gall stones and kidney stones
(lithotripsy), and, experimentally, to destroy tissue by in-
tense heating.

The highest-frequency sounds that we can hear
(≈15 kHz) have a wavelength in water of 0.1 m. One
property of waves is that diffraction limits our ability to
produce an image. Only objects larger than or approxi-
mately equal to the wavelength can be imaged effectively.
This property is what limits light microscopes (using elec-
tromagnetic waves to form an image) to resolutions equal
to about the wavelength of visible light, 500 nm. If we
used audible sound to form images, our resolution would
be limited to about 0.07 m, which would be a poor im-
age indeed. To overcome this difficulty, higher frequencies
(ultrasound) are used to form images. Typically, diag-
nostic ultrasound uses frequencies on the order of 1 to
15 MHz, corresponding to wavelengths of 1.4 to 0.1 mm
in tissue. Higher frequencies would result in even shorter
wavelengths, but higher frequency sound has increased
attenuation, which ultimately sets an upper bound to the
useful frequency.

13.7.1 Ultrasound Transducers

Ultrasound is typically produced using a piezoelectric
transducer. A piezoelectric material converts a stress (or
pressure) into an electric field, and vice versa. A high-
frequency oscillating voltage applied across a piezoelec-
tric material creates a sound wave at the same frequency.



13.7 Medical Uses of Ultrasound 351
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a

z

(r'   + z  )2 1/22

FIGURE 13.12. Coordinate system for calculating the inten-
sity of sound radiated from a transducer of radius a. The z
axis passes through the center of the transducer and is per-
pendicular to it.

Conversely, an oscillating pressure applied to a piezoelec-
tric material creates an oscillating voltage across it. Mea-
surement of this voltage provides a way to record ultra-
sonic waves. Thus, the same piezoelectric material can
serve as both source and detector. One piezoelectric ma-
terial often used in medical transducers is lead zirconate
titanate (PZT). Its density is 7.5×103 kg m−3, the speed
of sound in the material is 4,065 m s−1, and the acoustic
impedance is 30×106 Pa s m−1. About half of the electri-
cal energy is converted to sound energy, and vice versa.

There are some important features of the radiation pat-
tern from a transducer which we review next. Consider
a circular transducer, the surface of which is oscillating
back and forth in a fluid. Both faces set up disturbances
in the fluid; however, we consider the radiation from only
one face, since the transducer is placed in a holder that
prevents radiation from the rear surface. We can easily
calculate the intensity along the z axis, which we set up
perpendicular to the piston and passing through its cen-
ter, as shown in Fig. 13.12.

The displacement of the face of the transducer, ξ, is
the same as the displacement of the fluid in contact with
it. The entire face of the piston, and therefore the fluid
immediately in front of it, vibrates with a fluid velocity
dξ/dt = v0 cos ωt.7 Each small element of the vibrating
fluid creates a wave that travels radially outward, the
points of constant phase being expanding hemispheres.
The amplitude of each spherical wave decreases as 1/r,
the intensity falling as 1/r2. We want the pressure at a
point z on the axis of the transducer. It is obtained by
summing up the effect of all the spherical waves emanat-
ing from the face of the transducer. At time t the phase
of the wave is the same as the phase of the wave leaving
the annular ring r′dr′ at the earlier time t − r/c:

p ∝ dξ(z, t)
dt

∝
∫ a

0

2πr′dr′
cos[ω(t − r/c)]

r

7We use dξ/dt because it is in phase with the excess pressure.
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FIGURE 13.13. The sound intensity on the axis of a circular
transducer. The sound frequency is 2 MHz, and the transducer
radius is 0.5 cm. Both near- and far-field regions are shown.
Labels (a), (b), and (c) show the positions of the transverse
radial scans in Fig. 13.14.

FIGURE 13.14. Scans across the beam from the transducer
shown in Fig. 13.13. (a) In the near field at an on-axis maxi-
mum 0.0102 4 m from the transducer. (b) In the near field at
an on-axis minimum 0.0157 5 m from the transducer. (c) In
the far field 0.060 m from the transducer.

This is easily evaluated by changing variables. Since r2 =
r′2 + z2, 2rdr = 2r′dr′:

p ∝ 2π

∫ r=
√

a2+z2

r=z

rdr
cos[ω(t − r/c)]

r

=
2π

k

[
sin[ω(t − 1

c

√
a2 + z2)] − sin[ω(t − z/c)]

]
.

To find the average intensity we square and average over
one period. The result is

I ∝ sin2
[ ω

2c

(
z −

√
a2 + z2

)]
(13.39)

The result is plotted in Fig. 13.13 for a fairly typical but
small transducer (a = 0.5 cm, f = 2 MHz).
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FIGURE 13.15. The far-field intensity as a function of angle,
calculated from Eq. 13.40. The value ka = 10 corresponds to
1 MHz and transducer radius a = 0.25 cm. The value ka = 20
corresponds to f = 2 MHz and a = 0.25 cm or f = 1 MHz
and a = 0.5 cm. Value ka = 40 corresponds to 4 MHz and
a = 0.25 cm or f = 2 MHz and a = 0.5 cm, the case examined
in Fig. 13.13.

There are several important features of Fig. 13.13.
Close to the transducer there are large oscillations in in-
tensity along the axis; there are corresponding oscillations
perpendicular to the axis, as shown in Fig. 13.14. The
maxima and minima form circular rings. This is called
the near field or Fresnel zone. Further away the intensity
falls as 1/r2, in the far field or Fraunhoffer zone. The
depth of the Fresnel zone is approximately a2/λ. For the
example shown (2 MHz, transducer diameter 1 cm), the
depth is about 3 cm; for a larger transducer or higher-
frequency ultrasound, it would be greater.

In the far field, approximations can be made to simplify
the calculation. The intensity is then given by

I ∝ 1
r2

(
J1(ka sin θ)

ka sin θ

)2

. (13.40)

Function J1(x) is the Bessel function of order 1. It is
found in math tables and is available in many spread-
sheets. The angular dependence of the far-field intensity
is plotted in Fig. 13.15.

By shaping the face of the transducer, it is possible
to bring the beam to a focus at some particular depth.
This improves the spatial resolution and increases the
strength of the returning echo. Ultrasound imaging may
be done in the near field, the far field, or the transition
region. Modern transducers typically consist of an array
of transducers which may lie on a straight or curved line.
They can be driven in such a way as to produce waves
that come to a focus, or that travel in an off-axis direction
[see Hendee and Ritenour (2002) or Fig. 13.17].

FIGURE 13.16. An A scan of the eye. From ICRU 61, p. 2.
Used by permission.

The impedance of a typical transducer is about 30×106

Pa s m−1, so it is necessary to have an impedance-
matching material between the transducer and the pa-
tient’s skin. See Problem 16.

13.7.2 Pulse Echo Techniques

Most ultrasonic imaging is based on a pulse-echo tech-
nique. A short pulse (typically 0.5 µs in duration with a
central frequency of about 5 MHz) is applied to the tis-
sue by a piezoelectric transducer. The pulse travels with a
speed of about c = 1540 m s−1 (or 1.54 mm µs−1). When-
ever it approaches a boundary between two tissues having
different acoustic impedances, part of the incident pulse
is reflected as an echo, which can be detected by the same
piezoelectric transducer. The longer the time ∆t between
the generation and detection of the pulse, the farther
away the reflecting boundary. In general, the distance
from the source to the boundary is ∆x = c∆t/2, where c
is the speed of sound in the tissue. Multiple boundaries
produce multiple echoes, with each echo corresponding to
a different distance from the source to boundary. A plot
of echo intensity vs. time is called an A scan. An A scan
of the eye is shown in Fig. 13.16. Because the attenua-
tion is high, it is customary to increase the gain of the
receiving amplifier as the echo time increases.

To form a two-dimensional image, it is necessary to
scan in many different directions. In a B scan the bright-
ness of the screen corresponds to the intensity of the
echo, plotted vs. position in the body in the plane of the
scan. The B-scan transducer sends a narrow beam into
the body. The direction of the beam is rapidly changed
to cover a fan-shaped region. This can be done with an
oscillating or rotating transducer head (often containing
three transducers), with an array of transducers that are
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(a) (b)) (c)

FIGURE 13.17. This shows how a phased array or de-
layed-pulse array works. Five transducers have been pulsed;
the semi-circles show the propagating lines of constant phase
from each one. The thick lines show the advancing wave front.
In (a), all five transducers have been pulsed at the same time.
The signals from each transducer add along the plane wave
front traveling to the right. In (b), the top transducer was
pulsed first. Each lower transducer was pulsed at successively
later times, so the pulses have not traveled as far. This steers
the beam downward. In (c), the outer transducers were pulsed
first. As one goes inward, each transducer was pulsed later
than the one before. This focuses the beam. The same tech-
nique can be used to steer or focus the scattered wave during
detection.

pulsed sequentially, or with a phased array of transduc-
ers that are pulsed together. The operation of sequential
pulsing or a phased array can be understood by referring
to Fig. 13.17. The basic principle of using multiple one-
dimensional (x) echo scans along different lines through
the body is explored in Problems 23 and 24.

Two-dimensional ultrasound is widely used in diagnos-
tic medicine; for instance in monitoring the fetus during
pregnancy. Figure 13.18 shows a typical ultrasound image
of a fetus.

Other imaging methods include motion or M mode to
observe the beating heart as a function of time, and de-
tecting sound backscattered from structures in an organ
that are smaller than a wavelength. Doppler-shift imag-
ing is discussed below.

Because the tissue response to high-intensity ultra-
sound is nonlinear, harmonics of the original ultrasound
pulse are generated in the tissue; the second-harmonic
signals are used to form harmonic images. Several tech-
niques are being developed to measure the elastic proper-
ties of tissue. For example, an A-mode signal is measured
with and without a static force on the tissue; the slight
changes in signal reflect changes in tissue density.

FIGURE 13.18. A B scan of a 16-week fetus.

The skin intensities used in diagnostic ultrasound range
from 0.1 W m−2 for an obstetric examination to 25,000 W
m−2 for some procedures that image the heart or blood
vessels. These intensities occur over a small area of the
body and for a limited period of time. Many studies have
been done to see if any harm results from these sound
intensities. No harmful effects have been found. The pri-
mary potential causes of harm are heating—direct warm-
ing of the tissue because of the energy deposited, and
cavitation, a process in which very high intensity sound
waves cause tiny bubbles of steam to form and then col-
lapse violently. Cavitation requires intensities of 3.5× 107

W m−2 or more.
Another use of ultrasound is lithotripsy,8 the destruc-

tion of kidney stones using sharply focused ultrasound.
Lithotripsy uses extremely intense, pulsed ultrasound
waves. The peak intensity is about 3.8×108 W m−2. The
sound is intense enough so that bubbles of steam form
and then collapse. When they collapse near the surface
of the stone they “hammer” on the stone. With repeated
blows, the stone shatters. These smaller pieces may pass
in the urine, avoiding surgery.

13.8 The Doppler Effect

When the source of an ultrasound wave is moving, the
frequency of the wave observed by a stationary receiver
is different than the frequency of the source. This phe-
nomenon is called the Doppler effect. When the source
is moving toward the receiver, the frequency is higher,
and when the source moves away from the receiver, the
frequency is lower.

To see why this happens, consider the source moving
to the right with speed vs in a fluid for which the speed

8Litho- means stone.



354 13. Sound and Ultrasound

of sound is c. At t = 0, the source emits the crest of
a wave with period T (frequency f = 1/T ). The wave
travels to the right. This crest takes a time t = L/c to
reach a stationary receiver a distance L away. At t = T ,
one period later, another crest is emitted by the source.
This crest takes less time to reach the receiver because
the source has moved closer to the receiver. Specifically,
the distance from source to receiver is now L − vsT , so
the crest reaches the receiver at t = T + (L − vsT )/c.
The time T ′ between crests reaching the receiver is T ′ =
T + (L − vsT )/c − L/c = T (1 − vs/c). The frequency
observed by the receiver is

f ′ = 1/T ′ =
f

1 − vs/c
. (13.41)

If the source is moving toward the receiver with a speed
equal to 10% of the speed of sound, then f ′ is about 11%
higher than f . When the source is moving away from the
receiver, f ′ = f/(1 + vs/c) (see Problem 32). It is not
difficult to include the effect of motion of the reflecting
surface at an angle with the ultrasound beam.

In medical ultrasound applications, the detected wave
is usually a reflection from moving tissue, such as red
blood cells. In this case, the relationship between the fre-
quency f produced by a stationary source and the fre-
quency f ′ received by the stationary receiver after reflec-
tion from an object moving away from it at speed vo is
(see Problem 33)

f ′ = f
1 − vo/c

1 + vo/c
. (13.42)

The difference in frequency between f and f ′ contains
information about the speed of the object (Problem 35).
Doppler ultrasound is often used in medicine to measure
speed, such as the speed of moving blood cells. Often the
Doppler shift is measured for a pulse of ultrasound, so
that one can be sure of the depth at which the Doppler
shift occurred. A distribution of red cell velocities can
be measured by looking at the Doppler shift frequency
spectrum.

Symbols Used in Chapter 13

Symbol Use Units First
used on
page

a Transducer radius m 351
c Speed of sound m s−1 344
f, g Arbitrary

functions
345

f, f ′ Frequency Hz 345
h Arbitrary

function
345

k Wave number m−1 345

l Length m 344
p Excess pressure Pa 344
sn Normal stress Pa 344
r, r′ Position m 351
t Time s 344
v Fluid or particle

velocity
m s−1 345

vs, vo Velocity of
source, observer

m s−1 354

x, y, z Position m 343
E Young’s modulus Pa 344
F Force N 344
I Intensity W m−2 347
J1 Bessel function of

order 1
352

L Distance m 354
M Mass kg 345
P Pressure Pa 344
R Reflection

coefficient
347

S Area m2 344
T Transmission

coefficient
347

T Period s 354
V Volume m3 344
Ws Power scattered W 350
Z Acoustic

impedance
Pa s m−1or kg
m−2s−1

346

α Amplitude atten-
uation coefficient

m−1 350

κ Compressibililty Pa−1 344
εn Normal strain 344
λ Wavelength m 345
µ Intensity attenua-

tion coefficient
m−1 350

ρ Density kg m−3 344
σ Scattering cross

section
m2 350

θ Angle 352
ξ Displacement

from equilibrium
m 344

ω Angular
frequency

s−1 345

Problems

Section 13.1

Problem 1 Show that 1/
√

ρ0κ has units of speed.

Problem 2 Show that the pressure p satisfies the wave
equation. Hint: Use Eqs. 13.13 and 13.14. Differentiate
to obtain ∂2p/∂x2 and ∂2p/∂t2. Also use the fact that
when multiple partial derivatives are taken, the order of
differentiation can be interchanged (Appendix N).

Problem 3 Show that v and ρ also satisfy the wave
equation.

Problem 4 Derive Eq. 13.15.
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Section 13.2

Problem 5 Use the chain rule, with u = x− ct, to show
that f(x − ct) obeys the wave equation for any function
f . Show that g(x + ct) also obeys the wave equation.

Problem 6 Calculate the wavelength in air for the low-
est audible frequency (20 Hz for most people) and the
highest audible frequency (20 kHz for most young people).

Problem 7 The ear canal is about 2.5 cm long. It is
open to the air at one end and closed by the ear drum at
the other. This can cause a standing wave to form, which
has a pressure node (zero amplitude) at the opening and
pressure maximum at the ear drum. What is the longest
wavelength of a standing wave that is set up? What fre-
quency does this correspond to? Compare this to the most
sensitive frequency of the ear (Fig. 13.6).

Problem 8 . Use the trigonometric identity sin(a±b) =
sin a cos b±cos a sin b to show that a traveling wave can be
written as the sum of two out-of phase standing waves,
and that a standing wave can be written as the sum of
two oppositely propagating traveling waves.

Section 13.3

Problem 9 Derive the relationships between p0, ξ0 and
v0 (Eqs. 13.22 and 13.23), where p0, ξ0 and v0 are the
amplitudes of a sinusoidally varying plane wave.

Problem 10 For the following five tissues, calculate the
density and compressibility [data are from W. R. Hendee
and E. R. Ritenour (2002)]:

.

Tissue Z (Pa s m−1) c (m s−1)

Fat 1.38 × 106 1475
Brain 1.55 × 106 1560
Blood 1.61 × 106 1570
Muscle 1.65 × 106 1580
Bone 6.10 × 106 3360

Problem 11 Show that the intensity of a sound wave
(Eq. 13.29) can be written as 1

2ZV 2, as 1
2PV , or as 1

2
P 2

Z .

Problem 12 The threshold for audible sound is 10−12

W m−2. Use Eq. 13.29 to convert this to the amplitude
of the pressure oscillation in air, using Zair = 400 Pa
s m−1. Compare this to 105 Pa (atmospheric pressure),
and to 5×10−6 Pa (which is on the order of the amplitude
of random pressure variations in the air due to thermal
motion). Are the pressure oscillations small? Perform the
same analysis for the threshold for pain, I = 10−4 W
m−2.

Problem 13 When an incident sound wave in fluid 1
encounters the boundary with fluid 2, the reflection coef-
ficient, R, is defined as the fraction of the incident inten-
sity that is reflected. Derive an expression for R in terms

of Z1 and Z2. Use the data in Problem 10 to calculate
what fraction of the incident intensity is reflected at the
boundary going from muscle to fat. Do the same for the
boundary going from fat to muscle.

Problem 14 When an incident sound wave in fluid 1
encounters the boundary with fluid 2, the transmission
coefficient, T , is defined as the fraction of the incident
intensity that is transmitted. Derive an expression for T
in terms of Z1 and Z2. Hint: recall that fluids 1 and 2 are
different, so that the value of Z in Eq. 13.29 is different
for the incident and transmitted waves.

Problem 15 Use the results of Problems 13 and 14 to
show that R + T = 1.

Problem 16 (a) Show that when sound goes from a
transducer with Ztransducer = 30 × 106 Pa s m−1 to tis-
sue with Ztissue = 1.5 × 103 Pa s m−1, the transmission
coefficient is T = 2 × 10−4.

(b) Show that a coupling medium between the trans-
ducer and tissue will maximize the overall transmission
if Zcoupling =

√
ZtransducerZtissue. Show that in that case

the transmission is T = 8 × 10−4. Ignore interference
effects (λ � the thickness of the coupling medium).

Section 13.4

Problem 17 If the intensity of a sound wave falls to half
its original value, what is the change in dB?

Section 13.5

Problem 18 A sound wave with intensity of 1 × 10−12

W m−2 is the threshold for hearing. Convert that to a
pressure amplitude P . Convert the pressure amplitude to
a displacement amplitude using Eq. 13.22, with f = 1
kHz, κair = 10−5 Pa−1, and cair = 344 m s−1. Compare
your result with the size of an atom, which is on the order
of 0.1 nm. Surprised?

Problem 19 The ear can just hear sound at about
1, 000Hz at a level that corresponds to a pressure change
of 2× 10−5 Pa. Atmospheric pressure is 105 Pa. Since at-
mospheric pressure is due to collisions of molecules with
the eardrum, there are pressure fluctuations because of
fluctuations in the number of collisions in time ∆t. We
can expect that ∆p/p is about 1/(number of collisions)1/2.
Suppose that the eardrum has area S and that when de-
tecting a signal at 1, 000Hz it averages over a time inter-
val of 0.5ms. The number of collisions per unit area per
unit time is given by nv/4, where n is the number of air
molecules per unit volume and v is an average velocity
of 482m s−1. The radius of the eardrum is 4.5 mm. Find
∆p/p.
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Section 13.6

Problem 20 Find the conversion between α in dB m−1

and m−1 (as in I = I0e
−αx).

Section 13.7

Problem 21 An ultrasound pulse used in medical imag-
ing has a frequency of 5 MHz and a pulse width of 0.5 µs.
Approximately how many oscillations of the sound wave
occur in the pulse? The number of oscillations is some-
times called the quality, Q, of the pulse. A pulse with little
damping has Q � 1, whereas a heavily damped pulse has
Q ≈ 1. Is the ultrasound pulse heavily damped?

Problem 22 A heavily damped pulse does not represent
a single frequency. Consider a pulse p(t) having the shape

p(t) = e−(t/τ)2 cos ω0t.

Using the techniques developed in Sec. 11.9, calculate the
Fourier transform of this pulse. Determine the shape of
the power spectrum. How is the parameter τ related to
the width of the power spectrum? What is the central fre-
quency of the power spectrum?

Problem 23 Suppose you send a short ultrasound pulse
into the body at t = 0, and observe echoes at t = 31, 79,
and 95 µs. How far from the source are the three tissue
boundaries? Assume c = 1540 m s−1 in each tissue, and
ignore attenuation. Draw a line corresponding to the x
axis (x = 0 is the source location), and draw a dot at the
position corresponding to each boundary. You have just
created a one-dimensional ultrasound image, using the B
mode, where each dot (“bright” spot in the image, hence
“B”) represents a boundary.

Problem 24 Suppose you emit an ultrasound pulse in
the x direction from a source at each of eight different po-
sitions y. Each pulse receives a series of echoes, as shown
in the table below (Echo times are in µs.):

y (mm): 0 10 20 30 40 50 60 70

Echo 1 35 37 39 40 45 47 48 49
Echo 2 97 98 58 56 57 96 91 90
Echo 3 71 73 71
Echo 4 99 99 98

Draw an x-y coordinate system (x = 0 is location of the
source) and put a bright spot corresponding to each echo.
Assume c = 1, 540 m s−1 in each tissue, and ignore at-
tenuation. You have just created a two-dimensional ultra-
sound image.

Problem 25 Assume the attenuation is proportional to
frequency, and is given by 100 dB m−1 MHz−1. If you use
a 5 MHz ultrasound wave to image a surface 30 mm below
the surface of the skin, the measured echo is what fraction
of the original intensity? Ignore impedance differences at

the surface of the skin and assume that 100% of the wave
is reflected by the surface, so that the reduction of the
echo intensity is caused entirely by attenuation. Remem-
ber that you must consider the round-trip distance trav-
eled by the wave. Express your answer in decibels.

Problem 26 The intensity of echoes depends on not
only the nature of the boundary they reflect from, but also
on the distance to the boundary. Consider a boundary
that reflects 50% of the incident wave intensity. Com-
pare the intensity of the echoes recorded by the detector
for boundaries 10, 20, and 30 mm from the source. As-
sume an attenuation coefficient of 500 dB m−1. Ignore
any inverse-square fall-off. Clinical ultrasound imaging
devices often use a technique called time gain compensa-
tion to selectively amplify later echoes, thereby correcting
for the effect of attenuation that you just calculated.

Problem 27 The depth resolution of an ultrasound im-
age depends on the speed of sound and the width of the
ultrasound pulse. A pulse having a width of 0.5 µs has
what spatial width (assume c = 1, 540 m s−1)? Structures
smaller than the spatial pulse width are difficult to resolve
using ultrasound imaging.

Problem 28 Ultrasound images are often generated us-
ing a series of ultrasound pulses, with echoes detected
from each pulse. Images are obtained more quickly if the
time between pulses is short. However, if this time is too
short, echoes from consecutive pulses overlap, making the
ultrasound signal difficult to interpret. Assume the deep-
est structure you wish to image is 80 mm from the source,
and the speed of sound is 1, 540 m s−1. What is the mini-
mum time between pulses you can use without overlapping
echoes? How many pulses per second does this correspond
to? If you need to use 256 pulses in order to build up a
two-dimensional image, how many images can you gen-
erate per second?

Problem 29 Suppose that an ultrasound wave is travel-
ing to the right in muscle, which contains a 3 mm layer of
fat (use the data in Problem 10 for the acoustic properties
of these tissues). Part of the wave will reflect off the left
surface of the fat, but part will be transmitted and then
reflect off the right surface. This second echo is called a
reverberation echo, and is one source of artifact in an ul-
trasound image. You can have more than one, since the
wave can reflect back and forth between the left and right
surfaces multiple times. Calculate the time between the
first three reverberation echoes, and the relative intensi-
ties of each one (ignore attenuation).

Problem 30 Assume there is a fat-muscle boundary 50
mm below the tissue surface. Calculate the intensity of
the reflected wave, ignoring attenuation, using the data
in Problem 10. Now, assume there is a bone that lies in
the region from 20 to 30 mm below the surface, with the
fat-muscle boundary still 50 mm below the surface. Calcu-
late the intensity of the wave reflected from the fat-muscle



References 357

boundary, accounting for the front and back bone surfaces,
ignoring attenuation. If the minimum measurable inten-
sity is −25 dB, will the fat-muscle boundary be observable
in each case? In general, surfaces behind a bone do not
appear in ultrasound images. The bone casts an acoustic
shadow.

Problem 31 Verify Eq. 13.39.

Section 13.8

Problem 32 Show that when a source of sound waves
is moving away from the receiver, the frequency of the
source, f , and the frequency measured by the receiver, f ′,
are related by f ′ = f/(1 + vs/c).

Problem 33 Suppose a stationary source sends ultra-
sound waves to the right. They are reflected from an object
moving to the right with speed vo, and they are recorded
by the stationary receiver (the receiver and source are
at the same location). Derive the relationship in Eq.
13.42 between the frequency of the source, f , and the fre-
quency recorded by the receiver, f ′, using the following
steps.

(a) Find the time t1 when the receiver records a signal
that was emitted by the source at t = 0, traveled a distance
L, was reflected, and then returned to the receiver.

(b) Find the time t2 when the receiver records a sig-
nal that was emitted by the source at t = T , traveled a
distance L + ∆L, was reflected, and then returned to the
receiver.

(c) Relate the distance ∆L to the speed of the speed of
the object.

(d) Solve for T ′ = t2 − t1.
(e) Determine f ′ in terms of f .

Problem 34 Show that if vo � c, Eq. 13.42 reduces to
f ′ = f(1 − 2vo/c).

Problem 35 Solve Eq. 13.42 for vo as a function of
f ′/f . This allows you to measure the emitted and received
frequencies and determine the speed of the object.
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14
Atoms and Light

This chapter describes some of the biologically impor-
tant properties of infrared, visible, and ultraviolet light.
X rays are discussed in Chapters 15 and 16. A brief dis-
cussion of geometrical optics accompanies the description
of image formation in the eye and errors of refraction.

This chapter considers light to be photons (Sec. 14.1).
Photons can be emitted or absorbed when single atoms
change energy levels, and they have certain frequencies
characteristic of the atom, as described in Sec. 14.2. Mole-
cules have additional energy levels shown in Sec. 14.3. Bi-
ological examples include spectrophotometry, photodisso-
ciation, immunofluorescence, infrared spectroscopy, and
Raman scattering. There is such an extensive liter-
ature about these that the discussion here is quite
brief.

Section 14.4 describes the scattering and absorption
of radiation, processes that are important in the rest of
this chapter and in Chapters 15–17. The probability of
scattering or absorption is measured by the cross section,
which is also introduced here. Photons may scatter many
times in a substance without being absorbed. This leads
to the concept of turbid media such as milk or clouds. In
some cases the process can be modeled accurately with
the diffusion approximation developed in Sec. 14.5. Bio-
logical examples of infrared scattering (including Raman
scattering) are described in Sec. 14.6

Photons can be absorbed and emitted by some sub-
stances in a continuous range of frequencies or wave-
lengths. This happens when many atoms interact with
one another and blur the energy levels, as in liquids and
solids. This leads to the concept of thermal radiation de-
scribed in Sec. 14.7. Examples of thermal radiation are
infrared radiation by the skin and ultraviolet radiation
by the sun. The former is discussed in Sec. 14.8.

Blue and ultraviolet light are used for therapy, as de-
scribed in Sec. 14.9. They can also be harmful, particu-
larly to skin and eyes.

Lasers are used to heat tissue, often rapidly enough to
do surgery as water in the tissue suddenly boils. Mod-
els of this process include the bioheat equation that is
developed in Sec. 14.10.

Section 14.11 describes the problem of radiometry:
measuring radiation. All of the important quantities are
defined, and the corresponding photometric and actino-
metric quantities are also introduced.

Section 14.12 describes how the eye focuses an image on
the retina and the correction of simple errors of refraction.
A final example of the photon nature of light is given in
Sec. 14.13: the statistical limit to dark-adapted vision—
shot noise—which is important when the eye is operating
in its most sensitive mode.

14.1 The Nature of Light: Waves
versus Photons

Light travels in a vacuum with a velocity c = 3 × 108 m
s−1 (to an accuracy of 0.07%). When light travels through
matter, its speed is less than this and is given by

cn =
c

n
, (14.1)

where n is the index of refraction of the substance. The
value of the index of refraction depends on both the com-
position of the substance and the color of the light.

A controversy over the nature of light existed for cen-
turies. In the seventeenth century, Sir Isaac Newton ex-
plained many properties of light with a particle model. In
the early nineteenth century, Thomas Young performed
some interference experiments that could be explained
only by assuming that light is a wave. By the end of the
nineteenth century, nearly all known properties of light,
including many of its interactions with matter, could be
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explained by assuming that light consists of an electro-
magnetic wave. By an electromagnetic wave, we mean
that

1. Light can be produced by accelerating an electric
charge.

2. Light has an electric and a magnetic field associated
with it; the force that the light exerts on a charged
particle is given by Eq. 8.2, F = q(E + v × B). The
force due to the magnetic field is usually very small.

3. The velocity of light traveling in a vacuum is given
by electromagnetic theory as c = 1/

√
ε0µ0, where

parameters ε0 and µ0 are measured in the laboratory
for “ordinary” electric and magnetic fields.

In the early twentieth century, light was discovered to
have both particle properties and electromagnetic wave
properties at the same time. This rather disconcerting
discovery was followed a few years later by the discov-
ery that matter, which had been thought to consist of
particles, also has wave properties.

A traveling wave of light can be described by a function
of the form f(x − cnt), which represents a disturbance
traveling along the x axis in the positive direction. (To
keep a particular value for the argument of f constant, x
must increase as time increases.) If the wave is sinusoidal,
then the period, T , frequency, ν,1 and wavelength, λ, are
related by

ν =
1
T

, cn = λν. (14.2)

As light moves from one medium into another where it
travels with a different speed, the frequency remains the
same. The wavelength changes as the speed changes.

Each particle of light or photon has energy E. The
energy of each photon (a “particle” concept) is related to
its frequency (a “wave” concept) by

E = hν =
hcn

λ
. (14.3)

The proportionality constant h is called Planck’s con-
stant. It has the numerical value2

h = 6.63 × 10−34 J s = 4.14 × 10−15 eV s. (14.4)

We use the number “h stroke” or “h bar”:

� =
h

2π
= 1.05 × 10−34 J s = 0.66 × 10−15 eV s. (14.5)

In terms of the angular frequency ω = 2πν,

E = �ω. (14.6)

1We used f for frequency in earlier chapters because this is cus-
tomary when discussing noise. Here we adopt ν for frequency, the

notation most often used in atomic physics.
2The electron volt (eV) is a unit of energy. 1 eV= 1.6 × 10−19

J. It is the energy acquired by an electron that moves through a
potential difference of 1 V.

TABLE 14.1. The regions of the electromagnetic spectrum
and their boundaries

Name Wavelength Frequency (Hz) Energy (eV)

Radio waves
1 m 300 × 106 1.24 × 10−6

Microwaves
1 mm 300 × 109 1.24 × 10−3

Extreme infrared
15 µm 20 × 1012 0.083

Far infrared
6 µm 50 × 1012 0.207

Middle infrared
3 µm 100 × 1012 0.414

Near infrared
750 nm 400 × 1012 1.65

Visible
400 nm 750 × 1012 3.1

Ultraviolet
12 nm 24 × 1015 100

X rays, γ rays

TABLE 14.2. The visible electromagnetic spectrum

Wavelength Frequency
Color (nm) (1012 Hz) Energy (eV)

750 400 1.65
Red

610 490 2.03
Orange

590 510 2.10
Yellow

570 530 2.17
Green

500 600 2.48
Blue

450 670 2.76
Violet

400 750 3.11

The electromagnetic spectrum includes radio waves;
microwaves, infrared, visible, and ultraviolet light; x rays;
and gamma rays. Table 14.1 shows the wavelengths that
separate these arbitrary regions, together with the fre-
quencies and the energies of the photons. Visible-light
photons have an energy of a few electron volts. X rays
are 104–107 times more energetic, while γ rays, which
come from atomic nuclei, are often even more energetic
but may have energies overlapping x-ray energies. The
only difference between x rays and γ rays is their source.

The property of light that we associate with color is
the frequency or the energy of each photon. Visible light
covers a narrow range of frequencies, about an octave
(a factor of 2). Table 14.2 shows the wavelengths and
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FIGURE 14.1. A system can change from one energy to an-
other by emitting or absorbing a photon. The photon has an
energy equal to the difference in energies of the two levels.

frequencies dividing the colors of the visible spectrum.
The frequencies are in the 400–750 THz range.

Most of the effects discussed in this chapter can be
explained by assuming that light is made up of photons.

14.2 Atomic Energy Levels and
Atomic Spectra

The simplest system that can emit or absorb light is an
isolated atom. An atom is isolated if it is in a monatomic
gas. In addition to translational kinetic energy, isolated
atoms have specific discrete internal energies, called en-
ergy levels. An atom can change from one energy level
to another by emitting or absorbing a photon with an
energy equal to the energy difference between the levels.
Let the energy levels be labeled by i = 1, 2, 3, ..., with
the energy of the ith state being Ei. There is a lowest
possible internal energy for the atom; when the atom is
in this state, no further energy loss can take place. If Ei

is greater than the lowest energy, then the atom can lose
energy by emitting a photon of energy Ei −Ef and exist
in a lower-energy state Ef (Fig. 14.1).

It is possible, using techniques of quantum mechan-
ics, to calculate the energies of the levels with reasonable
accuracy (and in some cases with spectacular accuracy).
For our purposes, we need only recognize that energy lev-
els exist and know their approximate values. You may be
familiar with the hydrogen atom, in which the energy of
the nth level is given by

En = −
(

1
4πε0

)2
mee

4

2�2n2
, n = 1, 2, 3, . . . . (14.7)

The energy is in joules when the electron mass me is in
kilograms, the electronic charge e is in coulombs, and � is
in J s. The Coulomb’s law constant 1/4πε0 is given in Eq.
6.2. Dividing the energy in joules by e gives the energy
in electron volts:

En = −13.6
n2

(in eV). (14.8)

FIGURE 14.2. Energy levels in a hydrogen atom. Transitions
are shown corresponding to the emission and absorption of
light.

The energy-level diagram in Fig. 14.2 shows these
energies and some transitions between them. In other
cases, the energy depends not only on the integer n =
1, 2, 3, 4, . . . , but on other quantum numbers as well.

Figure 14.3 plots the spectrum for hydrogen vs wave-
length, along with some of the energy levels of hydrogen.
Letters a, b, c, . . . mark lines in the spectrum and the as-
sociated transitions.

In general, the internal energy of an atom depends on
the values of five quantum numbers for each electron in
the atom. The quantum numbers are

n = 1, 2, 3, . . . the principal quantum
number

l = 0, 1, 2, . . . , n − 1 the orbital angular
momemtum quantum
number

s = 1
2 the spin quantum num-

ber
ml = −l,−(l − 1), . . . , l − 1, l “z component” of the

orbital angular momen-
tum

ms = − 1
2 , 1

2 “z component” of the
spin

Sometimes the last two quantum numbers, ml and ms,
are replaced by two other quantum numbers, j and mj .
The allowed values of j and mj are

j = l − 1
2 or l + 1

2 except that
j = 1

2 when l = 0
total angular mo-
mentum quantum
number

mj = −j,−(j − 1), . . . , j − 1, j “z component” of
total angular mo-
mentum

Whether one uses ml and ms or j and mj , each elec-
tron is described by five quantum numbers, one of which
is always 1

2 . There are four quantum numbers that can
change, corresponding to the three space degrees of free-



362 14. Atoms and Light

FIGURE 14.3. The spectrum for hydrogen plotted vs. wave-
length and the energy levels for hydrogen. Some spectral lines
and the corresponding transitions have been labeled.

dom and the spin associated with ms. The internal en-
ergy of the atom is the sum of the kinetic and potential
energies of each electron. The energy of each electron de-
pends on the values of its quantum numbers. It is influ-
enced by the electric field generated by the nucleus and
all the other electrons. There are also magnetic interac-
tions between electrons and between each electron and
the nucleus, because the moving charges generate mag-
netic fields.

No two electrons in an atom can have the same values
for all their quantum numbers, a fact known as the Pauli
exclusion principle.

The ionization energy is the smallest amount of energy
required to remove an electron from the atom when the
atom is in its ground state. For hydrogen the ionization
energy is 13.6 eV. In contrast, it takes only 5.1 eV to
remove the least-tightly-bound electron from a sodium
atom.

An atom can receive energy from an external source,
such as a collision with another atom or some other par-
ticle. It can also absorb a photon of the proper energy.
Absorbing just the right amount of energy allows one of
its electrons to move to a higher energy level, as long as
that level is not already occupied. The atom can then get

r

R = R1 − R2 = r1 − r2R1

R2

1r

r2

m1

m2

FIGURE 14.4. A diatomic molecule. Vectors r1 and r2 are the
positions of the atoms measured in the laboratory. Vectors R1

and R2 are coordinates in the center-of-mass system. Vector
r is the position of the center of mass.

rid of this excess energy by radiating a photon, with the
excited electron falling to an unoccupied state with lower
energy. This change is usually consistent with the follow-
ing selection rules, which can be derived using quantum
mechanics:

∆l = 1, ∆j = 0,±1. (14.9)

14.3 Molecular Energy Levels

In addition to internal energy, an atom can have kinetic
energy of translation with three degrees of freedom. The
translational kinetic energy is also quantized, but as long
as the atom is not confined to a very small volume, the
levels are so closely spaced that the translational kinetic
energy can be regarded as continuous.

Two atoms together have six degrees of translational
freedom, because each can move in three-dimensional
space. However, if the atoms are bound together, their
motions are not independent One can speak of the three
degrees of freedom for translation of the molecule as a
whole (center-of-mass motion) and also the vector dis-
placement of one atom from the other. This is shown in
Fig. 14.4. Vector r locates the center of mass of the two
atoms. It is located at a point such that m1R1 = −m2R2.

Consider two particles of mass m1 and m2. Their po-
sitions with respect to some fixed origin are r1 and r2.
The velocity of each particle is vi = dri/dt. The kinetic
energy of the ith particle is Ti = mi(vi ·vi)/2. Define the
center of mass by

r =
m1r1 + m2r2

m1 + m2
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and the vectors from the center of mass to each particle
by

R1 = r1 − r =
m2(r1 − r2)
m1 + m2

=
m2R

m1 + m2
,

R2 =
−m1R

m1 + m2
.

The total kinetic energy is T = m1(v1 · v1)/2 + m2(v2 ·
v2)/2. Since vi = v + Vi, we have

2T = (m1 + m2)(v · v) + m1(V1 · V1)
+ m2(V2 · V2) + 2v · (m1V1 + m2V2).

The last term vanishes because m1R1 +m2R2 = 0. Con-
sider the second term. Differentiating R1 = m2R/(m1 +
m2) shows that

V1 · V1 =
(

m2

m, + m2

)2

V 2,

V2 · V2 =
(

m1

m, + m2

)2

V 2.

Therefore,

T =
(m1 + m2)v2

2
+

1
2

m1m2

m1 + m2
V 2.

The first term is the kinetic energy of a point mass
m1 + m2 traveling at the speed of the center of mass.
The second is the kinetic energy of a particle having the
“reduced mass” m1m2/(m1 + m2) and the speed of rela-
tive motion of the two particles, V = |V| = |dR/dt|. If R
changes magnitude, the particles are vibrating. If R has a
fixed magnitude the molecule can rotate. If the molecule
is rotating in some plane with angular velocity ω, then

1
2

m1m2

m1 + m2
V 2 =

1
2

m1m2

m1 + m2
R2ω2 =

1
2
Iω2.

The quantity I = [m1m2/(m1 + m2)] R2 = m1R
2
1+m2R

2
2

is the moment of inertia of the two objects [Halliday,
Resnick, and Krane (1992, p. 245ff)]. The angular mo-
mentum of a mass about some point is sometimes called
the “moment of the momentum” about that point, in the
same sense that the torque is the moment of a force about
some point. In this case the angular momentum is

L = R1(m1v1) + R2(m2v2) = m1R
2
1ω + m2R

2
2ω = Iω.

These two equations can be combined to give the rota-
tional kinetic energy in terms of the angular momentum
about the center of mass:

T =
L2

2I
.

Quantum-mechanically, the angular momentum cannot
take on any arbitrary value. The square of the angular
momentum is restricted to the values

L2 = r(r + 1)�2, r = 0, 1, 2, . . . .

E
ne

rg
y

r = 4          r(r+1) = 20

r = 3          r(r+1) = 12

r = 2          r(r+1) = 6

r = 1          r(r+1) = 2

r = 0          r(r+1) = 0

FIGURE 14.5. Energy levels of a rotating molecule.

Since there is no potential energy, the total energy of
rotation of the molecule is

Er =
r(r + 1)�2

2I
, r = 0, 1, 2, . . . . (14.10)

The spacing of the rotational levels is shown in Fig. 14.5.
A detailed calculation using quantum mechanics shows
that when a photon is emitted or absorbed, r must change
by ±1. Therefore the photon energy is

∆Er = Er − Er−1 =
�

2

I
r, r = 1, 2, . . . . (14.11)

The problems at the end of the chapter show that these
photons have low energies, so that rotational spectra lie
in the far-infrared region (far meaning far from the visible
region, that is, very long wavelengths).

The other possibility is that the atoms in the molecule
vibrate back and forth along the line joining their centers.
If two masses have an equilibrium position a certain dis-
tance apart, work must done either to push them closer
together or to pull them farther apart. In either case the
potential energy is increased. At the equilibrium separa-
tion the potential energy is a minimum. Figure 14.6 shows
the potential energy Ep of a sodium ion and a chloride
ion as a function of their separation. The potential has a
minimum at a separation of about 0.2 nm. The simplest
function that has a minimum is a parabola. A parabola
can be used to approximate the minimum in Fig. 14.6:
Ep(R) = 1

2k(R − R0)2. R0 is the equilibrium separation.
Since (see Sec. 6.4) dEp = −Fdr, the force between the
ions is F = −dEp/dR = −k(R − R0), which is the lin-
ear approximation to the force between the two ions. The
force is attractive if R > R0 and repulsive if R < R0.

A mass subject to a linear restoring force is called a
harmonic oscillator (Appendix F). A mass m subject
to a linear restoring force −kx oscillates with an angu-
lar frequency ω2 = k/m. Classically, the energy of the
oscillating mass depends on the amplitude of the mo-
tion and can have any value. Quantum-mechanically, it is
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FIGURE 14.6. The potential energy of a sodium ion and a
chloride ion as a function of their nuclear separation.

restricted to values

Ev = �ω
(
v + 1

2

)
, v = 0, 1, 2, . . . . (14.12)

This is the total energy, including both kinetic and poten-
tial energy. The levels are spaced equally by an amount
�ω. The spacing is usually greater than that for rota-
tional levels, often in the infrared. The transitions that
give rise to the emission or absorption of photons require
a change in the rotational quantum numbers as well as
the vibrational ones. The selection rules are

∆r = ±1, ∆v = ±1. (14.13)

Some of these vibrational–rotational transitions are
shown in Fig. 14.7.

Finally, there can be transitions involving v, r, and the
electronic quantum numbers as well. When the electronic
quantum numbers change, the shape of the interatomic

FIGURE 14.7. Transitions for vibrational–rotational spectra.
From R. M. Eisberg and R. Resnick.Quantum Physics of
Atoms, Molecules, Solids, Nuclei and Particles, 2nd ed. p.
428. Copyright c©1985 John Wiley & Sons. Reproduced by
permission of John Wiley & Sons, Inc.

FIGURE 14.8. A combination of changes in electronic quan-
tum numbers within an atom and of vibrational and rotational
quantum numbers within the molecule. From R. Eisberg and
R. Resnick.Quantum Physics of Atoms, Molecules, Solids, Nu-
clei and Particles, 2nd ed. p. 430. Copyright c©1985 John Wi-
ley & Sons. Reproduced by permission of John Wiley & Sons,
Inc.

potential changes, as shown in Fig. 14.8. The details of
molecular spectra are fairly involved and are summarized
in many texts. Transitions of biological importance are
discussed in Grossweiner (1994, pp. 33–38). If the electron
selection rules are satisfied, the transition is fairly rapid
(typically 10−8 s), a process called fluorescence. Some-
times the electron becomes trapped in a state where it
cannot decay according to the electronic selection rules
of Eq. 14.9. It may then have a lifetime up to several
seconds before decaying, a phenomenon called phospho-
rescence.

14.4 Scattering and Absorption of
Radiation; Cross Section

Photons in a vacuum travel in a straight line. When they
travel through matter they are apparently3 slowed down,
leading to an index of refraction greater than unity; they
may also be scattered or absorbed. Visible light does not

3Individual photons travel at speed c, yet the light wave trav-

els at speed c/n. The slowing down of light in a medium is due
to interference between the primary beam and scattered photons.
This is discussed in Sherwood (1996), in Milonni (1996), and the
references cited in these papers.
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FIGURE 14.9. A collimated beam of photons passes from left
to right through a thin slice of material. Some photons pass
through, some are scattered, and some are absorbed.

pass through a building wall, but it does pass through
a glass window. The absorption may depend on the fre-
quency or wavelength of the light. The window can be
made of colored glass. The light can also be scattered.
This leads to the blue of the sky or to the white of clouds.
If there is absorption as well as scattering, the clouds may
appear gray instead of white. How light is scattered or ab-
sorbed in tissue has become very important in biophysics.
Infrared light absorption can be used to measure chemical
composition of the body. Light is also used for therapy
and for laser surgery.

This section shows how to describe a single interac-
tion of a photon with some substance. The photon can
be scattered or absorbed. Section 14.5 develops one tech-
nique for calculating what happens when the photon un-
dergoes many scattering events before being absorbed or
emerging from the material.

Imagine that we have a distant source of photons that
travel in straight lines, and that we collimate the beam
(send it through an aperture) so that a nearly parallel
beam of photons is available to us. Imagine also that we
can see the tracks of the N photons in the beam, as in
Fig. 14.9. When a thin sample of material of thickness dz
is placed in the beam, a certain number of photons are
scattered and a certain number are absorbed. If we repeat
the experiment many times, we find that the number of
photons scattered fluctuates about an average value that
we call dNs and the number absorbed fluctuates about
an average value dNa. When we vary the thickness of the
absorber, we find that if it is sufficiently thin, the aver-
age number of photons scattered and absorbed is propor-
tional to the thickness as well as the number of incident
photons:

dNs = µsNdz, dNa = µaNdz. (14.14)

(a) (b)

S S'

FIGURE 14.10. Each circle represents the cross section σ as-
sociated with a target entity such as an atom. (a) There is one
atom in area S. (b) There are T target atoms per unit area
in area S′.

The total number of unscattered photons N changes ac-
cording to

dN = −(dNs + dNa) = −N(µs + µa)dz

with solution

N(z) = N0e
−µz = N0e

−(µs+µa)z. (14.15)

The quantity µ is the total linear attenuation coefficient.
Quantities µs and µa are the linear scattering and ab-
sorption coefficients. Both depend on the material and
the energy of the photons. This kind of exponential ab-
sorption is known as Beer’s law or the Beer–Lambert law.

The interaction of photons with matter is statistical.
The cross section σ is an effective area proportional to
the probability that an interaction takes place. The inter-
action takes place with a “target entity.” It is sometimes
convenient to define the target to be a single molecule, at
other times an atom, and still other times one of the elec-
trons within an atom. We can visualize the meaning of
the cross section by considering either a single target en-
tity interacting with a beam of photons or a single photon
interacting with a thin foil of targets. Both are shown in
Fig. 14.10. For the single target in Fig. 14.10(a), consider
a beam of N photons passing through the area S with
a uniform number per unit area N/S. Let the average
number of interactions be n. The cross section per target
entity is defined by saying that the fraction of photons
that interact is equal to the fraction of the area occupied
by the cross section:

n

N
=

σ

S
. (14.16)

We denote the number of photons per unit area by Φ and
write Eq. 14.16 as n = σΦ. This is the average number of
scatterings per target entity or the probability of interac-
tion per target entity when the beam has Φ photons per
unit area:

p = σΦ. (14.17)

Strictly speaking, n is dimensionless, σ has the dimen-
sions m2, and Φ has dimensions m−2. However, it is of-
ten helpful to think of n as being interactions per target
entity and σ as being m2 per target entity.
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Alternatively, imagine sending a beam of photons at
the target of area S′ shown in Fig. 14.10(b). There are
NT target entities per unit area in the path of the beam,
each having an associated area σ. The fraction of the
photons that interact is again the fraction of the area
that is covered:

n

N
=

σS′NT

S′ = σNT . (14.18)

This is the probability that a single photon interacts when
there are NT target entities per unit area. Note the sym-
metry with Eq. 14.17. In the first case there is one target
entity and a certain number of photons per unit area. In
the second case there is one photon and a certain number
of target entities per unit area.

If a number of mutually exclusive interactions can take
place (such as absorption and scattering), we can define
a cross section for each kind of interaction. The probabil-
ities and the cross sections add:

σtot =
∑

i

σi. (14.19)

The second interpretation we had above can be used
to relate the cross section to the attenuation coefficient.
The number of target entities per unit area is equal to the
number per unit volume times the thickness of the target
along the beam. To obtain the number of target atoms
per unit volume, recall that 1 mol of atoms contains Avo-
gadro’s number NA atoms. If A is the mass of a target
containing 1 mol of atoms and the target has mass den-
sity ρ, then volume V has mass ρV and contains ρV/A
mol and NAρV/A atoms. Therefore, the number of atoms
per unit volume is NAρ/A, and the number of atoms per
unit area is

NT =
NAρ

A
dz. (14.20)

The linear coefficients are related to their corresponding
cross sections by

µs =
NAρ

A
σs,

µa =
NAρ

A
σa,

µ =
NAρ

A
(σs + σa) =

NAρ

A
σtot.

(14.21)

where σtot is the sum of all the interaction cross sections.
Be careful with units! Avogadro’s number is de-

fined to be 6.022137 × 1023 entities per mole, which
is the number in a gram atomic weight. For carbon,
A = 12.01 × 10−3 kg mol−1 and ρ = 2.0 × 103 kg m−3.
This is discussed further on p. 409.

We may wish to know the probability that particles (in
this case photons) are scattered in a certain direction. We
have to consider the probability that they are scattered
into a small solid angle dΩ. In this case σ is called the

FIGURE 14.11. (a) A small solid angle dΩ = sin θ dθ dφ sur-
rounds the direction defined by angles θ and φ. (b) The solid
angle dΩ = 2π sin θ dθ results from integrating over φ.

differential scattering cross section and is often written
as

dσ

dΩ
dΩ or σ(θ)dΩ. (14.22)

The units of the differential scattering cross section are
m2 sr−1. The differential cross section depends on θ, the
angle between the directions of travel of the incident and
scattered particles. In a spherical coordinate system in
which the incident particle moves along the z axis, the
solid angle is dΩ = sin θ dθ dφ (Appendix L). If the cross
section has no φ dependence, then the integration over
φ can be carried out and dΩ = 2π sin θ dθ. These solid
angles are shown in Fig. 14.11.

There are three ways to interpret the exponential de-
cay of the beam that has not undergone any interactions.
First, the number of particles remaining in the beam that
have undergone no interaction decreases as the target be-
comes thicker, so that the number of particles available to
interact in the deeper layers is less. Second, the exponen-
tial can be regarded as taking into account the fact that
in a thicker sample some of the target atoms are hidden
behind others and are therefore less effective in causing
new interactions. The third interpretation is in terms of
the Poisson probability distribution (Appendix J). Each
layer of thickness dz provides a separate chance for the
beam particles to interact. The probability of interacting
in any one layer dz is small, p = σtotNAρ dz/A, while the
total number of “tries” is z/dz. The average number of
interactions is m = p × number of tries. The probability
of no interaction is e−m = exp(−σtotNAρ z/A) = e−µz.

When the cross section for scattering is large, things
can become quite complicated. For example, photons may
scatter many times and be traveling through the material
in all directions. Various approximations have been used
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to model photon transport in such a case. We will exam-
ine some of them shortly. One simple correction that is
often made is to consider the average direction a scattered
photon travels, for example, the average value of the co-
sine of the scattering angle, g = cos θ, where θ is the angle
of a single scattering. If the average angle of scattering is
very small, g is nearly 1. If the photon is scattered back-
ward, g = −1, and if the scattering is isotropic, g = 0.
Formally,

g =

∫ π

0
σ(θ) cos θ 2π sin θ dθ
∫ π

0
σ(θ) 2π sin θ dθ

. (14.23)

The reduced scattering coefficient

µ′
s = (1 − g)µs (14.24)

is what is usually measured.
The values of the absorption and scattering coefficients

vary widely. For infrared light at 780 nm, values are
roughly4

µ′
s = 1500 m−1, µa = 5 m−1.

14.5 The Diffusion Approximation to
Photon Transport

14.5.1 General Theory

When photons enter a substance, they may scatter many
times before being absorbed or emerging from the sub-
stance. This leads to turbidity, which we see, for example,
in milk or clouds. The most accurate studies of multiple
scattering are done with “Monte Carlo” computer sim-
ulations, in which probabilistic calculations are used to
follow a large number of photons as they repeatedly inter-
act in the tissue being simulated. However, Monte Carlo
techniques use lots of computer time. Various approxi-
mate analytic solutions also exist. The field is reviewed
in Chapter 5 of Grossweiner (1994). One of the approxi-
mations, the diffusion approximation, is described here. It
is valid when many scattering events occur for each pho-
ton absorption. This is a valid approximation for most
tissue, but not for cerebrospinal fluid or synovial (joint)
fluid.

If the photons have undergone enough scattering in a
medium, all memory of their original direction is lost. In
that case the movement of the photons can be modeled
by the diffusion equation. In Chapter 4 we wrote Fick’s
second law as

∂C

∂t
= D∇2C + Q.

4These are eyeballed from data for various tissues reported in
the article by Yodh and Chance (1995). Values are up to ten times
larger at other wavelengths. See Table 5.2 in Grossweiner (1994).
Nickell et al. (2000) report values for skin that depend on both the
direction of propagation and the degree of stretching of the skin.
They are similar to the values reported here.

The left-hand side of the equation is the rate at which the
concentration, the number of particles per unit volume,
is increasing. The term D∇2C is the net diffusive flow
into the small volume, the particle current being given
by j = −D∇C. The last term is the rate of production
or loss of particles within the volume by other processes,
depending on whether Q is positive or negative.

Let us suppose that we can apply this to photons. We
will consider two contributions to Q. The concentration
must be the number of diffusing photons per unit vol-
ume. Any in the incident beam are still traveling in the
original direction and are not diffusing, but if they are
scattered they become part of the diffusing photon pool.
Therefore there may be a source term, which we will call
s, due to the incident photons. But photons are also be-
ing absorbed. They are traveling with a speed cn = c/n,
where n is the index of refraction of the medium. In time
dt they travel a distance dx = cndt, and the probability
that they are absorbed is µadx = µacndt. Therefore, the
diffusion equation for photons is

∂C

∂t
= D∇2C + s − µacnC. (14.25)

Each term has the units of photons m−3 s−1.
In photon transfer, it is customary to make two changes

in this equation. The first is to divide all terms by the
speed of the photons in the medium,5 cn. The result is

1
cn

∂C

∂t
= D′∇2C − µaC +

s

cn
,

where D′ = D/cn is referred to in the photon transfer
literature as the photon diffusion constant. It has dimen-
sions of length.

Two important quantities in radiation transfer are the
photon or particle fluence and the photon fluence rate.
The International Commission on Radiation Units and
Measurements (ICRU) defines the particle fluence for any
kind of particle, including photons as follows: At the point
of interest construct a small sphere of radius a. Let the
number of particles striking the surface of the sphere dur-
ing some time interval have an expectation value N . (The
expectation value is the mean of a set of measurements
in the limit as the number of measurements becomes in-
finite.)

The particle fluence Φ is the ratio N/πa2, where πa2 is
the area of a great circle of the sphere, that is, the area
of a circle having the same radius as the sphere. This is
shown in Fig. 14.12 and is a generalization of our earlier
use of Φ as the number of particles per unit area. It neatly
avoids having to introduce obliquity factors, since for any
direction the particles travel, one can construct a great
circle on the sphere that is perpendicular to their path.

5Most papers in this field use c as the velocity of light in the
medium. We prefer to reserve c for the fundamental constant, the
velocity of light in vacuum.
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(a) (b)

FIGURE 14.12. The particle fluence is the ratio of the ex-
pectation or average value of the number of particles pass-
ing through the sphere to the area of a great circle of the
sphere, πa2. It depends on the total number of particles pass-
ing through the sphere, regardless of the direction they travel.
The fluence is the same in each case shown: five particles tra-
verse each sphere.

The particle fluence rate is

ϕ =
dΦ
dt

.

We saw in Chapter 4 that for a group of particles all
traveling with the same speed, the number transported
across a plane per unit area per unit time is equal to their
concentration times their speed. The photon concentra-
tion is related to the photon fluence rate by C = ϕ/cn,
and the photon diffusion equation becomes

1
cn

∂ϕ

∂t
= D′∇2ϕ − µaϕ + s. (14.26)

This is the form that is usually found in the literature.
The units of each term are photons m−3 s−1. One can
show that6

D′ =
1

3 [µa + (1 − g)µs]
=

1
3(µa + µ′

s)
. (14.27)

14.5.2 Continuous Measurements

If the tissue is continuously irradiated with photons at
a constant rate, the term containing the time derivative
vanishes. If in addition we use a broad beam of photons
so that we have a one-dimensional problem and we are
far enough into the tissue so that the source term can be
ignored, the model is

D′ d
2ϕ

dx2
= µaϕ. (14.28)

This has an exponential solution ϕ = ϕ0e
−µeffx, where

µeff = {3µa [µa + (1 − g)µs]}1/2. It is interesting to see

6See, for example, Duderstadt and Hamilton (1976, pp. 133–

136).

FIGURE 14.13. Time-resolved infrared spectroscopy. The line
is a measurement of the reflected photons from the calf of a
human volunteer at a distance of 4 cm from the pulsed source.
The wavelength is 760 nm. The circles are calculated using Eq.
14.29 and normalized to the peak value. From M. S. Patterson,
B. Chance, and B. C. Wilson (1989). Time resolved reflectance
and transmittance for the noninvasive measurement of tissue
optical properties. Appl. Opt. 28(12): 2331–2336. Copyright
by the Optical Society of America.

what these numbers mean. Using the “typical” values
from Sec. 14.4, the number of photons that have not in-
teracted (are not yet attenuated) falls exponentially with
a characteristic length or mean depth

λunatten =
1
µ

=
1

µa + µ′
s

=
1

1, 505
= 0.66 mm.

For the diffuse beam the mean depth is about 10 times
this:

λdiffuse =
1

µeff
=

1
√

(3)(5)(1, 505)
= 6.7 mm.

These values are for a wavelength where the tissue is
fairly transparent. The diffusion equation can be solved
for other geometries that model the light source being
used.7 One problem with these measurements is that they
give only µeff, which is a combination of µa and µs. Also,
the path length may be ambiguous because the geometry
cannot be modeled accurately.

14.5.3 Pulsed Measurements

A technique made possible by ultrashort light pulses from
a laser is time-dependent diffusion. It allows determina-
tion of both µs and µa. A very short (150-ps) pulse of
light strikes a small region on the surface of the tis-
sue. A detector placed on the surface about 4 cm away
records the multiply-scattered photons. A typical plot of
the detected photon fluence rate is shown in Fig. 14.13.

7See, for example, Grossweiner (1994, p. 98).
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Patterson et al. (1989) have shown that the reflected flu-
ence rate after a pulse is approximately

R(r, t) =
z0

(4D′cnt)3/2t
e−µacnte−(r2+z2

0)/4D′cnt. (14.29)

Here r is the distance of the detector from the source
along the surface of the skin, cnt is the total distance
the photon has traveled before detection, and z0 =
1/ [(1 − g)µs] is the depth at which all the incident pho-
tons are assumed to scatter and become part of the dif-
fuse photon pool. This curve fits Fig. 14.13 well and can
be used to determine µa and (1 − g)µs. We can under-
stand the various factors in Eq. 14.29. The last factor
is a Gaussian spreading in the r direction away from
the z axis where the photons were injected. This is a
two-dimensional problem. Compare this with Eq. 4.77,
which shows that in two dimensions σ2

r = 4Dt, and re-
call that D = D′cn. The middle factor is the fraction
of the photons in the pulse that have not been absorbed,
exp(−µax), where x is the total distance the photons have
traveled. The first factor is the normalization that reduces
the amplitude of the Gaussian as it spreads.

A related technique is to apply a continuous laser
beam, the amplitude for which is modulated at various
frequencies between 50 and 800 MHz. The Fourier trans-
form of Eq. 14.29 gives the change in amplitude and phase
of the detected signal. Their variation with frequency can
also be used to determine µa and µs.8

14.5.4 Refinements to the Model

The diffusion equation, Eq. 14.26, is an approximation,
and the solution given, Eq. 14.29, requires some unre-
alistic assumptions about the boundary conditions at
the surface of the medium (z = 0). Hielscher et al.
(1995) compared experiment, Monte Carlo calculations,
and solutions to the diffusion equation with three differ-
ent boundary conditions. They found that Eq. 14.29 was
the easiest to use but leads to errors in the estimates of
the coefficients that become worse when the detector and
source are close together. Their Monte Carlo calculations
fit the data quite well. They also discuss the reflections
that occur when light goes from one medium into another
with a different index of refraction.

14.6 Biological Applications of
Infrared Scattering

14.6.1 Near Infrared (NIR)

Near infrared light in the range 600–1000 nm is used to
measure the oxygenation of the blood as a function of

8See, for example, Sevick et al. (1991) or Pogue and Patterson
(1994).

FIGURE 14.14. The absorption coefficient µa for water, oxy-
hemoglobin, and deoxyhemoglobin. Reprinted with permis-
sion from A. Yodh and B. Chance. Spectroscopy and imaging
with diffusing light. Phys. Today, March 1995: 34–40 Copy-
right c©1995, American Institute of Physics.

time by determining the absorption at two different wave-
lengths. Figure 14.14 shows the absorption coefficients
for oxygenated and deoxygenated hemoglobin and wa-
ter. The greater absorption of blue light in oxygenated
hemoglobin makes oxygenated blood red. (The graph
only shows wavelengths longer than 600 nm—red and in-
frared.) The wavelength 800 nm at which both forms of
hemoglobin have the same absorption is called the isos-
bestic point. Measurements of oxygenation are made by
comparing the absorption at two wavelengths on either
side of this point.

One of the difficulties with these measurements is
knowing the path length, since photons undergo many
scatterings before being absorbed or reaching the detec-
tor. Scattering from many tissues besides hemoglobin dis-
torts the signal. Nonetheless, pulse oximeters that fit over
a finger are widely used. Webster (1997) provides a com-
prehensive discussion of the underlying physics, design,
calibration and use of pulse oximeters. The basic feature
is that arterial blood flow is pulsatile, not continuous.
Therefore, measuring the time-varying (AC) signal selec-
tively monitors arterial blood and eliminates the contri-
bution from venous blood and tissue. Scattering correc-
tions must still be made [Farmer (1997), Wieben (1997)].

Development of new applications for infrared scattering
measurements continue as new detectors with different
spectral sensitivities become available [Yamashita et al.
(2001)]. Continuous sources are also used to determine
blood oxygenation of tissue [Liu et al. (1995)].
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14.6.2 Optical Coherence Tomography (OCT)

Optical range measurements using the time delay of re-
flected or backscattered light from pulses of a few fem-
tosecond (10−15 s) duration can be used to produce im-
ages similar to those of ultrasound A- and B-mode scans.
The spatial extent of a 30 fs pulse in water is about 7µm.
Since it is difficult to measure time intervals that short,
most measurements are done using interference proper-
ties of the light. Optical coherence tomography is concep-
tually similar to range measurements but uses interfer-
ence measurements. It was first demonstrated by Huang
et al. (1991) and has been developed extensively since
then [see Schmitt (1999) or Bouma and Tearney (2002)].

This is one topic for which we must use the electromag-
netic wave model for light, since it depends on interfer-
ence effects. Light waves differ from sound waves because
the electric field in the wave is a vector perpendicular to
the direction of propagation of the wave. This gives rise
to an important effect—polarization—that we ignore.

Suppose that a wave A sin 2π
λ (x−cnt) = A sin ω(x/cn−

t) travels in a medium with index of refraction n. A detec-
tor responds to the energy fluence in the wave, which is
proportional to the square of the amplitude averaged over
time. The signal is y ∝ A2sin2 ω(x/cn − t) = A2/2. The
wave is split, travels two paths of different lengths, and
is recombined at a detector. The signal is proportional to
the power averaged over many cycles of the wave. The
power is proportional to the square of the electric field:

y ∝ (A/2)2[sin ω(x1/cn − t) + sin ω(x2/cn − t)]2

=
A2

4

(
1 + cos

ω

cn
(x2 − x1)

)
. (14.30)

The signal oscillates between 0 and A2/2 as the differ-
ence in path length is changed. When the path difference
is zero, y ∝ A2/2, our original result. This dependence of
the signal on path length forms the basis for interferom-
etry, which can be used to measure changes in distance
with high accuracy—counting maxima (fringes) as one
path length is varied.

An important consideration is the coherence of the
light beam: the number of cycles over which the phase of
the wave does not change. When an atom emits light, the
classical electromagnetic wave lasts for a finite time, τcoh

(often around 10−8 s). When another atom emits light,
the phase is unrelated to the phase of light already emit-
ted. This means that if (x2 − x1) /cn > τcoh, the time
average will go to zero.

Note that as long as light from a single source has been
split and then recombined, the paths can be quite long.
The interference fringes will be seen when the light is
recombined and the path difference satisfies

x2 − x1 < cnτcoh. (14.31)

This provides a technique for determining the distance of
a reflecting object from the light source, forming the basis
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FIGURE 14.15. The basic apparatus for optical coherence to-
mography. The features are described in the text.

FIGURE 14.16. An optical coherence tomogram of the an-
terior eye. From J. A. Izatt, M. R. Hee, E. A. Swanson, C.
P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G.
Fujimoto. Micrometer-scale resolution imaging of the anterior
eye with optical coherence tomography. Archives of Ophthal-
mology 112: 1584–1589 (1994). Copyright c©1994 American
Medical Association. All rights reserved.

for optical coherence tomography. A light source with a
short coherence time is used for high resolution. The basic
apparatus is shown in Fig. 14.15. Various light sources
are used [Bouma and Tearney (2002)]. The light pulse
travels over an optical fiber to a 50/50 beam splitter.
Part travels to the sample, where it is reflected back to
the 50/50 coupler and then to the detector. The other half
of the light goes to the reference mirror, where it is also
reflected back to the detector. Changing the position of
the reference mirror changes the depth of the image plane
in the sample. The lateral beam position is changed to
scan the sample, as in an ultrasound B-mode scan. Figure
14.16 shows an image of the anterior eye.

It is possible to make many kinds of images. Fig. 14.17
shows the parabolic velocity profile of blood flowing in
a blood vessel in the retina of 176µm diameter. It was
obtained by measuring the Doppler shift in light scat-
tered from moving blood cells. It is also possible to image
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FIGURE 14.17. The parabolic velocity profile of blood flowing
in a single retinal vessel of diameter 176 µm. From S. Yazdan-
far, A.M. Rollins, and J. A. Izatt. Imaging and velocimetry of
the human retinal circulation with color Doppler optical co-
herence tomography. Optics Letters 25(19): 1448–1450 (2000).
Used by permission.

glucose concentration, because glucose modifies the index
of refraction and thereby the scattering coefficient [Ese-
naliev et al. (2001)]. Images are made of the surface layers
of the skin, the eye, the walls of the mouth, teeth, larynx,
esophagus, stomach, and intestine.

A number of tissues exhibit birefringence–the speed of
light in the skin depends on the orientation of the electric
field vector of the light wave with the cells in the tissue
[De Boer et al. (2002)]. It is possible to make images
with different orientations of the electric field vector to
improve the resolution [Yasuno et al. (2002)].

There are a number of offshoots to OCT, such as op-
tical coherence microscopy and full-field OCM [Saint-
Jalmes et al. (2002)].

14.6.3 Raman Spectroscopy

Infrared and microwave probes are used extensively in the
laboratory. Since the vibrational and rotational levels de-
pend on the masses, separations, and forces between the
various atoms bound in a molecule, it is not surprising
that spectroscopy can be used to identify specific bonds.
This is a useful technique in chemistry. Biological appli-
cations are difficult because the absorption coefficients
are large; thin samples must be used, particularly in an
aqueous environment.

One way around this is Raman scattering. Raman scat-
tering is the scattering of light in which the scattered
photon does not have its original energy, but has lost or
gained energy corresponding to a rotational or vibrational
transition. The effect was discovered by C. V. Raman in
1928. Raman scattering can be done with light of any
wavelength, from infrared to ultraviolet. An idealized ex-
ample is shown in Fig. 14.18. If the scattering molecule
was originally in the vibrational ground state and returns
to a vibrational excited state, the Raman-scattered pho-
ton has less energy than the original photon. This is called

FIGURE 14.18. In Raman scattering, a photon gains or loses
energy due to a change in the energy of the scattering mole-
cule. An idealized example for water is shown. The very in-
tense line has no energy change; the weak lines are Raman
scattering. The abscissa is shown as wavelength λ and as
reduced wave number k/2π = 1/λ. The Raman shift corre-
sponds to ∆(1/λ) = 3, 400 cm−1. The wavelength of this in-
frared transition is λ = 2, 940 nm, but the measurement is
made near 500 nm.

FIGURE 14.19. Vibrational Raman lines for cholesterol. A
continuous background has been subtracted. The abscissa is
1/λ = E/hc. From Hanlon, E. B., R. Manoharan, T-W. Koo,
K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I.
Itzkan, R. R. Dasari, and M. S. Feld (2000). Prospects for in
vivo Raman spectroscopy. Phys. Med. Biol. 45: R1–R59. Used
by permission.

Stokes–Raman scattering. If the scattering molecule was
originally in a higher vibrational state and returns to
the vibrational ground state, the Raman-scattered pho-
ton has higher energy than the original. The intensity of
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this Anti-Stokes–Raman line will be less than the inten-
sity of the Stokes–Raman line because populations of the
original vibrational levels are governed by a Boltzmann
factor. Fig. 14.19 shows the Stokes–Raman shift spectrum
for cholesterol. Many discussions of Raman spectroscopy
are available. A fairly theoretical one by Berne and Pec-
ora (1976) relies heavily on autocorrelation functions and
spectral analysis that we saw in Chapter 11. Diem (1993)
is a detailed text on vibrational spectroscopy, including
Raman spectroscopy.

Raman spectroscopy has been used extensively for lab-
oratory studies; many groups are exploring its utility for
in vivo measurements [Hanlon et al. (2000)]. Infrared
light between 800 and 1000 nm is usually used.

14.6.4 Far Infrared or Terahertz Radiation

For many years, there were no good sources or sensitive
detectors for radiation between microwaves and the near
infrared (0.1–100 THz; 1THz = 1012 Hz). Developments
in optoelectronics have solved both problems, and many
investigators are exploring possible medical uses of THz
radiation (“T rays”). Classical electromagnetic wave the-
ory is needed to describe the interactions, and polariza-
tion (the orientation of the E vector of the propagating
wave) is often important. The high attenuation of water
in this frequency range means that studies are restricted
to the skin or surface of organs such as the esophagus
that can be examined endoscopically. Reviews are pro-
vided by Smye et al. (2001), Fitzgerald et al. (2002), and
Zhang (2002).

14.7 Thermal Radiation

Any atomic gas emits light if it is heated to a few thou-
sand kelvin. The light consists of a line spectrum. The
famous yellow line of sodium has

λ = 589.2 nm,

ν = c/λ = 5.092 × 1014 Hz,

E = hν = hc/λ = 3.38 × 10−19 J = 2.11 eV.

These photons are emitted when sodium atoms lose 2.11
eV and return to their ground state. If the sodium atoms
are excited by thermal collisions, the probability that a
sodium atom is in the excited state, relative to the proba-
bility that it is in the ground state, is given by the Boltz-
mann factor

Pexcited

Pground
= e−E/kBT .

At room temperature kBT = 4.14 × 10−21 J, so
e−E/kBT = e−81.5 = 3.8×10−36. The number of atoms in
the excited state is utterly negligible. If the temperature
is raised to 1500 K, e−E/kBT is 8 × 10−8, and enough

TABLE 14.3. Approximate color temperatures. The range of
values reflects differences between scales established by differ-
ent observers.

Color T (K)

Red, just visible in daylight 750–800
“Cherry” red 975–1175
Yellow 1200–1505
White 1425-1800
Dazzling (bluish) white 1900

FIGURE 14.20. The splitting of energy levels as many atoms
are brought together. (a) A single atom. (b) Two atoms. (c)
Three atoms. (d) Many atoms.

atoms are excited to give off light as they fall back to the
ground state.

If a piece of iron is heated to 1,500 K, it glows with a
white–yellow color. Table 14.3 relates apparent color to
temperature for a glowing metal. If the light is analyzed
with a spectroscope, it is found to consist of a continuous
range of colors rather than discrete lines.

The difference between the spectra of single atoms and
the spectra of solids and liquids can be understood from
the following argument. If we have N isolated identical
atoms, each atom has an energy level at the energy shown
in Fig. 14.20(a). There are a total of N levels, one for
each atom. When two of these atoms are brought close
together, the levels shift slightly and split into two closely
spaced levels because of interaction between the atoms.
The two levels for a pair of atoms are shown in Fig.
14.20(b). If three atoms are brought close together the
level splits into three levels as shown in Fig. 14.20(c). If a
large number of atoms are brought close together, the N
level spreads out into a band, Fig. 14.20(d). Transitions
from one band to another can have many different ener-
gies, and photons with a continuous range of energies can
be emitted or absorbed.

The relative number of photons of different energies
that will be emitted or absorbed depends on the nature
of the substance. Glass and sodium chloride crystals are
nearly transparent in the visible spectrum because the
spacing of the levels is such that no photons of these
energies are absorbed. When such substances are heated
enough to populate the higher energy levels, no photons
of these energies are emitted.

A substance that has so many closely spaced levels that
it can absorb every photon that strikes it appears black.
It is called a blackbody. It is difficult if not impossible to
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FIGURE 14.21. A small hole in the wall of a cavity is a better
blackbody than the walls of the cavity are. Any light that en-
ters the hole must be reflected several times before emerging.
It can be absorbed by the wall at any reflection. If the walls
appear black, the hole appears even blacker. (The walls are
highly absorbing diffuse reflectors.)

make a surface that is completely absorbing; the absorp-
tion can be improved by making a cavity, as in Fig. 14.21.
Photons entering the hole in the cavity bounce from the
walls many times before chancing to pass out through
the hole again, and they therefore have a greater chance
of being absorbed. Such a hole in a cavity is a better
approximation to a blackbody than is the absorbing ma-
terial lining the cavity.

If the surface is not completely absorbing, we define the
emissivity ε(λ), which is the fraction of light absorbed at
wavelength λ. (Why emission and absorption are closely
related is discussed below.) If the light all passes through
some transparent material or is completely reflected, then
ε = 0; if it is all absorbed, ε = 1. A blackbody has ε(λ) =
1 for all wavelengths. An object for which ε(λ) is constant
but less than 1 is called a gray body.

When a blackbody is heated, the light given off has
a continuous spectrum because the energy levels are so
closely spaced. By imagining two different cavities in con-
tact, one can argue9 that the amount of energy coming
out of a blackbody cavity depends only on the tempera-
ture of the walls and not on the nature of the surfaces.

The spectrum of power per unit area emitted by a com-
pletely black surface in the wavelength interval between
λ and λ + dλ is

Wλ(λ, T )dλ,

a universal function called the blackbody radiation func-
tion. It has units of W m−3, although it is often expressed
as W cm−2 µm−1. The value of Wλ is plotted for several
different temperatures in Fig. 14.22. As the black surface
or cavity walls become hotter, the spectrum shifts toward
shorter wavelengths, which is consistent with the obser-
vations in Table 14.3. The visible region of the spectrum
is marked on the abscissa in Fig. 14.22; even at 1,600 K
when the radiating surface appears white, most of the
energy is radiated in the infrared.

Figure 14.23 plots Wλ(λ, T ) for two temperatures near
body temperature (37 ◦C = 310 K). Compare the scales

9For a brief discussion see Halliday et al. (1992, p. 1021ff). A
more detailed treatment is found in Bramson (1968, Chapter IV).
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FIGURE 14.23. The blackbody radiation function Wλ(λ, T )
for T = 310 K and T = 312 K.

of Figs. 14.22 and 14.23, and note how much more energy
is emitted by a blackbody at the higher temperature and
how it is shifted to shorter wavelengths.

Much work was done on the properties of blackbody
or thermal or cavity radiation in the late 1800s and early
1900s. While some properties could be explained by clas-
sical physics, others could not. The description of the
function Wλ(λ, T ) by Planck is one of the foundations
of quantum mechanics. We will not discuss the history
of these developments, but will simply summarize the
properties of the blackbody radiation function that are
important to us.
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FIGURE 14.24. The transformation from Wλ(λ, T ) to Wν(ν, T ) is such that the same amount of power per unit area is emitted
in wavelength interval (λ, dλ) and the corresponding frequency interval (ν, dν). The spectrum shown is for a blackbody at
5,800 K, approximately the spectrum of sunlight.

The value of Wλ(λ, T ) is given by

Wλ(λ, T ) =
2πc2h

λ5
(
ehc/λkBT − 1

) . (14.32)

Consider the expression ehc/λkBT in the denominator.
Since light consists of photons of energy E = hν = hc/λ,
the factor in parentheses in the denominator is eE/kBT−1.
For very large energies (short wavelengths) the 1 can be
neglected and the effect of the denominator on Eq. 14.32
is like a Boltzmann factor.

We can find the total amount of power emitted per unit
surface area by integrating10 Eq. 14.32:

Wtot(T ) =
∫ ∞

0

Wλ(λ, T ) dλ

=
2π5k4

B

15c2h3
T 4 = σSBT 4. (14.33)

This is the Stefan–Boltzmann law. The Stefan–
Boltzmann constant, which is traditionally denoted by
σSB but which has no relationship to cross section, was

10This is not a simple integration. See Gasiorowicz (1974, p. 6).

known empirically before Planck’s work. It has the nu-
merical value

σSB = 5.67 × 10−8 W m−2 K−4. (14.34)

Early measurements of the radiation function were
done with equipment that made measurements vs. wave-
length. It is also possible to measure vs. frequency. To
rewrite the radiation function in terms of frequency, let
λ1 and λ2 = λ1+dλ be two slightly different wavelengths,
with power Wλ(λ, T )dλ emitted per unit surface area at
wavelengths between λ1 and λ2. The same power must be
emitted11 between frequencies ν1 = c/λ1 and ν2 = c/λ2:

Wν(ν, T )dν = Wλ(λ, T )dλ. (14.35)

Since ν = c/λ, dν/dλ = −c/λ2, and

|dν| = +
c

λ2
|dλ| . (14.36)

11Wλ(λ, T ) and Wν(ν, T ) do not have the same functional form.

In fact, they have different units. The units of Wλ(λ, T ) are W

m−3, while those of Wν(ν, T ) are W s m−2.
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FIGURE 14.25. A photograph of an incandescent tungsten
tube with a small hole drilled in it. The radiation emerging
from the hole is brighter than that from the tungsten sur-
face. From D. Halliday, R. Resnick, and K. S. Krane (1992).
Fundamentals of Physics, 4th ed. extended edition. Vol. 2, p.
1022. Copyright c©1992 John Wiley & Sons. Reproduced by
permission of John Wiley & Sons.

Equations 14.32–14.36 can be combined to give

Wν(ν, T ) =
2πν2(hν)

c2(ehν/kBT − 1)
. (14.37)

This transformation is shown in Fig. 14.24. The amount
of power per unit area radiated in the 0.5µm interval be-
tween two of the vertical lines in the graph on the lower
right is the area under the curve of Wλ between these
lines. The graph on the upper right transforms to the cor-
responding frequency interval. The radiated power, which
is the area under the Wν curve between the correspond-
ing frequency lines on the upper left, is the same. We will
see this same transformation again when we deal with x
rays. Note that the peaks of the two curves are at different
frequencies or wavelengths.

We see in the figures above that at higher temperatures
the peak occurs at shorter wavelengths. Eq. 14.32 can be
differentiated to show that at temperature T the peak in
Wλ occurs at wavelength

λmaxT =
hc

4.9651kB
= 2.90 × 10−3 m K. (14.38)

Similarly, we can differentiate Eq. 14.37 to show that

νmax

T
=

2.82144kB

h
= 5.88 × 1010 K−1 s−1.

The product λmaxνmax = 1.705 × 108 m s−1 = 0.57c.
All this is true for a blackbody. Thermodynamic argu-

ments can be made to show that if a body does not com-
pletely absorb light at some wavelength, that is, ε(λ) < 1,
then the power emitted at that wavelength is

ε(λ)Wλ(λ, T ). (14.39)

This is the same ε(λ) that was introduced earlier in this
section. It is called the emissivity of the surface. This

FIGURE 14.26. A blackbody at temperature T within a con-
tainer with wall temperature Ts.

implies that a surface that appears blackest when it is
absorbing radiation will be brightest when it is heated.
Figure 14.25 shows a small hole in a piece of tungsten
that has been heated. The hole forms the opening to a
cavity and is therefore more absorbing than is the tung-
sten surface. When heated, the hole emits more light than
the tungsten surface.

14.8 Infrared Radiation from the Body

The body radiates energy in the infrared, and this is a
significant source of energy loss. Infrared radiation has
been used for over 40 years to image the body, but the
value of the technique is still a matter of debate. We
saw earlier how the scattering of infrared radiation by
the body can be used to learn information about tissue
beneath the surface.

Measurements of the emissivity of human skin have
shown that for 1 µm< λ ≤ 14 µm, ε(λ) = 0.98 ± 0.01.
This value was found for white, black, and burned skin
[Steketee (1973)]. In the infrared region in which the hu-
man body radiates, the skin is very nearly a blackbody.
Let us apply Eq. 14.33 to see what the blackbody radi-
ation from the human body is. The total surface area of
a typical adult male is about 1.73 m2. The surface tem-
perature is about 33 ◦C = 306 K (this is less than the
core temperature of 310 K). Therefore the total power
radiated is wtot = SWtot = SσSBT 4 = 860 W. This is
a large number, nearly 9 times the basal metabolic rate
of 100 W. The reason it is so large is that it assumes
the surroundings are at absolute zero, or that the subject
is radiating in empty space with no surroundings. When
there are nearby surfaces, radiation from them is received
by the subject, and the net radiation is considerably less
than 860 W.

The easiest arrangement for which to calculate the net
heat loss is a blackbody at temperature T surrounded
by a similar surface at temperature Ts (Fig. 14.26). At
equilibrium the temperature of both objects is the same,
T = Ts. The power emitted by the body is equal to the
power absorbed. Increasing T increases the power emitted
according to Wtot = σSBT 4. The body then emits more
power than it absorbs. Equilibrium is restored when the
body has cooled or the surroundings have warmed so that
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the temperatures are again the same. Thermodynamic ar-
guments can be made to show that the net power radiated
by the body is

wtot = SσSB(T 4 − T 4
s ). (14.40)

If the object is not a blackbody or the wall temperature
is not uniform, the net power loss is more complicated.
However, this model represents a considerable improve-
ment over our previous calculation. Suppose that the sur-
roundings are at a temperature Ts = 293 K (20 ◦C). The
net loss is

wtot = (1.73)(5.67 × 10−8)(3064 − 2934) = 137 W.

This says that a nude subject surrounded by walls at
20 ◦C would have to exercise to maintain body temper-
ature, even if the air temperature were warm enough so
that heat conduction and convection losses were zero.

If you have lived in a cold climate, you have probably
felt cold in a room at night when the drapes are open,
even though a thermometer records air temperatures that
should be comfortable. This is because of radiation from
you to the cold window. The glass is transparent only in
the visible range; for infrared radiation it is opaque and
has a high emissivity. The radiation of the cold window
back to you is much less than your radiation to it, and
you feel cold.

This same problem can occur with a premature infant
in an incubator. If the incubator is placed near a win-
dow, one wall of the incubator can be cooled by radia-
tion to the window. The infant can be cooled by radi-
ation to the wall of the incubator, even though a shiny
(low-emissivity) thermometer in the incubator records a
reasonable air temperature. One solution is to be care-
ful where an incubator is placed and insulate its walls;
another is to redesign incubators with a feedback loop
controlling the infant’s temperature.

Infrared radiation can be used to image the body. Two
types of infrared imaging are used. In infrared photog-
raphy the subject is illuminated by an external source
with wavelengths from 700 to 900 nm. The difference
in absorption between oxygenated and nonoxygenated
hemoglobin allows one to view veins lying within 2 or
3 mm of the skin. Either infrared film or a solid-state
camera can detect the reflected radiation.

Thermal imaging detects thermal radiation from the
skin surface. Significant emission from human skin occurs
in the range 4–30 µm, with a peak at 9 µm (Fig. 14.23).
The detectors typically respond to wavelengths below 6–
12 µm. Thermography began about 1957 with a report
that skin temperature over a breast cancer was slightly
elevated. There was great hope that thermography would
provide an inexpensive way to screen for breast cancer,
but there have been too many technical problems. Nor-
mal breasts have more variability in vascular patterns
than was first realized, so that differences of tempera-
ture at corresponding points in each breast are not an

accurate diagnostic criterion. The thermal environment
in which the examination is done is extremely important.
The sensitivity (ability to detect breast cancer) is too low
to use it as a screening device. Thermography has also
been proposed to detect and to diagnose various circu-
latory problems. Thermography is generally not widely
accepted [Cotton (1992); Blume (1993)], though it still
has its proponents.

Infrared radiation from the tympanic membrane
(eardrum) and ear canal is used to measure body tem-
perature. One instrument is based on pyroelectric sen-
sors, which were developed for use in motion detectors
[Fraden (1991)]. The sensors have a permanent electric
dipole moment whose magnitude changes with tempera-
ture.

14.8.1 Atherosclerotic Coronary Heart
Disease

Atherosclerotic coronary heart disease (ACHD) has been
or is being studied with every imaging technique de-
scribed in this book. All of the techniques are invasive:
a catheter is inserted into the artery in question. We ar-
bitrarily mention them all here. In ACHD a fatty plaque
forms in the lumen (interior passage way) of the artery.

The standard technique is coronary artery angiogra-
phy: the heart is imaged by x-ray fluoroscopy (see Chap-
ter 16) while a dye opaque to x rays is introduced in the
vessel. This allows accurate determination of the degree of
stenosis (blocking) of the vessel. It has been thought that
when the artery is nearly blocked, the restricted blood
flow leads to a myocardial infarct (heart attack). It has
recently been realized that smaller plaques may become
disrupted and lead to a myocardial infarct. Current re-
search seeks to learn what makes these particular plaques
vulnerable. There is an extensive literature, reviewed by
MacNeill et al. (2003) and Verheye et al. (2002).

In intravascular ultrasound (IVUS), a 20–40 MHz
transducer at the end of the catheter can detect calcium
(which deposits in areas of tissue injury). IVUS elastog-
raphy measures how the arterial wall changes during the
pressure variations of the cardiac cycle, in the hope that
changes in elasticity will indicate vulnerable plaques.

Optical coherence tomography can provide high-
resolution (20 µm) structural details.

Coronary angioscopy attempts to directly view the ar-
terial wall using a tiny fiber-optic endoscope. A serious
problem here is blood getting between the tip of the en-
doscope and the arterial wall. This has been solved by
temporarily occluding (blocking) the artery “upstream”
with a balloon catheter or by flushing the area with saline
solution.

Thermography has also been explored, first with a
temperature-sensitive thermistor, and also with an in-
frared imaging mirror. Areas of inflammation have a
somewhat higher temperature than surrounding areas.
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Both Raman spectroscopy and near infrared spec-
troscopy have been used.

In intravascular magnetic resonance imaging (Magnetic
resonance imaging is described in Chapter 18) the detec-
tor coil is made small enough to fit at the tip of the
catheter.

All of these techniques are still experimental.

14.9 Blue and Ultraviolet Radiation

14.9.1 Treatment of Neonatal Jaundice

The energy of individual photons of blue and ultravio-
let light is high enough to trigger chemical reactions in
the body. These can be both harmful and beneficial. A
beneficial effect is the use of blue light to treat neonatal
jaundice. The most common harmful effect is the devel-
opment of sunburn, skin cancer, and premature aging of
the skin.

Neonatal jaundice occurs when bilirubin builds up in
the blood. Bilirubin is a toxic waste product of the de-
composition of the hemoglobin that is released when red
blood cells die. It is insoluble in water and cannot be
excreted through either the kidney or the gut. It is ex-
creted only after being conjugated with glucuronic acid in
the liver. Bilirubin monoglucuronate and bilirubin diglu-
curonate are both water soluble. They are excreted in the
bile and leave via the gut. Some newborns have imma-
ture livers that cannot carry out the conjugation. In other
cases there is an increased rate of red blood cell death
(hemolysis) and the liver cannot keep up. The serum
bilirubin level can become quite high, leading to a se-
ries of neurological symptoms known as kernicterus. The
abnormal yellow color of the skin called jaundice is due
to bilirubin in the capillaries under the skin.

It was discovered accidentally that when the skin of a
newborn with jaundice was exposed to bright light, the
jaundice color went away. Photons of blue light have suf-
ficient energy to convert the bilirubin molecule into more
soluble and apparently less harmful forms [McDonagh
(1985)]. Photons of longer wavelength have less energy
and are completely ineffective. The standard form of pho-
totherapy used to be to place the baby “under the lights.”
Since the lights were bright and also emitted some ultra-
violet, it was necessary to place patches over the baby’s
eyes. Also, since the baby’s skin had to be exposed to
the lights, it had to be placed in an incubator to keep
it warm. A fiberoptic blanket has been developed that
can be wrapped around the baby’s torso under clothing
or other blankets. The optical fibers conduct the light
from the source directly to the skin. Eye patches are not
needed, and the baby can be fed and handled. Typical
energy fluence rates are (4–6) × 10−2 W m2 nm−1 in
the range 425–475 nm. Acceptance by nursing staff and
parents is very high [Murphy and Oellrich (1990)]. The
blanket can even be used for home treatment, though this

FIGURE 14.27. The solar spectrum and the approximate
spectrum reaching the earth after atmospheric attenuation.

is still controversial. Volume 24, Issue 4 of Health Devices
(August, 1995) is devoted to an assessment of fiberoptic
phototherapy systems.

14.9.2 The Ultraviolet Spectrum

Ultraviolet light can come from the sun or from lamps.
The maximum intensity of solar radiation is in the green,
at about 500 nm. The sun emits approximately like
a thermal radiator at a temperature of 5,800 K. Fig-
ure 14.27 shows a 5,800-K thermal radiation curve. The
power per unit area from the sun at all wavelengths strik-
ing the earth’s outer atmosphere, the solar constant, cal-
culated by regarding the sun as a thermal radiator, is
1,390 W m−2 (2 cal cm−2 min−1).

Satellite measurements give 1,372 W m−2 [Madronich
(1993)]. Because of reflection, scattering, atmospheric
absorption, and so forth, the amount actually striking
the earth’s surface is about 1,000 W m−2. Figure 14.27
also shows the effect of absorption of sunlight in the
atmosphere. The sharp cutoff at 320 nm is due to at-
mospheric ozone (O3), which absorbs strongly from 200
to 320 nm. It absorbs more weakly at wavelengths as
long as 360 nm. Molecular oxygen absorbs strongly be-
low 180 nm.

The ultraviolet spectrum is qualitatively divided into
the following regions:

UVA 315–400 nm
UVB 280–315 nm12

UVC or middle UV 200–280 nm
Vacuum UV <240 nm
Far UV 120–200 nm
Extreme UV 10–120 nm

Only the first three are of biological significance, because
the others are strongly absorbed in the atmosphere.

12In Europe the range of UVB radiation is 290–300 nm.
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FIGURE 14.28. Spectral dose rates weighted for ability to
damage DNA for three different angles of the sun from over-
head. The calculation assumes clear skies and an ozone layer
of 300 Dobson units (1 DU = 2.69 × 1020 molecule m−2).
From S. Madronich. The atmosphere and UV-B radiation at
ground level. In A. R. Young et al., eds. New York, Plenum,
pp. 1–39 (1993). With kind permission of Springer Science and
Business Media.

Madronich (1993) gives a detailed discussion of the var-
ious factors that reduce the ultraviolet energy reaching
the earth’s surface. The sensitivity of DNA decreases as
the wavelength increases. Figure 14.28 shows the solar ra-
diation reaching the ground when the sun is at different
angles from the zenith (directly overhead), weighted for
DNA sensitivity. Biological effects of ultraviolet light are
reviewed by Diffey (1991). Computer programs are avail-
able that calculate the total dose during a day at different
latitudes and altitudes.13

14.9.3 Response of the Skin to Ultraviolet
Light

There are several responses of the skin to ultraviolet light.
In order to understand them one must know something
about the anatomy and physiology of skin. The outer
layer of the skin, the epidermis, consists of three sublayers
(Fig. 14.29). A single layer of basal cells is on the inside.
Most of these cells produce keratin, a protein that gives
the outer layers of skin its strength. About 10% of the
cells are melanocytes that produce the pigment melanin.
Next comes a sublayer of about seven cells, called the
prickle layer. On top of this is a two- or three-cell layer
called the stratum granulosum or granular layer. The sur-
face is a layer of dead cells, primarily keratin but also cel-

13A computer program for evaluating solar UV exposure has been
provided, with a listing, by Schaefer (1993). See also Diffey and
Cameron (1984).

FIGURE 14.29. The epidermis. The basal layer contains the
cells from which the other layers are derived. As the cells
move toward the surface they become the prickle layer and the
stratum granulosum (granular layer). The stratum corneum is
dead cellular debris. The melanocytes, which produce melanin
granules, are in the basal layer. Reprinted from D. M. Pills-
bury and C. L. Heaton. A Manual of Dermatology. 2nd. ed.
Philadelphia, Saunders, 1980, p. 5, with permission from El-
sevier.

lular debris, called the stratum corneum or horny layer.
Basal cells are constantly produced in the basal layer,
migrate outward, become the stratum corneum, and are
sloughed off.

In order to discuss injury to tissue, both here by ultra-
violet light and in later chapters by x rays, we need to
introduce some specialized terms. The body’s immediate
(acute) response to an injury, whether it is an infection,
a bump, a cut or a burn, is the inflammatory response
described on p. 116. Prolonged (chronic) irritation may
result in abnormal cell growth. The abnormalities of cell
growth that result in organs or tissues that are larger than
normal are hypertrophy, an enlargement of existing cells,
and hyperplasia, an enlargement due to the formation of
new cells. The aberrations in cell growth patterns are
shown in Table 14.4. They are metaplasia, dysplasia, and
anaplasia. Metaplasia is reversible and goes away if the
stimulus or irritant is removed. Dysplasia is sometimes
reversible and sometimes progresses to become cancer-
ous. Anaplastic changes are present in nearly all forms of
cancer. Anaplasia may result from dysplasia, or it may
arise directly from normal cells.
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TABLE 14.4. Abnormal changes in tissue

Metaplasia A reversible change in which one cell type is re-
placed by another.

Dysplasia Variation in size, shape, and organization of the
cells. Literally, “deranged development.”

Anaplasia A marked, irreversible, and regressive change from
adult cells that are differentiated in form to more
primitive, less differentiated cells.

Differences between benign and malignant tumors

Characteristic Benign Malignant

Histologic
differentiation
(microscopic
appearance)

Often typical of the tissue of ori-
gin.

Not well differentiated; atypical
cells.

Mode of growth Expands inside a capsule. Expansive; also infiltrative, with
no capsule.

Rate of growth Progressive; usually slow; few
cells undergoing mitosis
(division) at any one time.

May be rapid, with many cells un-
dergoing mitosis.

Metastasis
(distant spread)

Absent. Frequently present.
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FIGURE 14.30. The erythema action spectrum ε(λ) for ultra-
violet light, as adopted by the CIE in 1987.

The acute effect of ultraviolet radiation is reddening
of the skin or erythema due to increased blood flow in
the dermis, the layer beneath the epidermis. This is part
of the inflammatory reaction. The amount of energy that
just produces detectable erythema is called the minimum
erythemal dose. It is difficult to measure in an objective
manner. New instrumentation allows quantitative mea-
surements [Diffey and Farr (1991)]. The 1987 reference

action spectrum adopted by the CIE14 shows the relative
sensitivity of the skin versus wavelength for the produc-
tion of erythema. It is

ε(λ) =






1.0, 250 ≤ λ ≤ 298 nm

100.094(298−λ), 298 ≤ λ ≤ 328 nm

100.015(139−λ), 328 ≤ λ ≤ 400 nm

(14.41)

This is plotted in Fig. 14.30. The minimum erythemal
dose at 254 nm is about 6 × 107 J m−2 [Diffey and Farr
(1991, Table 2)]. There is considerable scatter from one
experiment to another. When the degree of erythema is
plotted vs energy per unit area, the slope of the curve
depends on the wavelength. Early effects on skin include
sunburn, tanning (now thought to be an injury response),
and thickening. Daily exposure for 2 to 7 weeks causes a
three- to fivefold thickening of the stratum corneum.

Some patients have an abnormally high sensitivity to
ultraviolet exposure. They may exhibit abnormal pho-
tosensitivity because of various diseases or from taking
drugs such as phenothiazines (one of the classes of major
tranquilizers), sulfa drugs, dimethylchlortetracycline, the
antidiabetic sulfonureas, and thiazide diuretics and even
from drinking quinine water. Photocontact dermatitis is

14Commission International de l’Eclairage or International Com-
mission on Illumination.
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caused by interaction of photons with substances placed
on the skin, such as perfumes containing furocoumarins,
lime peel, fungi, and fluorescein dye used in lipsticks.

Moseley (1994) reviews the safety issues involving ul-
traviolet light and lasers.

14.9.4 Ultraviolet Light Causes Skin Cancer

Chronic exposure to ultraviolet radiation causes prema-
ture aging of the skin. The skin becomes leathery and
wrinkled and loses elasticity. The characteristics of photo-
aged skin are quite different from skin with normal aging
[Kligman (1989)]. UVA radiation was once thought to be
harmless. We now understand that UVA radiation con-
tributes substantially to premature skin aging because it
penetrates into the dermis. There has been at least one
report of skin cancer associated with purely UVA radi-
ation from a cosmetic tanning bed [Lever and Lawrence
(1995)]. This can be understood in the context of studies
showing that both UVA and UVB suppress the body’s
immune system, and that this immunosuppression plays
a major role in cancer caused by ultraviolet light [Kripke
(2003); Moyal and Fourtanier (2002)].

There are three types of skin cancer. Basal-cell carci-
noma (BCC) is most common, followed by squamous-
cell carcinoma (SCC). These are together called non-
melanoma or nonmelanocytic skin cancer (NMSC).
Basal-cell carcinomas can be quite invasive (Fig. 16.44)
but rarely metastasize or spread to distant organs.
Squamous-cell carcinomas are more prone to metasta-
sis. Melanomas are much more aggressive and frequently
metastasize.

Armstrong and Kricker (1995) review the epidemiology
of skin cancer. This summary is based on their paper.
There are geographic differences in incidence, the num-
ber of newly diagnosed cases per 100,000 population per
year. Estimates of incidence for the three types of skin
cancer for whites in the United States are given in Table
14.5. Melanoma incidence rates for whites in the United
States are approximately 10 times higher than those for
blacks living in the same geographic area, and 2–6 times
higher than those for Hispanics living in the same area.
An increase in melanoma incidence in professional or in-
door occupations has been observed, probably related to
an increase in recreational sun exposure. Also, the inci-
dence is higher for people born in countries with lots of
sunlight than for people who migrate to those countries,
suggesting that the number of years of exposure or the
age at exposure is important.

The incidence of melanoma increases with age until
about age 50 and slows somewhat in older people. The
incidence of NMSC increases steadily with age. The inci-
dence of melanoma from the early 1960s to the late 1980s
has increased at a rate of about 5% per year in popula-
tions of European origin, while increasing much less or
not at all in other populations. Most of this increase has

been on the trunk, particularly in men. Similar increases
in NMSC have been seen in the United States, primarily
for BCC on the trunk. (It is much more difficult to obtain
accurate figures for NMSC than for melanoma, because
NMSC data are not typically kept since it has a much
lower mortality.) The epidemiological data suggest an as-
sociation between skin cancer and exposure to sunlight.
There are also laboratory studies of the damage to cells
caused by ultraviolet light. Armstrong and Kricker con-
clude that “the evidence leaves little room for doubt that
sun exposure causes both melanoma and NMSC.” A pat-
tern of infrequent, intense exposure to ultraviolet light is
more likely to lead to melanoma than relatively continu-
ous exposure; a plausible explanation has been proposed
[Gilchrist et al. (1999)].

14.9.5 Protection from Ultraviolet Light

Protection from the sun certainly reduces erythema and
probably reduces skin cancer. Protection is most impor-
tant in childhood years, both because children receive
3 times the annual sun exposure of adults and because
the skin of children is more susceptible to cancer-causing
changes The simple sun protection factor (SPF) alone
is not an adequate measure of effectiveness, because it
is based on erythema, which is caused mainly by UVB.
Some sunscreens do not adequately protect against UVA
radiation. Buka (2004) reviews both sunscreens and in-
sect repellents for children. He finds several products that
adequately block both UVA and UVB. They are based on
zinc oxide, titanium oxide, or avobenzone (Parsol 1789).
An adequate amount must be used: for children he rec-
ommends 1 fluid ounce (30 ml) per application.

One study of the immunosuppressive protection factor
(IPF) was done by exposing to UV light through var-
ious sunscreens the skin of volunteers who have a skin
allergy to nickel. After exposure their skin is then coated
with a nickel compound. If the irradiated skin showed
less allergic response, the UV had caused immunosup-
pression [Poon et al. (2003)]. They showed that the IPF
did not correlate strongly with the traditional SPF, but
correlated strongly with the UVA protective factor. (The
UVA-PF is determined by the degree of tanning.) While
it is plausible that immunosuppression means that the
body can less effectively reject tumors that begin to
grow, direct evidence must wait for additional experi-
ments [Kripke (2003)].

Because of the high reflectivity of sand and snow, beach
umbrellas provide at most a factor of 2 protection. Hats
need to have a brim that is at least 7.5 cm wide [Diffey
and Cheeseman (1992)].

Automobile window glass provides protection against
UVB; however, untinted glass transmits enough UVA
to present a significant exposure over several hours of
driving [Kimlin and Parisi (1999)].
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TABLE 14.5. Estimates of skin cancer incidence rates per 100,000.a

Cancer type Population Males Females

Melanoma White, New Orleans, 1983–87 6.9 5.3
White, Hawaii, 1983–1987 22.2 14.9

SCC White, U.S., 1994 (rough est.) 100 45
BCC White, U.S., 1994 (rough est.) 400 200

aSimplifications made by the authors from data in Armstrong and

Kricker (1995).

14.9.6 Ultraviolet Light Damages the Eye

The effect of ultraviolet light on the eye has been reviewed
by Bergmanson and Söderberg (1995). Acute effects in-
clude keratitis (inflammation of the cornea, the transpar-
ent portion of the eyeball) and conjunctivitis (inflamma-
tion of the conjunctiva, the mucous membrane covering
the eye), also known as snow blindness or welder’s flash.
Laboratory studies show that ultraviolet-light exposure
causes thickening of the cornea and disrupts corneal
metabolism. UVC radiation is absorbed by the cornea.
The crystalline lens absorbs UVB and, in older persons,
UVA and visible light. Only a little UVA light reaches the
retina. The retina is also susceptible to trauma from blue
light. Low doses cause photochemical changes in tissues,
while high doses also cause thermal damage.

Chronic low exposure to ultraviolet light causes perma-
nent damage to the cornea, known as droplet keratopathy
or spheroid degeneration. UVA radiation is a significant
factor in the development of a pterygium, a hyperplasia
of the conjunctiva that may grow over the cornea and
impair sight. Rarely, it causes blindness.

Properly designed spectacles and contact lenses can
protect the eye against ultraviolet light [Giasson et al.
(2005)]. However, both must be designed to absorb ul-
traviolet. Soft contacts are larger and provide more pro-
tection than rigid gas-permeable contacts. Protection
from high ultraviolet light-intensity requires sunglasses
or welding goggles. Wide-brimmed hats also help protect
the eye from ultraviolet light.

14.9.7 Ultraviolet Light Synthesizes Vitamin D

Ultraviolet light has one beneficial effect: it allows the
body to synthesize vitamin D. Brief exposures are suffi-
cient. Many foods are fortified with vitamin D, which has
caused occasional overdoses [Haddad (1992)].

14.9.8 Ultraviolet Light Therapy

Ultraviolet light is used in therapy, primarily for the
treatment of a skin disease called psoriasis. Psoriasis is
an inflammatory disorder in which the basal cells move
out to the stratum corneum in much less than the nor-
mal 28 days. The skin is red and has thick scaling. UVB
radiation, often in conjunction with coal tar applied to

the skin, has been used as a treatment for psoriasis since
the 1920s. In the 1960s a treatment was developed that
uses UVA and a chemical either applied to the skin or ad-
ministered systemically (photochemotherapy or PUVA—
psoralen UVA). The chemical is a psoralen derivative. It
affects DNA, and when the affected DNA is irradiated
with ultraviolet light, cross-links form, preventing repli-
cation. There are well-defined guidelines for the use of
PUVA [Studniberg and Weller (1993)]. Details of PUVA
therapy are found in Grossweiner (1994, pp. 162–167).
The treatment works, but it has also been found to in-
crease the risk of NMSC [Nijsten and Stern (2003); Paul
(2003)].

PUVA therapy is also useful in cutaneous T-cell lym-
phoma, a disease that first becomes apparent on the skin
and then moves to internal organs. Another treatment,
extracorporeal photopheresis, involves removing the pa-
tient’s blood, extracting the red blood cells, irradiating
the plasma and white blood cells with UVA light out-
side the body, and returning the red blood cells and the
irradiated white blood cells and plasma to the patient
[Grossweiner (1994, pp. 167f); Knobler et al. (2002)].

Recently it has been shown that children who are re-
jecting a transplant in spite of conventional immunosup-
pressive therapy can benefit from extracorporeal pho-
totherapy [Messina et al. (2003)].

14.10 Heating Tissue with Light

Sometimes tissue is irradiated in order to heat it; in other
cases tissue heating is an undesired side effect of irra-
diation. In either case, we need to understand how the
temperature changes result from the irradiation. Exam-
ples of intentional heating are hyperthermia (heating of
tissue as part of cancer therapy) or laser surgery (tissue
ablation15). Tissue is ablated when sufficient energy is
deposited to vaporize the tissue. Heating may be a side
effect of phototherapy.

The temperature changes are often modeled by a heat-
flow equation containing a source term for the deposition
of photon energy and a term representing flow of energy
away from the site in warmed blood. This is one form of

15In surgery, ablation means the excision or amputation of tissue.
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the bioheat equation, which can include additional terms
in more complicated models.

The linear equation for heat conduction was mentioned
as one form of the transport equation in Table 4.3:

jH = −K
dT

dx
,

with the units of the thermal conductivity K being J
K−1 m−1 s−1. When extended to three dimensions and
combined with the equation of continuity (conservation
of energy), this gives a heat-conduction equation with the
same form as Fick’s second law for diffusion:

ρtCt
∂T

∂t
= K∇2T. (14.42)

Here ρt is the density of the tissue (kg m−3) and Ct the
tissue specific heat capacity (J K−1 kg−1). The left-hand
side of the equation is the rate of energy increase in the
tissue per unit volume, and the right-hand side is the net
rate of heat flow into that volume by conduction—energy
flowing because warmer molecules with more kinetic en-
ergy transfer energy to cooler neighbors in a collision
process analogous to a random walk. This model is for
solids; in liquid one must also consider convection.

We now add a term for energy carried away by flowing
blood. In the linear approximation it is proportional to
the temperature difference between the tissue and the
blood supply and also to the rate of blood flow. Units for
this term can be quite confusing and need to be examined
in detail. Blood flow is usually defined by physiologists as
the perfusion P , which is the volume flow of blood per
unit mass of tissue. The SI units for P are

P
m3 (blood)

[kg (tissue)] s
.

Its product with the tissue density is the volume flow of
blood per unit volume of tissue:

ρtP =
[kg (tissue)]

[
m3 (blood)

]

[m3 (tissue)] [kg (tissue)] s
=

m3(blood)
m3(tissue) s

= s-1.

The quantity is analogous to clearance (Chapter 2). Its
inverse is the time it takes for a volume of blood equal
to the tissue volume to flow through the tissue. Each
term of our heat-flow equation has units of energy per
unit volume of tissue per second. If we assume that the
blood enters the tissue at temperature T0 and leaves at
temperature T , the energy lost by the volume is the heat
capacity of blood, Cb, times its mass per unit volume
times the temperature rise. The new term in the heat-
flow equation is

Cb
J

K kg (blood)
× ρb

kg (blood)
m3 (blood)

× ρtP
m3 (blood)

m3 (tissue) s
× [(T − T0) K]

or
CbρbρtP (T − T0)

J
m3 (tissue) s

,

so the heat-flow equation with blood flow added is

ρtCt
∂T

∂t
= K∇2T − CbρbρtP (T − T0).

The last term we consider is the energy deposited by
the photon beam. In Sec. 14.5 we defined the particle flu-
ence and particle fluence rate for photons. The definition
can be used for both collimated beams and diffuse radia-
tion. In a similar way we define the energy fluence Ψ as
the ratio of the expectation value of the amount of photon
energy traversing a small sphere of radius a divided by
the area of a great circle of the sphere, πa2. The energy
fluence rate is

ψ =
dΨ
dt

. (14.43)

The energy per unit volume lost by a beam with en-
ergy fluence rate ψ can be determined by the following
argument. Consider only the fluence rate due to photons
traveling in a certain direction. Orient the z axis in that
direction and consider a small volume dSdz. The rate at
which energy flows into the volume is ψdS, and the rate
at which it is absorbed is ψdSµadz. Therefore, the rate
of absorption per unit volume is µaψ, independent of the
direction the photons travel. The final heat-flow equation
is

ρtCt
∂T

∂t
= K∇2T − CbρbρtP (T − T0) + µaψ. (14.44)

For monoenergetic photons the photon energy fluence
rate is related to the photon fluence rate by

ψ = hνϕ. (14.45)

In general, one must first solve Eq. 14.26 to determine ψ
and then solve Eq. 14.44. We could add other terms, such
as one for the thermal energy produced by metabolism
within the tissue.

Sometimes Eq. 14.44 is written with all terms divided
by ρtCt, and sometimes with all terms divided by K. If
we divide by ρtCt the equation is similar in form to the
diffusion equation in Chapter 4:

∂T

∂t
= D∇2T − Cb

Ct
ρbP (T − T0) +

µa

ρtCt
ψ, (14.46)

where

D =
K

ρtCt
. (14.47)

Values of D are in the range (0.5–2.5) × 10−7 m2 s−1

depending on the tissue type [Grossweiner (1994), pp.
127–129]. We saw in Chapter 4 that for a spreading
Gaussian solution to the diffusion equation the variance is
σ2

x = σ2
y = σ2

z = 2Dt. The thermal relaxation time, that
is, the average time for the temperature rise to spread a
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distance x, is therefore x2/2D in one dimension, x2/4D
in two dimensions, and x2/6D in three dimensions.

There is an interplay between the thermal conductiv-
ity term and the blood-flow term. The thermal penetra-
tion depth δth is the distance at which the two terms are
comparable. For larger distances blood flow is more im-
portant. To estimate the penetration depth, assume that
T − T0 changes over this distance. Then the Laplacian
is approximated by ∇2T ≈ (T − T0)/δ2

th. Equating the
diffusive and blood flow terms gives

D
T − T0

δ2
th

=
Cb

Ct
ρbP (T − T0)

so

δ2
th = D

Ct

Cb

1
ρbP

=
K

ρtCbρbP
. (14.48)

Grossweiner (1994) discusses values for the various tissue
parameters, their temperature dependence, and simple
models for tissue heating and ablation.

14.11 Radiometry and Photometry

This section develops some of the concepts and vocabu-
lary of radiometry, the measurement of radiant energy.
We will be considering five types of radiant energy in the
remaining chapters: infrared radiation, visible light, ultra-
violet radiation, x rays, and charged particles. Concepts
for the measurement of radiant energy were developed si-
multaneously in different disciplines and even in different
wavelength regions, depending on the purpose and the
measurement techniques that were originally available.

It is recommended that the term photometry be re-
served for measurement of the ability of electromagnetic
radiation to produce a human visual sensation, that ra-
diometry be used to describe the measurement of radiant
energy independent of its effect on a particular detec-
tor, and that actinometry be used to denote the mea-
surement of photon flux or photon dose (total number of
photons) independent of any subsequent photoactivated
process [Zalewski (1995), p. 24.7].

This section reviews radiometric units and introduces
a few of the related units from photometry and actinom-
etry. Nomenclature is slightly different for x rays and
charged particles.

Section 14.5 described two quantities, the photon flu-
ence and the photon fluence rate. The energy fluence and
energy fluence rate were introduced in Sec. 14.10. These
are reviewed and compared here so that all the defini-
tions are in one place. The definitions are summarized in
Table 14.6. Symbols are shown for quantities used in this
text. The third column shows symbols that have been
recommended by the American Association of Physicists
in Medicine [AAPM 57 (1996)]. They often differ from
the usage in this book.

14.11.1 Radiometric Definitions

Radiant Energy and Power

The total amount of energy being considered is the ra-
diant energy R, measured in joules. It can be the energy
emitted by a source, transferred from one region to an-
other, or received by a detector. We use subscripts s and
d to refer to the source and detector. In optics the ra-
diant energy is electromagnetic radiation. In radiologi-
cal physics we will also consider energy transported by
charged particles such as electrons, and protons, and by
neutral particles such as photons and neutrons.

The rate at which the energy is radiated, transferred,
or received is the radiant power P (watts).

Point Source: Radiant Intensity

The simplest source is a point that radiates uniformly
in all directions. The radiant intensity or radiant power
per unit solid angle (Appendix A) leaving a point source
radiating uniformly in all directions is

dP

dΩ
=

P

4π
(W sr-1). (14.49)

The power per unit area falls as 1/r2, while the power
per unit solid angle is independent of r.16 A point source
need not radiate uniformly in all directions. For example,
a searchlight 1 m in diameter viewed from a point several
kilometers away appears to be a point. The light might
be confined to a cone with a half-angle of 1◦. Then a plot
of dP/dΩ might look like Fig. 14.31. The total power
radiated by the point source is

P =
∫

dP

dΩ
dΩ. (14.50)

If the power per unit solid angle is symmetric about the
axis of the beam and θ is the angle with respect to the
beam axis, then (see Appendix L)

P =
∫ π

0

dP

dΩ
2π sin θ dθ.

Extended Source: Radiance

The radiant energy leaving a source can travel in many
different directions. The radiation striking a surface can
come from many different directions. If we consider any
small area in space there will generally be radiation pass-
ing through that area traveling in many different direc-
tions. In each case the radiant energy or the radiant power
is proportional to the magnitude of the small area pro-
jected perpendicular to the direction the energy is trav-
eling, and to the size of the solid angle—the range of
directions—being considered.

16The lighting industry calls dP/dΩ the intensity, while in phys-
ical optics intensity is used for power per unit area. We will try to
avoid using the word intensity alone.
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TABLE 14.6. A comparison of radiometric, photometric, and actinometric quantities. Symbols are given for those quantities
used in this text. The column “Symbol sometimes used” gives an alternate symbol that is often found. See, for example,
AAPM57 (1996).
Radiometric

quantity

Symbol

used

here

Symbol

some-

times

used

Units Photometric

quantity

Symbol Units Actinometric

quantity

Symbol Units

General quantities

Radiant energy

emitted, transferred,

or received.

R Q J Luminous energy. Rv lm s Number of photons

emitted, transferred,

or received.

N

Radiant flux or

radiant power

emitted, transferred,

or received.

P P or Φ

or Ṙ

W Luminous flux Pv lm Photon flux s−1

Radiance: the

radiant power per

unit solid angle per

unit area of surface

projected

perpendicular to the

radiant energy. It

can be defined on

the surface of a

source or detector or

at any point on the

path of a ray of

radiation.

L r W m−2

sr−1
Luminance Lv candela

m−2 (cd

m−2)

Photon flux

radiance

m−2 sr−1

Energy fluence: the

ratio of the

expectation value of

the radiant energy

striking a small

sphere to the area of

a great circle of the

sphere.

Ψ H0 J m−2 Photon (or particle)

fluence: the ratio of

the expectation

value of the number

of photons striking a

small sphere to the

area of a great circle

of the sphere.

Φ m−2

Energy fluence rate:

the energy fluence

per unit time.

ψ E0 W m−2 Photon fluence

rate: the photon

fluence per unit time

φ m−2 s−1

Quantities emitted from a surface

Radiant intensity:

radiant power or

flux emitted by a

point source in a

given direction per

unit solid angle.

I W sr−1 Luminous intensity lm sr−1

or candela

(cd)

Photon flux

intensity.

sr−1

Exitance: radiant

power or flux

emitted or reflected

per unit area.

Wr W m−2 Luminous exitance lm m−2 Photon exitance m−2

Quantities incident on a surface

Irradiance: the

power per unit area

incident on a

surface.

E E W m−2 Illuminance lm m−2 or

lux

Photon flux

irradiance

m−2 s−1

Radiant exposure:

radiant energy

arriving per unit

area

H J m−2 Luminous exposure lm s m−2 Photon flux

exposure

m−2

The radiance L is the amount of radiant power per unit
solid angle per unit surface area projected perpendicular
to the direction of the radiant energy. The radiance of
radiation traveling through a small area in space is some-
times difficult to visualize. Figures 14.32 and 14.33 may
help. Figure 14.32 shows radiation leaving three points on
a surface at the left. Some of it passes through the surface

represented by the vertical line on the right. The energy
passing through that surface has components from each
point on the radiating surface. Figure 14.33 shows radia-
tion in a very narrow cone of solid angles passing through
surface dS whose normal is at an angle θ with the beam
direction. The radiance is the power per unit solid angle
divided by dS cos θ.
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θ

d P
d Ω

FIGURE 14.31. A plot of power per unit solid angle as a
function of angle from the axis of a hypothetical searchlight.

FIGURE 14.32. Radiation emitted from different points of the
surface on the left strikes the surface on the right.

We have already seen the energy fluence Ψ, which is
a measure of the total radiation entering or leaving a
small volume of space. It is the total amount of energy
striking a small sphere of radius a divided by the area of

dS

 θ dS cos θ 

FIGURE 14.33. Surface area dS, projected perpendicular to
the direction of the radiation, has projected area dS cos θ.

a great circle πa2 in the limit as the radius approaches
zero. Strictly speaking, if we repeat the experiment many
times, the amount of energy striking the sphere fluctu-
ates. The energy fluence is defined in terms of the ex-
pectation value of this fluctuating quantity. Figure 14.12
shows two examples. In Fig. 14.12(a), a parallel beam
with energy R passes through a circular area πa2 for a
time ∆t. In Fig. 14.12(b), a total amount of energy R
strikes a sphere of radius a from many different direc-
tions. In both cases Ψ = R/πa2. Notice that some of the
energy passing through the sphere passes outside a great
circle that is not perpendicular to the direction in which
the radiation is traveling, but it does pass through a great
circle constructed perpendicular to its direction of travel.

The energy fluence rate is the amount of energy fluence
per unit time (which for the small sphere is P/πa2):

ψ =
dΨ
dt

. (14.51)

The exitance Wr is the radiant power or flux emitted
per unit area of a surface.

Energy Striking a Surface: Irradiance

Now consider the energy striking a surface. The irradi-
ance E is the power per unit area incident on a surface.
The strict definition is the ratio of the power incident on
an infinitesimal element of detector surface dSd to the
area projected perpendicular to the direction the radiant
energy is traveling. If θd is the angle between a normal
to the surface and the direction of propagation, the irra-
diance is

E =
dP

cos θd dSd
. (14.52)

For a point source radiating uniformly in all directions,
the power at distance r is spread uniformly over a sphere
of area 4πr2, so the irradiance on a detecting surface per-
pendicular to a line back to the source is

E =
P

4πr2
(isotropic point source). (14.53)

For an extended source the power emitted by the sur-
face is proportional to both the size of the emitting area



386 14. Atoms and Light

Ω

 r 

d

dSs

θsdSs cos

θs

θ
d

ddS
cos θ

dddS

FIGURE 14.34. Radiant energy is emitted from a source of
surface area dSs into a cone of solid angle dΩ. The direction
of emission is at an angle θs with the normal to the surface.
A detecting surface has an element of area dSd oriented at
a direction θd to the direction of travel of the radiation from
source to detector. The shaded rectangles show the projections
of dSs and dSd perpendicular to the line of length r from
source to detector.

dSs and the solid angle of the cone dΩ into which the en-
ergy is radiated, as shown in Fig. 14.34. The solid angle
subtended by a small element of area on the detector is
dΩ, as shown by the dashed lines. The amount of power
radiated into dΩ from dSs is

LdSsdΩ =
d2P

cos θs dSs dΩ
dSs dΩ, (14.54)

where the radiance L depends on the direction of emis-
sion as well as the location on the surface. This equation
is valid whether the energy is emitted directly from the
source (as in a glowing object) or is scattered by the sur-
face (as from this page). The total power emitted is

P =
∫ ∫

LdSs dΩ. (14.55)

The distinction between angles and areas for the source
and the detector is shown in Fig. 14.34. Note that the
solid angle subtended at the source by dSd is dΩ =
dSd cos θd/r2. The power into an area dSd of the detector
from area dSs of the source is therefore

d2P =
L cos θs cos θd dSs dSd

r2
. (14.56)

Plane-wave Relationships

We can derive some useful relationships for a beam of col-
limated radiation all traveling in one direction (a plane
wave). Imagine that the collimated beam comes from
a distant point source radiating power P . The energy
fluence rate at distance r from the source is the power
through a sphere of radius a divided by πa2:

ψ =
πa2P

4πr2

1
πa2

=
P

4πr2
.

This is also the power per unit area incident on a circle of
radius a oriented perpendicular to the beam. Therefore,
for a collimated beam,

ψ = E (collimated beam). (14.57)

Isotropic Radiation: Lambert’s Law

In general, L may depend on the angle of emission. In
some cases, such as reflection from a “perfectly diffuse”
surface, the radiation is isotropic : L = L0. This is called
Lambert’s law of illumination or Lambert’s cosine law.17

A surface described by Lambert’s law will have equal
power per unit area in the image regardless of the view-
ing angle. Look at surfaces around you. Do similar sur-
faces illuminated the same way appear to have the same
brightness when they are oblique to your line of vision?

The power incident on a small element of surface area
dSd from angle dΩ is L0dSd cos θd dΩ, where θd is the
angle that the incident radiation makes with the normal
to the surface. The solid angle is 2π sin θd dθd [see Fig.
14.11(b)]. The irradiance is

E =
dSd2πL0

∫ π/2

0
cos θd sin θddθd

dSd
= πL0. (14.58)

The same geometry is used with dSs to show that for
isotropic radiation the exitance is

Wr = πL0. (14.59)

To determine the energy fluence rate for isotropic ra-
diation consider a small sphere of radius a and the ra-
diation arriving in a small solid angle dΩ about a line
perpendicular to a great circle of the sphere. The power
is L0πa2dΩ. This argument applies for any direction of
the radiation. Integrating over all directions gives the to-
tal power L0πa24π. Therefore, for isotropic (Lambertian)
radiation,

ψ = 4πL0 = 4E (isotropic radiation). (14.60)

The Spectrum

When the energy is not monochromatic, we define the
amount of energy per unit wavelength interval as Rλ,
with units J m−1 or J nm−1. The total energy between
wavelengths λ1 and λ2 is

∫ λ2

λ1

Rλ(λ) dλ (14.61a)

and between frequencies ν1 and ν2 it is
∫ ν2

ν1

Rν(ν)dν. (14.61b)

The relationship between Rλ and Rν is the same as in
Eqs. 14.35 and 14.36.

17Sometimes Eq. 14.56 is defined without the factor cos θs, in

which case Lambert’s law has the form L(θs) = L0 cos θs.
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FIGURE 14.35. The spectral efficiency functions for the CIE
standard eye. Plotted from data in Table 2 of Zalewski (1995).

14.11.2 Photometric Definitions

For the photometric units we also need to know the sen-
sitivity of the eye. The eye contains two types of light
receptors: rods, which have no color discrimination but
are most sensitive, and cones, which are less sensitive and
can discriminate color. Photopic vision is normal vision
at high levels of illumination in which the eye can dis-
tinguish colors. Scotopic vision occurs at low light levels
with a dark-adapted eye. The CIE has established the
spectral efficiency function V for the eye of a standard
observer for both photopic vision [V (λ)] and scotopic vi-
sion [V ′(λ)]. Both are normalized to unity at their peak
(Fig. 14.35).

The luminous flux Pv in lumens (lm) is the analog of
the energy flux P . The peak sensitivity for photopic vision
is for green light, λ = 555 nm. At that wavelength the
relationship between P and Pv is

P = 1 W ⇐⇒ Pv = 683 lm,
Pv = 1 lm ⇐⇒ P = 1.464 × 10−3 W. (14.62a)

The ratio Pv/P at 555 nm is the luminous efficacy for
photopic vision, Km = 683 lm W−1. For a distribution of
wavelengths,

Pv = Km

∫ 700 nm

400 nm

V (λ)Pλ(λ) dλ. (14.62b)

An analogous relationship holds for scotopic vision, with
K ′

m ≈ 1, 700 lm W−1:

Pv(scotopic) = K ′
m

∫ 700 nm

400 nm

V ′(λ)Pλ(λ) dλ. (14.62c)

If P were spread uniformly over the visible spectrum,
the overall conversion efficiency would be about 200 lm
W−1. A typical incandescent lamp has an efficiency of
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FIGURE 14.36. Transmission of light through 2 cm of water,
compared to the spectral efficiency of the eye.

10–20 lm W−1, while a fluorescent lamp has an efficiency
of 60–80 lm W−1. The number of lumens per steradian is
the luminous intensity, in lm sr−1. The lumen per stera-
dian is also called the candle. Other units are shown in
Table 14.6.

The peak of the eye’s spectral efficiency function is at
about the peak of the sun’s blackbody spectrum when
plotted as a function of wavelength (Eq. 14.32). Some
authors have speculated that this is because we evolved
in sunlight. There is a severe problem with this argu-
ment. The spectral efficiency function has the same value
whether we consider a particular wavelength or its corre-
sponding frequency. The blackbody spectrum is a distri-
bution function—per wavelength interval (Eq. 14.32) or
per frequency interval (Eq. 14.37).18 The sun’s blackbody
spectrum plotted vs. frequency peaks at a frequency cor-
responding to a wavelength of 880 nm, far from the peak
of the spectral efficiency function (See Fig. 14.24).

Soffer and Lynch (1999) have discussed this at length
and describe several of the errors in the literature. The
structures in the human eye, as in all vertebrate eyes, are
mostly water. All vertebrate eyes are sensitive between
390 and 760 µm, with a peak at 500–550 µm. It is inter-
esting to compare the spectral efficiency function with the
transmission of light through 2 cm of water (Fig. 14.36).
The eye’s response is pretty well centered in this absorp-
tion window. Many insects, crustaceans, fish, birds and
reptiles have ultraviolet-sensitive receptors [Kevan et al.
(2001)]; their eyes do not contain water.

18Other distribution functions are also useful, for example, per
logarithmic frequency or wavelength interval. See Soffer and Lynch
(1999) or Heald (2003).
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FIGURE 14.37. A simplified cross section of the left eye,
viewed from above.
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FIGURE 14.38. When light passes from one medium to an-
other with a different index of refraction. All angles are mea-
sured with respect to the normal to the surface

14.11.3 Actinometric Definitions

The actinometric quantities count the number of photons.
For monochromatic photons the energy is the number of
photons times hν. Therefore, an actinometric quantity is
easily obtained when the radiometric quantity is known.
The units are shown in Table 14.6.

14.12 The Eye

This section presents a simple model for the eye, sufficient
for us to understand how refractive errors are corrected
and to see how photons strike the retina, so that the sen-
sitivity of the eye can be determined in the next section.

A simplified cross section of the eye is shown in Fig.
14.37. The principal components through which the light
passes are the curved, thin, transparent cornea, the aque-
ous, the lens, the vitreous, and the retina. The iris defines
the area of the pupil, the opening in front of the lens
through which light passes.

h

 u   v  

h' 

 u   v  

α
α

dS' dS
a2Ω = πa2

u2 π

FIGURE 14.39. A source of height h′ emits light in all direc-
tions. Some of this light is intercepted by a lens and focused
in an image. (a) Relation between object and image distances
and sizes. (b) Collection of light by the lens.

When light passes through a surface from one medium
into another, part is reflected and part is transmitted.
The transmitted light usually changes direction, a process
called refraction. Figure 14.38 shows the angles involved,
all measured with respect to the dashed line, which is
normal to the surface at the point where the light ray
strikes. The angle the reflected light makes with the nor-
mal is the same as the angle of incidence, θr = θ1. The
direction the refracted light travels is described by Snell’s
law, n1 sin θ1 = n2 sin θ2.

When light from an object strikes the eye, it must be
refracted to form an image on the retina. Most of the
refraction takes place at the surface between the air and
the cornea. The cornea is very thin, and a light ray is
deflected only a very small distance before it strikes the
aqueous. Thus, most of the refraction occurs because of
the difference between the index of refraction of the air
(n = 1.00) and the aqueous (n = 1.33). The light then
passes through the crystalline lens (n = 1.42) and the
vitreous (n = 1.33). The lens changes shape to provide
the adjustable part of the overall refraction.

A number of models at varying levels of sophistication
are used to describe the formation of the image on the
retina. The most detailed take into account the refraction
at each surface where the index of refraction changes, in-
cluding variations in different layers of the lens itself. Oth-
ers treat only the refraction at the air–cornea, aqueous–
lens, and lens–vitreous interfaces. The simplest model,
and the one we will use, treats the eye as a thin lens
of adjustable focal length f , with object distance u and
fixed image distance v, as shown in Fig. 14.39. The object
and image distances and focal length are related by the
thin-lens equation found in any general physics book:

1
u

+
1
v

=
1
f

. (14.63)

When the object is infinitely far away the image distance
is equal to the focal length of the lens, v = f . A typical
value for v is 1.7 cm. As the object is brought closer to
the eye v cannot change, but the lens changes to decrease
the focal length.



14.12 The Eye 389

TABLE 14.7. Convergence power of the eye in diopters.

Refracting Relaxed Most converging
structure normal eye eye (age 25)

Air-cornea surface 45 45
Lens 14 24
Entire eye 59 69

In ophthalmology and optometry it is customary to de-
scribe the refraction of the eye in terms of the vergence.
When light rays are emanating from a point they are di-
verging, and the vergence is negative. When they are com-
ing toward a point the vergence is positive and they are
converging. When they are parallel, the vergence is zero.
Quantitatively, the vergences for the geometry shown in
Fig. 14.39 are

U = − 1
u

(diverging from the object),

V =
1
v

(converging to the image),

F =
1
f

(a converging lens).

(14.64)

The relationship between the vergences is

V = F + U. (14.65)

When the distances are in meters, the vergences are in
diopters.

A given eye requires a particular value of V to form the
image. The converging power of all the refracting surfaces
in the eye must be F = V in order to focus on an object
infinitely far away. Closer objects require more conver-
gence from the eye, which is provided by the lens. Table
14.7 shows typical values for the converging power of the
eye. Most of the convergence is provided by the front
surface. When the eye is relaxed, F = V = 59 diopters,
U = 0, and the eye is focused on an object infinitely far
away. With F = 69 diopters, U = 10, and the eye is fo-
cused on an object 0.1 m away. This ability of the lens to
change shape and provide additional converging power is
called accommodation.

In the normal or emmetropic eye, the length of the
eye is such that when the lens is relaxed, rays with no
vergence (parallel rays from a source infinitely far away)
are focused on the retina (V = F ).

In nearsightedness or myopia, parallel rays come to a
focus in front of the retina. The eye is slightly too long
for the shape of the cornea (F > V ). The total converg-
ing power of the eye is too great, and the relaxed eye
focuses at some closer distance, from which the rays are
diverging. Accommodation can only increase the converg-
ing power of the eye, not decrease it, so the unassisted
myopic eye cannot focus on distant objects. Myopia can
be corrected by placing a diverging spectacle or contact
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FIGURE 14.40. Accommodation vs age. There is considerable
variation between individuals, shown by the error bars.

lens in front of the eye, so that incoming parallel rays are
diverging when they strike the cornea.

The farsighted or hypermetropic eye does not have
enough converging power (F < V ). The subject can focus
on distant objects by providing some additional converg-
ing power from the lens, but then the lens cannot provide
enough converging power to focus on nearby objects. The
corrective lens provides additional convergence.

When the eye is not symmetric about an axis through
the center of the lens, the images from objects oriented
at different angles in the plane perpendicular to the axis
form at different distances from the lens. This is called
astigmatism, and it can be corrected with a spectacle lens
that is not symmetric about the axis. The lack of sym-
metry usually occurs at the surface of the cornea, so a
contact lens can restore the symmetry.

Surgery to change the radius of curvature of the cornea
can also be used to correct errors of refraction.

As we age the accommodation of the eye decreases, as
shown in Fig. 14.40. A normal viewing distance of 25 cm
or less requires 4 diopters or more of accommodation. The
graph shows that this limit is usually reached in the early
40s. Bifocals provide a portion of the spectacle lens that
has increased converging power, usually in the bottom
part of the lens. This can be done either by grinding the
lower portion of the lens with a different radius of curva-
ture or by fusing glass with a different index of refraction
into the lens.

The sharpness of the image is reduced by two other
effects: chromatic aberration and spherical aberration.
Chromatic aberration occurs because the index of refrac-
tion varies with wavelength. There is nearly a 2-diopter
change in overall refractive power from the red to the
blue. Spherical aberration occurs because the refractive
power changes with distance from the axis of the eye.
This is different from astigmatism, which is a departure
from symmetry at different angles about the axis.
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Retina

FIGURE 14.41. Depth of field is illustrated by this ray dia-
gram. The retina is slightly behind the plane of focus. In dim
light, the pupil of the eye is fully open and light from a point
object is spread out over the larger circle on the retina. When
the light is brighter and the pupil is smaller, light from the
same point object is confined to the smaller circle defined by
the dashed lines.

A concept important in both vision and photography
is depth of field. The retina has a finite spatial resolu-
tion, so the image of a point still appears sharp, even if
it is slightly out of focus. Consider Fig. 14.41. The retina
is behind the plane in which the image is in focus. In
dim light, the pupil of the eye is fully open and light
from a point object is spread out over the larger circle on
the retina defined by the solid rays. In brighter light the
pupil is smaller, and light from the same point object is
confined to the smaller circle defined by the dashed lines.
As long as this circle is smaller than the spatial resolu-
tion, the image is sharp. This is why we can see better in
brighter light. An older person whose accommodation is
less and who is trying to avoid bifocals often finds that
bright light makes it easier to see nearby objects.

Point-spread functions and modulation transfer func-
tions can be used to describe the image. [See, for exam-
ple, Charman (1995) or Grievenkamp et al. (1995).] A
simpler model describes the image by a Gaussian with
a certain standard deviation, equal to the square root
of the sum of the variances due to various effects. The
maximum photopic (bright-light) resolution of the eye
is limited by four effects: diffraction of the light pass-
ing through the circular aperture of the pupil (5–8 µm),
spacing of the receptors (≈ 3 µm), chromatic and spher-
ical aberrations (10–20 µm) and noise in eyeball aim (a
few micrometers) [Stark and Theodoris (1973)]. The to-
tal standard deviation is (62 + 32 + 152 + 52)1/2 = 17
µm in the image on the retina. Since the diameter of the
eyeball is about 2 cm, this corresponds to an angular size
(α in Fig. 14.39) of (17 × 10−6)/(2 × 10−2) = 8.5 × 10−4

rad = 0.048 ◦ = 2.9 minutes of arc. [For further discus-
sion, see Cornsweet (1970, Chapter 3).]

14.13 Quantum Effects in
Dark-Adapted Vision

The visual process involves two steps. First, the eye cre-
ates an image of an external object on the retina as de-
scribed above. Then the photon stimulus is transduced
into neurological signals that are interpreted by the cen-

FIGURE 14.42. An example of a 10-minute-of-arc field super-
imposed on the rods and cones in the retina in the region of
greatest sensitivity.

tral nervous system. The discussion here is limited to a
classic experiment on scotopic vision that shows the im-
portance of quantum effects (shot noise) in human vision
in dim light.

The experiment was performed by Hecht et al. in 1942.
It has been described in many places. A detailed non-
mathematical description is that by Cornsweet (1970).
A more mathematical review by Pirenne (1962) is also
available.

The retina can be divided into two regions. The fovea,
the area of greatest visual discrimination, is composed
entirely of cones. The percentage of rods is highest a
few millimeters away from the fovea, and this part of the
retina is most sensitive to faint light. The dark-adapted
eye increases sensitivity by a factor of about 5,000.

The experiment was done by having the subject look
directly at a very dim red fixation point while a green
light was flashed in such a place that its image fell on the
most sensitive part of the retina. Experiments on the sen-
sitivity of the dark-adapted eye to flashes of weak light
have shown that if the flash duration is less than 100 ms
and the light on the retina covers a receptor field less than
10 minutes of arc in size, the scotopic response of the eye
depends on the total amount of energy or the total num-
ber of photons in the flash. Photons striking anywhere
within the receptor field during this time have the same
effect; the eye must combine the effects occurring in all
receptors in the receptor field in a tenth of a second. A
scotopic receptor field is shown in Fig. 14.42. This sco-
topic field size (10 minutes of arc) cannot be compared
to the 2.9 minutes for maximum resolution, which is for
photopic vision on a different part of the retina.

In the Hecht–Schlaer–Pirenne experiment the flashes
were short enough and small enough so that only the total
number of photons was important. The fraction of flashes
that the subject recognized was measured as a function of
the total flash energy. A typical response curve is shown
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FIGURE 14.43. Typical response in the experiments of Hecht,
Schlaer, and Pirenne. Curves are calculated using Eq. 14.68.
Data are from S. Hecht, S. Schlaer, and M. H. Pirenne. The
Journal of General Physiology 25: 819–840 (1942) by copy-
right permission of the Rockefeller University Press.

in Fig. 14.43. Let q be the number of photons striking the
cornea in front of the pupil in each flash, which is the total
energy in the flash divided by the energy of each photon.
For the 510-nm green light used, the photon energy is
hc/λ = 3.89 × 10−19 J. The number of photons striking
the cornea can be determined as follows. Let Lt be the
radiance times the duration of the flash. Consider Eq.
14.56 with both θs and θd nearly zero. Refer also to the
lower half of Fig. 14.39. The energy striking the cornea
over the pupil area is

(Lt) dSsdSd

r2
=

(Lt) dS′ (πa2
)

u2
.

Because h = h′v/u, the area on the retina where photons
from dS′ fall is dS = dS′(v/u)2. The number of photons
striking the cornea that would be in dS if there were no
losses is

q =
(Lt)(πa2)dS′

hνu2
=

(Lt)(πa2) dS

hνv2
. (14.66)

The number of photons fluctuates from flash to flash.
Therefore we should speak of q, the average number of
photons striking the cornea per flash. Of these, only some
fraction f actually reach the retina and are absorbed by
a visual pigment molecule. The average number absorbed
is

m = fq. (14.67)

Let us next postulate that some minimum number of
quanta n must be absorbed during the flash in order for
the subject to see it. If the average number absorbed per
flash is m, there will sometimes be more and sometimes
less than n photons absorbed per flash. The probability
of absorbing x photons per flash is given by the Pois-
son distribution P (x;m) (Appendix J). The probability
of seeing the flash is the probability that x is greater than

or equal to n :

P (seeing) =
∞∑

x=n

P (x;m) = 1 −
n−1∑

x=0

P (x;m)

= 1 − e−m

(
1 + m +

m2

2!
+ · · · + mn−1

(n − 1)!

)
.

(14.68)

This function is plotted in Fig. 14.44 as a function of m for
various values of n, with both a linear and a logarithmic
scale for m.

Hecht et al. used an ingenious method to determine n.
They plotted their data vs. the logarithm of q. Since m =
fq, log m = log f + log q; different values of f correspond
to shifting the curve along the axis. They then compared
the experimental data to the various theoretical curves
for the probability of seeing a flash, plotted against log m.
Sliding the paper containing the data along the log m axis
is equivalent to trying different values of f . The data in
Fig. 14.43 are shown along with the curves for n = 5, 7,
and 9. For these data, n = 7 gives the best fit. From Fig.
14.43, a 55% chance of detecting the flash corresponds
to 100 photons for q while being consistent with m = 7.
Therefore, f = 0.07.

Hecht, Schlaer, and Pirenne deduced that about seven
photons must be absorbed by the rods in the area of in-
tegration shown in Fig. 14.42 within 0.1 s in order for
the brain to detect the flash of light. Their data were

FIGURE 14.44. The probability of seeing a flash, plotted vs
(a) m; (b) log m.
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consistent with the hypothesis that the photons arrived
at random, with the actual number in each flash obey-
ing a Poisson distribution. Later work by Sakitt (1972)
is consistent with the rods counting individual photons,
with false positives produced by thermal noise within the
retina [Barlow (1956)].

The phototransduction mechanism is quite compli-
cated. Rieke and Baylor (1998) reviewed the detection
of photons by rod cells. When stimulated with dim light
pulses, the rod cell responds to each flash consistent with
the absorption of 0, 1 or 2 photons. The rods have a
dark current that is reduced when light falls on them. In
other words, the light hyperpolarizes the cell. This low-
ers the rate of release of a neurotransmitter, cyclic GMP.
The review discusses what is known about the chemical
transduction process.

If the light intensity is increased, m increases. There
will be shot-noise fluctuations with a standard deviation
equal to m1/2, and the eye should be unable to detect
brightness changes smaller than this. Measurements by
H. B. Barlow in 1957 showed that as long as short flashes
spanning only one visual field are used, the minimum
detectable intensity depends on the square root of the
light intensity. This statistical limit to detecting intensity
changes is a lower limit; for larger sources and longer ex-
posure times the minimum detectable brightness change
is larger and is more nearly proportional to the intensity
than to the square root of the intensity [Rose (1973)].

Symbols Used in Chapter 14

Symbol Use Units First
used on
page

a Radius m 367
c Speed of light in a vacuum m s−1 359
cn Speed of light in a medium m s−1 359
e Charge on an electron C 361
f Focal length m 388
f Fraction of photons reaching

retina
391

g Scattering anisotropy factor 367
h Planck’s constant J s 360
h, h′ Image height, object height m 388
� Planck’s constant divided by

2π
J s 360

i Label of energy level 361
j Total angular momentum

quantum number
361

jH Energy transport in heat flow W m−2 382
k Spring constant N m−1 363

kB Boltzmann constant J K−1 372
l Orbital angular momentum

quantum number
361

m Mass kg 362
m Average number 391

me Mass of electron kg 361
mi Mass of ith particle kg 363
mj , ml, ms z quantum number for

angular momentum
361

n Index of refraction 359
n Principal quantum number 361
n Average number of photons

that interact
365

n Minimum number of photons
to trigger a response

391

p Probability 366
q Electric charge C 360
q Number of photons 391

q Average value of q 391
r Rotational quantum number 363
r, r Coordinate m 362
s Spin quantum number 361

s Source term in diffusion
equation

m−3 s−1 367

t Time s 360
v Velocity m s−1 360
v Vibrational quantum number 364
u, v Object and image distances m 388
wtot Net power radiated W 376
x, z Distance m 360
z0 Depth of first scattering m 369
A Amplitude of wave 370
A Molar mass kg 366

B Magnetic field T 360
C Concentration m−3 367
Cb, Ct Heat capacity of blood, tissue J kg−1

K−1
382

D Diffusion constant m2 s−1 367
D′ Photon diffusion constant m 367
D Thermal diffusion constant m2 s−1 382
E Electric field V m−1 360
E Energy J 360
Ep Potential energy J 363
Er Rotational energy J 363
Ev Vibrational energy J 364
E Irradiance W m−2 386
F,F Force N 360
F Converging power of a lens diopter

(m−1)
389

I Moment of inertia kg m2 363
K Thermal conductivity W K−1

m−1
382

Km Luminous efficiency, photopic lm W−1 387
K′

m Luminous efficiency, scotopic lm W−1 387
L Angular momentum kg m2 s−1 363
L Radiance W m−2

sr−1
386

N Number of photons 365
Na Number absorbed 365
Ns Number scattered 365
NA Avogadro’s number 366
NT Number of target entities

per unit area along beam

m−2 365

P Probability 372
P Tissue perfusion m3 kg−1

s−1
382

P Radiant power W 383

Pv Luminous flux lm 387
Q Rate of production m−3 s−1 367
R,R Coordinate of atom, distance m 362
Rλ Radiant energy per unit

wavelength interval
J m−1 or J
nm−1

386

R Reflected fluence rate m2 s−1 369
R Radiant energy J 383
S, S′ Surface area m2 365
T Period s 360
T Kinetic energy J 363
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Symbol Use Units First
used on
page

T, Ts, To Temperature K 372
U Object vergence diopter

(m−1)
389

V,V Velocity m s−1 363
V Photopic spectral efficiency

function
387

V ′ Scotopic spectral efficiency
function

387

V Image vergence diopter
(m−1)

389

Wλ Blackbody radiation function W m−3 or
W m−2

nm−1

373

Wν Blackbody radiation function W m−2 s 374
Wr Exitance W m−2 385
α Angle 388
δth Thermal penetration depth m 383
ε0 Electrical permittivity of

empty space
N−1 C2

m−2
360

ε Emissivity 373
ε(λ) Reference action spectrum 379

θ, φ Angles 366
ϕ Particle fluence rate m−2 s−1 368
λ Wavelength m 360
µ Total linear attenuation

coefficient
m−1 365

µa Linear absorption coefficient m−1 365
µs Linear scattering coefficient m−1 365
µ′

s Reduced linear scattering
coefficient

m−1 367

µeff Effective linear attenuation
coefficient

m−1 368

µ0 Magnetic permeability of
free space

N s2 C−2 360

ρ, ρb, ρt Density, density of blood,
density of tissue

kg m−3 366

σ, σi, σa,
σs, σtot

Cross section m2 366

σ(θ), dσ/dΩ Differential scattering cross
section

m2 sr−1 366

σSB Stefan–Boltzmann constant W m−2

K−4
374

σ2
r , σ2

x, σ2
y , σ2

z Variance for diffusion or heat
flow

m2 382

ν Frequency s−1 360
τcoh Coherence time s 370
ω Angular frequency (radian)

s−1
360

ψ Energy fluence rate W m−2 382
Ψ Energy fluence J m−2 382

Φ Particle fluence m−2 365
Ω Solid angle sr 366

Problems

Section 14.1

Problem 1 The velocity of light c depends on the para-
meters ε0 and µ0.Use dimensional analysis to find what
the dependence must be. Insert numerical values to ob-
tain c.

Problem 2 An einstein is 1 mol of photons. Derive an
expression for the energy in an einstein as a function

of wavelength. Express the answer in kilocalories and the
wavelength λ in nanometers.

Section 14.2

Problem 3 Use Eq. 14.7 to derive Eq. 14.8.

Problem 4 (a) Starting with Eq. 14.7, derive a formula
for the hydrogen atom spectrum in the form

1
λ

= R

[
1
n2

− 1
m2

]
,

where n and m are integers. R is called the Rydberg con-
stant. Find an expression for R in terms of fundamental
constants.

(b) Verify that the wavelengths of the spectral lines a-
d at the top of Fig. 14.3 are consistent with the energy
transitions shown at the bottom of the figure.

Section 14.3

Problem 5 Estimate �
2/2I for an HCl molecule. What

would the spacing of rotational levels be?

Problem 6 An inulin molecule has a molecular weight
of 4,000 dalton (that is, 1 mol has a mass of 4000 g). As-
sume that it is spherical with a radius of 1.2 nm. What
is the angular frequency ω of a photon absorbed when
its rotational quantum number changes from 10 to 11?
The moment of inertia of a sphere rotating about an axis
through its center is I = (2/5)mR2.

Problem 7 The rotational spectrum of HCl contains
lines at 60.4, 69.0, 80.4, 96.4, and 120.4 µm. What is
the moment of inertia of an HCl molecule?

Problem 8 Consider a combined rotational–vibrational
transition for which r goes from 1 to 0 while v goes from v
to (v − 1). Find the frequencies of the photons emitted in
terms of the moment of inertia of the molecule I, the an-
gular frequency of vibration of the atoms in the molecule
ω, and the quantum number v.

Problem 9 A rotating molecule emits photons when the
angular momentum changes by 1. Find the ratio of the
angular frequency of the photons, ωphot, to the angular
frequency of rotation of the molecule ωrot, as a function
of the orbital angular momentum quantum number r.

Section 14.4

Problem 10 A beam with 200 particles per square cen-
timeter passes by an atom. The particles are uniformly
and randomly distributed in the area of the beam.

(a) Fifty particles are scattered. What is the total scat-
tering cross section?

(b) Ten particles are scattered in a cone of 0.1 sr solid
angle about a particular direction. What is the differential
cross section in m2 sr−1?
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Problem 11 The differential scattering cross section for
a beam of x-ray photons of a certain energy from carbon
at an angle θ is 50× 10−30 m2 sr−1. A beam of 105 pho-
tons strikes a pure carbon target of thickness 0.3 cm. The
density of carbon is 2 g cm−3, and the atomic weight is
12. The detector is a circle of 1-cm radius located 20 cm
from the target. How many scattered photons enter the
detector?

Problem 12 Photochemists often use the extinction co-
efficient e, defined by µa = eC, where C is the concentra-
tion in moles per liter. This assumes the substance being
measured is dissolved in a completely transparent solvent.

(a) What are the units of the extinction coefficient?
(b) What is the conversion between the extinction co-

efficient and the absorption cross section?

Problem 13 Suppose that the absorption coefficient in
some biological substance is 5 m−1. Make the very crude
assumption that the substance has the density of water
and a molecular weight of 18. What is the absorption
cross section?

Problem 14 For blue light (λ = 470 nm), the attenua-
tion coefficient in air is about 2× 10−5 m−1, and the at-
tenuation coefficient in pure water is about 5×10−3 m−1.
Calculate the distance that blue light must pass through
air and through water before the intensity is reduced to 1%
of the original intensity. Compare these distances to the
thickness of the atmosphere and the depth of the ocean.
Do you think that aquatic plants can use photosynthesis
effectively at the bottom of the ocean? [For more on the
differences between the optical properties of air and water,
see Denny (1993).]

Section 14.5

Problem 15 (a) Find the slope of the log R vs. t in Eq.
14.29. What is its value for large times?

(b) What can be determined from the time when R has
its maximum value? (Hint: R has a maximum when log R
has a maximum.)

Problem 16 The result of one set of infrared measure-
ments in human calf (leg) muscle gave a total scattering
coefficient µs = 8.3 cm−1 and an absorption µa = 0.176
cm−1.

(a) What fraction of the photons have not scattered in
passing through a layer that is 8 µm thick? (This corre-
sponds roughly to the size of a cell.)

(b) On average, how many scattering events take place
for each absorption event?

(c) What is the cross section for scattering per mole-
cule? For this estimate, assume the muscle consists en-
tirely of water, with molecular weight 18 and density 103

kg m−3.

Section 14.6

Problem 17 Carry out the averages leading to Eq.
14.30.

Problem 18 If yellow light from a source has a coher-
ence time of 10−8 s, how many cycles are there in the
wave?

Problem 19 What coherence time is needed for a spatial
resolution of 1µm?

Problem 20 An infrared transition involves an energy
of 0.1 eV. What are the corresponding frequency and
wavelength? If the Raman effect is observed with light at
550 nm, what will be the frequencies and wavelengths of
each Raman line?

Problem 21 A Raman spectrum has a line at 500 nm
with subsidiary lines at 400 and 667 nm. What is the
wavelength of the corresponding infrared line?

Section 14.7

Problem 22 Sodium is introduced into a flame at 2,500
K. What fraction of the atoms are in their first excited
state? In their ground state? (Remember that the char-
acteristic sodium line is yellow.) If the flame tempera-
ture changes by 10 K, what is the fractional change in
the population of each state? Which method of measuring
sodium concentration is more stable to changes in flame
temperature: measuring the intensity of an emitted line
or measuring the amount of absorption?

Problem 23 (a) Show that the maximum of the thermal
radiation function Wλ(λ, T ) occurs at a wavelength such
that ex(5−x) = 5, where x = hc/(λmaxkBT ). Verify that
x = 4.9651 is a solution of this transcendental equation,
so that

Tλmax =
hc

4.9651kB
.

(b) Similarly, show that

νmax

T
=

2.82144kB

h

and that λmaxνmax = 0.57c.

Problem 24 Integrate Eq. 14.32 over all wavelengths to
obtain the Stephan-Boltzmann law, Eq. 14.33. You will
need the integral

∫ ∞

0

x3dx

ex − 1
=

π4

15
.

Problem 25 Two parallel surfaces of area S have unit
emissivity and are at temperatures T1 and T2 [T1 > T2,
panel (a)]. They are large compared to their separation, so
that all radiation emitted by one surface strikes the other.
Assume that radiation is emitted and absorbed only by the
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two surfaces that face each other. Let P0 be the energy lost
per unit time by body 1. A new sheet of perfectly absorbing
material is introduced between bodies 1 and 2, as shown
in panel (b). It comes to equilibrium temperature T . Let
P be the net energy lost by surface 1 in this case. Find
P/P0 in terms of T1 and T2.

T

(a) (b)

T1 T2 T1 T2

Problem 26 The sun has a radius of 6.9 × 108 m. The
earth is 149.5 × 109 m from the sun. Treat the sun as a
thermal radiator at 5,800 K and calculate the energy from
the sun per unit area per unit time striking the upper
atmosphere of the earth (the solar constant). State the
result in W m−2 and cal cm−2 min−1.

Problem 27 If all the energy received by the earth from
the sun is lost as thermal radiation (a poor assumption be-
cause a significant amount is reflected from cloud cover),
what is the equilibrium temperature of the earth?

Section 14.8

Problem 28 Show that an approximation to Eq. 14.40
for small temperature differences is wtot = SKrad(T −
Ts). Deduce the value of Krad at body temperature. Hint:
Factor T 4 − T 4

s = (T − Ts)(· · · ). You should get Krad =
6.76 W m−2 K−1.

Problem 29 What fractional change in Wλ(λ, T ) for
thermal radiation from the human body results when there
is a temperature change of 1 K at 5 µm? 9 µm? 15 µm?

Section 14.9

Problem 30 (a) Suppose that the threshold for ery-
thema caused by sunlight with λ = 300 nm is 30 J m−2.
Does this suggest that the result is thermal (an excessive
temperature increase) or something else, like the photo-
electric effect or photodissociation? Make some reason-
able assumptions to estimate the temperature rise.

(b) The energy in sunlight at all wavelengths reaching
the earth is 2 cal cm−2 min−1. Suppose that the total body
area exposed is 0.6 m2. What would be the temperature
rise per minute for a 60-kg person if there were no heat-
loss mechanisms? Compare the rate of energy absorption
to the basal metabolic rate, about 100 W.

Problem 31 Suppose that the energy fluence rate of a
parallel beam of ultraviolet light that has passed through

thickness x of solution is given by ψ = ψ0e
−µax. (Scat-

tering is ignored.) The absorption coefficient µa is related
to the concentration C (molecules cm−3) of the absorb-
ing molecules in the solution by µa = aC. Biophysicists
working with ultraviolet light define the dose rate to be
the power absorbed per molecule of absorber. (This is a
different definition of dose than is used in Chapter 15.)
Calculate the dose rate for a thin layer (µax � 1).

Problem 32 A beam of photons passes through a
monatomic gas of molecular weight A and absorption
cross section σ. Ignore scattering. The gas obeys the ideal
gas law, pV = NkBT .

(a) Find the attenuation coefficient in terms of σ, p,
and any other necessary variables.

(b) Generalize the result to a mixture of several gases,
each with cross section σi, partial pressure pi, and Ni

molecules.

Problem 33 The attenuation of a beam of photons in a
gas of pressure p is given by dΦ = −Φ(σp/kBT ) dx, where
σ is the cross section, kB the Boltzmann constant, T the
absolute temperature, and x the path length. Suppose that
the pressure is given as a function of altitude y by p =
p0e

−mgy/kBT . What is the total attenuation by the entire
atmosphere?

Problem 34 Consider a beam of photons incident on
the atmosphere from directly overhead. The atmosphere
contains several species of molecules, each with par-
tial pressure pi. The absorption coefficient is µa =
(1/kBT )

∑
i σipi. If each constituent of the atmosphere

varies with height y as pi(y) = p0i exp(−migy/kBT ),
show that the fluence rate striking the earth is given by
an expression of the form e−α and find α.

Section 14.10

Problem 35 Consider a tissue with a heat capacity of
3.6 J kg−1 K−1, a density of 1,000 kg m−3, and a thermal
conductivity of 0.5 W m−1 K−1. Assume the heat capacity
of blood is the same, and that the tissue perfusion is 4.17×
10−6 m3 kg−1 s−1. Find the thermal diffusivity, the time
for the heat to flow 1 cm, and the thermal penetration
depth.

Section 14.11

Problem 36 Suppose that a sphere radiates uniformly
from its surface according to Lambert’s cosine law: L =
L0. By considering area dS = 2πr2 sin θ dθ on the surface
of a sphere, find the power radiated per steradian in the
direction of the z axis and the total power radiated.

Problem 37 Show that the total power per unit area ra-
diated from a surface obeying Lambert’s cosine law is
Wr = πL0. This quantity is called the exitance.
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Problem 38 How many photons per second correspond
to 1 lm at 555 nm for photopic vision? At 510 nm for
scotopic vision?

Section 14.12

Problem 39 A person is nearsighted, and the relaxed
eye focuses at a distance of 50 cm. What is the strength
of the desired corrective lens in diopters?

Problem 40 What is the distance of closest vision for
an average person with normal vision at age 20? Age 40?
Age 60?

Problem 41 A person of age 40 is fitted with bifocals
with a +1 diopter strength bifocal lens. What are the clos-
est and farthest distances of focus without the bifocal lens
and with it? By the time the person is age 50, what are
they with and without the same lens?

Problem 42 You can make a rough measurement of
your own eye’s properties. Tape a piece of paper with
some pattern on it on the wall. Cover one eye. Move away
from the wall until the pattern starts to blur. Measure the
distance to the wall in meters. Calculate the vergence of
the object, U . Assume that the F of your relaxed eye is
59 diopters. Calculate V for your eye. Now find the clos-
est distance at which you can see the paper. Calculate the
accommodation of your eye.

Problem 43 An object is placed 6 cm from a converging
lens with a 5 cm focal length.

Plane of lens

Ray enters lens parallel 
to axis and passes 
through focal point on 
other side.

Ray passing through 
lens plane on axis is 
undeflected.

 h 
 v 

 u = 6 cm 

h' f = 5cm

(a) Use the thin-lens equation (Eq. 14.63) to calculate
the image distance.

(b) The magnification of the image is given by m =
−u/v. (A negative magnification implies an inverted im-
age.) What is the magnification for the image in part (a)?
A value |m| > 1 implies a“magnified” image. This is how
a slide projector works.

Problem 44 An object is placed 15 cm from a converg-
ing lens with a focal length of 20 cm.

Object

Image

Plane of 
lens

Focal Point
 v 

 u = 15 cm
 f = 20 cm 

Ray parallel to axis 
passes through 
focal point.

Ray through 
center of lens on 
axis is not 
deflected.

(a) Use the thin-lens equation (Eq. 14.63) to calculate
the image distance. Your value should be negative, corre-
sponding to a “virtual image.”

(b) The magnification of the image is again given by
m = −u/v. What is the magnification for the image in
part (a)? This is how a magnifying glass works.

Problem 45 Combine the results of Problems 43 and
44. Consider two lenses, the first with focal length 5 cm
and the second with focal length 20 cm, separated by 45
cm. The object is 6 cm in front of the first lens. The
image from the first lens is the object for the second.

(a) Calculate the image distance and magnification of
the image created by the first lens (called the objective).

(b) Use the first image as the object for the second lens
(called the eyepiece), and calculate the image distance and
magnification of the second image.

(c) The total magnification is the product of the mag-
nifications of the objective and eyepiece. What is the to-
tal magnification? This is how the compound microscope
works. The objective lens acts like a slide projector, and
the eyepiece acts like a magnifying glass. Very large to-
tal magnifications can be obtained when the object is just
to the left of the focal point of the objective, and the first
image is just to the right of the focal point of the eyepiece.

Problem 46 Snell’s law, n1 sin θ1 = n2 sin θ2, gives an
interesting result if light passes from a medium with a
higher index of refraction to one with a lower index of
refraction, n1 > n2. Assume light passes from glass (n1 =
1.5) to air (n2 = 1.0).

(a) If θ1is 30 ◦, what is θ2?
(b) If θ1is 40 ◦, what is θ2?
(c) If θ1is 50 ◦, what is θ2?
This is really a trick question, because for θ1 greater

than some critical angle, θc, θ2 exceeds 90 ◦, and light
cannot pass into the second medium. Instead all the light
is reflected and remains within the first medium.

(d) Calculate the critical angle for total internal reflec-
tion from glass to air.

Total internal reflection allows thin glass fibers to act
as fiberoptic “light pipes,” which can be used to transmit
signals. Bundles of such optical fibers are used in endo-
scopes to see inside the body.

Problem 47 Table 14.7 shows that most of the converg-
ing power of the eye occurs at the air-cornea interface.
When a person is under water, this must be supplied by
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the water-cornea surface. The index of refraction of the
cornea is closer to that of water than to that of air. What
are the implications for seeing under water? What are the
implications for the vision of aquatic animals? [For more
information on the difference between the eyes of aquatic
and terrestrial animals, see Denny (1993)].

Section 14.13

Problem 48 How many photons per 0.1 s enter the eye
from a 100-W light bulb 1,000 ft away? Assume the pupil
is 6 mm in diameter. How far away can a 100-W bulb
be seen if there is no absorption in the atmosphere? Use
a luminous efficiency of 17 lm W−1 and then assume an
equivalent light source at 555 nm.

Problem 49 The table below shows the radiance of some
extended sources. Without worrying about obliquity fac-
tors (assume that all the light is at normal incidence),
calculate the number of photons entering a receptive field
of 0.17 ◦ diameter when the pupil diameter is 6 mm and
the integration time is 0.1 s. Assume a conversion effi-
ciency of 100 lm W−1 and then assume that all the pho-
tons are at 555 nm.
Source Radiance (lm m−2 sr−1)

White paper in sunlight 25,000
Clear sky 3,200
Surface of the moon 2.900
White paper in moonlight 0.03

Problem 50 A piece of paper is illuminated by dim light
so that its radiance is 0.01 lm m−2 sr−1 in the direction
of a camera. A camera lens 1 cm in diameter is 0.6 m
from the paper. The sheet of paper is 10 × 10 cm. The
shutter of the camera is open for 1 ms. Assume all the
light is at 555 nm. How many photons from the paper
enter the lens of the camera while the shutter is open?

Problem 51 If three or more photons must be absorbed
by a visual receptor field for the observer to see a flash,
how often will the flash be seen if the average number of
photons absorbed in a receptor field per flash is four?

Problem 52 Assume that an average of d photons are
detected and that the photons are Poisson distributed.
What must d be to detect a signal that is a 1% change
in d, if the signal-to-noise ratio must be at least 5?

Problem 53 Suppose that the average number of pho-
tons striking a target during an exposure is m. The prob-
ability that x photons strike during a similar exposure is
given by the Poisson distribution. What is the probability
that an organism responds to an exposure of radiation in
each of the following cases?

(a) The response of the organism requires that a single
target within the organism be hit by two or more photons.

(b) The response of the organism requires that two tar-
gets within the organism each be struck by one or more
photons during the exposure.
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15
Interaction of Photons and Charged Particles with Matter

An x-ray image records variations in the passage of x
rays through the body because of scattering and absorp-
tion. A side effect of making the image is the absorption
of some x-ray energy by the body. Radiation therapy de-
pends on the absorption of large amounts of x-ray energy
by a tumor. Diagnostic procedures in nuclear medicine
(Chapter 17) introduce a small amount of radioactive
substance in the body. Radiation from the radioactive nu-
clei is then detected. Some of the energy from the photons
or charged particles emitted by the radioactive nucleus is
absorbed in the body. To describe all of these effects re-
quires that we understand the interaction of photons and
charged particles with matter.

In Chapter 14 we discussed the transport of photons of
ultraviolet and lower energy—a few electron volts or less.
Now we will discuss the transport of photons of much
higher energy—10 keV and above. We will also discuss
the movement through matter of charged particles such
as electrons, protons, and heavier ions. These high en-
ergy photons and charged particles are called ionizing
radiation, because they produce ionization in the mate-
rial through which they pass. The distinction is blurred,
since ultraviolet light can also ionize.

A charged particle moving through matter loses energy
by local ionization, disruption of chemical bonds, and in-
creasing the energy of atoms it passes near. It is said to be
directly ionizing. Photons passing through matter trans-
fer energy to charged particles, which in turn affect the
material. These photons are indirectly ionizing.

Photons and charged particles interact primarily with
the electrons in atoms. Section 15.1 describes the en-
ergy levels of atomic electrons. Section 15.2 describes
the various processes by which photons interact; these
are elaborated in the next four sections, leading in Sec.
15.7 to the concept of a photon attenuation coefficient.

Attenuation is extended to compounds and mixtures
in Sec. 15.8.

An atom is often left in an excited state by a pho-
ton interaction. The mechanisms by which it loses en-
ergy are covered in Sec. 15.9. The energy that is
transferred to electrons can cause radiation damage.
The transfer process is described in Secs. 15.10 and
15.15–15.17.

Section 15.11 introduces the charged-particle stopping
power, which is the rate of energy loss by a charged par-
ticle as it passes through material. Extensions of this
concept, which are important in radiation damage, are
the linear energy transfer and the restricted collision
stopping power, introduced in Sec. 15.12. A charged
particle travels a certain distance through material as
it loses its kinetic energy. This leads in Sec. 15.13 to
the concept of range. Charged particles also lose en-
ergy by emitting photons. The radiation yield is also dis-
cussed in Sec. 15.13. Insight into the process of radia-
tion damage is gained by examining track structure in
Sec. 15.14.

The last three sections return to the movement of en-
ergy from a photon beam to matter. The discussion re-
quires an understanding of both photon interactions and
charged-particle stopping power and range.

15.1 Atomic Energy Levels and X-ray
Absorption

A neutral atom has a nuclear charge +Ze surrounded by
a cloud of Z electrons. As was described in Chapter 14,
each electron has a definite energy, characterized by a set
of five quantum numbers: n, l, s (which is always 1

2 ), j,
and mj . (Instead of j and mj , the numbers ml and ms
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TABLE 15.1. Energy levels for electrons in a tungsten atom
(Z = 74)

n l j Number of
electrons

X-ray label Energy (eV)

1 0 1
2 2 K −69, 525

2 0 1
2 2 LI −12, 100

1 1
2 2 LII −11, 544

1 3
2 4 LIII −10, 207

3 0 1
2 2 MI −2, 819

1 1
2 2 MII −2, 575

1 3
2 4 MIII −2, 281

2 3
2 4 MIV −1, 872

2 5
2 6 MV −1, 809

4 0 1
2 2 NI −595

1 1
2 2 NII −492

1 3
2 4 NIII −425

2 3
2 4 NIV −259

2 5
2 6 NV −245

3 5
2 , 7

2 14 NVI,VII −35

5 0 1
2 2 OI −77

1 1
2 2 OII −47

1 3
2 4 OIII −36

2 3
2 , 5

2 4 OIV,V −6

6 2 PI

are sometimes used.) There are restrictions on the values
of the numbers:

n = 1, 2, 3, . . . the principal quantum
number

l = 0, 1, 2, . . . , n − 1 the orbital angular mo-
mentum quantum number

s = 1
2 the spin quantum number

j = l− 1
2 or l+ 1

2 , except that
j = 1

2 when l = 0
the total angular momen-
tum quantum number

mj = −j,−(j − 1), . . . , (j −
1), j

“z component” of the total
angular momentum

(15.1)
The dependence of the electron energy on mj is very
slight, unless the atom is in a magnetic field.

In each atom, only one electron can have a particular
set of values of the quantum numbers. Since the atoms
we are considering are not in a magnetic field, electrons
with different values of mj but the same values for n, l,
and j will all be assumed to have the same energy. Elec-
trons with different values of n are said to be in different
shells. The shell for n = 1 is called the K shell; those for
n = 2, 3, 4, . . . are labeled L,M,N, . . . . Different values

FIGURE 15.1. Energy levels for electrons in tungsten.

of l and j for a fixed value of n are called subshells, de-
noted by roman numeral subscripts on the shell labels.
The maximum number of electrons that can be placed in
a subshell is 2(2l + 1). Each electron bound to the atom
has a certain negative energy, with zero energy defined
when the electron is just unbound, that is, at rest infi-
nitely far away from the atom. Table 15.1 lists the energy
levels of electrons in tungsten. Some of the levels in Table
15.1 are shown in Fig. 15.1. The scale is logarithmic. Since
the energies are negative, the magnitude increases in the
downward direction. Tables of atomic energy levels can be
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found many places, including www.csrri.iit.edu/periodic-
table.html.

The ionization energy is the energy required to remove
the least-tightly-bound electron from the atom. For tung-
sten, it is about 6 eV. If one plots the ionization energy
or the chemical valence of atoms as a function of Z, one
finds abrupt changes when the last electron’s value of n
or l changes.

In contrast to this behavior of the outer electrons, the
energy of an inner electron with fixed values of n and l
varies smoothly with Z. To a first approximation, the two
innermost K electrons are attracted to the nuclear charge
Ze. The energy of the level can be estimated using Eq.
14.8 for hydrogen, with the nuclear charge e replaced by
Ze:

EK = −13.6Z2

12
. (15.2)

The two electrons also repel each other and experience
some repulsion by electrons in other shells. This effect is
called charge screening. Experiment (measuring values of
EK) shows that the effective charge seen by a K electron
is approximately Zeff ≈ Z −3 for heavy elements, so that
for K electrons (n = 1),

EK ≈ −13.6(Z − 3)2 (in eV). (15.3)

The screening is greater for electrons with larger values of
n, which may be thought of as being in “orbits” of larger
radius.

15.2 Photon Interactions

There are a number of different ways in which a photon
can interact with an atom. The more important ones will
be considered here. It is convenient to adopt a notation
(γ, bc) where γ represents the incident photon and b and c
are the results of the interaction. For example, (γ, γ) rep-
resents initial and final photons having the same energy;
in a (γ, e) interaction the photon is absorbed and only
an electron emerges. This section describes the common
interactions and the energy balance for each case.

15.2.1 Photoelectric Effect

In the photoelectric effect, (γ, e), the photon is absorbed
by the atom and a single electron is ejected. The initial
photon energy hν0 is equal to the final energy. The recoil
kinetic energy of the atom is very small because its mass
is large, so the final energy is the kinetic energy of the
electron, Tel, plus the excitation energy of the atom. The
excitation energy is equal to the binding energy of the
ejected electron, B. The energy balance is therefore

hν0 = Tel + B. (15.4)

The atom subsequently loses its excitation energy. The
deexcitation process described in Sec. 15.9 involves the

emission of additional photons or electrons. The photo-
electric cross section is τ .

15.2.2 Compton and Incoherent Scattering

In Compton scattering, (γ, γ′e), the original photon dis-
appears and a photon of lower energy and an electron
emerge. The statement of energy conservation is

hν0 = hν + Tel + B.

Usually the photon energy is high enough so that B can
be neglected, and this is written as

hν0 = hν + Tel. (15.5)

The Compton cross section for scattering from a single
electron is σC . Incoherent scattering is Compton scatter-
ing from all the electrons in the atom, with cross section
σincoh.

15.2.3 Coherent Scattering

Coherent scattering is a (γ, γ) process in which the pho-
ton is elastically scattered from the entire atom. That is,
the internal energy of the atom does not change. The re-
coil kinetic energy of the atom is very small (see Problem
6), and it is a good approximation to say that the energy
of the incident photon equals the energy of the scattered
photon:

hν0 = hν. (15.6)

The cross section for coherent scattering is σcoh.

15.2.4 Inelastic Scattering

It is also possible for the final photon to have a differ-
ent energy from the initial photon (γ, γ′) without the
emission of an electron. The internal energy of the target
atom or molecule increases or decreases by a correspond-
ing amount. Again, the recoil kinetic energy of the atom is
negligible. Examples are fluorescence and Raman scatter-
ing. In fluorescence, if one waits long enough, additional
photons are emitted, in which case the reaction could be
denoted as (γ, γ′γ′′), or (γ, 2γ), or even (γ, 3γ).

15.2.5 Pair Production

Pair production takes place at high energies. This is a
(γ, e+e−) reaction. Since it takes energy to create the
(negative) electron and the positive electron or positron,
their rest energies must be included in the energy balance
equation:

hν0 = T++mec
2+T−+mec

2 = T++T−+2mec
2. (15.7)

The cross section for pair production is κ.
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FIGURE 15.2. Total cross section for the interactions of pho-
tons with carbon vs. photon energy. The photoelectric cross
section is τ , the coherent scattering cross section σcoh, the
total Compton cross section σincoh, and the nuclear and elec-
tronic (triplet) pair production are κn and κe. The photonu-
clear scattering cross section PHN is also shown. The cross
section is given in barns: 1 b = 10−28 m2. Reprinted with
permission from J. H. Hubbell, H. A. Gimm, and I. Øverbø
(1980). Pair, triplet and total atomic cross sections (and mass
attenuation coefficients) for 1 MeV–100 GeV photons in ele-
ments Z = 1 to 100. J. Phys. Chem. Ref. Data 9: 1023–1147.
Copyright 1980, American Institute of Physics. Figure cour-
tesy of J. H. Hubbell.

15.2.6 Energy Dependence

Figure 15.2 shows the cross section for interactions of pho-
tons with carbon for photon energies from 10 to 1011 eV.
At the lowest energies the photoelectric effect dominates.
Between 10 keV and 10 MeV Compton scattering is most
important. Above 10 MeV pair production takes over.
There is a small bump at about 20 MeV due to nuclear
effects, but its contribution to the cross section is only
a few percent of that due to pair production. The four
important effects are discussed in the next four sections.

15.3 The Photoelectric Effect

In the photoelectric effect a photon of energy hν0 is ab-
sorbed by an atom, and an electron of kinetic energy
Tel = hν0 −B is ejected. B is the magnitude of the bind-
ing energy of the electron and depends on which shell the
electron was in. Therefore it is labeled BK , BL, and so
forth. The cross section for the photoelectric effect, τ , is
a sum of terms for each shell:

τ = τK + τL + τM + · · · . (15.8)

FIGURE 15.3. Cross sections for the photoelectric effect and
incoherent and coherent scattering from lead. The binding
energies of the K and L shells are 0.088 and 0.0152 MeV.
Plotted from Table 3.22 of Hubbell (1969).

As the energy of a photon beam is decreased, the photo-
electric cross section increases rapidly. For photon ener-
gies too small to remove an electron from the K shell, the
cross section for the K-shell photoelectric effect is zero.
Even though photons do not have enough energy to re-
move an electron from the K shell, they may have enough
energy to remove L-shell electrons. The cross section for L
electron photoelectric effect is much smaller than that for
K electrons, but it increases with decreasing energy until
its threshold energy is reached. This energy dependence is
shown for lead in Fig. 15.3, which plots the cross section
for the photoelectric effect, incoherent Compton scatter-
ing, and coherent scattering. The K absorption edge for
the photoelectric effect is seen. The photoelectric effect
below the K absorption edge is due to L,M, . . . electrons;
above this energy the K electrons also participate. Above
0.8 MeV in lead Compton scattering becomes more im-
portant than the photoelectric effect.

The energy dependence of the photoelectric effect cross
section is between E−2 and E−4. An approximation to
the Z and E dependence of the photoelectric cross section
near 100 keV is

τ ∝ Z4E−3. (15.9)
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FIGURE 15.4. Momentum relationships in Compton scatter-
ing. (a) Before. (b) After. The photon emerges at angle θ, the
electron at angle φ.

Once an atom has absorbed a photon and ejected a
photoelectron, it is in an excited state. The atom will
eventually lose this excitation energy by capturing an
electron and returning to its ground state. The deexci-
tation processes are described in Sec. 15.9.

15.4 Compton Scattering

15.4.1 Kinematics

Compton scattering is a (γ, γ′e) process. The equations
that are used to relate the energy and angle of the emerg-
ing photon and electron, as well as the equations that
give the cross section for the scattering, are usually de-
rived assuming that the electron is free and at rest. We
turn first to the kinematics. A photon has energy E and
momentum p, related by

E = hν = pc. (15.10)

This is a special case of a more general relationship from
special relativity:

E2 = (pc)2 + (m0c
2)2. (15.11)

In these equations E is the total energy of the particle, p
its momentum, m0 the “rest mass” of the particle (mea-
sured when it is not moving), and m0c

2 is the “rest en-
ergy.”1 For a photon, which can never be at rest, m0 = 0.
Equation 15.10 can also be derived from the classical elec-
tromagnetic theory of light.

The conservation of energy and momentum can be used
to derive the relationship between the angle at which
the scattered photon emerges and its energy. A detailed
knowledge of the forces involved is necessary to calcu-
late the relative number of photons scattered at different
angles; in fact, this calculation must be done using quan-
tum mechanics. Figure 15.4 shows the geometry involved
in the scattering. The electron emerges with momentum
p, kinetic energy T , and total energy E = T + mec

2. It
emerges at an angle φ with the direction of the incident
photon. The scattered photon emerges at angle θ with a

1Since this is one of the few relativistic results we will need, it
is not developed here. A discussion can be found in any book on
special relativity.

reduced energy and a corresponding frequency ν′ which is
lower than ν0, the frequency of the incident photon. Con-
servation of momentum in the direction of the incident
photon gives

hν0

c
=

hν′

c
cos θ + p cos φ,

while conservation of momentum at right angles to that
direction gives

hν′

c
sin θ = p sin φ.

Conservation of energy gives

hν0 = hν′ + T.

The equation E = T + mec
2 can be combined with Eq.

15.11 to give

(pc)2 = T 2 + 2mec
2T.

The last four equations can then be combined and solved
for various unknowns.

The wavelength of the scattered photon is

λ′ − λ0 =
c

ν′ −
c

ν0
=

h

mec
(1 − cos θ). (15.12)

The wavelength shift (but not the frequency or energy
shift) is independent of the incident wavelength. The
quantity h/mec has the dimensions of length and is called
the Compton wavelength of the electron. Its numerical
value is

λC =
h

mec
= 2.427 × 10−12 m = 2.427 pm. (15.13)

If Eq. 15.12 is solved for the energy of the scattered pho-
ton, the result is

hν′ =
mec

2

1 − cos θ + 1/x
, (15.14)

where x is the energy of the incident photon in units of
mec

2 = 511 keV:

x =
hν0

mec2
. (15.15)

The energy of the recoil electron is T = hν0 − hν′:

T =
hν0(2x cos2 φ)

(1 + x)2 − x2 cos2 φ
=

hν0x(1 − cos θ)
1 + x(1 − cos θ)

. (15.16)

Figure 15.5 shows the energy of the scattered photon
and the recoil electron as a function of θ, the angle of
emergence of the photon. The sum of the two energies is
1 MeV, the energy of the incident photon.



406 15. Interaction of Photons and Charged Particles with Matter

FIGURE 15.5. The energy of the emerging photon and recoil
electron as a function of θ, the angle of the emerging photon,
for a 1-MeV incident photon.
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FIGURE 15.6. Differential cross section for Compton scatter-
ing of unpolarized photons from a free electron, calculated
from Eq. 15.17. The incident photon energy for each curve is
shown on the right.

15.4.2 Cross Section: Klein–Nishina Formula

The inclusion of dynamics, which allows us to determine
the relative number of photons scattered at each angle,
is fairly complicated. The quantum-mechanical result is
known as the Klein–Nishina formula. The result depends
on the polarization of the photons. For unpolarized pho-
tons, the cross section per unit solid angle for a photon
to be scattered at angle θ is

dσC

dΩ
=

r2
e

2







1 + cos2 θ +
x2(1 − cos θ)2

1 + x(1 − cos θ)
[1 + x(1 − cos θ)]2





 , (15.17)
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FIGURE 15.7. The total cross section σC for Compton scat-
tering by a single electron and the cross section for energy
transfer σtr = fCσC .

where

re =
e2

4πε0mec2
= 2.818 × 10−15 m,

is the “classical radius” of the electron. The cross section
is plotted in Fig. 15.6. It is peaked in the forward direc-
tion at high energies. As x → 0 (long wavelengths or low
energy) it approaches

dσC

dΩ
=

r2
e(1 + cos2 θ)

2
, (15.18)

which is symmetric about 90 ◦.
Equation 15.17 can be integrated over all angles to ob-

tain the total Compton cross section for a single electron:

σC = 2πr2
e

[
1 + x

x2

(
2(1 + x)
1 + 2x

− ln(1 + 2x)
x

)

+
ln(1 + 2x)

2x
− 1 + 3x

(1 + 2x)2

]

. (15.19)

As x → 0, this approaches

σC → 8πr2
e

3
= 6.652 × 10−29 m2. (15.20)

Figure 15.7 shows σC as a function of energy.
The classical analog of Compton scattering is Thomson

scattering of an electromagnetic wave by a free electron.
The electron experiences the electric field E of an incident
plane electromagnetic wave and therefore has an accelera-
tion −eE/m. Accelerated charges radiate electromagnetic
waves, and the energy radiated in different directions can
be calculated, giving Eqs. 15.18 and 15.20. [See, for exam-
ple, Rossi (1957, Chapter 8).] In the classical limit of low
photon energies and momenta, the energy of the recoil
electron is negligible.

15.4.3 Incoherent Scattering

The Compton cross section is for a single electron. For
an atom containing Z electrons, the maximum value of
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the incoherent cross section occurs if all Z electrons take
part in the Compton scattering:

σincoh ≤ ZσC .

For carbon ZσC = 4.0 × 10−28 m2. This value is ap-
proached by σincoh near 10 keV. At low energies σincoh

falls below this maximum value because the electrons are
bound and not at rest. This falloff can be seen in Fig.
15.2. It is appreciable for energies as high as 7–8 keV,
even though the K-shell binding energy in carbon is only
283 eV. The electron motion and binding in the target
atom also cause a small spread in the energy of the scat-
tered photons [Carlsson et al. (1982)].

Departures of the angular distribution and incoherent
cross section from Z times the Klein–Nishina formula are
discussed by Hubbell et al. (1975) and by Jackson and
Hawkes (1981).

15.4.4 Energy Transferred to the Electron

We will need to know the average energy transferred to
an electron in a Compton scattering. Equation 15.16 gives
the electron kinetic energy as a function of photon scat-
tering angle. The transfer cross section is defined to be

σtr =
∫ π

0

dσC

dΩ
T (θ)
hν0

2π sin θ dθ = fCσC . (15.21)

This can be integrated. The result is [see Attix (1986),
p. 134]

σtr = 2πr2
e

[
2(1 + x)2

x2(1 + 2x)
− 1 + 3x

(1 + 2x)2

− (1 + x)(2x2 − 2x − 1)
x2(1 + 2x)2

− 4x2

3(1 + 2x)3

−
(

1 + x

x3
− 1

2x
+

1
2x3

)
ln(1 + 2x)

]
. (15.22)

This quantity is also plotted in Fig. 15.7. Equation 15.22
is a rather nasty equation to evaluate, particularly at low
energies, because many of the terms nearly cancel.

15.5 Coherent Scattering

A photon can also scatter elastically from an atom, with
none of the electrons leaving their energy levels. This
(γ, γ) process is called coherent scattering (sometimes
called Rayleigh scattering), and its cross section is σcoh.
The entire atom recoils; if one substitutes the atomic
mass in Eqs. 15.15 and 15.16, one finds that the atomic
recoil kinetic energy is negligible.

The primary mechanism for coherent scattering is the
oscillation of the electron cloud in the atom in response to
the electric field of the incident photons. There are small
contributions to the scattering from nuclear processes.

The cross section can be calculated classically as an ex-
tension of Thomson scattering, or it can be done us-
ing various degrees of quantum-mechanical sophistication
[see Kissel et al. (1980) or Pratt (1982)].

The coherent cross section is peaked in the forward
direction because of interference effects between electro-
magnetic waves scattered by various parts of the electron
cloud. The peak is narrower for elements of lower atomic
number and for higher energies. Coherent and incoherent
scattering cross sections are shown in Fig. 15.8 for 100-
keV photons scattering from carbon, calcium, and lead.
Also shown for comparison is Z(dσ/dΩ)KN .

If the wavelength of the incident photon is large com-
pared to the size of the atom, then all Z electrons behave
like a single particle with charge −Ze and mass Zme.
From Eqs. 15.18 and 15.20, one can see that the cross
section in this limit is Z2 times the single-electron value:
Z2σC . The limiting value for carbon is 2.39 × 10−27 m2,
which can be compared to the low energy limit for σcoh

in Fig. 15.2.

15.6 Pair Production

A photon with energy above 1.02 MeV can produce a
particle–antiparticle pair: a negative electron and a posi-
tive electron or positron. Conservation of energy requires
that

hν0 = T− + mec
2

︸ ︷︷ ︸
electron

+ T+ + mec
2

︸ ︷︷ ︸
positron

= T+ + T− + 2mec
2.

(15.23)
Since the rest energy (mec

2) of an electron or positron is
0.51 MeV, pair production is energetically impossible for
photons below 2mec

2 = 1.02 MeV.
One can show, using hν0 = pc for the photon, that

momentum is not conserved by the positron and electron
if Eq. 15.23 is satisfied. However, pair production always
takes place in the Coulomb field of another particle (usu-
ally a nucleus) that recoils to conserve momentum. The
nucleus has a large mass, so its kinetic energy p2/2m is
small compared to the terms in Eq. 15.23. The cross sec-
tion for this (γ, e+e−) reaction involving the nucleus is
κn.

Pair production with excitation or ionization of the re-
coil atom can take place at energies that are only slightly
higher than the threshold; however, the cross section does
not become appreciable until the incident photon energy
exceeds 4mec

2 = 2.04 MeV, the threshold for pair pro-
duction in which a free electron (rather than a nucleus)
recoils to conserve momentum. Because ionization and
free-electron pair production are (γ, e−e−e+) processes,
this is usually called triplet production. Extensive data
are given in Hubbell et al. (1980).

The cross section for both processes is κ = κn + κe.
The energy dependence of κ can be seen in Figs. 15.2
and 15.3.
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FIGURE 15.8. The coherent and incoherent differential cross sections as a function of angle for 100-keV photons scattering
from carbon, calcium, and lead. Calculated from Hubbell (1975).

FIGURE 15.9. Measurements with (a) narrow-beam geometry
and (b) broad-beam geometry.

15.7 The Photon Attenuation
Coefficient

Consider the arrangement shown in Fig. 15.9(a), in which
a beam of photons is collimated so that a narrow beam
strikes a detector.

A scattering material is then introduced in the beam.
Some of the photons pass through the material without
interaction. Others are scattered. Still others disappear
because of photoelectric effect or pair-production inter-
actions. If we measure only photons that remain in the
unscattered beam, the loss of photons is called attenua-
tion of the beam. Attenuation includes both scattering
and absorption. We record as still belonging to the beam
only photons that did not interact; they still travel in the
forward direction with the original energy. This is called
a narrow-beam geometry measurement. It is an idealiza-
tion, because photons that undergo Compton or coherent
scattering through a small angle can still strike the detec-
tor. Figure 15.9(b) shows a source, scatterer, and detector
geometry that is much more difficult to interpret. In this
case photons that are initially traveling in a different di-
rection are scattered into the detector. These are called
broad-beam geometry experiments.

In narrow-beam geometry, the total cross section is re-
lated to the total number of particles that have interacted
in the scatterer. Let N be the number of particles that
have not undergone any interaction in passing through
scattering material of thickness z. We saw in Sec. 14.4
that the number of particles that have not interacted de-
creases in thickness dz by

dN = −σtotNAρ

A
N dz,
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so that
dN

dz
= −µattenN,

where
µatten =

NAρσtot

A
. (15.24)

In these equations ρ is the mass density of the target ma-
terial and A is its atomic weight.2 The number of particles
that have undergone no interaction decays exponentially
with distance:

N(z) = N0e
−µattenz. (15.25)

The quantity µatten is called the total linear attenuation
coefficient.

In a broad-beam geometry configuration the total num-
ber of photons reaching the detector includes secondary
photons and is larger than the value given by Eq. 15.25.

The units in Eqs. 15.24 and 15.25 are worth discussing.
Avogadro’s number is 6.022 045 × 1023 entities mol−1. If
the density ρ is in kg m−3 and σtot is in m2, then A must
be expressed in kg mol−1 and µatten is in m−1. On the
other hand, it is possible to express ρ in g cm−3, σtot in
cm2, and A in g mol−1, so that µatten is in cm−1. As an
example, consider carbon, for which A = 12.011 × 10−3

kg mol−1 = 12.011 g mol−1. If σtot = 1.269 × 10−28 m2

atom−1 = 1.269 × 10−24 cm2 atom−1, then either

µatten =
(6.022 × 1023 atom mol−1)(2.000 × 103 kg m−3)

12.011 × 10−3 kg mol−1

× (1.269 × 10−28 m2 atom−1) = 12.7 m−1

or

µatten =
(

(6.022 × 1023 atom mol−1)(2.000 g cm−3)
12.011 g mol−1

)

× (1.269 × 10−24 cm2 atom−1) = 0.127 cm−1.

The total cross section for photon interactions is

σtot = σcoh + σincoh + τ + κ. (15.26a)

In many situations the coherently scattered photons can-
not be distinguished from those unscattered, and σcoh

should not be included:

σtot = σincoh + τ + κ. (15.26b)

Tables usually include total cross sections and attenua-
tion coefficients both with and without coherent scatter-
ing.

It is possible to regroup the terms in Eqs. 15.24 and
15.25 in a slightly different way:

dN = −N
NAσtot

A
ρdz.

2The atomic weight is potentially confusing. Sometimes A has
no units (as in labeling an nuclear isotope), sometimes it is in grams
per mole, and sometimes it is in kilograms per mole).
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lead, calcium, and water. Near 1 MeV the mass attenuation
coefficient is nearly independent of Z. Plotted from data pro-
vided by NIST: http://physics.nist.gov/PhysRefData/Xcom
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The quantity NAσtot/A is the mass attenuation coeffi-
cient, µatten/ρ (m2 kg−1):

µatten

ρ
=

NAσtot

A
. (15.27)

The exponential attenuation is then

N(ρz) = N0e
−(µatten/ρ)(ρz). (15.28)

The mass attenuation coefficient has the advantage of
being independent of the density of the target material,
which is particularly useful if the target is a gas. It has an
additional advantage if Compton scattering is the domi-
nant interaction. If σtot = ZσC , then

µatten

ρ
=

ZσCNA

A
.

Since Z/A is nearly 1/2 for all elements except hy-
drogen, this quantity changes very little throughout the
periodic table. This constancy is not true for the photo-
electric effect or pair production. Figure 15.10 plots the
mass attenuation coefficient vs energy for three elements
spanning the Periodic Table. It is nearly independent of
Z around 1 MeV where Compton scattering is dominant.
The K and L absorption edges can be seen for lead; for
the lighter elements they are below 10 keV.

Figure 15.11 shows the contributions to µatten/ρ for air
from the photoelectric effect, incoherent scattering, and
pair production. Tables of mass attenuation coefficients
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are provided by the National Institute of Standards and
Technology (NIST) at physics.nist.gov/PhysRefData/.

15.8 Compounds and Mixtures

The usual procedure for dealing with mixtures and com-
pounds is to assume that each atom scatters indepen-
dently. If the cross section for element i summed over all
the interaction processes of interest is denoted by σi, then
Eq. 14.18 is replaced by

n

N
=
∑

i

σi(NT )i =

(
∑

i

σi(NTV )i

)

dz, (15.29)

where (NT )i is the number of target atoms of species
i per unit projected area of the target and (NTV )i is the
number of target atoms per unit volume. The sum is taken
over all elements in the compound or mixture.

It is possible to replace the sum by the product of the
cross section per molecule multiplied by the number of
molecules per unit volume. The cross section per molecule
is the sum of the cross sections for all the atoms in the
molecule. To see that this is so, note that a volume of
scatterer V contains a total mass M = ρV. The mass of
each element is Mi and the mass fraction is wi = Mi/M .
The total number of atoms of species i in volume V is
the number of moles times Avogadro’s number:

(NTV )i =
MiNA

AiV
=

wi

Ai
ρNA. (15.30)

The mass fraction of element i in a compound containing
ai atoms per molecule with atomic mass Ai is

wi =
aiAi

Amol
, (15.31)

where Amol is the molecular weight. Therefore

∑

i

σi(NTV )
i
=

(
∑

i

aiσi

Amol

)

ρNA

=

(
∑

i

aiσi

)
ρNA

Amol
= σmol(NTV )mol.

(15.32)

The factor (NTV )mol = ρNA/Amol is the number of mole-
cules per unit volume. When a target entity (molecule)
consists of a collection of subentities (atoms), we can
say that in this approximation (all subentities interact-
ing independently), the cross section per entity is the
sum of the cross sections for each subentity. For exam-
ple, for the molecule CH4, the total molecular cross sec-
tion is σcarbon + 4σhydrogen and the molecular weight is
[(4 × 1) + 12 = 16] × 10−3 kg mol−1.

15.9 Deexcitation of Atoms

After the photoelectric effect, Compton scattering, or
triplet production, an atom is left with a hole in some
electron shell. An atom can be left in a similar state when
an electron is knocked out by a passing charged particle
or by certain transformations in the atomic nucleus that
are discussed in Chapter 17.

The hole in the shell can be filled by two competing
processes: a radiative transition, in which a photon is
emitted as an electron falls into the hole from a higher
level, or a nonradiative or radiationless transition, such
as the emission of an Auger electron from a higher level
as a second electron falls from a higher level to fill the
hole. Both processes are shown in Fig. 15.12. In the ra-
diative transition, the energy of the photon is equal to the
difference in binding energies of the two levels. For the ex-
ample of Fig. 15.12(b), the photon energy is BK − BL.
The emission of an L-shell Auger electron is shown in Fig.
15.12(c): its energy is T = (BK −BL)−BL = BK −2BL.
Table 15.2 shows the energy changes that occur after a
hole is created in an atom by photoelectric excitation. It
is worth understanding each table entry in detail. Two
different paths for deexcitation are shown: one for pho-
ton emission and one for ejection of an Auger electron.
The sum of the photon, electron, and atomic excitation
energies does not change.

The photon that is emitted is called a characteristic
photon or a fluorescence photon. Its energy is given by
the difference of two electron energy levels in the atom.
There is an historical nomenclature for these photons.
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TABLE 15.2. Energy changes in the photoelectric effect and in subsequent deexcitation.

Process Total
photon
energy

Total
electron
energy

Atom
excitation
energy

Sum

Before photon strikes atom hν 0 0 hν
After photoelectron is
ejected [Fig. 15.12(a)]

0 hν − BK BK hν

Case 1: Deexcitation by the emission of a K and an L photon

Emission of K fluorescence
photon [Fig. 15.12(b)]

BK − BL hν − BK BL hν

Emission of L fluorescence
photon

BK −BL,
BL

hν − BK 0 hν

Case 2: Deexcitation by emission of an Auger electron from the L shell

Emission of Auger electron
[Fig. 15.12(c)]

0 hν − BK ,
BK −2BL

2BL hν

First L-shell hole filled by
fluorescence

BL hν − BK ,
BK −2BL

BL hν

Second L-shell hole filled
by fluorescence

BL, BL hν − BK ,
BK −2BL

0 hν

Because a hole moving to larger values of n corresponds to
a decrease in the total energy of an atom, it is customary
to draw the energy levels for holes instead of electrons, as
in Fig. 15.13. Transitions in which the hole is initially in
the n = 1 state give rise to the K series of x rays, those in
which the initial hole is in the n = 2 state give rise to the
L series, and so on. Greek letters (and their subscripts)
are used to denote the shell (and subshell) of the final
hole. The transitions shown in Fig. 15.13 are consistent
with certain selection rules which can be derived using
quantum theory:

∆l = ±1, ∆j = 0,±1. (15.33)

We saw in Eqs. 15.2 and 15.3 that the position of a
level could be estimated by the Bohr formula corrected
for screening. The energy of the Kα line—which depends
on screening for both the initial (n = 2) and final (n = 1)
values of n—can be fitted empirically by

EKα
=
(

3
4

)
(13.6)(Z − 1)2. (15.34)

After creation of a hole in the K shell, it is random
whether the atom deexcites by emitting a photon or an
Auger electron. The probability of photon emission is
called the fluorescence yield, WK . The Auger yield is
AK = 1 − WK . For a vacancy in the L or higher shells,
one must consider the fluorescence yield for each subshell,
defined as the number of photons emitted with an initial

state corresponding to a hole in a subshell, divided by
the number of holes in that subshell. The situation is fur-
ther complicated by the fact that radiationless transitions
can take place within the subshell, thereby altering the
number of vacancies in each subshell. These are called
Coster–Kronig transitions, and they are also accompa-
nied by the emission of an electron. For example, a hole
in the LI shell can be filled by an electron from the LIII

shell with the ejection of an M -shell electron. A super-
Coster–Kronig transition involves electrons all within the
same shell, for example, a hole in the MI shell filled by
an electron from the MII shell with the ejection of an
electron from the MIV shell.

One can define an average fluorescence yield WL, WM ,
etc. for each shell, but it is not a fundamental property
of the atom, since it depends on the vacancy distribu-
tion in the subshells. Bambynek et al. (1972) review the
physics of atomic deexcitations and present theoretical
and experimental data for the fundamental parameters.
They show that WL is less sensitive to the initial vacancy
distribution than one might expect, because of the rapid
changes in hole distribution caused by the Coster–Kronig
transitions. Hubbell et al. (1994) provide a more recent
review. Figure 15.14 shows values for WK , WL, and WM

as a function of Z. One can see from this figure that
radiationless transitions are much more important (the
fluorescent yield is much smaller) for the L shell than for
the K shell. They are nearly the sole process for higher
shells. The deexcitation is often called the Auger cascade.
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FIGURE 15.12. Two possible mechanisms for the deexcitation
of an atom with a hole in the K shell. (a) The atom with the
hole in the K shell. (b) An electron has moved from the L shell
to the K shell with emission of a photon of energy BK − BL.
(c) An electron has moved from the L shell to the K shell.
The energy liberated is taken by another electron from the L
shell, which emerges with energy BK − 2BL. This electron is
called an Auger electron.

The Auger cascade produces many vacancies in the
outer shells of the atom, and some of these may be
filled by electrons from other atoms in the same mole-
cule. This process can break molecular bonds. Moreover,
the Auger and Coster–Kronig electrons from the higher
shells can be quite numerous. They are of such low energy
that they travel only a fraction of a cell diameter. This
must be taken into consideration when estimating cell
damage from radiation. The effect of radiationless tran-
sitions is quite important for certain radioactive isotopes
that are administered to a patient, particularly when they
are bound to the cellular DNA. We will discuss them fur-
ther in Chapter 17.

15.10 Energy Transfer from Photons
to Electrons

The attenuation coefficient gives the rate at which pho-
tons interact and leave the primary beam as they pass
through material. If a beam of monoenergetic photons of
energy E = hν and particle fluence Φ passes through
a thin layer dx of material, the number of particles

FIGURE 15.13. Energy-level diagram for holes in tungsten,
and some of the x-ray transitions.
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FIGURE 15.14. Fluorescence yields for K-, L-, and M -shell
vacancies as a function of atomic number Z. Points are from
Table 8 of Hubbell et al. (1994).

per unit area that interact in the layer, −dΦ, is pro-
portional to the fluence and the attenuation coefficient:
−dΦ = Φµatten dx. The energy fluence is Ψ = hνΦ.
The reduction of energy fluence of unscattered photons is
−dΨ = −hν dΦ. For a thick absorber we can say that the
number of unscattered photons and the energy carried by
unscattered photons decay as

Φunscatt = Φ0e
−µattenx, Ψunscatt = Ψ0e

−µattenx.
(15.35)

The total energy flow is much more complicated. Every
photon that interacts contributes to a pool of secondary



15.10 Energy Transfer from Photons to Electrons 413

FIGURE 15.15. Routes for the transfer of energy between pho-
tons and electrons.

photons of lower energy and to a pool of electrons and
positrons. Figure 15.15 shows the processes by which en-
ergy can move between the photon pool and the electron–
positron pool. Energy that remains as secondary pho-
tons, such as those resulting from fluorescence or Comp-
ton scattering, can travel long distances from the site of
the initial interaction. Ionizing particles (photoelectrons,
Auger electrons, Compton recoil electrons, and electron–
positron pairs) usually lose their energy relatively close
to where they were produced. We will see in Sec. 15.13
that for primary photons below 10 MeV, the mean free
path of the secondary electrons is usually short compared
to that of the photons. Damage to cells is caused by lo-
cal ionization or excitation of atoms and molecules. This
damage is done much more efficiently by the electrons
than by the photons.

The mass energy transfer coefficient µtr/ρ is a mea-
sure of the energy transferred from primary photons to
charged particles in the interaction. If N monoenergetic
photons of energy E strike a thin absorber of thickness
dx, the amount of energy transferred to charged particles
is defined to be

dEtr = NE µtr dx,

so that
µtr

ρ
=

1
ρNE

dEtr

dx
. (15.36)

We can relate µtr to µatten. Suppose the material con-
tains a single atomic species and that fi is the aver-
age fraction of the photon energy that is transferred to
charged particles in process i. (Different values of i de-
note the photoelectric effect, incoherent scattering, co-
herent scattering, and pair production.) Multiplying the
number of photons that interact by their energy E and
by fi gives the energy transferred. Comparison with Eq.
15.24 shows that

µtr

ρ
=

NA

A

∑

i

fiσi. (15.37)

Coherent scattering produces no charged particles, so

µtr

ρ
=

NA

A
(τfτ + σincohfC + κfκ) . (15.38)

Fraction fτ for the photoelectric effect can be written
in terms of δ, the average energy emitted as fluorescence
radiation per photon absorbed. The quantity δ is calcu-
lated taking into account all atomic energy levels and the
fluorescence yield for each shell. The average electron en-
ergy is hν − δ, so

fτ =
hν − δ

hν
= 1 − δ

hν
. (15.39)

We can estimate δ by assuming that τK is the domi-
nant term in the photoelectric cross section, Eq. 15.8. The
probability that the hole in the K shell is filled by fluo-
rescence is WK . The energy of the photon is BK −BL or
BK−BM , and so on. A hole is left in a higher shell, which
may decay by photon or Auger-electron emission. The
latter is much more likely for the higher shells. Therefore
nearly all of the photons emitted have energy BK − BL,
so we have the approximate relationship

δ ≈ WK (BK − BL) . (15.40)

For Compton scattering, the fraction of the energy
transferred to electrons is implicit in Eqs. 15.21 and 15.22.
The transfer cross section fCσC , is plotted in Fig. 15.7.

For pair production, energy in excess of 2mec
2 becomes

kinetic energy of the electron and positron. The fraction
is

fκ = 1 − 2mec
2

hν
. (15.41)

All of these can be combined to estimate µtr.
We will see in Sec. 15.11 that charged particles trav-

eling through material can radiate photons through a
process known as bremsstrahlung. The mass energy-
absorption coefficient µen takes this additional effect into
account. It is defined as

µen

ρ
=

µtr

ρ
(1 − g), (15.42)

where g is the fraction of the energy of secondary
electrons that is converted back into photons by
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FIGURE 15.16. Coherent and incoherent attenuation coeffi-
cients and the mass energy absorption coefficient for water.
Plotted from data in Hubbell (1982).

bremsstrahlung in the material. The fraction of the en-
ergy converted to photons depends on the energy of the
electrons. Since the average electron energy is different in
the three processes, we can write (again assuming nonin-
teracting atoms in the target material)

µen

ρ
=

NA

A

∑

i

fiσi(1 − gi). (15.43)

In addition to bremsstrahlung, there is another process
that converts charged-particle energy back into photon
energy. Positrons usually come to rest and then combine
with an electron to produce annihilation radiation. Oc-
casionally, a positron annihilates while it is still in flight,
thereby reducing the amount of positron kinetic energy
that is available to excite atoms. While not mentioned
in the International Commission on Radiation Units and
Measurements (ICRU) Report 33 (1980) definition, this
effect has been included in the tabulations of µen/ρ by
Hubbell (1982). Seltzer (1993) reviews the calculation of
µtr/ρ and µen/ρ.

The energy-transfer and energy-absorption coefficients
differ appreciably when the kinetic energies of the sec-
ondary charged particles are comparable to their rest en-
ergies, particularly in high-Z materials. The ratio µen/µtr

for carbon falls from 1.00 when hν = 0.5 MeV to
0.96 when hν = 10 MeV. For lead at the same en-
ergies it is 0.97 and 0.74. Tables are given by At-
tix (1986). The difference between the attenuation and
the energy-absorption coefficients is greatest at energies
where Compton scattering predominates, since the scat-

tered photon carries away a great deal of energy. Figure
15.16 compares µatten/ρ and µen/ρ for water.

Attenuation and energy-transfer coefficients are found
in Hubbell and Seltzer (1996). These tables are also
available on the web at physics.nist.gov/PhysRefData/
contents-xray.html. Another data source is a computer
program provided by Boone and Chavez (1996).

We will return to these concepts in Sec. 15.15 to discuss
the dose, or energy per unit mass deposited in tissue or
a detector. First, we must discuss energy loss by charged
particles.

15.11 Charged-Particle Stopping
Power

The behavior of a particle with charge ze and mass M1

passing through material is very different from the be-
havior of a photon. When a photon interacts, it usually
disappears: either being completely absorbed as in the
photoelectric effect or pair production, or being replaced
by a photon of different energy traveling in a different di-
rection as in Compton scattering. The exception is coher-
ent scattering, where a photon of the same energy travels
in a different direction. A charged particle has a much
larger interaction cross section than a photon—typically
104–105 times as large. Therefore, the “unattenuated”
charged-particle beam falls to zero almost immediately.

Each interaction usually causes only a slight decrease
in the particle’s energy, and it is convenient to follow
the charged particle along its path. Figure 15.27 shows
the tracks of some α particles (helium nuclei) in photo-
graphic emulsion. The spacing of the fiducial marks at
the bottom is 10 µm. Each particle entered at the bot-
tom of the figure and stopped near the top. Figures 15.28
and 15.29 show the tracks of electrons. Figure 15.28 is
in photographic emulsion, while Fig. 15.29 is in water.
We will be discussing these tracks in detail in Sec. 15.14.
For now, we need only note that the α particle tracks
are fairly straight, with some deviation near the end of
the track. The electrons, being lighter, show considerably
more scattering.3

It is convenient to speak of how much energy the
charged particle loses per unit path length, the stopping
power, and its range—roughly, the total distance it trav-
els before losing all its energy. The stopping power is the
expectation value of the amount of kinetic energy T lost
by the projectile per unit path length. (The term power
is historical. The units of stopping power are J m−1 not J
s−1.) The mass stopping power is the stopping power di-

3This distinction between photons and charged particles repre-
sents two extremes on a continuum, and we must be careful not
to adhere to the distinction too rigidly. A photon may be coher-
ently scattered through a small angle with no loss of energy, while
a charged particle may occasionally lose so much energy that it can
no longer be followed.
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vided by the density of the stopping material and is anal-
ogous to the mass attenuation coefficient (often we will
say stopping power when we actually mean mass stopping
power):

S = −dT

dx
,

S

ρ
= −1

ρ

dT

dx
. (15.44)

In the energy-loss process, the projectile interacts with
the target atom. The projectile loses energy W , which be-
comes kinetic energy or internal excitation energy of the
target atom. Internal excitation may include ionization of
the atom. If the atoms in the material act independently,
the cross section per atom for an interaction that results
in an energy loss between W and W+dW is (dσ/dW )dW .
The results of Sec. 14.4 can be used to write the proba-
bility that a projectile loses an amount of energy between
W and W +dW while traversing a thickness dx of a sub-
stance of atomic mass number A and density ρ:

(probability) =
n

N
=

NAρ

A
dx

dσ

dW
dW. (15.45)

The average total energy loss is

dT =
NAρ

A
dx

∫ Wmax

0

W
dσ

dW
dW, (15.46)

and the mass stopping power is

S

ρ
=

NA

A

∫ Wmax

0

W
dσ

dW
dW. (15.47)

The integral is sometimes called the stopping cross section
ε. Its units are J m2.

Figure 15.17 shows the mass stopping power for pro-
tons, α particles (z = 2,Mα = 4Mp), and electrons and
positrons (z = ±1) in carbon as a function of energy. We
see a number of features of these curves:
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FIGURE 15.18. The scaled stopping power. The stopping
power is plotted vs the speed β = v/c of the projectile for
electrons, protons, and α particles. The α-particle stopping
power has been divided by 4, the square of the particle charge
z. Proton and α-particle stopping powers are from the pro-
gram SRIM (see caption for Fig. 15.17). The electron stopping
power is from ICRU Report 37 (1984).

1. All of the stopping power curves have roughly the
same shape, rising with increasing energy, reaching
a peak, and then falling. (The electron and positron
curves peak at a lower energy than is shown in the
figure.)

2. There is a region where the stopping power falls ap-
proximately as 1/T .

3. At still higher energies the curves rise again. This can
be seen for the electron and positron curves above 1
MeV. Similar increases occur in the proton and α-
particle curves at higher energies than are plotted
here.

The similarities suggest that the stopping power curves
for different projectiles may be related. Figure 15.18
shows the similarities more clearly. The stopping pow-
ers are plotted vs particle speed in the form β = v/c. At
low energies (β � 1) β is related to kinetic energy by

β =
(

2T

Mc2

)1/2

. (15.48)

For larger values of β, the relativistically correct expres-
sion

β =

[

1 −
(

1
T/Mc2 + 1

)2
]1/2

, (15.49)

was used to convert Fig. 15.17 to Fig. 15.18. The α-
particle stopping power in Fig. 15.17 has been divided
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by the square of the α-particle charge number z2 = 4.
All three curves of (1/z2)S/ρ vs β are described by very
similar functions for β > 0.04, though the electron and α-
particle curves are about 10% below the proton curve.4 At
low speeds the scaled α-particle curve falls significantly
below the proton curve. The reason, the formation of an
electron cloud on the α particle, is discussed below.

It is not difficult to understand the basic shape of the
stopping power curve. Most of the energy loss is from
the projectile to the electrons of the target atom. Since
the electrons are bound to the target nucleus, the speed
with which the projectile passes the target is important.
Imagine pushing slowly on a swing with a force that grad-
ually increases and then decreases. The net force on the
swing is the vector sum of the external force exerted Fext,
the vertical pull of gravity, and the tension in the ropes
and equals the swing’s mass times acceleration. For small
horizontal displacements x from equilibrium, the vector
sum of the weight and the tension in the string is hori-
zontal and nearly proportional to x. It points toward the
equilibrium position, and for small displacements is ap-
proximately a linear restoring force. If the proportionality
constant is k, ma = Fext − kx.

This is the equation of motion for an undamped har-
monic oscillator (Chapter 10 and Appendix F). If the
force builds up slowly, there is a very small acceleration,
and the swing angle changes so that Fext ≈ kx. As the
force decreases the swing returns to its resting position.
All of the work that was done to displace the swing is
now returned as work by the swing on the source of the
external force. No net energy has been imparted to the
swing. This is called an adiabatic process or approxima-
tion, a slightly different use of the term than in Chapter
3.

At the other extreme, the force could be applied for a
very short time, building up to a peak and falling quickly.
In this case, the swing does not have time to move and
Fext = ma. This can be integrated to give

∫
Fext dt = m

∫
a dt = m(vfinal − vinitial). (15.50)

The swing acquires a velocity and hence some kinetic
energy. The integral of force with respect to time is called
the impulse, and this limit is the impulse approximation.

The two limits depend on whether the duration of the
force is long or short compared to the natural period of
the swing. The atomic electrons are bound, and they have
a natural period that is the circumference of their orbit
divided by their speed velectron. The length of time that a
projectile exerts a force on the electrons is roughly the
diameter of the atom divided by the projectile speed.
Ignoring factors of 2π, we see that the passage of the

4A value β = 0.04 corresponds to a kinetic energy of 400 eV for
electrons, 800 keV for protons, and 3.2 MeV for α particles.

projectile will be adiabatic if

datom

vprojectile
� datom

velectron

or vprojectile � velectron. The impulse approximation will
be valid if vprojectile � velectron.

This is sufficient to explain the shape of the stopping-
power curves in Fig. 15.18. When the projectile has very
low energy it moves past the atom so slowly that the elec-
trons have time to rearrange themselves5 and then return
to their original state as the projectile leaves, restoring
to the projectile the energy that they received while rear-
ranging. As the projectile speed increases, the process is
no longer adiabatic, first for the more slowly moving outer
electrons and then for more and more of the inner atomic
electrons as the speed increases. At the other extreme,
when the projectile speed becomes high enough, we can
think of the process in terms of the impulse approxima-
tion. The faster the projectile moves by, the shorter the
time the force is applied and the smaller the energy trans-
fer. The energy transfer is most effective, and the peak of
the stopping power occurs, when the speed of the projec-
tile is about equal to the speed of the atomic electrons in
the target.

The cross section dσ/dW in Eqs. 15.45–15.47 is the sum
of cross sections for three possible processes. We have al-
ready described the stopping power due to interactions
of the projectile with the target electrons, Se. There is
another contribution to the stopping power from interac-
tions of the projectile with the target nucleus, Sn. It is
also possible for the energy loss to involve the radiation
of a photon, so we also have radiative stopping power,
Sr. Because these are independent processes, the total
stopping power and the cross section are each the sum of
three terms:

S

ρ
=

Se

ρ
+

Sn

ρ
+

Sr

ρ
,

dσ

dW
=
(

dσ

dW

)

e

+
(

dσ

dW

)

n

+
(

dσ

dW

)

r

.

(15.51)

To compare these processes, we need to consider the
maximum energy that can be transferred, as well as the
relative probability of each process. The maximum pos-
sible energy transfer Wmax can be calculated using con-
servation of energy and momentum. For a collision of a
projectile of mass M1 and kinetic energy T with a target
particle of mass M2 which is initially at rest, a nonrela-
tivistic calculation gives

W =
4TM1M2

(M1 + M2)2
. (15.52)

5Classically, if the electrons go around the nucleus many times

while the projectile moves by, the shape of their orbits can change

in response to the projectile. Quantum-mechanically, the shape of

the wave function can change, but the quantum numbers do not

change.
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TABLE 15.3. Maximum energy transfer and relative importance of nuclear and radiative interactions for various projectiles
and targets.

Projectile Target Nuclear
Wmax

(eV)

Electron
Wmax

(eV)

Sn/S Sr/S

Electron, 100 keV Hydrogen 240 50,000 0.01%
Carbon 20 50,000 0.09%
Lead 1 50,000 2.2%

Electron, 1 MeV Hydrogen 4,300 500,000 0.13%
Carbon 360 500,000 0.65%
Lead 20 500,000 11.5%

Proton, 10 keV Hydrogen 5,000 20 1.7%
Carbon 2,800 20 1.6%
Lead 200 20 1.5%

Proton, 100 keV Hydrogen 50,000 220 0.17%
Carbon 28,400 220 0.15%
Lead 1,900 220 0.24%

Proton, 1 MeV Hydrogen 500,000 2,200 0.11%
Carbon 280,000 2,200 0.07%
Lead 19,000 2,200 0.09%

α particle, 10 keV Hydrogen 6,400 5 27%
Carbon 7,500 5 12%
Lead 700 5 10%

α particle, 100 keV Hydrogen 64,000 50 1.6%
Carbon 75,000 50 1.1%
Lead 7,400 50 1.8%

α particle, 1 MeV Hydrogen 640,000 500 0.13%
Carbon 750,000 500 0.12%
Lead 74,000 500 0.20%

The analogous relativistic equation (needed, for example,
when the projectile is an electron) is

Wmax =
2(2 + T/M1c

2)TM1M2

M2
1 + 2(1 + T/M1c2)M1M2 + M2

2

. (15.53)

The values of Wmax for representative projectiles and tar-
gets are shown in Table 15.3, along with the percentage
of the stopping power due to nuclear collisions. For elec-
trons, the table also shows the percentage of the stopping
power due to radiative transitions. The percentages are
calculated from ICRU Report 49 (1993). Electrons can
scatter from nuclei, but the amount of recoil energy trans-
ferred to the nucleus is very small. Although electrons
undergo a great deal of nuclear scattering, which results
in a tortuous path through material, they lose very little
energy in a nuclear scattering. The heavier projectiles can
lose relatively more energy in each nuclear collision than
in each electron collision. For a given kind of projectile,
nuclear stopping is more important at lower energies, be-
cause less energy can be transferred to an electron. The
heavier the projectile for a given energy, the more impor-
tant the nuclear term becomes, for the same reason.

The collision of electrons with electrons is a special
case. Equation 15.52 or 15.53 gives Wmax = T . Consider
the collision of two billiard balls of the same mass. If the
projectile misses the target, it continues straight ahead
with its original energy and W = 0. If it hits the tar-
get head on, it comes to rest and the target travels in
the same direction with the same energy that the projec-
tile had—a situation indistinguishable from the complete
miss. It is customary (but arbitrary) in the case of iden-
tical particles to say that the particle with higher energy
is the projectile, so Wmax = T/2. This adjustment has
been made in Table 15.3 for electrons on electrons and
protons on protons.

Radiation is only important for electrons and occurs
in a certain fraction of the elastic electron scatterings
from the target nucleus. Nuclear scattering gives the elec-
tron a fairly large acceleration. Classically, an accelerated
charged particle radiates electromagnetic waves. This
process is called bremsstrahlung—braking or decelera-
tion radiation. The energy radiated is proportional to the
square of the acceleration, so bremsstrahlung is only im-
portant for light projectiles. There is also a contribution
from electron–electron or positron–electron scattering.
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(a)

(b)

FIGURE 15.19. A projectile, which may or may not carry an
electron cloud, moves past a target atom. (a) In a gas the
projectile interacts with one atom at a time. (b) In a liquid
or a solid, neighboring atoms may influence the interaction.

The electron–electron contribution vanishes at low ener-
gies, although the positron–electron bremsstrahlung does
not.6 We will see in Chapter 16 that bremsstrahlung is
an important component of the x-ray spectrum produced
when a beam of electrons strikes a target. Even so, the
fraction of the electron energy that is converted to radi-
ation is small.

An atom has a radius of a few times 10−10 m. The nu-
cleus of the atom is much smaller, about 10−15 m, and
contains most of the atom’s mass. The atom’s size is de-
termined by the electron cloud around the nucleus. Fig-
ure 15.19(a) shows a projectile entering at the left and
traveling to the right through a gas. It interacts with
one target atom at a time. The solid black dots repre-
sent the nuclei of the projectile and the target atom.
The shaded circles represent the electron clouds. The pro-
jectile may or may not have an electron cloud, which is
shown with lighter shading. Figure 15.19(b) shows the in-
teraction with a solid or liquid in which the target atoms

6This difference can be understood classically. In the first ap-

proximation, the radiation by a charge is proportional to the prod-

uct of the charge times its acceleration, qa. For two interacting

electrons, a1 = −a2, q1 = q2, and the sum of these two terms van-

ishes. For an electron and a positron a1 = −a2, q1 = −q2, and the

two terms add.

bV

M1

M2

d σ = 2πb db

FIGURE 15.20. The impact parameter is the perpendic-
ular distance from the target particle to a line extended
from the projectile in the direction of its velocity before the
interaction.

are tightly packed, and it may not be accurate to say that
the projectile interacts with only one atom at a time.

Classically, the motion of a charged projectile past a
charged target depends on the charges and masses of the
particles, the initial velocity or kinetic energy of the pro-
jectile, and the impact parameter b, which is the perpen-
dicular distance from a line through the initial velocity of
the projectile to the target, as shown in Fig. 15.20. The
classical cross section for having an impact parameter be-
tween b and b + db is the area of the ring, 2πb db. If we
could relate b to the energy loss W , we would have the
cross section dσ/dW of Eq. 15.47.

The energy-loss process is quite complicated, and the
cross section cannot be calculated exactly. A great deal
of experimental and theoretical work on stopping powers
has been done, extending from 1899 to the present time.
Different models are used for the low energy regime and
the high energy regime. The history is nicely reviewed by
Ziegler et al. (1985). Much of the recent work on stopping
powers has been motivated by the use of ion implantation
to make semiconductors, the analysis of materials using
ion beams, and medical applications. Currently stopping
powers of low-energy heavy ions can be calculated with
an accuracy of better than 10%. For high-speed light ions
the accuracy is better than 2%. References are found in
Ziegler et al. (1985).

15.11.1 Interaction with Target Electrons

We first consider the interaction of the projectile with
a target electron, which leads to the electronic stopping
power, Se. Many authors call it the collision stopping
power, Scol. There can be interactions in which a sin-
gle electron is ejected from a target atom or interactions
with the electron cloud as a whole (a “plasmon” excita-
tion). The stopping power at higher energies, where it is
nearly proportional to β−2, has been modeled by Bohr,
by Bethe, and by Bloch [see the review by Ahlen (1980)].
The Bethe–Bloch model is also valid for relativistic ener-
gies. A nonrelativistic model for high energies was devel-
oped by J. Lindhard and his colleagues [see references in
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FIGURE 15.21. A heavy particle of charge ze , mass M , and
velocity V moves past a stationary electron.

FIGURE 15.22. Why the parallel component of p is zero. For
every point where the projectile gives a particular E‖, there
is a symmetric point where E‖ is equal but opposite. The
components E⊥ are in the same direction in both places, so
the perpendicular component of p does not vanish.

Ziegler et al. (1985)]. It allows more accurate calculations
of which electrons in the target receive energy from the
projectile.

We can gain considerable insight into the high-energy
loss process by making a classical calculation of the cross
section for transferring energy to an electron using the
impulse approximation. This is a simplification of the
Bethe–Bloch model. In our model, a heavy projectile
passes by a free electron that is at rest. Momentum is
transferred from the projectile to the electron. Because
of its large mass, the projectile’s velocity does not change
appreciably, but the lighter electron acquires an apprecia-
ble velocity and kinetic energy. If the momentum trans-
ferred to the electron is p, its kinetic energy is p2/2me.
That kinetic energy must have been lost by the projectile.

Figure 15.21 shows a particle of mass M , charge ze,
and velocity V = βc moving past a stationary elec-
tron. The impact parameter b is the perpendicular dis-
tance from the electron to the path of the projectile.
The distance from the projectile to the electron is r, and
the distance along the path to the point of closest ap-
proach is ξ. The momentum transferred to the electron is
p =

∫
Fdt = −e

∫
Edt. By symmetry, there is no compo-

nent of p parallel to the path of the projectile. The reason
is shown in Fig. 15.22. For each location of the projec-

tile that gives a parallel component of F in one direction,
there is a position an equal distance on the other side of
the point of closest approach that gives a component of F
with the same magnitude but in the opposite direction.
The perpendicular component of F is the same for both
locations, so there is a net perpendicular component of
momentum transfer. The magnitude of the perpendicular
component of E is

E⊥ = E sin θ =
ze sin θ

4πε0r2
=

zeb

4πε0r3
=

ze

4πε0

b

(ξ2 + b2)3/2
.

The perpendicular impulse is
∫

F⊥dt =
−e
∫

E⊥(dt/dξ)dξ. If the fraction of energy lost by
the projectile is small, then dt/dξ = 1/βc does not
change during the collision. The magnitude of the
impulse is therefore

p = − e

V

∫
E⊥dξ = − ze2b

4πε0βc

∫ ∞

−∞

dξ

(ξ2 + b2)3/2

= − ze2b

4πε0βc
lim

x→∞

[
ξ

b2(ξ2 + b2)1/2

]x

−x

= − 2ze2

4πε0βcb
.

The smaller the impact parameter, the greater the mo-
mentum transfer to the electron. The kinetic energy ac-
quired by the electron is

W =
p2

2me
=

2z2e4

(4πε0)
2
mec2β2b2

.

The factor e4/(4πε0)2mec
2 depends only on the charge

and mass of the electron. It can be written as r2
emec

2,
where re is the classical radius of the electron [Eq. 15.18].
The factor has the numerical value

r2
emec

2 = 6.50 × 10−43 J m2 = 4.06 × 1024 eV m2.

Using this notation the energy transfer per target electron
is

W =
2z2r2

emec
2

β2b2
. (15.54)

Here z is the charge on the projectile, βc is its speed, and
b is the impact parameter. Note that W does not depend
on the mass of the heavy projectile, but only on its speed.
As the speed becomes less, the energy transfer becomes
greater, because the projectile takes longer to move past
the electron and the force is exerted for a longer time (as
long as the time is still short enough so that the impulse
approximation remains valid).

If the electrons are uniformly distributed, the cross sec-
tion for each electron is dσ = (dσ/dW )dW = 2πb db. This
can be written, with the help of Eq. 15.54, in terms of W :

dσ

dW
dW =

4πz2r2
emec

2

2β2

dW

W 2
. (15.55)
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This expression diverges as W approaches zero, corre-
sponding to very large impact parameters. However, the
assumption that the target electrons are free fails in this
limit, so that there is some effective lower limit Wmin.
Also, the greater the impact parameter, the longer the
electron will experience the force exerted by the projec-
tile (though it will be weaker). If the time is too long,
the electron can move in response to the force and not
absorb as much energy; the impulse approximation is no
longer valid. We have already seen that there is a maxi-
mum energy transfer Wmax. Multiplying the cross section
by W , integrating from Wmin to Wmax, and noting that
there are Z electrons per target atom, we obtain

Se

ρ
=

4πNAr2
emec

2

β2

Z

A
z2 ln

(
Wmax

Wmin

)
. (15.56)

The factor 4πNAr2
emec

2 has the value 30.707 eV m2

mol−1 = 0.307 07 MeV cm2 mol−1.
A quantum-mechanical calculation gives a result of es-

sentially the same form as Eq. 15.56. The logarithmic
term includes both ionization and plasmon excitation7

and is called the stopping number per atomic electron
L(β, z, Z):

Se

ρ
=

4πr2
emec

2

β2
NA

Z

A
z2L(β, z, Z). (15.57)

For heavy charged particles L has the form

L(β, z, Z) = L0 + zL1 + z2L2,

L0 = ln
(

β2

1 − β2

)
+ ln

(
2mec

2

I(z)

)
− β2 − C

Z
− δ

2
.

(15.58)
Equation 15.57 with L = L0 is often called the Bethe–
Bloch formula. The second term in L0 depends on I(Z),
the ionization potential of the atoms in the absorber, av-
eraged over all the electrons in the atom. Values of I(Z)
have been calculated theoretically and also derived from
measurements of the stopping power. They range from
14.8 eV for hydrogen to 884 eV for uranium. The value
14.8 eV is greater than the ground-state energy of hy-
drogen, 13.6 eV, because the ejected electron has some
average kinetic energy.

Published values of I can vary considerably, depend-
ing on whether the other correction terms are present.
For example, values of I in the literature for hydrogen
range from 11 to 20 eV. Discussions of values for I and
the various terms in L can be found in ICRU Report 49
(1993), in Ahlen (1980), and in Attix (1986). The term
δ/2 corrects for the density effect. The calculation above
assumed that the electron experienced the full electric
field of the projectile. However, other electrons in the
absorber move slightly, polarizing the absorber and re-
ducing the field. This effect becomes important at high

7A plasmon excitation is due to the interaction of the projectile
with the entire electron cloud of the atom.

energies as the electric field is distorted by relativistic ef-
fects. It also depends on the density of the absorber. A
small density effect persists in conductors even at low en-
ergies; however, it is usually incorporated into the value
of I(Z). For the projectile energies we are considering,
the density effect is most important for electrons.

An alternative nonrelativistic treatment by Lindhard
and colleagues allows the use of accurate atomic electron
density distributions and also considers the effect of elec-
trons in neighboring atoms.8 In the Lindhard model the
stopping power is

Se

ρ
=

NA

A

∫
z2I(V, ρe)ρe4πr2dr, (15.59)

where z is the projectile charge, I is the stopping inter-
action strength in J m2 (more often in eV pm2),9 ρe is
the electron density in the atom (in units of the electron
charge), and 4πr2dr is the volume element. Integration
of ρe over all volume gives Z, the atomic number of the
target. Comparison of Eqs. 15.59 and 15.47 shows that
the integral in Eq. 15.59 is the stopping cross section per
target atom.

Figure 15.23 shows how the Lindhard model explains
why the stopping power falls below the 1/β2 curve at
lower projectile velocities. Each panel shows the electron
density in copper, 4πr2ρe, and the interaction strength
I. Their product, the solid line, is the integrand in Eq.
15.59. The integral is taken from 0 to 0.14 nm (1.4 Å
(angstrom)). The K, L, and M shells of copper can be
seen in the electron density curve. Figure 15.23(a) is for
a 10-MeV proton or some other heavy ion with the same
speed. The projectile is moving fast enough so that all
electrons except those in the K shell interact with it.
Contrast this with Fig. 15.23(b), which is for a 100-keV
proton. The projectile speed is much less, and the inter-
action is almost exclusively with the outer electrons.10

Both the Bethe–Bloch and Lindhard models fail at low
energy, because the electrons are not free and many of
the interactions are adiabatic. Some models reviewed by
Ziegler et al. (1985) predict a stopping power propor-
tional to projectile velocity. This has been found to be
true in general, though not for all elements. The exper-
iments are quite difficult because of the thinness of the
targets, contamination, and so on. Figure 15.24 shows the
regions where the various models apply for protons. For
electrons, relativistic effects are important above about

8The electron density functions are calculated using quantum
mechanics. The problem is to find the electron distribution by solv-
ing Schrödingers equation with the potential distribution due to the
nucleus and the potential due to the electron charge distribution for
which one is solving. This self-consistent computation is called the
Hartree–Fock approximation.

9I is not the same as the average ionization energy of Eq. 15.58.
10The solid line representing the integrand does not fall to zero at

0.12 nm = 1.2 Å because of the effect of electrons from neighboring
atoms. In a solid there are no regions where the electron density is
zero.
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FIGURE 15.23. Calculation of the stopping power at low en-
ergies involves integrating the product of the electron charge
distribution in the target atom and the interaction strength
function, which depends on the projectile speed. The dotted
line shows the electron charge density for copper. The solid
line shows the integrand. (a) For 10-MeV protons, all electrons
but those in the K shell contribute. (b) For 100-keV protons
the interaction function has changed, and only the outermost
electrons contribute. Note the much different ordinate scales
in (a) and (b). Provided by J. F. Ziegler.
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FIGURE 15.24. Proton and electron stopping power vs. en-
ergy in carbon, showing the regions in which various models
are valid.

500 keV. The rise in stopping power at high energies is
due to the density effect (polarization of the electrons).

Another important effect at low energies is that the
slowly moving ion can capture electrons, decreasing the
value of z2. Ziegler et al. (1985) discuss the scaling of
data for different projectiles and the appropriate effec-
tive charge values. The average projectile charge follows
a universal curve when plotted as a function of the ap-
propriate combination of the speeds of the projectile and
target electrons. They, and the ICRU Report 49 (1993),
assume that for protons the effective charge is always
unity. The theoretical justification is that the radius of
the electron orbit in hydrogen is larger than the inter-
atomic separation in solids.

15.11.2 Scattering from the Nucleus

The projectile can also scatter from the target atom as a
whole. The recoil kinetic energy of the atom is lost by the
projectile. Since the nucleus contains most of the mass,
the kinematics are those of the bare projectile and the
target nucleus, and this process is called nuclear scat-
tering, with stopping power Sn. (Sometimes it is called
elastic scattering, with a subscript that can cause it to be
confused with electron interactions.)

Just as with Compton scattering, knowing the an-
gle through which the projectile is scattered defines the
amount of energy transferred to the target. The angle
depends on the impact parameter. The problem can be
solved for a given impact parameter if the force between
the projectile and target is a function only of their sepa-
ration and one knows the potential energy of their sepa-
ration. The details are found in Ziegler et al. (1985). We
will simply comment on the contributions to the potential
energy. They are

1. The Coulomb force between the projectile and the
target nucleus.

2. The Coulomb force between the projectile and the
electron cloud of the target atom.

3. The Coulomb attraction between the target nucleus
and any electrons surrounding the projectile.

4. The Coulomb repulsion between the electron clouds
of the target and the projectile.

5. A term due to the Pauli exclusion principle if the pro-
jectile is an ion with an electron cloud. To see how
it arises, suppose that both the projectile and target
have both of their possible K-shell electrons. If the
nuclei get close enough, they effectively form a sin-
gle nucleus that cannot have four K-shell electrons.
Therefore, two of the electrons have to move to un-
filled shells. This requires energy that comes from the
kinetic energy of the projectile. This is called Pauli
promotion. Even though the electrons have time to
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return to their original orbits for a slow projectile,
the effect changes the overall potential and hence the
projectile orbit and the probability of a particular
energy transfer.

6. An exchange term that also arises from the Pauli
principle, related to whether the spins of the projec-
tile and target electrons are parallel or antiparallel.

Because nuclear scattering is relatively unimportant for
the charged particles we are considering and because it
does not lead to ionization, we will not describe any de-
tails of the calculations.

15.11.3 Stopping of Electrons

Equations similar to Eq. 15.57 are obtained for elec-
trons and positrons. Recall that energy loss in nuclear
scattering is negligible for positrons and electrons be-
cause they are so light, and that bremsstrahlung transfers
some of the electron kinetic energy to radiation. Elec-
trons and positrons are assumed to collect no screening
charge. Even at low energies, the electron velocities are
high enough to that the Bethe–Bloch model is used. The
collision stopping power for electrons is11

Se

ρ
= 4πNAr2

emec
2 1
β2

Z

A
L±. (15.60)

The subscript ± indicates that stopping number per elec-
tron is slightly different for electrons and for positrons.
The exact forms can be found in Attix (1986) or in ICRU
Report 37 (1984). In both cases, L depends on I(Z) and
the density effect. An accurate calculation of the shell cor-
rection for electrons has not been made; therefore ICRU
Report 37 omits the shell correction from the tables for
electrons and positrons. This omission makes the use of
Eq. 15.59 less accurate for electrons below 10 keV. The
best values of Se/ρ for electrons and positrons are ob-
tained from theoretical calculations using Eq. 15.60 and
values of I(Z) determined from proton data.

15.11.4 Compounds

In dealing with compounds, it is frequently assumed that
each atom in the target interacts independently with
the projectile, as we assumed for photons. The stopping
power per molecule is then equal to the sum of the stop-
ping powers for each atom in the molecule. This leads to
a formula analogous to Eq. 15.32, known as the Bragg
rule:

S

ρ
=
∑

i

wi

(
S

ρ

)

i

. (15.61)

This equation applies to the collision, radiative, nuclear,
and total stopping powers. This approximation is quite

11The literature often replaces the 4π by 2π for electrons and
makes L twice as large.

inaccurate near the peak of the stopping power curve,
where the errors can be greater than a factor of 2. This is
not surprising, given the behavior of the scattering func-
tion I in Fig. 15.23(b). Most of the energy loss is to outer
electrons—the conduction electrons if the substance is a
metal. In a semiconductor there are gaps in the energy
levels, and this precludes the low-energy transfers. As a
result, the stopping power is lower in semiconductors. In
crystals, channeling can occur: the stopping power de-
pends on the orientation of the trajectory with the crystal
symmetry axis.

Carbon poses a particular problem. It is an impor-
tant element in the body, and it has chemical bonds that
range from metallic to insulating in nature. Various in-
vestigators have shown variations in stopping power of
30% for ions in pure carbon, depending on how it was
fabricated. Graphite can be made with different electri-
cal conductivities, and there are associated differences in
stopping power. Ziegler and Manoyan (1988) have ap-
plied charge-scaling techniques to several organic carbon
compounds by considering separately the stopping due
to closed atomic shells (cores) and the remaining bonds
between different pairs of atoms.

ICRU Reports 37 (1984) and 49 (1993) handle depar-
tures from the Bragg rule in the first approximation by
using different values of I for electrons in compounds. The
density effect is important for electrons and also does not
follow the Bragg rule.

Stopping-power values are found in ICRU Re-
port 37 for positrons and electrons. ICRU Re-
port 49 has stopping powers for protons and α
particles. These data are also found on the web:
physics.nist.gov/PhysRefData/Star/Text/contents.html.
A computer program for protons and ions, SRIM
(Stopping and Range of Ions in Matter) is described by
Ziegler et al. (1985) and is available at www.srim.org.

15.12 Linear Energy Transfer and
Restricted Collision Stopping
Power

In modeling the effect of ionizing radiation on targets,
whether they be radiation detectors, photographic emul-
sions, cells, or parts of cells, one often wants to know how
much of a charged particle’s energy is absorbed “locally,”
that is, within some region around a particle’s trajectory.
An accurate calculation is difficult, since some of the elec-
trons produced may leave the region of interest. Also,
the energy absorbed in some region of interest around a
particle track comes both from energy lost by the par-
ticle while traversing that track segment and also from
photons and charged particles produced elsewhere by the
projectile. [This is discussed in detail in ICRU Report 16
(1970).]
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An approximation to the desired quantity is the lin-
ear energy transfer (LET) or the restricted linear colli-
sion stopping power L∆. It is defined as the ratio dT/dx,
where dx is the distance traveled by the particle and dT
is the mean energy loss to electrons that results in energy
transfers less than some specified ∆. This use of the sym-
bol L should not be confused with the stopping number
of Eqs. 15.57–15.60. The quantity L∆ can be calculated
by replacing Wmax by ∆ in the expression for the stop-
ping power. The value of ∆ is usually specified in electron
volts.

The electron stopping power Se is numerically equal to
L∞. However, Se is defined in terms of the energy lost
by the particle, while L∞ is defined in terms of energy
imparted to the medium.

Note that although the quantity actually of interest
may be the energy imparted within some region around
the trajectory, this definition is based on energy transfers
less than ∆. A quantity based on the region of interest
would be easier to measure; L∆ is easier to calculate.

ICRU Report 37 calculates L∆ for positrons and elec-
trons for values of ∆ down to 1 keV. The report points
out that such calculations are inaccurate for smaller val-
ues of ∆, even in light elements. ICRU Report 16 provides
values of L∆ for protons and heavy ions.

15.13 Range, Straggling, and
Radiation Yield

We can see in Fig. 15.27 that the α particles, entering
from the bottom with the same energy, all travel about
the same distance before coming to rest. This distance is
called the range of the α particles. It will be defined more
precisely below.

We can estimate the range in the following way. The
stopping power represents an average energy loss per unit
path length. The actual energy loss fluctuates about the
mean values given by the stopping power. If these fluctua-
tions are neglected and the projectiles are assumed to lose
energy continuously along their tracks at a rate equal to
the stopping power, then one is making the continuous-
slowing-down approximation (CSDA). In this approxima-
tion one can calculate the range, the distance a particle
with initial energy T0 travels before coming to rest or
reaching some final kinetic energy Tf . A factor ρ is intro-
duced to express the range in mass per unit area:

RCSDA(T0, Tf ) = ρ

∫
dx = ρ

∫ T0

Tf

dT

Se + Sn + Sr
.

(15.62)
ICRU Report 37 (1984) discusses the problem of carrying
the integration to Tf = 0.

The CSDA range is not directly measurable. Measure-
ments of the fraction F (R) of monoenergetic particles in
a beam that passes through an absorber of thickness R

1.0

0.5

0.0

F
ra

ct
io

n 
tr

an
sm

itt
ed

Absorber thickness

R50 Rex Rm

FIGURE 15.25. Plot of the number of particles passing
through an absorber vs its thickness to show the definition
of various ranges. R50 is the median range, Rex is the extrap-
olated range, and Rm is the maximum range.

gives a curve like that of Fig. 15.25. Various ranges can
be defined using this curve. The most easily measured
is the median range R50, corresponding to an absorber
thickness that transmits 50% of the incident particles.
The extrapolated range Rex is obtained by extrapolat-
ing the linear portion of the curve to the abscissa. The
maximum range Rm is the thickness that just stops all
of the particles; it is, of course, very difficult to measure.
If F (R) is known accurately one can define a mean range
R =

∫
R(−dF/dR)dR/

∫
(−dF/dR)dR. If the shape of

the transmission curve is perfectly symmetrical about the
mean, then R50 is equal to R, even though they are con-
ceptually quite different. For heavy projectiles R (usu-
ally approximated by R50) provides the best estimate of
RCSDA.

The fluctuations in the range are called straggling.
The straggling distribution has also been calculated. The
track of a heavy projectile such as an α particle is fairly
straight, because the various scattering interactions result
only in small angular deviations. The straggling results
primarily from the fact that Sdx represents only an aver-
age energy loss in path length dx. The fluctuations can be
integrated to give the spread in range; see Ahlen (1980)
or ICRU Report 37 (1984) or ICRU Report 49 (1993) or
the computer program SRIM [Ziegler et al. (1985)].

Electrons and positrons are so light that they un-
dergo large-angle scattering (occasionally from an elec-
tron, more often from an atomic nucleus). The resulting
electron trajectories are quite tortuous, as can be seen in
Figs. 15.28 and 15.29. The median or mean range for an
electron is considerably less than RCSDA. For electrons
and positrons the extrapolated range Rex corresponds
most closely to RCSDA, at least in materials with atomic
number up to silver [Tung et al. (1979)]. Figure 15.26
shows ranges in water. At medium energies the depen-
dence on energy is approximately T 2.

Tables of ranges are found in the refer-
ences cited above or at the NIST web site
physics.nist.gov/PhysRefData/Star/Text/contents.html.
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FIGURE 15.26. Range of electrons, protons, and α particles
in liquid water. Data are from ICRU Reports 37 (1984) and
49 (1993). Note that for water the range in gm cm−2 is the
same as the range in cm.

The radiation yield, Y , is the fraction of the initial par-
ticle (usually electron) kinetic energy T0 that is converted
to bremsstrahlung photons as the electron comes to rest
in the medium in question. The yield is calculated using
the continuous-slowing-down approximation as (neglect-
ing Sn)

Y (T0) =
1
T0

∫ T0

0

Sr(T )dT

Se(T ) + Sr(T )
. (15.63)

15.14 Track Structure

We can gain insight into the interaction processes by
examining tracks in photographic emulsions or in cloud
chambers. Figures 15.27 and 15.28 are taken from a clas-
sic atlas of tracks in nuclear emulsions [Powell et al.
(1959)]. They show the difference between the interac-
tion of heavy and light particles in matter. Figure 15.27
shows the tracks of four cosmic-ray α particles, each of
which entered the bottom of the figure and stopped near
the top. The fiduciary marks along the bottom are 10 µm
apart. Each track is about 195 µm long, corresponding to
an initial α-particle energy of about 22 MeV. The emul-
sion has a density of 3.6× 103 kg m−3. Each black dot is
a sensitive silver halide grain about 0.6 µm in diameter.
At the beginning of the track, S is about 70 keV µm−1

or 42 keV per grain; 10 µm from the end of the track it
is 200 keV µm−1 or 120 keV per grain. The energy that
must be deposited in a grain to render it developable is
about 2.8 keV. The amount of energy deposited in each

FIGURE 15.27. Tracks of 22-MeV α particles in photographic
emulsion. The α particles enter at the bottom of the page and
come to rest near the top. The small square fiducial marks
at the bottom are 10 µm apart. The features of the tracks
are discussed in the text. From C. F. Powell, P. H. Fowler,
and D. H. Perkins. The Study of Elementary Particles by the
Photographic Method. Pergamon Press, 1959. Reproduced by
permission of Professor D. H. Perkins.

grain is so much larger than this that the track density
is uniform. Small bumps of 1–4 grains can be seen oc-
casionally along each track. Some of these are due to δ
rays: electrons that have received enough energy to travel
a few micrometers in the emulsion. Others are artifacts
due to the general background fog. Multiple small-angle
scattering causes small deviations in each track, which
become greater as the α particle slows down.

In Figure 15.28 an electron–positron pair has been pro-
duced in the lower left corner of the emulsion by a 1.5-
MeV photon. Each particle has a kinetic energy of about
250 keV. One immediately notices the tortuous path of
both particles due to large-angle scattering. The stop-
ping power near the beginning of the track is about 0.8
keV µm−1, so that about 0.5 keV is deposited in each
grain. About 30 µm from the end, the stopping power
and the average amount of energy deposited in each grain
are about 3 times larger. The upper track is considerably
more dense near the end of its path. The failure of the
other track to show this density increase could be due to
annihilation of the positron in flight or to a large-angle
scattering out of the emulsion.
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FIGURE 15.28. Tracks of electrons in emulsion. An electron—
positron pair was produced in the lower left corner. Each par-
ticle has an energy of about 250 keV. The details are dis-
cussed in the text. From C. F. Powell, P. H. Fowler, and D.
H. Perkins. The Study of Elementary Particles by the Photo-
graphic Method. Pergamon Press, 1959. Reproduced by per-
mission of Professor D. H. Perkins.

Figure 15.29 shows the ionization produced by an elec-
tron at a much different scale. It was produced from a
cloud chamber photograph of electron tracks in a low-
density gas [Budd and Marshall (1983)]. The scale shows
distances in liquid water or tissue that correspond to the
same value of ρx, corrected for phase effects. Note that
the scale shows 10 nanometers. An atomic diameter is
0.2–0.6 nm. In each case a photoelectron of energy be-
tween 950 and 1480 eV has been ejected from a gas atom
in the cloud chamber. Auger electrons are also seen.

15.15 Energy Transferred and Energy
Imparted; Kerma and Absorbed
Dose

The response of a substance to radiation, whether it is the
darkening of a photographic film, an electrical pulse in an
ionization chamber, or the response of a tumor to radia-
tion therapy, is due, directly or indirectly, to the ioniza-

FIGURE 15.29. Tracks of ≈1 keV electrons in a cloud cham-
ber. An equivalent scale in water or tissue has been added.
Photoelectrons and Auger electrons can be seen. The lines
were drawn to guide the eye. From T. Budd and M. Mar-
shall. Microdosimetric properties of electron tracks measured
in a low-pressure cloud chamber. Radiation Research 93:19–32
(1983). Reproduced by permission of the Radiation Research
Society.

tion produced by charged particles that lose their kinetic
energy in the substance through the stopping mechanisms
we have just discussed. We now define some quantities
that are used to describe the transfer of energy from pho-
tons to charged particles and the energy lost by charged
particles due to ionization.

15.15.1 An Example

Before discussing the formal definition of these quanti-
ties, let us consider some examples of energy transfer by
photons. Figure 15.30 shows some schematic interactions
of photons in a sample of water 10 cm thick. They are
drawn to scale.12

In Fig. 15.30(a) five photons of energy 100 keV en-
ter from the left. Photon tracks are dotted. One pho-
ton is absorbed by the photoelectric effect, and four are

12These examples were constructed with a pedagogical simulation
program called MacDose [Hobbie (1992)]. The program is available
at http://www.oakland.edu/∼roth/hobbie.html. It runs on a Mac-
intosh using OS-9 or earlier. A more realistic but easily understood
Monte Carlo simulation in described by Arqueros and Montesinos
(2003).
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FIGURE 15.30. A simulation of photons passing through a
layer of water 10 cm thick. (a) The photon energy is 100 keV.
One photon has a photoelectric interaction. The other four are
Compton scattered. (b) The photon energy is 10 MeV. Two
photons do not interact, one produces an electron–positron
pair, and two Compton scatter.

Compton scattered. The energy of the photoelectron and
the Compton-scattered electrons is so low that the ranges
are insignificant on this scale. In Fig. 15.30(b) the inci-
dent photons have 10 MeV energy. One has undergone
pair production, two have Compton scattered, and two
have passed through without interacting. The electron
tracks are shown as thick solid lines. Their lengths are
equal to the CSDA range of electrons or positrons of that
energy. They are drawn as straight lines, even though the
real tracks are tortuous.

One of the quantities of interest is the energy trans-
ferred to kinetic energy of charged particles in some mass
of material. [We saw this briefly in the discussion sur-
rounding Eq. 15.36.] Another is the energy imparted in
some mass of material, which is the kinetic energy lost by
charged particles as they come to rest. Figure 15.31 shows
the distinction between the two quantities. It shows two

Length = 10 cmE =  10 MeV

10 MeV

1.25 MeV

8.75

8.1 6.5 4.5 2.5 0.2

3.6

5.4

2.0 0.1

1.34.5

E transferred: 9.0 8.75

E imparted: 2.5 5.75 3.0 2.0 2.0 2.3 0.2

FIGURE 15.31. The difference between energy transferred
and energy imparted. Two of the photons from Fig. 15.30(b)
are shown. The water has been divided into ten 1-cm slices.
The numbers on the drawing show the charged-particle energy
at the entrance to each slice. The energy transferred and the
energy imparted in each slice are shown at the bottom.

photons from Fig. 15.30(b): one that underwent pair pro-
duction, and one that was Compton scattered. The water
has been divided into ten slices, each 1 cm thick. No en-
ergy is transferred in the first slice. Energy is transferred
by pair production in the second slice and by Compton
scattering in the third slice. In each case the electron (or
positron) produced loses kinetic energy in that slice and
also in other slices. There is energy imparted in slices 2–
8, even though the energy is transferred only in slices 2
and 3.

Consider now the actual numbers. In keeping with the
literature,13 we will call the energy transferred Etr, even
though we have been using T for kinetic energy. For pair
production the energy transferred is

Etr = T+ + T− = hν0 − 2mec
2

= 10 − 2 × 0.511 = 8.978 ≈ 9.0 MeV. (15.64)

The partition of energy between the electron and positron
is stochastic. We assume for this example that about 60%
(5.4 MeV) goes to one member of the positron–electron
pair and 40% (3.6 MeV) to the other. These numbers are
shown at the vertex of Fig. 15.31. From these energies
the ranges can be determined. Measuring the distance
from the end of the track to the boundary between each
slice allows us to determine the energy of each charged
particle as it enters the slice. For the Compton scatter-
ing, 8.75 MeV is transferred to the recoil electron and the
scattered photon has 1.25 MeV. The energy imparted by
the 5.4-MeV particle is 5.4 − 4.5 = 0.9 MeV in slice 2,

13See ICRU Report 33 (1980) or Attix (1986).
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FIGURE 15.32. Plot of energy transferred and energy im-
parted for a simulation using 40,000 photons of energy 10
MeV. The filled circles are the energy transferred in each slice,
and the open circles are the energy imparted in each slice.

4.5−1.3 = 3.2 MeV in slice 3, and 1.3 MeV in slice 4. Sim-
ilar calculations can be done for the other charged par-
ticles. The energy transferred and the energy imparted
in each slice are shown at the bottom of Fig. 15.31.
This ignores any interaction of the 1.25-MeV Compton-
scattered photon and assumes it leaves the volume of in-
terest. Because for the 100-keV photons the range of the
charged particles is small compared to 1 cm, the energy
transferred and the energy imparted in each slice are the
same in Fig. 15.30(a).

Figure 15.32 shows a plot of the transferred and im-
parted energy for a uniform beam of 10-MeV photons
all traveling to the right and striking a slab of water 20
cm thick. Both the energy transferred and the energy
imparted are stochastic quantities. This simulation was
done for 40 000 photons, and you can see the scatter in
the points. The energy transferred falls exponentially as
exp (−µattenx).

15.15.2 Energy Transferred and Kerma

We found the energy transferred by calculating the en-
ergy of each electron or positron produced. The standard
definition uses slightly different bookkeeping. It subtracts
the energy of the photons leaving the volume of interest
from those entering, and adds a term Q for the energy
going into the volume due to changes in rest mass. For
example, this is the 2mec

2 of Eq. 15.64. The standard
definition is

Etr = (Rin)u − (Rout)nonr
u + Q. (15.65)

The quantity R is radiant energy: the energy of parti-
cles (including photons) but not including rest energy.
The subscript u means that it is the radiant energy of
uncharged particles. The uncharged particles can be pho-

tons or neutrons.14 Later we will use subscript c to denote
the radiant energy of charged particles. The superscript
“nonr” means that the quantity does not include radiant
energy arising from bremsstrahlung or positron annihila-
tion in flight from charged particles within the volume.
The Q term is positive if mass is converted to energy (as
in annihilation radiation) and negative if energy is con-
verted to mass (as in pair production).

Using this method of calculating for Fig. 15.31 gives

Etr = (Rin)u − (Rout)
nonr
u +

∑
Q = 10 − 0 − 2 × 0.511

= 9.0 MeV

for slice 2. For the third slice the equation gives

Etr = (Rin)u − (Rout)
nonr
u +

∑
Q = 10 − 1.25 + 0

= 8.75 MeV.

For the fourth slice, the uncharged radiant energy in is
equal to the uncharged radiant energy out. In the fifth
slice, if the 1.25-MeV photon actually interacts as it ap-
pears to, we would have to include its energy transfer. In
all the other slices the energy transferred is zero.

The energy transferred is a stochastic quantity, and
so is the energy transferred per unit mass, dEtr/dm. Its
expectation value is the kerma (k inetic energy released
per unit mass):

K =
dEtr

dm
. (15.66)

If we consider monoenergetic photons of energy hν and
consider only the interaction of the primary photon beam
(not any secondary photons, such as Compton-scattered
photons or annihilation radiation), then the kerma is

K =
µtr

ρ
Ψ, (15.67)

where Ψ is the energy fluence. To see why this is true,
note that if the N photons are spread over area S, then
NE = ΨS and dm = ρSdx. The kerma is

K =
dEtr

dm
=

ΨSµtrdx

ρSdx
=

µtr

ρ
Ψ.

15.15.3 Energy Imparted and Absorbed Dose

The energy imparted, E, is the net energy into the volume
from all sources: uncharged particles, charged particles,
and changes of rest mass:

E = (Rin)u − (Rout)u + (Rin)c − (Rout)c +
∑

Q. (15.68)

The absorbed dose is the expectation value of the energy
imparted per unit mass:

D =
dE

dm
. (15.69)

It is measured in joules per kilogram or gray (Gy).

14Neutrinos, which we will discuss in Chapter 17, travel such long
distances without interacting that they are not considered in the
calculations. Energy carried by neutrinos, which come from nuclear
β decay, is assumed to have left the body.
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15.15.4 Net Energy Transferred, Collision
Kerma, and Radiative Kerma

Another quantity used in the literature is the net energy
transferred. It subtracts from the energy transferred the
energy that is reradiated (bremsstrahlung and radiation
from positron annihilation in flight), even if the reradia-
tion takes place outside the volume of interest. It is

Enet
tr = (Rin)u − (Rout)

nonr
u − Rr

u +
∑

Q. (15.70)

The collision kerma and radiative kerma are defined as
expectation values per unit mass:

KC =
dEnet

tr

dm
= K − Kr,

Kr =
dRr

u

dm
.

(15.71)

Considering only a primary beam of monoenergetic pho-
tons,

KC =
µen

ρ
Ψ. (15.72)

15.16 Charged-Particle Equilibrium

There are three equilibrium conditions that sometimes
exist or are assumed to exist, that make it possible to
calculate the relationship between energy transferred and
energy imparted.

15.16.1 Radiation Equilibrium

The first and most restrictive condition is radiation equi-
librium. It is a useful model when considering an ex-
tended radioactive source that is distributed uniformly
throughout some volume V (such as the body or a par-
ticular organ). The source is assumed to emit its radiation
isotropically. The energy released to neutrinos is ignored.
A point of interest within the large volume is surrounded
by a smaller volume v. The volume v must be far enough
from the edge of V so that any radiation emitted from v is
absorbed before reaching the surface of V . The entire vol-
ume V is assumed to be of the same atomic composition
and density. Because everything is isotropic, on average
for every photon or neutron or charged particle entering
volume v, another identical one leaves. This means that

(
Rin

)
c

=
(
Rout

)
c

(15.73a)

and (
Rin

)
u

=
(
Rout

)
u

. (15.73b)

The average energy imparted is

E =
∑

Q. (15.74)

This means that when the conditions for radiation equi-
librium are satisfied, the absorbed dose is the expectation

FIGURE 15.33. One of the conditions for charged-particle
equilibrium is that on average, for every charged particle of a
certain energy leaving volume v traveling in a certain direc-
tion, a corresponding particle enters the volume.

value of the energy released by the radioactive material
per unit mass. If there is no radioactive source, there is
no energy imparted in radiation equilibrium.

15.16.2 Charged-particle Equilibrium

A less restrictive assumption is charged-particle equilib-
rium, in which only Eq. 15.73a is satisfied: the average
amount of charged-particle radiant energy entering the
region is the same as the average amount leaving. The as-
sumption of charged particle equilibrium is a useful model
in several cases, but we will consider only the case of an
external beam of photons striking volume V . Again we
consider what happens in a smaller volume v, separated
from the boundary of V by a distance larger than the
maximum range of any secondary charged particles pro-
duced by the external radiation. We also assume that the
medium is homogeneous and that only a small fraction
of the primary radiation interacts within the volume so
attenuation can be neglected. Then the average number
of charged particles produced per unit volume and per
unit solid angle in any given direction is the same every-
where in the volume. Though the charged particles need
not be produced isotropically, on average for every parti-
cle that leaves volume v, a corresponding one will enter it,
as shown in Fig. 15.33. For charged-particle equilibrium,
the average energy imparted is

E =
(
Rin

)
u
−
(
Rout

)
u

+
∑

Q.

Comparing this with the average of Eq. 15.70 shows that
the average net energy transferred is

Enet
tr = E +

(
Rout

)
u
−
(
Rout

)nonr

u
− Rr

u.

Now recall that
(
Rout

)
u

is the average value of all
the uncharged radiation leaving volume v,

(
Rout

)nonr

u
is

the average value of all uncharged radiation leaving ex-
cluding bremsstrahlung and photons from annihilation
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in flight that occur within the volume, and Rr
u is the

bremsstrahlung and annihilation-in-flight radiation from
charged particles originating in v regardless of where it
occurs. If there is charged-particle equilibrium, any radia-
tive interaction by a charged particle after it leaves the
volume will on average be replaced by an identical in-
teraction inside v. If the volume is small enough so that
all radiative loss photons escape from the volume before
undergoing any subsequent interactions, then

(
Rout

)
u

=
(
Rout

)nonr

u
+ Rr

u.

Therefore, for charged-particle equilibrium, E = Enet
tr ,

and the dose is equal to the collision kerma:

D = KC . (15.75)

One situation where charged-particle equilibrium ap-
plies is for the thin slices in Fig. 15.30(a). The electron
ranges are so short (10 µm for a 25-keV electron) that a
slice can be thin compared to 1/µ and yet all the electrons
produced stay within the volume.

The conditions for charged-particle equilibrium fail if
the source of photons is too close (Ψ is not uniform be-
cause of 1/r2), close to a boundary (as between air and
tissue or muscle and bone), for high-energy radiation (as
in Fig. 15.32), or if there is an applied electric or mag-
netic field that alters the paths of the charged particles
(as in some radiation detectors).

In Fig. 15.32, if we look at the situation far enough
to the right, the energy imparted is proportional to
the energy transferred. This situation is called transient
charged-particle equilibrium.

The dose for a monoenergetic parallel beam of charged
particles with particle fluence Φ passing through a thin
layer can be calculated by making three assumptions:

1. The volume of interest is thin enough so that Se

remains constant.

2. Scattering can be neglected, so every particle passes
straight through the layer.

3. The net kinetic energy carried out of the layer by
δ rays is negligible, either because the layer is thick
compared to the range of the δ rays or because the
layer is immersed in a material of the same atomic
number so that charged-particle equilibrium exists.

Then the energy lost in collisions in a layer of thickness
dz is E = Φ(area)(Se/ρ)ρdz and the mass is ρ(area)dz,
so the dose is

D =
Se

ρ
Φ. (15.76)

Attix (1986, pp. 188–195) discusses corrections for situa-
tions where these assumptions are not valid.

E = 100 keV Length = 0.1 m 

E = 100 keV Length = 0.1 m 

(a)

(b)

FIGURE 15.34. Secondary photons also interact in this simu-
lation. One 100-keV photon enters from the left in each panel.
(a) The primary photon undergoes a Compton scattering. The
Compton-scattered photon also undergoes a Compton scatter-
ing. The third photon escapes from the water. (b) The primary
photon is Compton scattered. Each Compton-scattered pho-
ton undergoes another Compton scattering, until the sixth
scattered photon leaves through the upstream surface of the
water, traveling nearly in the direction from which the inci-
dent photon came.

15.17 Buildup

We have been ignoring the interactions of secondary pho-
tons, primarily Compton-scattered photons and annihi-
lation radiation. They can be quite significant. In fact,
there can be a cascade of several generations of photons,
though we will call them all “secondary photons.” Figure
15.34 compares two simulations in which the secondary
photons are allowed to interact. In Fig. 15.34(a) there is
one secondary interaction before the scattered photon es-
capes from the water. In Fig. 15.34(b) there are a total
of six Compton scatterings before the secondary photon
escapes.

All of these secondary photons produce electrons that
contribute to the energy transferred and energy imparted.
Figure 15.35 compares two cases where 25 photons of en-
ergy 100 keV enter the water from the left. The primary
interactions are the same in both cases. In Fig. 15.35(a)
the small dots represent the electrons produced by the
interaction of the primary photons. In Fig. 15.35(b) the
electrons produced by secondary and subsequent interac-
tions are also shown. The energy transferred and energy
imparted are much greater.

The buildup factor for any quantity is defined as the
ratio of the quantity including secondary and scattered
radiation to the quantity for primary radiation only.
For example, if the primary beam has an energy flu-
ence Ψ0 at the surface, the energy fluence at depth x in
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E = 100 keV Length = 10 cm 

E = 100 keV Length = 10 cm 

(a) Secondaries not included

(b) Secondaries included

FIGURE 15.35. Twenty-five 100-keV photons entered the wa-
ter from the left. The dots represent recoil electrons from
Compton scattering or photoelectrons. (a) Only the first in-
teraction of the primary photon is considered. (b) Subsequent
interactions are also considered.

x

x

Detector

(a)

(b)

FIGURE 15.36. Two different detector geometries. (a) The
detector is at a fixed location and the absorber thickness is
increased. (b) The detector is at a varying distance from the
source in a water bath.

the medium is

Ψ(x) = B(x)Ψ0e
−µx. (15.77)

The buildup factor is quite sensitive to the geometry.
Compare the two situations in Fig. 15.36. In Fig. 15.36(a)
the detector is at a fixed location and the thickness of

the absorber is increased. As the absorber thickness x
approaches zero, the buildup factor approaches unity.
In Fig. 15.36(b) the detector is at depth x in a water
bath. Because of the backscattered radiation seen in Fig.
15.34(b), B(x) > 1 as x → 0. In this case, it is sometimes
called the backscatter factor. For further discussion, see
Attix (1986).

Symbols Used in Chapter 15

Symbol Use Units First

used on

page
a Acceleration m s−2 416
ai Number of atoms of

constituent i
410

b Impact parameter m 418
c Velocity of light m s−1 403
d Diameter m 416
e Charge on electron C 402
f, fC , fi, fκ, fτ Fraction of photon

energy transferred to
charged particles

407

g Fraction of photon
energy of secondary
electrons converted
back into photons by
bremsstrahlung

413

h Planck’s constant J s 403
j Total angular

momentum quantum
number

402

k Spring constant N m−1 416
l Orbital angular

momentum quantum
number

402

m Mass kg 406
me Electron rest mass kg 403
mj Quantum number for

the component of the
total angular
momentum along the
z axis

402

m0 Rest mass kg 405
n Principal quantum

number
402

n Number 410
p Momentum kg m s−1 405

q Charge C 418
r Position m 420
re “Classical” electron

radius
m 406

s Spin quantum num-

ber

402

t Time s 416
v Velocity m s−1 415

wi Mass fraction of
constituent i

410

x, y, z Coordinate axes m 408
x Dimensionless energy

ratio

405

z Charge of projectile
in multiples of e

415

A Atomic mass number 408
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Symbol Use Units First
used on
page

Ai, Amol Atomic mass number
of constituent i or
molecule

(g mol)−1 or

(kg mol)−1
410

AK Auger yield 411
B, BK , etc. Binding energy eV or J 403
B Buildup factor or

backscatter factor
430

C Shell correction

coefficient

420

D Absorbed dose J kg−1 or Gy
(gray)

427

E Energy J 403

E Electric field V m−1 406
F Force N 416
F Fraction of charged

particles passing
through an absorber

423

I Average ionization
energy

eV or J 420

I Stopping interaction
strength

J m2 420

K, KC Kerma, collision kerma J 427
L Stopping number per

atomic electron
420

L∆ Restricted linear
stopping power

J m−1 423

M Mass kg 410
N Number of particles 408
NA Avogadro’s number mol−1 408
NT Number of target

atoms per unit
projected area

m−2 410

NTV Number of target
atoms per unit volume

m−3 410

Q Energy released from
rest mass

J 427

R Range m 423
Ru, Rc Radiant energy in the

form of uncharged or
charged particles

J 427

S Area m2 427
S Stopping power J m−1 415
Se Electron (collision)

stopping power
J m−1 416

Sn Nuclear stopping power J m−1 416
Sr Radiative stopping

power
J m−1 416

T Kinetic energy J 403
V Volume m3 410
V Velocity m s−1 419
WK,L,M Probability that a hole

in the K, L, or M shell

is filled by fluorescence

411

W Energy lost in a single
interaction

J 415

Y Radiation yield 424
Z Atomic number of

target atom

402

β v/c 415
δ Average energy

emitted as fluorescence
radiation per photon
absorbed

J 413

δ Density-effect
correction

420

ε Stopping cross section J m2 415
ε0 Electrical permittivity

of empty space
N−1 C2 m−2 406

θ, φ Angles 405
κ Pair production cross

section
m2 403

λ Wavelength m 405
µ, µatten Attenuation coefficient m−1 408
µen Energy absorption

coefficient

m−1 413

µtr Energy transfer
coefficient

m−1 413

ν Frequency Hz 403

ξ Position m 419
ρ Density kg m−3 408
σC Total Compton cross

section for one electron
m2 403

σcoh Coherent Compton
cross section for one
atom

m2 403

σincoh Incoherent Compton
cross section for one
atom

m2 403

σtr Transfer cross section m2 407

σtot Total cross section m2 409
τ Photoelectric cross sec-

tion
m2 404

∆ Energy transfer J 423
Φ Particle fluence m−2 412
Ψ Energy fluence J m−2 412
Ω Solid angle sr 406

Problems

Section 15.1

Problem 1 The quantum numbers ms = ± 1
2 and ml =

l, l−1, l−2 . . . ,−l are sometimes used instead of j and mj

to describe an electron energy level. Show that the total
number of states for given values of n and l is the same
when either set is used.

Problem 2 Use Eq. 15.3 to estimate the K-shell ener-
gies for the following elements and compare them to the
measured values of EK .

Z Element Measured EK (keV)

6 Carbon 0.284
20 Calcium 4.04
53 Iodine 33.2
82 Lead 88.0

Section 15.3

Problem 3 The K-shell photoelectric cross section for
100-keV photons on lead (Z = 82) is τ = 1.76 × 10−25

m2 atom−1. Estimate the photoelectric cross section for
60-keV photons on calcium (Z = 20).

Problem 4 Describe how you could use different mate-
rials to determine the energy of monoenergetic x rays of
energy about 50 keV by using changes in the attenuation
coefficient. What materials would you use?
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Section 15.4

Problem 5 Derive Eq. 15.12 from the preceding four
equations.

Problem 6 Derive an equation for the direction of the
recoil electron, φ, in terms of θ and λ0.

Problem 7 Show that the sum of the energies of the
scattered photon (Eq. 15.14) and the recoil electron (Eq.
15.16) equals the energy of the incident photon.

Problem 8 A 1-MeV photon undergoes Compton scat-
tering from a carbon target. The scattered photon emerges
at an angle of 30 ◦.

(a) What is the energy of the scattered photon? What
is the energy of the recoil electron?

(b) What is the differential scattering cross section for
scattering at an angle of 30 ◦ from one electron? From the
entire carbon atom (Z = 6, A = 12)?

Problem 9 What is the energy of a Compton-scattered
photon at 180 ◦ when hν0 � mec

2? At 90 ◦?

Problem 10 Integrate Eq. 15.18 over all possible scat-
tering angles to obtain Eq. 15.20. Use the solid angle in
spherical coordinates (Appendix L).

Problem 11 Find the limit of Eq. 15.17 as x → ∞.

Problem 12 Write Eq. 15.17 in the form

dσC

dΩ
=

r2
e

2
(
1 + cos2 θ

)
FKN ,

where FKN is the Klein–Nishina factor. Find an expres-
sion for FKN in terms of θ and x. Show that as x → 0,
FKN → 1. Show that when θ = 0, FKN = 1.

Problem 13 Use the expansion ln(1 + x) = x − x2/2 +
x3/3 to show that Eq. 15.19 approaches Eq. 15.20 as x →
0.

Problem 14 Eq. 15.12 shows that the wavelength shift
is independent of the wavelength of the incident photon.
Calculate the fractional wavelength shift (λ − λ0) /λ0 for
an infrared photon (λ0 = 10 µm), an ultraviolet photon
(λ0 = 100 nm), a low-energy (“soft”) x ray (λ0 = 1 nm),
and a high-energy x ray (λ0 = 0.01 nm).

Problem 15 Suppose that attenuation is measured for
60-keV photons passing through water in such a way that
photons scattered less than 5 ◦ still enter the detector. Es-
timate the incoherent Compton scattering cross section
per electron for photons scattered through more than 5 ◦.

Section 15.5

Problem 16 A beam of 59.5-keV photons from 241Am
scatters at 90 ◦ from some calcium atoms (A = 40).

(a) What is the energy of a Compton-scattered photon?

(b) What is the energy of a coherently scattered photon?
(c) What is the recoil energy of the atom in coherent

scattering?

Section 15.6

Problem 17 Show that a single photon cannot produce
an electron-positron pair in free space because energy and
momentum cannot be simultaneously conserved.

Section 15.7

Problem 18 Most diagnostic x rays use photon energies
in the range 20–100 keV. For carbon (Fig. 15.2), which
mechanism is most important in this range: photoelectric
effect, Compton scattering, coherent scattering, or pair
production?

Problem 19 Use Fig. 15.7 to make the following esti-
mates for 1-MeV photons. What is the mass attenuation
coefficient for water? For aluminum? For lead? What is
the linear attenuation coefficient in each case?

Problem 20 Use Fig. 15.7 to estimate the attenuation
coefficient for 0.1-MeV photons on carbon and lead. Com-
pare your results to values you obtain from the internet
or the literature. Repeat for 1-MeV photons.

Problem 21 Consider photons of three energies: 0.01,
0.02, and 0.03 MeV. What fraction of the photons at
each energy will be unattenuated after they pass through
0.1 mm of lead (ρ = 11.35 g cm−3)? Comment on the
differences in your results.

Section 15.8

Problem 22 Use Fig. 15.7 to find the mass attenua-
tion coefficient for 0.2-MeV photons in a polyethylene
absorber. The Compton effect predominates. Polyethylene
has the formula (CH2)n.

Problem 23 What will be the attenuation of 40-keV
photons in muscle 10 cm thick? Repeat for 200-keV pho-
tons.

Problem 24 Assume that a patient can be modeled by
a slab of muscle 20 cm thick of density 1 g cm−3. What
fraction of an incident photon beam will emerge without
any interaction if the photons have an energy of 10 keV?
100 keV? 1 MeV? 10 MeV?

Problem 25 Muscle and bone are arranged as shown.
Assume the density of muscle is 1.0 g cm−3 and the den-
sity of bone is 1.8 g cm−3. The attenuation coefficients
are

E (µ/ρ)muscle (cm2 g−1) (µ/ρ)bone (cm2 g−1)

60 keV 0.200 0.274
1 MeV 0.070 0.068
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Compare the intensity of the emerging beam that has
passed through bone and muscle and just muscle at the
two energies.

Problem 26 A beam of monoenergetic photons travels
through a sample made up of two different materials of
unknown thickness x1 and x2, as shown below. The at-
tenuation coefficients at two different energies, Ea and
Eb, are accurately known. They are µ1(a), µ2(a), µ1(b),
and µ2(b). One measures accurately the log of the ratio of
the number of photons emerging from the sample to the
number entering, R = ln(N0/N), at each energy so that
Ra and Rb are known. Find an expression for x2 in terms
of Ra, Rb, and the attenuation coefficients.

N

x1 x2

 µ  1 µ2

N0

Problem 27 You wish to use x-ray fluorescence to de-
tect lead that has been deposited in a patient’s bone. You
shine 100-keV photons on the patient’s bone and want
to detect the 73-keV fluorescence photons which are pro-
duced. The incident photon fluence is Φ0 = 1012 photons
m−2. There are 1014 lead atoms (1 nanomole) in the re-
gion illuminated by the incident beam. The photoelectric
cross section is 1.76×10−25 m2 atom−1. The fluorescence
yield is W = 0.94. Assume for simplicity that the fluores-
cence photons are emitted uniformly in all directions. The
detector has a sensitive area 1 × 2 cm and is located 10
cm from the lead atoms. How many fluorescence photons
are detected?

Section 15.10

Problem 28 A 5-keV photon strikes a calcium atom.
The following events take place:

1. A K-shell photoelectron is ejected.
2. A Kα photon is emitted. This corresponds to the

movement of a hole from the K shell to the L shell.

3. An electron in the M shell goes to the L shell and
an M -shell photoelectron is emitted.

Give the excitation energy of the atom, the total energy
in the form of photons, and the total energy in the form
of electron kinetic energy at each stage. Use the following
data for calcium: Z = 20, A = 40, BK = 4, 000 eV,
BL = 300 eV (ignore differences in subshells), BM = 40
eV.

Problem 29 The following are the binding energies for

hydrogen and oxygen.
H O

BK 13.6 eV 532 eV
BL 24 eV

(a) Determine fτ for hydrogen from first principles.
(b) Use Eqs. 15.39 and 15.40 to estimate fτ (K shell)

for oxygen.

Problem 30 Use the Thomson scattering cross section,
dσ/dΩ = (r2

e/2)(1 + cos2 θ), the total cross section σC =
8πr2

e/3, and the expression for the total energy of the
recoil electron Eq. 15.16 to find an expression for fC as
x → 0. Plot fCσC incoh on Fig. 15.7.

(a) For 50-keV photons on calcium, estimate fτ .
(b) For 100-keV photons on calcium, the photoelectric

cross section is τ = 5.89 × 10−28 m2 atom−1. Use fτ =
1.0. Estimate µtr/ρ. Use the following data for calcium
if you need them: Z = 20, A = 40, BK = 4000 eV,
BL = 300 eV, BM = 40 eV.

Section 15.11

Problem 31 Prove that if a particle of mass M1 and ki-
netic energy T collides head on with a particle of mass M2

which is at rest, the energy transferred to the second par-
ticle is 4TM2/M1 or 2M2V

2in the limit M2 � M1. The
maximum energy is transferred when the particles move
apart along the line of motion of the incident particle.

Problem 32 The expression for Se = dT/dx has the SI
units J m−1. Therefore Se/ρ in Eq. 15.57 has units J m2

kg−1.
(a) How must the coefficient in front of Eq. 15.57 be

changed if T is in MeV? If x is in cm instead of m?
(b) What numerical factors must be introduced if NA

is in atoms per g mol and ρ is in g cm−3?
(c) What is the average force on a 10-MeV proton in

carbon? On a 100-keV proton? Use I = 78 eV.
(d) What are the units of the stopping cross section

[defined just below Eq. 15.47]?

Problem 33 The peak in the stopping power occurs
roughly where the projectile velocity equals the velocity of
the atomic electrons in the target. Find an expression for
the velocity of an electron in the n = 1 Bohr orbit. Use
Eq. 14.7, and the fact that the total energy is the sum of
the kinetic and potential energies. Use the classical argu-
ments and the fact that the electron is in a circular orbit
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to relate the kinetic and potential energies. The accelera-
tion in a circular orbit is v2/r.

Problem 34 A fishing lure is trolled behind a boat for a
total distance D. Suppose that fish are distributed uni-
formly throughout the water at a concentration C fish
m−3, and that the probability of a fish striking the lure
depends on b, the perpendicular distance from the path of
the lure to the fish: p = exp(−b/b0). Calculate the average
number of fish caught.

b

Lure

Fish

Section 15.13

Problem 35 What is the range–energy relationship for
high-speed nonrelativistic particles if the variation of L
with T is neglected and Eq. 15.57 is the dominant term?

Problem 36 Estimate the maximum electron range, and
hence the radius of the δ-ray cloud surrounding the track
of a 5-MeV α particle. (The rest energy Mc2 of an α
particle is about four times 938 MeV.) The range of a
low energy electron in cm is about 10−2β2.

Section 15.15

Problem 37 Suppose that a photon of energy hν enters
a volume of material and produces an electron–positron
pair. Both particles come to rest in the volume, and the
positron annihilates with an electron that was already in
the volume. Both annihilation photons leave the volume.
Show that the formal definition of energy transfer agrees
with the common-sense answer that it is the kinetic en-
ergy of the electron and positron, which is hν − 2mec

2.
What is the energy imparted?

Problem 38 What are the energy transferred, the net
energy transferred and the energy imparted in the volume
shown?

e

Thν1

hν2

hν3

hν4

T1
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16
Medical Use of X Rays

X rays are used to obtain diagnostic information and
for cancer therapy. They are photons of electromagnetic
radiation with higher energy than photons of visible light.
Gamma rays are photons emitted by radioactive nuclei;
except for their origin, they are identical to x-ray photons
of the same energy. Section 16.1 describes the production
of x rays. Section 16.2 introduces some new quantities
that are important for measuring how the absorbed pho-
ton energy relates to the response of a detector—which
might be a film, an ionization chamber, or a chemical de-
tector. Several detectors are introduced in Section 16.3:
film, fluorescent screens, scintillation detectors, semicon-
ductor detectors, thermoluminescent dosimeters, and dig-
ital detectors. Section 16.4 describes the diagnostic radi-
ograph, and the following section discusses image quality,
particularly the importance of noise in determining image
quality. Section 16.6 provides a brief mention of angiog-
raphy, Sec. 16.7 discusses some of the special problems of
mammography, and fluoroscopy is described in Sec. 16.8.
Computed tomography with x rays is discussed in Sec.
16.9. The final sections deal with the biological effects of
x rays, cancer therapy, dose, and the risk of radiation.

16.1 Production of X Rays

When a beam of energetic electrons stops in a target,
photons called x rays are emitted. Characteristic x rays
have discrete photon energies and are produced after exci-
tation of an atom by the electron beam. Bremsstrahlung
(Sec. 15.11) is the continuous spectrum of photon en-
ergies produced when an electron is scattered by an
atomic nucleus. Bremsstrahlung is responsible for most
of the photons emitted by most x-ray tubes. The total
bremsstrahlung radiation yield as a function of electron
energy for various materials is shown in Fig. 16.1. High-Z

materials are most efficient for producing x rays. Tung-
sten (Z = 74) is often used as a target in x-ray tubes be-
cause it has a high radiation yield and can withstand high
temperatures. For 100-keV electrons on tungsten, the ra-
diation yield is about 1%: most of the electron energy
heats the target. We now consider these two processes in
greater detail.

16.1.1 Characteristic X Rays

Atomic energy levels are described in Sec. 14.2. The levels
for tungsten are shown in Table 15.1 and Fig. 15.1. An
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copper, and tungsten. Plotted from data in ICRU Report 37
(1984). The radiation yield is the fraction of the electron’s
energy that is converted to photon energy; see Sec. 15.13.
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FIGURE 16.2. Energy-level diagram for holes in tungsten and
some of the x-ray transitions.

electron bombarding a target can impart sufficient energy
to a target electron to remove it from the atom, leaving an
unoccupied energy level or hole. The deexcitation of the
atom is described in Sec. 15.9. For a high-Z material with
a hole in the K shell, the fluorescence yield is large (see
Fig. 15.14). The hole is usually filled when an electron in
a higher energy level drops down to the unoccupied level.
As it does so, the atom emits a characteristic x ray—a
photon with energy equal to the difference in energies of
the two levels. This leaves a new hole, which is then filled
by an electron from a still higher level with the emission
of another x ray, or by an Auger cascade.

Because a hole moving to larger values of n corresponds
to a decrease of the total energy of the atom, it is cus-
tomary to draw the energy-level diagram for holes in-
stead of electrons, which turns the graph upside down,
as in Fig. 16.2. The zero of energy is the neutral atom in
its ground state. Because this is a logarithmic scale, zero
cannot be shown. Creation of the hole requires energy to
remove an electron. That energy is released when the hole
is filled. Various possible transitions are indicated in Fig.
16.2. These transitions are consistent with these selection
rules, which can be derived using quantum theory:

∆l = ±1, ∆j = 0,±1. (16.1)

The transitions are labeled by the letters K, L, M and
so forth, depending on which shell the hole is in initially.
Greek-letter subscripts distinguish the x rays from tran-
sitions to different final states.

Analogous to the approximate formula of Eq. 15.3 is
the following estimate of the energy of the Kα line (which

FIGURE 16.3. The energy fluence spectrum of
bremsstrahlung x rays emitted when monoenergetic electrons
strike a thin target.

depends on the screening for two values of n), which we
have seen before as Eq. 15.34:

EKα
= 3

4 (13.6 eV)(Z − 1)2. (16.2)

The factor 3/4 is what one would have for hydrogen if
ni = 2 and nf = 1 are substituted in the Bohr formula,
Eq. 14.8. The screening also depends strongly on l.

16.1.2 Bremsstrahlung

The other mechanism for x-ray production is the accel-
eration of electrons in the Coulomb field of the nucleus,
described in Sec. 15.11. Classically, a charged particle at
rest creates an electric field which is inversely propor-
tional to the square of the distance from the charge. When
in motion with a constant velocity it creates both an elec-
tric field and a magnetic field. When accelerated, addi-
tional electric and magnetic fields appear that fall off less
rapidly—inversely with the first power of distance from
the charge. This is classical electromagnetic radiation.
Quantum-mechanically, when a charged particle under-
goes acceleration or deceleration, it emits photons. The
radiation is called deceleration radiation, braking radia-
tion, or bremsstrahlung. It has a continuous distribution
of frequencies up to some maximum value.

The photon energy fluence spectrum of bremsstrahlung
radiation from monoenergetic electrons passing through
a thin target is constant from a maximum energy hν0

down to zero, as shown in Fig. 16.3 [Evans (1955), p.
605]. The maximum frequency is related to the kinetic
energy of the electrons by T = hν0, as one would expect
from conservation of energy. (A photon of energy hν0 is
emitted when an electron loses all of its energy in a single
collision.)

For a thick target, we assume that all electrons at the
same depth have the same energy (that is, we ignore
straggling), and we ignore attenuation of photons com-
ing out of the target. The spectrum is then the integral
of a number of spectra like that in Fig. 16.3. The thick-
target spectrum is shown in Fig. 16.4. The spectral form
is

dΨ
d(hν)

≡ dΨ
dE

= CZ(hν0 − hν) = CZ(T − E), (16.3a)
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FIGURE 16.4. The energy fluence spectrum of
bremsstrahlung x rays from a thick target, ignoring absorp-
tion of the photons in the target. The form is dΨ/d(hν) =
CZ(hν0 − hν).

where constant C depends on the target material and
electron kinetic energy. The photon particle fluence
spectrum is

dΦ
dE

=
1
hν

dΨ
dE

= CZ(
hν0

hν
− 1). (16.3b)

More of the low-energy photons that are generated within
the target are attenuated as they escape, because of the
much larger values of the attenuation coefficient at low
energies (recall Figs. 15.10 and 15.11). This cuts off the
low-energy end of the spectrum. If the electron energy
is high enough, the discrete spectrum due to charac-
teristic fluorescence is superimposed on the continuous
bremsstrahlung spectrum. Both of these effects are shown
in Fig. 16.5, which compares calculations and measure-
ments of the particle fluence spectrum dΦ/dE.

16.2 Quantities to Describe Radiation
Interactions: Radiation Chemical
Yield, Mean Energy Per Ion Pair,
and Exposure

Section 15.15 introduced the quantities energy trans-
ferred, energy imparted, kerma, and absorbed dose, which
are used to describe radiation and its effects. This section
introduces some additional quantities [ICRU Report 33
(1980, 1992)] that are used to describe the interaction of
the radiation with the detectors discussed in Sec. 16.3.

16.2.1 Radiation Chemical Yield

The radiation chemical yield G of a substance is the mean
number of moles n of the substance produced, destroyed,
or changed in some volume of matter, divided by the
mean energy imparted to the matter:

G =
n

E
. (16.4)

FIGURE 16.5. Plots of theoretical and measured photon par-
ticle spectra, dΦ/d(hν) for 100-keV electrons striking a thick
tungsten target. The solid line represents measurements with
a high-resolution semiconductor detector. The dashed line is
the theory of Birch and Marshall (1979), which takes photon
absorption into account. The crosses show an earlier theo-
retical model. From R. Birch and M. Marshall. Computation
of bremsstrahlung X-ray spectra and comparison with spectra
measured with a Ge(Li) detector. Phys. Med. Biol. 24:505–517
(1979). Used by permission of the Institute of Physics.

Its units are mol J−1. (A related quantity expressed in
non-SI units is the G value, expressed in molecules or
moles per 100 eV of energy imparted.) The radiation
chemical yield is particularly useful for describing chem-
ical dosimeters. These are usually dilute aqueous solu-
tions, so the radiation chemical yield of water is the im-
portant parameter.

16.2.2 Mean Energy per Ion Pair

Other detectors measure ionization produced in a gas by
the radiation. The mean energy expended in a gas per ion
pair formed, W , is

W =
T0

Ni

, (16.5)

where T0 is the initial kinetic energy of a charged particle
and Ni is the mean number of ion pairs formed when T0

is completely dissipated in the gas. The units are joules
or electron volts per ion pair. The mean energy expended
per ion pair is not equal to the ionization energy. To see
why, consider three processes that can take place. The
first is ionization, with Ei being the average energy of
an ionized atom. Second, the collision may promote an
atomic electron to an excited state without ionization.
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TABLE 16.1. Some representative values of the average energy
per ion pair, W .

Gas W (eV per ion pair for electronsa)

He 41.3
Ar 26.4
Xe 22.1
Air 33.97b

Semiconductors W (eV per electron-hole pair)

Si 3.68
Ge 2.97

aFrom ICRU Report 31 (1979).
bICRU Report 39 (1979) recommends 33.85 J C−1. Attix

(1986) uses 33.97 J C−1. Note that 1 J C−1 is equivalent to 1 eV

per singly charged ion pair.

The average excitation energy is Eex. Finally, the charged
particle may lose energy to impurities without producing
ionization, a process called “subexcitation.” The average
subexcitation energy is defined to be the energy lost by
this process, Ese, divided by N i. Conservation of energy
for this model leads to

T0 = N iEi + N exEex + N iEse,

where T0 is the initial projectile kinetic energy, N i is
the mean number of ion pairs produced, and N ex is the
mean number of atoms raised to an excited state but not
ionized.

Dividing each term by N i leads to an expression for
W . In general, W is determined experimentally, because
the terms in this equation are quite difficult to calcu-
late. However, they have been calculated for helium.1 The
mean energy of an ionized helium atom is only 62% of the
value of W :

W︸︷︷︸
41.8 eV

= Ei︸︷︷︸
25.9 eV

62%

+
(
N ex/N i

)
Eex

︸ ︷︷ ︸
0.4×20.8=8.3 eV

20%

+ Ese︸︷︷︸
7.6 eV

18%

Values of W are tabulated in ICRU Report 31 (1979).
There are variations of a few percent depending on
whether the charged particle is an electron or an α par-
ticle. Table 16.1 provides a few representative values.
Though defined for a gas, W is also applied to semicon-
ductors as the average energy per electron–hole pair pro-
duced. Values of W for semiconductors are much smaller
than for a gas.

16.2.3 Exposure

The exposure X is defined only for photons and measures
the energy fluence of the photon beam. It is the amount
of ionization (total charge of one sign) produced per unit

1See Platzman (1961); also Attix (1986, pp. 339–343).

mass of dry air when all of the electrons and positrons
liberated in a small mass of air are completely stopped in
air:

X =
dq

dm
. (16.6)

The units are coulomb per kilogram. Since the average
amount of energy required to produce an ion pair is well
defined, exposure is closely related to collision kerma in
air. The definition of X does not include ionization arising
from the absorption of bremsstrahlung emitted by the
electrons, so there is a slight difference at high energies.2

The relationship is

X = (Kc)air

(
e

Wair

)
= Ψ

(
µen

ρ

)

air

(
e

Wair

)
. (16.7)

If charged-particle equilibrium exists, the dose in air
is related to the beam energy fluence by Eqs. 15.72 and
15.75:

Dair =
(

µen

ρ

)

air

Ψ.

The dose for the same energy fluence in some other
medium is

Dmed =
(

µen

ρ

)

med

Ψ =
(µen/ρ)med

(µen/ρ)air
Dair. (16.8)

The roentgen (R) is an old unit of exposure equivalent
to the production of 2.58 × 10−4 C kg−1 in dry air; this
corresponds to a dose of 8.69×10−3 Gy. (The relationship
is developed in Problem 8.)

16.3 Detectors

Detectors are used for recording an image and also for
measuring the amount of radiation to which a patient is
exposed. This section describes the most common kinds
of detectors.

16.3.1 Film and Screens

Film is the original x-ray detector, and it is still widely
used. A typical x-ray film has a transparent base about
200 µm thick, coated on one or both sides with a sen-
sitive emulsion containing a silver halide (usually silver
bromide). We will not discuss the rather complicated se-
quence of steps by which the absorption of photons or
energy loss by charged particles leads to a latent or de-
velopable image in the film. When the film is developed,
the emulsion grains that have absorbed energy are re-
duced to black specks of metallic silver. The film is then

2There is also a problem at high energies because the range of the
electrons is large. If they are to come to rest within the chamber, the
size of the chamber becomes comparable to the photon attenuation
coefficient.



16.3 Detectors 441

4

3

2

1

0

O
pt

ic
al

 d
en

si
ty

0.01
2 4 6 8

0.1
2 4 6 8

1
2 4 6 8

10

Relative exposure

Latitude

Toe

Shoulder

FIGURE 16.6. A plot of optical density vs the logarithm of
the relative exposure for a hypothetical x-ray film.

fixed, a process in which the silver halide that was not re-
duced is removed from the emulsion. The result is a film
that absorbs visible light where it was struck by ionizing
radiation.

The fraction of incident light passing through the film
after development is called the transmittance, T . The op-
tical density or density is defined to be

OD = log10(1/T ). (16.9)

A film that transmits 1% of the incident viewing light has
an optical density of 2.

The response of a film is described by plotting the op-
tical density vs the log of the exposure in air immediately
in front of the film (or equivalently, the absorbed dose in
the film emulsion). Since the optical density is the loga-
rithm of the transmittance, this is a log–log plot of the
reciprocal of the fraction of the visible light transmitted
when viewing the processed film vs the x-ray exposure be-
fore processing. A typical plot of film response is shown
in Fig. 16.6. If the curve is linear, the transmittance is
proportional to the exposure raised to some power:

T ∝ X−γ .

At very small exposures (the toe) the transmission is that
of the base and “clear” emulsion. At very high exposures
(the shoulder) all of the silver halide has been reduced
to metallic silver, and the film has its maximum optical
density. In between is a region which is almost linear (on
a log-log scale). The ratio of maximum to minimum us-
able exposure is called the latitude of the film. The largest
value of the exponent occurs at the inflection point and is
called the gamma or contrast of the film. Both the expo-
nent and the position of the curve along the log exposure
axis depend on the development time, the temperature
of the developing solution, and the energy of the x-ray
beam. The film speed is the reciprocal of the exposure
required for an optical density that is 1 greater than the
base density.

A typical film has an emulsion containing AgBr. It re-
quires a dose of 1.74 × 10−4 Gy (J kg−1) in air just in

front of the film to produce an optical density of 1. This
might be where the body is not blocking the beam. The
smaller dose to the film where there has been significant
attenuation in the body gives a lighter region, as in the
heart and bone shadows of Fig. 16.18.

The dose to the part of the body just in front of the film
(the exit dose to the patient) can be written in several
ways. For simplicity we assume monoenergetic photons.
In terms of the energy fluence of the photon beam, the
exit dose is

Dbody =
(

µen

ρ

)

body

Ψ. (16.10a)

In terms of the dose in air just in front of the film it is

Dbody =
(µen/ρ)body

(µen/ρ)air
Dair, (16.10b)

and in terms of the dose in the film it is

Dbody =
(µen/ρ)body

(µen/ρ)film

Dfilm. (16.10c)

For 50-keV photons we find from the tables at
physics.nist.gov/PhysRefData/XrayMassCoef/tab4.
html that (µen/ρ)muscle/ (µen/ρ)air = 0.004 349/
0.004 098 = 1.061. Therefore the exit dose would be
(1.74 × 10−4)(1.061) = 1.85 × 10−4 Gy. Because of
attenuation, the entrance dose can be much larger.

The dose can be reduced by a factor of 50 or more if
the film is sandwiched between two fluorescent intensify-
ing screens. The x-ray photons have a low probability of
interacting in the film. The screens have a greater proba-
bility of absorbing the x-ray photons and converting them
to visible light, to which the film is more sensitive. For
50-keV photons on typical emulsion, the value of µen/ρ
is about 0.261 m2 kg−1. A typical value of ρ∆x for the
film might be 0.02 kg m−2. Therefore, µen∆x = 0.0052.
The fraction of incident energy absorbed in the emulsion
is 1 − e−0.0052 = 0.0052.

A typical screen might consist of particles of terbium-
doped gadolinium oxysulfide (Gd2O2S:Tb) suspended in
a carrier about 150 µm thick (0.5–1.5 kg m−2). This layer
is backed by a thin reflective layer. Two such screens (one
on each side of the film) with a total thickness of 1.2 kg
m−2 absorb 28% of the 50-keV photons that pass through
them (see Problem 12). The overall effect is to produce
the same optical density when the energy fluence in the
x-ray beam is reduced by a factor of 54—the ratio of the
incident radiation absorbed in the screen and in the film
in each case.3 Typically, a sheet of film is placed in a light-

3The fluorescent radiation has a wavelength of about 545 nm

(green), and each absorbed high-energy photon has sufficient en-

ergy to produce about 14,000 fluorescence photons. However, the

efficiency of production is only about 5% so 700 photons are pro-

duced. Some of these escape or are absorbed. Each x-ray photon

produces about 150 photons of visible and ultraviolet light that

strike the emulsion—more than enough to blacken the film in the

region where the x-ray photon was absorbed by the screen.
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FIGURE 16.7. Plots of optical density vs logarithm exposure
for a screen–film combination (RP) and a film (M). From K.
Doi, H. K. Genant, and K. Rossman. Comparison of image
quality obtained with optical and radiographic magnification
techniques in fine-detail skeletal radiography: Effect of object
thickness. Radiology 118: 189–195 (1976). Reproduced by per-
mission of the Radiological Society of North America.

tight “cassette” whose front and back walls are made of
screen material.

Figure 16.7 shows a plot of optical density vs the log
of the exposure X for two typical radiographic systems.
“RP-detail” is a screen–film combination. Type M is a
film without a screen. At an optical density of 1 or 2,
the difference in log10 X is about 1.9, corresponding to
a factor of 80 in exposure, somewhat greater than the
example given above. The curves are not linear. The slope
at any point on the curve is4

γ =
d log10(1/T )

d log10 X
=

d ln(1/T )
d ln X

= − dT/T

dX/X

= −X

T

dT

dX
= − 1

G
g, (16.11)

where G = T/X is the large-signal transfer factor and
g = dT/dX is the incremental-signal transfer factor. This
will be used in our discussion of detecting signals in noise
in the next section.

16.3.2 Scintillation Detectors

When x-ray photons interact with matter, some of their
energy is transferred to electrons. These electrons interact
in turn, and some of their energy can become ultravio-
let or visible photons. A scintillator is a substance that
produces these photons with high efficiency, yet is trans-
parent to them. The photons are then transferred by an
optical fiber or a lens system to a light detector such
as a photomultiplier tube or a solid-state photodetector.
Each x-ray photon produces an electrical current pulse

4An argument based on Eq. 2.14 can be used to show that
log10 x = (1/2.303) ln x = 0.43 ln x.

FIGURE 16.8. Mechanisms by which some of the energy of a
primary photon can escape from a detector. Photons A and
B undergo photoelectric absorption. All of the energy from A
is absorbed in the detector, while the fluorescence x-ray from
B escapes. Photons C and D are Compton scattered. The
scattered photon from C undergoes subsequent absorption,
while that from D escapes.

at the detector output, called a count. When the number
of counts is recorded vs the pulse height (total charge in
the pulse, which is proportional to the energy deposited
in the scintillator), the result is a pulse-height spectrum.
For monoenergetic photons, the ideal pulse height spec-
trum would consist of a single peak: all pulses would have
the same height. This is not realized in practice for two
reasons: statistical variations in the scintillation process
cause the line to be broadened, and the entire energy of
the incident photon is not converted into electrons.

An atom that has been excited by photoelectric absorp-
tion can decay by the emission of a fluorescence photon.
If this photon is subsequently absorbed in the scintilla-
tor, all of the original photon energy is converted to elec-
tron energy so rapidly that the visible light is all part
of one pulse. The pulse height then corresponds to the
full energy of the original photon. However, if the initial
photoelectric absorption takes place close to the edge of
the detector, the fluorescence photon can escape, and the
pulse has a lower height than those in the primary peak.
This can be seen in Fig. 16.8. Photons A and B inter-
act by photoelectric effect. All the energy for photon A
is deposited in the scintillator, while the K fluorescence
photon from B escapes. The effect on a pulse height spec-
trum is shown in Fig. 16.9 for a scintillator of sodium
iodide.

In Compton scattering, the energy of the recoil elec-
tron is transferred to the scintillator (unless the electron
escapes). The scattered photon may escape from the de-
tector, as in D of Fig. 16.8. (If it is subsequently absorbed,
as in mechanism C of Fig. 16.8, the pulse height will have
the peak value.) The energy of the recoil electron is given
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FIGURE 16.9. Spectrum of pulse heights for 140-keV photons
from isotope 99mTc incident on a sodium iodide scintillator.
The 140-keV total energy peak is prominent, as is the peak at
110 keV corresponding to the escape of the K fluorescence x
ray from iodine. The Compton scatter continuum runs from
49 keV down to zero energy. The peak at 18 keV is from ad-
ditional radiation from 99mTc (see Chapter 17). Reproduced
from H. N. Wagner, Jr., ed. Principles of Nuclear Medicine,
p. 162. Copyright 1968 by W. B. Saunders, by permission of
Elsevier.

by Eq. 15.16. The maximum electron energy occurs when
the photon is scattered through θ = 180 ◦. Then

Tmax =
2hν0x

1 + 2x
=

(hν0)2

hν0 + mec2/2
.

If the photon energy is in keV, this is

Tmax =
(hν0)2

hν0 + 256
. (16.12)

A pulse-height spectrum for “pure” Compton scatter-
ing of 662-keV photons (as emitted by 137Cs) is shown
in Fig. 16.10. The peak of the Compton continuum is at
Tmax = (662)2/(662 + 256) = 477 keV. The cases of per-
fect resolution with complete absorption and real resolu-
tion with complete absorption are shown, along with the
theoretical Compton continuum with perfect resolution,
and a real spectrum.

When the energy of the primary photons is so large
that pair production is important, an additional escape
mechanism must be considered. We know (Eq. 15.23) that

hν0 = T+ + T− + (mec
2)e− + (mec

2)e+ .

FIGURE 16.10. The response of a sodium iodide detector
to 662-keV photons from 137Cs. Theoretical responses are
shown for a detector that absorbs the energy of all photons
and has perfect resolution, for a detector with perfect ab-
sorption and finite resolution, and for a detector in which
Compton-scattered photons can escape. Experimental data
are for a 1 1

2
-in. by 1-in. NaI crystal. Redrawn from C. C.

Harris, D. P. Hamblen, and J. E. Francis, Jr. (1969). Basic
Principles of Scintillation Counting for Medical Investigators.
ORNL-2808. Springfield, VA, Clearing House for Federal Sci-
entific and Technical Information, National Bureau of Stan-
dards. Reproduced from H. N. Wagner, Jr., ed. Principles of
Nuclear Medicine, Philadelphia, Saunders, p. 153. Copyright
1968 W. B. Saunders, by permission of Elsevier.

The positron will eventually combine with another elec-
tron to produce two annihilation radiation photons:

(mec
2)e+ + (mec

2)another e− = 2Eγ .

The energy of each annihilation photon is 511 keV. The
initial photon energy is finally distributed as

hν0 = T+ + T− + γ(511) + γ(511).

If all this energy is absorbed in the detector, the pulse
height corresponds to the full energy of the incident pho-
ton. One or both of the annihilation photons can escape,
giving the one-photon escape peak and the two-photon
escape peak.
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FIGURE 16.11. Schematic of an ionization chamber or pro-
portional counter. The ions discharge the capacitor, which is
recharged between counts through resistor R.

Scintillation detectors vary greatly in size. Large ones
may be tens of centimeters in diameter; others can be less
than a millimeter. A large number of materials are used
[van Eijk (2002)].

16.3.3 Gas Detectors

Ionization in gas is the basis for three kinds of x-ray de-
tectors: ionization chambers, proportional counters, and
Geiger counters. A photon passing through a gas can
produce photoelectric, Compton, or pair-production elec-
trons. These then lose energy by electron collisions. Ion
pairs are produced in the gas, the average number being
proportional to the amount of energy lost in the gas. The
average amount of energy required to produce an ion pair
is W , as we saw in Sec. 16.2. Imagine that the ions are
produced between the plates of a charged capacitor as
shown in Fig. 16.11. The electrons are attracted to the
positive plate and the positive ions travel to the negative
plate. If all the electrons and ions are captured, the total
charge collected on each plate has magnitude q = Ne,
where e is the charge on the electron or ion and N is the
number of ion pairs formed. If the capacitance is C, the
change in voltage is δv = q/C = Ne/C. Such a device is
called an ionization chamber. The cumulative discharge
of the capacitor is measured in some pocket dosimeters;
in other cases, the capacitor is slowly recharged through a
large resistance R so that each photon detected generates
a voltage pulse of height δv.

A certain minimum voltage between the two plates is
necessary to ensure that all the ions produced are col-
lected, corresponding to the ion chamber region of Fig.
16.12. The ionization chamber is the “workhorse” detec-
tor for accurately measuring radiation dose.

If the potential on the plates is raised further, the num-
ber of ions collected increases. Between collisions the elec-
trons and ions are accelerated by the electric field, and
they acquire enough kinetic energy to produce further
ionizations when they collide with molecules of the gas, a
process called gas multiplication. At moderate potentials,
the multiplication factor is independent of the initial ion-
ization, so the number of ions collected is larger than that

FIGURE 16.12. The number of ions collected vs collecting
potential for two particles that deposit different amounts of
energy in a gas detector. The voltage regions are indicated
where the device operates as an ionization chamber, a pro-
portional counter, and a Geiger counter.

FIGURE 16.13. Counting rate of a Geiger counter vs. the
thickness of a lead absorber in front of the detector, showing
the buildup of counting rate due to the conversion of photons
to electrons in the lead by Compton scattering. These elec-
trons pass through the thin wall of the counter and ionize the
gas. The photons were from 60Co and had an energy of 1.1
MeV.

in an ionization chamber but still is proportional to the
initial number of ions. In this region of operation the de-
vice is called a proportional counter. Parallel-plate geom-
etry is not used in a proportional counter. One electrode
is a wire, and the other is a concentric cylinder.

At still higher values of the applied voltage, pulse size
is independent of the initial number of ion pairs. In this
mode of operation, the device is called a Geiger counter.

Any gas detector used to detect high-energy photons
suffers from the fact that the gas is not very dense. At
low energies the photoelectric cross section is high and
most photons interact. At higher energies, many photons
pass through the gas and detector walls without interact-
ing. A thin sheet of absorber in front of the gas detector
can actually increase the counting rate. An example is
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shown in Fig. 16.13. The detector had an aluminum wall
of thickness 0.3 kg m−2. Electrons of 125 keV or more
pass completely through the detector wall. The maximum
energy of Compton electrons from the 1.1-MeV photons
is 890 keV. Compton electrons produced in a thin layer
of lead can pass through the aluminum and ionize the
gas in the detector. Once the total thickness of lead and
aluminum is sufficient to stop all the Compton electrons,
the addition of more lead upstream does not increase the
detector efficiency, and exponential attenuation is seen.

16.3.4 Semiconductor Detectors

A semiconductor detector is very much like an ioniza-
tion chamber, except that a solid is used as the detect-
ing medium. The “ion pair” is an electron that has re-
ceived sufficient energy to be able to leave its atom and
move freely within the semiconductor (but not enough en-
ergy to leave the semiconductor entirely) and the “hole”
that the electron left behind. Electrons from neighbor-
ing atoms can fall into the hole, so the hole can move
from atom to atom just like a positive charge. Details of
the operation of semiconductor detectors can be found in
Lutz (1999).

A semiconductor detector has two principal advantages
over a gas ionization chamber. First, the amount of en-
ergy required to create an electron–hole pair is only about
3 eV, one-tenth the value for a typical gas. This means
that many more pairs are produced and the statistical
accuracy is better. Second, the density of a solid is much
greater than the density of a gas, so the probability that
a photon interacts is larger. The cross section for inter-
action increases with high Z, so detectors made of ger-
manium (Z = 32) are better for photon detection than
those made of silicon (Z = 14). There have been techni-
cal problems making semiconductor detectors of large vol-
ume. Some of these have been overcome by using lithium-
drifted germanium (Ge-Li) or silicon detectors. Their
main drawback is that they have to be kept at liquid-
nitrogen temperature to keep the lithium from drifting
out once it has been implanted. Room-temperature de-
tectors have been developed and are now fabricated as de-
tector arrays [Lutz (1999), Schlesinger and James (1995)].

Diode detectors are used for real-time dose measure-
ment in patients receiving radiation therapy [AAPM Re-
port 87 (2005)].

16.3.5 Thermoluminescent Dosimeters

Thermoluminescent phosphors consist of a small amount
of dielectric material (0.1 g or less) that has been doped
with impurities or has missing atoms in the crystal lattice
to form metastable energy levels or traps. These impu-
rities or defects are far from one another and are iso-
lated in the lattice, so that electrons cannot move freely
from one trap to another. When the phosphor is irradi-
ated with ionizing radiation, some of the electrons are

trapped in these metastable states. There are levels asso-
ciated with the material at an energy E above the trap
energy (the conduction band) which allow electrons to
move throughout the phosphor. The probability that an
electron escapes from the trap is proportional to a Boltz-
mann factor, exp(−E/kBT ). If E is large enough, the
lifetime in the trapped state can be quite large—up to
hundreds of years. Heating allows the electrons to escape
to the higher levels, where they then fall back to the nor-
mal state with the emission of visible photons. Ordinary
table salt (NaCl) exhibits this behavior. If it is irradiated
and then sprinkled on an electric hot plate in a darkened
room, one can see the flashes of light. The light emitted
on heating is called thermoluminescence. In a thermo-
luminescent dosimeter (TLD), the light emitted is mea-
sured with a photomultiplier tube as the temperature is
gradually increased. The total amount of light released is
proportional to the energy imparted to the phosphor by
the ionizing radiation.

Thermoluminescent dosimeters can measure an inte-
grated dose from 10−5 to 103 Gy. Great care must be
taken both in the preparation and reading of the phos-
phor. TLD chips are widely used to measure radiation
doses because they are small and have the approximate
atomic number and atomic weight of tissue. They are of-
ten made of LiF. Detailed descriptions are found in Chap-
ter 14 of Attix (1986), Shani (1991) and Shani (2001).
(The two editions of Shani complement one another.)

16.3.6 Chemical Dosimetry

When radiation interacts with water, free radicals are
produced. A free radical, such as H or OH, is electri-
cally neutral but has an unpaired electron. Free radicals
promote other chemical reactions. Typically, a dilute in-
dicator of some sort is added to the water. A common
dosimeter is the Fricke ferrous sulfate dosimeter. A 1 mM
FeSO4 solution is irradiated. The radiation changes the
iron from the ferrous (Fe2+) to the ferric (Fe3+) state
with a G of about 1.6 × 10−6 mol J−1. The concentra-
tion of ferric ion can be measured by absorption spec-
troscopy. Details are found in Chapter 14 of Attix (1986)
and in Shani (1991) and Shani (2001). Magnetic reso-
nance imaging (Chapter 18) is also used to measure the
amount of ferric ion in the Fricke dosimeter since the re-
laxation times depend on the ion concentration. This has
led to the gel dosimeter which allows a three-dimensional
measurement of the dose distribution—useful for plan-
ning radiation treatments [Shani (2001), Chapter 9].

Another form of chemical dosimeter is radiochromic
film. It consists of a thin layer of radiosensitive dye
bonded to a mylar base. The dye darkens with radiation.
Radiochromic films are sensitive for doses of 1–500 Gy,
making them useful for measuring doses in radiation ther-
apy [Shani (2001), Chapter 5].
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16.3.7 Digital Detectors

Digital x-ray detectors are replacing film in clinical ra-
diography. A digitally recorded image generally has a
greater dynamic range (latitude) than film. A factor-of-
2 difference in exposure,5 which renders a conventional
radiographic image almost useless, is easily tolerated by
digital recording.6 A digitally stored image allows easier
retrieval, transmission, and creation of multiple copies.

A number of techniques are used. The storage phosphor
technology forms an image on a plate of phosphor crys-
tals such as barium fluorobromide. Absorption of x-ray
photons leaves the BaFBr crystals in a metastable state,
like a TLD phosphor. Scanning by a thin laser beam in
a horizontal and vertical raster pattern like a television
image causes visible light to be emitted by the trapped
electrons. The dynamic range of a storage phosphor can
be as high as 104, compared to about 102 for radiographic
film [Rowlands (2002)].

The thin-film transistor arrays used in flat-panel com-
puter screens are also used to make large detector arrays.
The TFT arrays provide the spatial readout. They are
combined either with an amorphous selenium photocon-
ductor that converts the x-ray energy to charge, or with
a structured scintillator such as a large array of CsI crys-
tals [Seibert (2003)]. Each CsI crystal may be as small as
6µm diameter by 500 µm long [Winsor (2003)].

16.4 The Diagnostic Radiograph

Figure 16.14 shows the typical elements for making a di-
agnostic x ray. An image recorded on film is called a ra-
diograph. The x-ray tube ideally serves as a point source
of photons. The photons are filtered and collimated to il-
luminate only the portion of the patient of interest. Typ-
ically, about 10% pass through the patient and strike the
film–screen sandwich in a chest radiograph. In the ab-
domen the fraction is about 1%. There may be an op-
tional collimator, as discussed below. We discuss each el-
ement below, and then discuss the quality of the image.

16.4.1 X-ray Tube and Filter

Most routine radiography is done with photons in the
range from 35 to 85 keV. (Mammography uses lower en-
ergy, and computed tomography is somewhat higher.)
Figure 16.15 shows the loss of radiographic contrast as
the energy of the incident photons increases and Comp-
ton scattering becomes more important.

5Even though the film may have a linear response over a larger
range, doubling the exposure usually makes the film too dense to
read.

6Although a digital detector has greater dynamic range, proper
exposure is still important. Too low an exposure introduces noise;
an excessive exposure generates more scattered photons that strike
the detector and reduce the contrast.

FIGURE 16.14. Overall scheme for making a radiograph. Pho-
tons are produced when electrons strike the tungsten anode.
The beam is collimated to prevent unnecessary dose to the
patient. The patient is placed directly in front of the grid
(if any), and the film or a sandwich of film and intensifying
screen.

The photons are typically produced by an x-ray tube
running with a voltage between cathode and anode of
about 100 kilovolts peak7 (100 kVp). The anode is usu-
ally made of tungsten (which has a high radiation yield
and withstands high temperatures) with a copper backing
to conduct thermal energy away. The number of x rays
produced for a given voltage difference depends on the to-
tal number of electrons striking the anode, which is pro-
portional to the product of the current and the duration
of the exposure (mA s). The anode rotates to help keep
it cool. Additional filtration removes low-energy photons
that would not get through the body and would not con-
tribute to the image. Figure 16.16 shows the effects of
different thicknesses of aluminum on the particle fluence
(dΦ/dE) from a tube operating at 100 kVp. The aver-
age photon energy depends upon the filtration as well as
the kVp, and is about 45 keV for 100 kVp and 2 mm of
aluminum filtration (see Problem 19).

7The word peak is included because the voltage from power sup-
plies in older machines had considerable “ripple” caused by the al-
ternating voltage from the power lines. Even in modern machines,
the voltage pulse applied to the tube may not have a purely rec-
tangular waveform, and kVp may not uniquely determine the x-ray
spectrum during the pulse. Modern kilovolt power supplies are de-
scribed by Sobol (2002).
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FIGURE 16.15. Radiographs taken at 70 kVp, 250 kVp, and 1.25 MeV (60Co), illustrating the loss of contrast for higher-energy
photons. From W. R. Hendee and E. R. Ritenour (2002). Medical Imaging Physics, 4th. ed. New York, Wiley-Liss. Used by
permission.

FIGURE 16.16. The particle energy spectrum dΦ/dE from a
tube operating at 100 kVp with 1, 2, and 3 mm of aluminum
filtration. From W. R. Hendee and E. R. Ritenour (2002).
Medical Imaging Physics, 4th ed. New York, Wiley-Liss. Used
by permission.

16.4.2 Collimation

The collimator is placed just after the x-ray tube. It has
adjustable jaws, usually of lead, that limit the size of the
beam striking the patient. Making the beam as small as
possible reduces the total energy absorbed by the patient.
It also reduces the amount of tissue producing Compton-
scattered photons that strike the film. Since the radi-
ograph is based on shadows that assume the photons
traveled in a straight line from the tube to the detector,
scattered photons reduce the image quality.

16.4.3 Attenuation in the Patient: Contrast
Material

The purpose of a radiograph is to measure features of the
internal anatomy of a patient through differences in the
attenuation of rays passing through different parts of
the body. The photon fluence falls with distance from
the x-ray tube as 1/r2. It also falls because of attenua-
tion along the path. (We ignore the fact that scattered
photons may also strike the film.) We saw in Sec. 15.8
that the mass attenuation coefficient of a compound can
be calculated as a weighted average of the elements in the
compound:

µ

ρ
=
∑

i

(
µ

ρ

)

i

wi.

Table 16.2 lists various elements, their mass attenuation
coefficients at 50 keV, and their composition in water, fat,
muscle, and bone. Water and muscle are quite similar, fat
has a somewhat smaller attenuation coefficient, and the
attenuation of bone is significantly greater.

Figure 16.17 shows attenuation vs. ρx for the beam
in Fig. 16.16 with 2 mm of Al filtration in water and
in bone. Bone contains calcium, which has a relatively
high atomic number, and the attenuation coefficient rises
rapidly as the energy decreases. Also shown as dashed
lines are the corresponding values of exp(−µattenx) for
the average photon energy in the incident beam, which is
50 keV. In each case the transmitted fraction initially falls
more steeply than the dashed line because there is more
attenuation of the low-energy photons. For thicker bone
the slope of the curve is less than the dashed line because
only the high-energy photons remain. This shift of the
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TABLE 16.2. Relative composition of various tissues and the attenuation coefficient for 50-keV photons.

Fractional mass compositiona

Element µatten/ρb

(m2

kg−1)

Adipose
tissue,
adult #1

Water Skeletal
muscle

Cortical
bone,
adult

H 0.0336 0.112 0.112 0.102 0.034
C 0.0187 0.517 0.143 0.155
N 0.0198 0.013 0.034 0.042
O 0.0213 0.355 0.888 0.710 0.435
Na 0.0280 0.001 0.001 0.001
Mg 0.0329 0.002
P 0.0492 0.002 0.103
S 0.0585 0.001 0.003 0.003
Cl 0.0648 0.001 0.001
K 0.0868 0.004
Ca 0.1020 0.225

µatten/ρ
(m2 kg−1)

0.0214 0.0227 0.0227 0.0424

ρ (kg m−3) 970 1,000 1,050 1920
µatten (m−1) 20.8 22.7 23.8 81.5

aFractional mass compositions are available at http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html.
bValues are from Hubbell and Seltzer (1996).

0.01

2

3

4

5
6
7
8

0.1

2

3

4

5
6
7
8

1

F
ra

ct
io

n 
tr

an
sm

itt
ed

1086420

Absorber thickness (g cm–2)

Water or Muscle

Bone

FIGURE 16.17. Attenuation of photons in water or muscle
and in bone for the spectrum of Fig. 16.16 (100 kVp, 2 mm
aluminum filtration). The dashed lines are for the attenuation
coefficients at 50 keV.

beam energy and curvature of the attenuation curves is
called beam hardening.

These differences in attenuation make it easy to dis-
tinguish bone from soft tissue. It is also easy to dis-

tinguish lungs from other tissues because they contain
air and have much lower density. Air-filled lung has a
density of 180–320 kg m−3, compared to about 1,000
kg m−3 for water, muscle, or a solid tumor. Figure
16.18 shows a normal anterior–posterior (A–P) chest radi-
ograph. You can see the exponential decay through layers
of bone, the outline of the heart, the arch of the aorta,
and the lacy network of blood vessels in the lungs. The
patient in Fig. 16.20 has pneumothorax. Air has leaked
into the pleural cavity and partially collapsed the lungs.
You can see this collapse in the upper portion of each
lung. Spontaneous pneumothorax can occur in any pul-
monary disease that causes an alveolus (air sac) on the
surface of the lung to rupture: most commonly emphy-
sema, asthma, or tuberculosis. Pneumothorax can also be
caused by perforating trauma to the chest wall. Sponta-
neous idiopathic (meaning cause unknown) pneumotho-
rax occasionally occurs in relatively young people.

Abdominal structures are more difficult to visualize be-
cause except for gas in the intestine, everything has about
the same density and atomic number. Contrast agents
are introduced through the mouth, rectum, urethra, or
bloodstream. One might think that the highest-Z materi-
als would be best. However the energy of the K edge rises
with increasing Z. If the K edge is above the energy of the
x rays in the beam, then only L absorption with a much
lower cross section takes place. The K edge for iodine is
at 33 keV, while that for lead is at 88 keV. Between these
two limits (and therefore in the range of x-ray energies
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FIGURE 16.18. Radiograph of a normal chest. Some of the
features are identified in Fig. 16.19 and are described in the
text. Radiograph courtesy of D. Ketcham, M.D., Department
of Diagnostic Radiology, University of Minnesota Medical
School.

FIGURE 16.19. Some of the features in the radiograph of a
normal chest, Fig. 16.18.

usually used for diagnostic purposes), the mass attenua-
tion coefficient of iodine is about twice that of lead. The
two most popular contrast agents are barium (Z = 56,
K edge at 37.4 keV) and iodine (Z = 53). Barium is
swallowed or introduced into the colon. Iodine forms the
basis for contrast agents used to study the cardiovascu-
lar system (angiography), gall bladder, brain, kidney, and
urinary tract.

FIGURE 16.20. Radiograph of a patient with pneumothorax.
Air has escaped from the lungs and caused them to collapse
partially. The features are indicated in Fig. 16.21. Radiograph
courtesy of D. Ketcham, M. D., Department of Diagnostic
Radiology, University of Minnesota Medical School.

FIGURE 16.21. Key to features in Fig. 16.20. The areas of
pneumothorax are indicated by (P). The one on the patient’s
left (the viewer’s right) is difficult to see in the printed version;
a radiographic film viewed by transmitted light has a much
greater dynamic range.

Some pathologic conditions can be identified by the de-
position of calcium salts. Such “dystrophic” (defective)
calcification occurs in any form of tissue injury, partic-
ularly if there has been tissue necrosis (cell death). It
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FIGURE 16.22. Scale drawing of the elements of a typical grid.
The thin lead strips absorb photons that have been scattered
through more than a few degrees. As a result background fog
due to scattering is reduced and the contrast is increased.
Since the x rays come from a point source, the elements of the
grid are usually tilted toward the source and are not parallel
over the entire film surface.

is found in necrotizing tumors (particularly carcinomas),
atherosclerotic blood vessels, areas of old abscess forma-
tion, tuberculous foci, and damaged heart valves, among
others.

16.4.4 Antiscatter Grid

Since the radiograph assumes that photons either travel
in a straight line from the point source in the x-ray tube
to the film or are absorbed, Compton-scattered photons
that strike the film reduce the contrast and contribute an
overall background darkening. This effect can be reduced
by placing an antiscatter grid (or radiographic grid, or
“bucky” after its inventor, Gustav Bucky) just in front of
the film.

Figure 16.22 shows how a grid works. The grid stops
x rays that are not traveling parallel to the sides of the
grid strips. A typical grid might have 10–50 strips of lead
per centimeter that are 3 mm high and 0.05 mm thick,
embedded in plastic or aluminum. The strips can be ei-
ther parallel or “focused,” that is, slanted to aim at the
point source on the anode of the x-ray tube. The grid
can be either linear or crossed, with strips of lead run-
ning in both directions. A grid with a ratio of height to
spacing of 12 improves the contrast by a factor of about
3.75, while increasing the exposure to the patient by a
factor of about 4.25 to keep the film dose about the same
[Hendee and Ritenour (2002), p. 227).] Sometimes the
grid is moved during the exposure if the strips in the grid
are thick enough to show up on the film.

16.4.5 Film–Screen Combination

The film–screen combination was described in Sec. 16.3.
The fluorescent screens, by absorbing more of the pho-
tons, reduce the dose to the patient for the same optical
density of the developed film. They also degrade the spa-
tial resolution of the image, because fluorescence photons
from the point where the x-ray photon interacts start out
in various directions and then scatter until they strike the
film.8

16.4.6 Computed and Direct Radiography

The term computed radiography (CR) is used to describe
systems where a photophosphor or photostimulable phos-
phor replaces the film-screen combination. The latent im-
age on this phosphor is “read” by a scanning laser beam
in a process called photostimulated luminescence. The
resulting image is digitized [Rowlands (2002)]. The term
direct radiography is applied to the use of a TFT detector
array (p. 446) which directly produces a digitized image.

16.5 Image Quality

The quality of a radiographic image depends on three
things: resolution, contrast, and noise. The resolution
and contrast can be described by concepts introduced
in Chapter 12 for a linear, shift-invariant system: the
point-spread function and its Fourier transform, the opti-
cal transfer function, whose magnitude is the modulation
transfer function. The noise arises primarily from the fluc-
tuations in the number of photons striking a given area
of film—quantum noise—though granularity of the film
is also important.

The transfer function for the entire system depends on
many factors: the tube and spot size, filter, source–screen
and source–patient distances, grid, film–screen combina-
tion, and scatter. If each of these subsystems operates in
series, as in an audio system, one can successively con-
volve the point-spread functions or multiply together the
(complex) optical transfer functions. It is also possible to
have parallel9 subsystems, each contributing to the final
image, in which case the analysis is more complicated.
An excellent review of the use of transfer-function analy-
sis in radiographic imaging is the article by Metz and

8The point-spread function of a film or a screen–film system is
easily measured. A point source is created by passing the x rays
through a pinhole in a piece of lead placed directly on the screen.
The resulting image in the film is the point-spread function. We saw
in Chapter 12 how this is related to the modulation transfer func-
tion. Standard techniques have been developed for measuring the
modulation transfer function (MTF) of the film-screen combination
[ICRU Report 41 (1986); ICRU Report 54 (1996)].

9Examples of parallel subsystems are the two emulsion layers on
double-coated film, and the effect of primary and scattered radia-
tion on the formation of the image.
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FIGURE 16.23. An example of the relationship among ex-
posure, image size, and detectability. A type 1100 aluminum
phantom was imaged with digital fluorography. It was exposed
to an 80-kVp x-ray beam with 4.5-mm Al filter. As the im-
age becomes lighter, the thickness of the aluminum phantom
increases in steps: 0.85, 1.3, 2.1, 3.2, and 5.2 mm. The holes
are 1, 1.5, 2, 2.5, and 3 mm in diameter. As the attenuation
in the aluminum increases, so does the signal, and the eas-
ier it is to detect the smaller holes. Photograph courtesy of
Richard Geise, Ph.D., Department of Radiology, University of
Minnesota.

Doi (1979). The text by Macovski (1983) is at about the
level of this book and presents many details of noise and
convolution for radiographic, fluoroscopic, tomographic,
nuclear medicine, and ultrasound images. The size of the
spot where the electrons strike the anode of the x-ray
tube is critical in determining the resolution of the final
image, as discussed in detail by Wagner et al. (1974).

The exposure contrast is the change in exposure be-
tween two (usually adjacent) parts of the image divided
by the average:

Cin =
∆X

X
. (16.13)

This is similar to the modulation defined in Eq. 12.20.
The brightness contrast is the analogous quantity for the
light transmitted through the processed film when view-
ing the image:

Cout =
∆T

T
. (16.14)

The exposure contrast and brightness contrast are pro-
portional (Eq. 16.11):

Cout = γCin. (16.15)

The radiographic signal is a small change in optical
transmission in adjacent areas of the image. Changes in
transmission below a certain value are not detectable by

the viewer. This is apparent in Fig. 16.23, which shows
signals with different contrasts and different sizes on a
uniform background. The smaller the diameter of the sig-
nal region, the more difficult the signal is to detect. We
will develop a simple model to explain why.

Suppose first that there is no signal, but that the film
(or screen–film combination) is illuminated with a uni-
form beam of x rays with a constant fluence. We make an
exposure for a certain time and count the number of pho-
tons striking a “sampling area” of the film, S. Though the
average fluence is constant across the film, the photons
are randomly distributed. A somewhat different number
of photons strike a nearby sampling area of the same size.
This is a situation where the average number striking a
sampling area of a given size is constant, the total num-
ber of photons is very large, and the probability that any
one photon is absorbed in a given sampling area is small,
so the situation is described by Poisson statistics (Ap-
pendix J). The mean number of photons striking a sam-
pling area is ΦS and the standard deviation is (ΦS)1/2.
Suppose that some fraction f ≤ 1 of these photons ac-
tually interact with the silver halide grains in the emul-
sion. Then the mean number interacting is fΦS and the
standard deviation is10 (fΦS)1/2. Thus there are fluctu-
ations in the brightness of the transmitted image across
the uniformly exposed viewing region, just because of the
Poisson statistics—quantum noise or shot noise—of the
x-ray photons striking the film.

The fluctuations in the number of photons striking area
S can be related to fluctuations in the exposure of that
area of the film, and hence to the transmission of visi-
ble light through the developed film. Since the exposure
(measured in air just in front of the film) is proportional
to the photon fluence, X = AΦ, (X − X)2 = A2(Φ − Φ)2
and (∆X)rms = A(∆Φ)rms. We define the noise exposure
contrast to be the standard deviation of the number of
photons affecting grains in area S divided by the average
number affecting grains in an area that size:11

Cnoise in ≡ (fΦS)1/2

fΦS
= (fΦS)−1/2. (16.16)

The noise brightness contrast is then

Cnoise out = γ(fΦS)−1/2. (16.17)

The fluctuations in the noise, measured by noise con-
trast, are inversely proportional to the square root of the

10This is very similar to the arguments about the fraction of pho-
tons absorbed by a visual pigment molecule in Eq. 14.67. Changes
in the value of f in Fig. 14.43 shift the response curve along the

axis. They also shift the film response curves in Fig. 16.7.
11It is sometimes useful to write it as

Cnoise in ≡ (fΦS)1/2

fΦS
=

1

f1/2S1/2

(∆Φ)rms

Φ
=

1

f1/2S1/2

A(∆X)rms

AX

=
1

f1/2S1/2

(∆X)rms

X
.
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area of the lesion to be detected.12 This is seen in Fig.
16.23. The noise in a screen–film system is measured by
using a microdensitometer to measure the optical density
across film that has received a uniform exposure. Varia-
tions with position can be described either in terms of its
two-dimensional autocorrelation function or its Fourier
transform, the Wiener spectrum. The radiographic noise
consists of three components: quantum mottle, the statis-
tical fluctuations in the number of photons absorbed in
a small area (shot noise); structure mottle due to nonuni-
formities in the screen; and film graininess, variation in
the size and distribution of the silver bromide grains in
the emulsion. Here we discuss only quantum mottle.

Now introduce a signal, which is a small increase in the
exposure or photon fluence: ∆Xsignal = A∆Φsignal. This
gives a brightness contrast

Csignal out = γ
∆Xsignal

X
= γ

∆Φsignal

Φ
. (16.18)

The ratio of the signal contrast to the noise contrast is
called the signal-to-noise ratio:

SNR =
Csignal out

Cnoise out
=

γ (∆Φsignal/Φ)

γ (fΦS)−1/2
= (fS)1/2 ∆Φsignal

Φ1/2
.

(16.19)
The signal will be detectable only if the signal brightness
contrast exceeds the noise brightness contrast by a certain
amount:13

SNR > k, (fS)1/2 ∆Φsignal

Φ1/2
> k. (16.20)

The larger the value of the signal-to-noise ratio, the
greater the probability of detecting the signal. Many ex-
periments on perception have been done; they will not be
discussed here.14 Values of k that are used range from 2
to 5.

Let us apply the result in Eq. 16.20 to a simple model:
a monoenergetic x-ray beam passing through a patient.
The total thickness of the patient is L. The attenuation
coefficient is µ. If an x-ray beam with fluence Φ0 strikes
the patient, the fluence of x-ray photons emerging is Φ1 =
Φ0e

−µL. Imagine a nearby region where for a distance x

12An analogous phenomenon is seen when counting individual
photons with a radiation detector at a fixed average rate. The num-
ber counted in a given time interval fluctuates, with the fractional
fluctuation inversely proportional to the square root of the counting
time.

13There are statistical fluctuations in the signal as well as the
noise. The variance of the difference between signal and noise will
be the sum of the variances in the signal and in the noise. This has
the effect of increasing the noise by a factor of

√
2, which can be

absorbed in the value of k that is chosen. See Problem 23.
14The ability to detect the signal accurately is greater when the

observer knows the nature of the signal and is only asked whether

it is or is not present. That is, the ability of an observer to detect a

signal is less in the more realistic situation where the observer does

not know what the signal is or where it might be in the radiograph.

the attenuation coefficient is µ − ∆µ. The x-ray fluence
emerging along a line passing through this region is

Φ2 = Φ0e
−µ(L−x)−(µ−∆µ)x = Φ0e

−µLe∆µx

= Φ1e
∆µx

≈ Φ1(1 + ∆µx). (16.21)

The exposure contrast is therefore Cin = (∆Φ)signal/Φ1 ≈
∆µx. We combine this with Eq. 16.20 to obtain

(fSΦ1)1/2(∆µx) > k, (16.22)

where Φ1 is the fluence leaving the patient or striking
the film. (These are the same if variations in 1/r2 can
be neglected, where r is the distance from the tube to
the patient or the tube to the film.) The signal-to-noise
ratio increases as the square root of the photon fluence or
exposure, the square root of the area to be detected, and
the square root of f , the fraction of the photons striking
the film that are actually effective in rendering grains
developable.

The fraction f in this Poisson model is equal to the
detective quantum efficiency (DQE). It is easily visualized
as the fraction of the photons striking the detector that
actually affect it. The number of noise equivalent quanta
(NEQ) in our model is fΦ1.15

We can apply Eq. 16.22 to determine the number of
photons that must be transmitted through the patient
for a given image size and given signal-to-noise ratio. We
assume that f = 1. The required photon fluence emerging
from the patient is (dropping the subscript on Φ1)

ΦS >

(
k

∆µx

)2

. (16.23)

If the lesion thickness is x = 1 cm and ∆µ = 0.01µwater =
(0.01)(22.7) m−1, then ∆µx = 0.00227. For k = 4, the
number of photons in the image area must be greater
than 3 × 106. The exit dose to the patient is (assuming
monoenergetic photons)

Dbody = Ψ
(

µen

ρ

)

body

= (hν)Φ
(

µen

ρ

)

body

(16.24)

=
(hν)(3 × 106)

S

(
µen

ρ

)

body

.

The dose increases as the area to be detected decreases.
In order to detect an image 1 mm square using 50-keV
photons, the exit dose in water would have to be at least
9.8 × 10−5 Gy.

15This simple equality exists only because we are using a model
with Poisson statistics. The DQE is defined more generally as the
square of the of the signal-to-noise ratio of the detector output
divided by the square of the signal-to-noise ratio of the detector
input. The more general definitions of DQE and NEQ are discussed
in Wagner (1983), Wagner (1977), and Dainty and Shaw (1974).
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FIGURE 16.24. Digital subtraction angiography. (a) Image with contrast material. (b) Image without contrast material. (c)
The difference image. Photograph courtesy of Richard Geise, Ph.D., Department of Radiology, University of Minnesota.

16.6 Angiography and Digital
Subtraction Angiography

One important problem in diagnostic radiology is to im-
age portions of the vascular tree. Angiography can con-
firm the existence of and locate narrowing (stenosis),
weakening and bulging of the vessel wall (aneurysm),
congenital malformations of vessels, and the like. This
is done by injecting a contrast material containing iodine
into an artery. If the images are recorded digitally, it is
possible to subtract one without the contrast medium
from one with contrast and see the vessels more clearly
(Fig. 16.24).

In a typical angiographic study, 30–50 ml of contrast
material is injected into an artery. For a vessel with a
diameter of 8 mm, ρx of the contrast material is about 4
mg cm−2.

16.7 Mammography

Mammography poses particular challenges for medical
physicists. The resolution needed is extremely high
(about 15 line pairs (lp) mm−1 compared to 5 lp mm−1

for a chest radiograph).16 The radiologist may use a mag-
nifying glass to inspect the image. The contrast in a
breast image is inherently low. Fat and glandular tissue
must be distinguished by the slight differences in their
attenuation coefficients (see Problem 25). The dose must
be made as small as possible.

These challenges have been met. Spatial frequencies of
14-16 lp mm−1 are routinely obtained. Noise limits the
minimum size of a detectable object to > 0.3 mm for
microcalcifications or a few millimeters for soft tissue.

16Line pairs (abbreviated lp) are analogous to the period of a
square wave.
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FIGURE 16.25. The x-ray spectrum from a molybdenum an-
ode tube used for mammography, with and without filtration
by a molybdenum foil. From W. R. Hendee and E. R. Rite-
nour (2002). Medical Imaging Physics, 4th ed. New York, Wi-
ley-Liss. Used by permission.

Digital mammography is providing even higher resolu-
tion. The typical mammographic dose per view has been
reduced from about 50 mGy in the 1960s and 4.1 mGy
in the 1970s to 1.5 mGy in 1996.17 One technique that
has helped make these improvements is the molybdenum
target x-ray tube, operating at 25–28 kVp. Figure 16.25
shows the photon fluence from such a tube, with the 17-
keV Kα and 19-keV Kβ lines being quite prominent. Fil-
tration of the beam with the same material, molybdenum,
further sharpens the spectrum. The dashed lines show
the spectrum when a molybdenum filter is used. These
photons interact primarily by the photoelectric effect, so
attenuation depends strongly on atomic number. There
are few Compton-scattered photons to degrade the im-
age. Meticulous attention to detail is required to obtain
useful images.

16.8 Fluoroscopy

If a fluorescent screen replaces the screen–film cassette,
one can observe an image that changes with time, as when
the patient swallows a contrast agent. Although the x-
ray tube current for fluoroscopy is several hundred times
less than that for a radiograph, the dose absorbed by
the patient would be quite high if the viewing time were
very long. In order to reduce the dose, early fluoroscopic
units were viewed by a radiologist using dark-adapted
(scotopic) vision, which allows one to perceive a dimmer
image but does not allow one to resolve great detail.

Currently, fluoroscopy is done using an image intensi-
fier tube. Image intensifier tubes do not reduce the expo-

17See NCRP Report 100 (1989) for early data; R. Geise, private
communication for 1996 data.

FIGURE 16.26. A schematic diagram of an image intensifier
tube. From W. R. Hendee and E. R. Ritenour (2002). Medical
Imaging Physics, 4th ed. New York, Wiley-Liss, p. 237. Used
by permission.

sure very much, but they provide much brighter images
so the radiologist can use photopic rather than scotopic
vision and see more detail. A cross section of a typical im-
age intensifier tube is shown in Fig. 16.26. A fluorescent
screen, the input phosphor, is sandwiched to a photocath-
ode, similar to the one in a photomultiplier tube. An alu-
minum support reflects light from the fluorescent screen
back into the tube. An accelerating voltage difference of
about 30 kV exists between the photocathode and the an-
ode. Electrons are focused by a series of electrodes to pass
through a hole in the anode and strike another fluorescent
screen, the output phosphor. The energy added to each
electron by the accelerating field increases the brightness
of the image, though some spatial resolution is lost. The
brightness is also enhanced because the output phosphor
is smaller than the input phosphor. The output phosphor
is viewed with a television camera.

Large detector arrays are replacing this traditional
method of fluoroscopy. The measurement of the basic
properties of one such detector—amorphous silicon—are
described by Hunt et al. (2002).

16.9 Computed Tomography

Radiographs provide only an integrated value of the at-
tenuation coefficient. That is, if N0(y, z) monoenergetic
x-ray photons traverse the body along a line in the x
direction after entering the body at coordinates (y, z),
the number emerging without interaction is N(y, z) =
N0(y, z)e−α(y,z), where

α(y, z) =
∫

µ(x, y, z) dx.

The radiograph measures N(y, z) or α(y, z). The desired
information is µ(x, y, z). The radiographic image is often
difficult to interpret because of this integration along x.
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FIGURE 16.27. The scanning techniques used in the first four
generations of CT scanners. From Z.-H. Cho, J. P. Jones, and
M. Singh (1993). Foundations of Medical Imaging. Copyright
c©1993 John Wiley–Interscience. Reprinted by permission of
John Wiley & Sons, Inc.

For example, it may be difficult to visualize the kidneys
because of the overlying intestines.

Several types of computed tomography (tomos means
slice) have been developed in the last few decades. They
include transmission computed tomography (CT), single-
photon emission computed tomography (SPECT), and
positron emission tomography (PET). They all involve re-
constructing, for fixed z, a map of some function f(x, y)
from a set of projections F (θ, x), as described in Secs.
12.4 and 12.5. For CT the function f is the attenuation
coefficient µ(x, y). For SPECT and PET it is the concen-
tration of a radioactive tracer within the body, as will be
described in Chapter 17.

The history of the development of computed tomogra-
phy is quite interesting [DiChiro and Brooks (1979)]. The
Nobel Prize in Physiology or Medicine was shared in 1979
by a physicist, Allan Cormack, and an engineer, Godfrey
Hounsfield. Cormack had developed a theory for recon-
struction and had performed experiments with a cylin-
drically symmetric object that were described in two pa-
pers in the Journal of Applied Physics in 1963 and 1964.
Hounsfield, working independently, built the first clinical
machine, which was installed in 1971. It was described in
1973 in the British Journal of Radiology. The Nobel Prize
acceptance speeches [Cormack (1980); Hounsfield (1980)]
are interesting to read. A neurologist, William Oldendorf,
had been working independently on the problem but did
not share in the Nobel Prize [See DiChiro and Brooks
(1979), and Broad (1980)].

Early machines had an x-ray tube and detector that
moved in precise alignment on opposite sides of the pa-

FIGURE 16.28. A spiral CT scan of the abdomen. The arrow
points to a biliary cystadenoma, a benign tumor of the liver.
Scan courtesy of E. Russell Ritenour, Ph.D., Department of
Radiology, University of Minnesota Medical School.

tient to make each pass. The size of these machines al-
lowed only heads to be scanned. After one pass, the
gantry containing the tube and detector was rotated 1 ◦

and the next pass was taken. After data for 180 passes
were recorded, the image was reconstructed. A complete
scan took about 4 minutes. Modern CT units use an ar-
ray of detectors and a fan-shaped beam that covers the
whole width of the patient. The scan time is reduced to
a few seconds. Figure 16.27 shows the early evolution of
the scanning techniques.

On modern machines all of the electrical connections
are made through slip rings. This allows continuous rota-
tion of the gantry and scanning in a spiral as the patient
moves through the machine. Interpolation in the direction
of the axis of rotation (the z axis) is used to perform the
reconstruction for a particular value of z. This is called
spiral CT or helical CT. Kalender (2000) discusses the
physical performance of CT machines, particularly the
various forms of spiral machines. Array detectors are now
used to fill in the space between the spirals. Table 16.3
shows how scanners have improved since they were first
introduced. Spiral CT provides µ(x, y, z), and the images
can be displayed in three dimensions.

Figure 16.28 is an abdominal scan showing a benign
tumor in the liver. Computer analysis of µ(x, y, z) data
can be used to display 3-dimensional images of an organ
(Fig.16.29). The surface of an organ is defined by a change
in µ.

It is often desirable to measure the attenuation coeffi-
cient with an accuracy of ±0.5%. For water at 60 keV,
µ = 20 m−1, so µ must be measured with an accuracy
of δµ = 0.1 m−1. (A beam of 120 kVp with 2–3 mm of
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TABLE 16.3. The evolution of typical values for high-performance CT machines. Adapted from Kalender (2000), p. 39.

Feature 1972 1980 1990 2000

Minimum scan time 300 s 5–10 s 1–2 s 0.3–1 s
Data per 360 ◦ scan 57.6 kB 1 MB 2 MB 42 MB
Data per spiral scan 24–48 MB 200–500 MB
Image matrix 80 × 80 256 × 256 512 × 512 512 × 512
Power (kW) 2 10 40 60
Slice thickness (mm) 13 2–10 1–10 0.5–5
Spatial resolution (Line pair
cm−1)

3 8–12 10–15 12–25

FIGURE 16.29. A 3-dimensional rendering of the aorta, re-
nal arteries and kidneys. Scan courtesy of E. Russell Rite-
nour, Ph.D., Department of Radiology, University of Min-
nesota Medical School.

aluminum filtration has about this average photon en-
ergy.) It is customary to report the fractional difference
between µ and µwater. The Hounsfield unit is

H = 1000
µtissue − µwater

µwater
. (16.25)

The desired accuracy is ±5 Hounsfield units.
There is a relationship between the dose to the patient

and the resolution. Suppose we are reconstructing an ob-
ject with a circular cross section as shown in Fig. 16.30.
The object is to be resolved into volume elements or cells
of length w on each side parallel to the x and y axes. The
thickness of each cell along the z axis (perpendicular to
the scan) is the slice thickness, b. The diameter of the ob-
ject is L. For simplicity, we make the analysis assuming a
first-generation machine, with rectilinear passes repeated
at m different angles between 0 ◦ and 180 ◦. The width
of each sample in a pass is w. The number of samples in

each pass is

n =
L

w
, (16.26)

and the number of cells in the object is approximately
the area of the circular object divided by the area of a
cell: πL2/4w2 or πn2/4. To determine πn2/4 independent
values of µ requires at least that many independent mea-
surements. Since n measurements are made in each pass,
we need m passes where mn = πn2/4 or

m =
πn

4
. (16.27)

With more passes the situation is overdetermined; with
fewer it is underdetermined. If the values of µ are overde-
termined, convolved back projection (Chapter 12) or a
similar procedure can be used to assign the values of µ.

Now consider the attenuation of photons in one sample
along a diameter. In Sec. 16.5 we developed a relation-
ship between the photon fluence in the beam needed to
measure the attenuation with some desired accuracy [Eq.
16.21]. The same arguments can be applied in this case:

δΦ = Φ1δµw = Φ0e
−µL δµw.

The photons arrive at the detector, which we assume for
simplicity to have 100% efficiency, at a constant average

FIGURE 16.30. A circular object that is to be analyzed. The
diameter of the object is L; the width of each sample in the
scan is w. It is desired to resolve cells in each sample which
have a length w, as shown for the center diameter.
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rate, so they are Poisson distributed. The standard devi-
ation in the number of counts is (Φ1S)1/2 = (Φ1wb)1/2.
To detect the difference between the two samples, w2δΦ
must exceed this by the minimum signal-to-noise ratio,
k. This gives the minimum number of photons that must
be detected:

N = Φ1wb >
k2

w2(δµ)2
. (16.28)

If w = 0.8 mm and k = 4, then N > 2.5 × 109 photons
must pass through the small region we are trying to mea-
sure. It can be shown [Brooks and DiChiro (1976)] that
these counts can be divided among all m passes. Let N ′

be the number of photons detected in the sample at one
angle:

N ′ =
k2

mw2(δµ)2
=

k2

(π/4)Lw(δµ)2
. (16.29)

The exit dose from one pass is

D′ =
µen

ρ
Ψ′

1 =
µen

ρ
hνΦ′

1,

where Φ′
1 = φ1/m. The entrance dose is eµL times this.

We multiply by m to get the total dose. With the help of
Eq. 16.28 we obtain an expression for the total entrance
dose for the entire scan from all m passes:

D =
µen

ρ
hνeµLΦ1 =

µen

ρ

hνeµLk2

w3b(δµ)2
.

Three additional factors must be added to this equation.
A more careful analysis of the statistics gives a factor
π2/12 = 0.82. The second factor β is introduced for pho-
tons that miss the detector and a detector efficiency that
is less than unity.

Finally, the actual dose to the patient is less than the
entrance dose. It must be averaged over all scans and
must account for the attenuation of the beam as it goes
through the patient. The result above is multiplied by the
third factor γ (no relation to the film γ). The values of
γ depend on the machine configuration and the photon
energy. A typical value for an early machine described
by Brooks and DiChiro (1976) is γ = 0.34 for 60-keV
photons. Fig. 16.31 compares the dose to the head from
projection radiography (equivalent to a single CT projec-
tion) and computed tomography.

With these added factors, the entrance dose is

D =
(π2/12)βγ hν eµL(µen/ρ)k2

w3b(δµ)2
. (16.30)

This equation shows a fundamental relationship between
dose and resolution. Decreasing both w and b by a factor
of 2 requires a 16-fold increase in dose, while improving
δµ by a factor of 2 requires a dose that is 4 times as large.

We can insert typical numbers in Eq. 16.30 to calculate
a minimum dose. Using β = 2, γ = 0.34, k = 2, eµL = 40,

hν = 60 keV, µen/ρ = 3.152× 10−3 m2 kg−1 (for water),
δµ = 0.1 m−1, w = 1.0 mm, and b = 1.0 cm, we obtain

D =

(0.822)(2)(0.34)(40)(60×103×1.6×10−19 J)(3.152×10−3 m2 kg−1)(22)

(1.0×10−3 m)3(1.0×10−2 m)(0.1 m−1)2

= 27 × 10
−3

Gy.

Patient examinations usually involve several scans for
different values of the distance along the z axis. Scattering
from neighboring layers can more than double the dose.
Spiral CT can reduce the dose if the pitch—the distance
traversed in one revolution divided by the beam thickness
b—is greater than one. Often, however, the pitch is less
than one and the dose is increased. In some multidetector
machines it is as low as 0.25. Pediatric doses are some-
what larger because there is less attenuation through the
smaller patient.

The entrance skin dose is misleading, however. Figure
16.31 compares the dose distribution from a posterior-
anterior head film with that from a head CT. The aver-
age dose within the slice for a given skin dose is higher
for the CT because the beam enters from all sides. In ad-
dition, the entrance skin dose for the CT scan is about
20 times that of the PA radiograph: 40 mGy vs. 2 mGy
[Huda (2002)]. On average, the dose from a single CT
exam is about 4.5 times the annual background radiation
received by the average person [Goodsitt et al. (2002)].
We will discuss this more in Sec. 16.13. Doses can be
larger in small children, and children are more sensitive
to radiation than adults [Hall (2002)].

Several steps are now taken to reduce the dose due to
CT procedures. The cross section of the body is ellipti-
cal; the x-ray tube current can be reduced when the path
through the body is shorter. The overall tube current can
be reduced as long as the photon-noise-limited resolution
is good enough to identify the anatomy of interest. Re-
ducing the x-ray tube voltage (kVp) often increases the
contrast for a given dose [Huda (2002)].

A disturbing recent trend is the use of annual full-body
CT scans for screening. We discuss this in Sec. 16.13.

16.10 Biological Effects of Radiation

Radiation at sufficiently high doses can kill cells, tumors,
organs, or entire animals. Radiation, along with surgery
and chemotherapy, is a mainstay of cancer treatment. Ra-
diation can also cause mutations. Radiobiology, the study
of how radiation affects cells and organs, has provided
major improvements in our understanding of cell death
and damage in recent years. This understanding has mod-
ified and improved our approach to radiation therapy.
This section provides a brief introduction to radiobiology,
but it ignores many important details, such as our cur-
rent understanding of specific proteins that cause some of
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FIGURE 16.31. Contours of constant dose to the head for a conventional projection radiograph and a CT scan. The dose is
normalized to the entrance dose. From Nagel et al. (2000). Used by permission.
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FIGURE 16.32. Typical survival curves for cell culture exper-
iments, for 4 MeV α particles, 15-MeV neutrons, and 250-kVp
x rays. These are representations of typical experimental data.

the cellular responses.18 The discussion starts with some
cell-culture (in vitro) results, presents the most frequently
used model for radiation damage, and then moves to in
vivo tissue irradiation and the eradication of tumors.

16.10.1 Cell-Culture Experiments

Cell-culture studies are the simplest conceptually. A
known number of cells are harvested from a stock cul-
ture and placed on nutrient medium in plastic dishes.
The dishes are then irradiated with a variety of doses in-
cluding zero as a control. After a fixed incubation period
the cells that survived have grown into visible colonies
that are stained and counted. Measurements for many
absorbed doses give survival curves such as those in
Fig. 16.32. These curves are difficult to measure for very
small surviving fractions, because of the small number of
colonies that remain.

Failure to survive means either that the cell was killed
or that it could no longer reproduce. If the cells die at-

18For more information see the references by Hall (2000), and
Moulder and Shadley (1996), by Orton (1997), and Steel (1996).

tempting the next or a later cell division (mitosis) it
is called mitotic death. Some cells die by apoptosis: a
mechanism whereby the cell initiates its own programmed
death, going through a well-defined series of morphologic
events that culminate in fragmentation of the DNA [Hall
(2000)]. Recent experiments with microscopic beams of
radiation and short-range particles aimed at different
parts of the cell have demonstrated that damage to the
cell’s DNA is only one factor in the cell’s response to the
radiation. See, for example, Kassis (2004). Nonetheless,
the differences in survival curve shapes that we discuss
here are still important.

The shape of the survival curve depends on the linear
energy transfer (LET) of the charged particles. For the α
particles in Fig. 16.32 the LET is about 160 keV µm−1,
for neutrons it is about 12 keV µm−1, and for the elec-
trons from the 250-kVp x rays it is about 2 keV µm−1.
The α particles and neutrons are called high-LET radia-
tion; the electrons are low-LET radiation.

High-LET radiation produces so many ion pairs along
its path that it exerts a direct action on the cellular DNA.
Low-LET radiation can also ionize, but it usually acts
indirectly. It ionizes water (primarily) according to the
chemical reaction

H2O → H2O+ + e−.

The H2O+ ion decays with a lifetime of about 10−10 s to
the hydroxyl free radical:

H2O++H2O → H3O++OH.

This then produces hydrogen peroxide and other free rad-
icals that cause the damage by disrupting chemical bonds
in the DNA. [Shabashon (1996), esp. pp. 64–69.]

16.10.2 Chromosome Damage

Cellular DNA is organized into chromosomes. In order to
understand radiation damage to DNA, we must recognize
that there are four phases in the cycle of cell division:
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FIGURE 16.33. A schematic diagram of how the DNA is
packed to give a chromosome, shown at metaphase of the cell
cycle. From B. Alberts et al. Molecular Biology of the Cell,
4th. ed. New York, Garland (2002). p. 230. Used by permis-
sion of Taylor & Francis Group.

M Cell division. This stage includes both division of the
nucleus (mitosis) and of the cytoplasm (cytokinesis).
This phase may last one or two hours.

G1 The first “gap” phase. The cell is synthesizing many
proteins. The duration of G1 determines how fre-
quently the cells divide. It varies widely by kind of
tissue, from a few hours to 200 hours.

S Synthesis. A new copy of all the DNA is being made.
This lasts about 8 hours.

G2 The second “gap” phase, lasting about 4 hours.

Figure 16.33 shows, at different magnifications, a
strand of DNA, various intermediate structures which we
will not discuss, and a chromosome as seen during the
M phase of the cell cycle. The size goes from 2 nm for

the DNA double helix to 1400 nm for the chromosome.
In addition to cell survival curves one can directly mea-
sure chromosome damage. There is strong evidence that
radiation, directly or indirectly, breaks a DNA strand.
If only one strand is broken, there are efficient mecha-
nisms that repair it over the course of a few hours using
the other strand as a template. If both strands are bro-
ken, permanent damage results, and the next cell division
produces an abnormal chromosome.19 Several forms of
abnormal chromosomes are known, depending on where
along the strand the damage occurred and how the dam-
aged pieces connected or failed to connect to other chro-
mosome fragments. Many of these chromosomal abnor-
malities are lethal: the cell either fails to complete its next
mitosis, or it fails within the next few divisions. Other ab-
normalities allow the cell to continue to divide, but they
may contribute to a multistep process that sometimes
leads to cancer many cell generations later.

Even though radiation damage can occur at any time
in the cell cycle (albeit with different sensitivity),20 one
looks for chromosome damage during the next M phase,
when the DNA is in the form of visible chromosomes as in
the bottom example in Fig. 16.33. If the broken fragments
have rejoined in the original configuration, no abnormal-
ity is seen when the chromosomes are examined. If the
fragments fail to join, the chromosome has a “deletion.”
If the broken ends rejoin other broken ends, the chromo-
some appears grossly distorted.

A sequence of processes leads to cellular inactivation.
Ionization is followed by initial DNA damage. Most of
this is repaired, but it can be repaired incorrectly. No
repair or misrepair results in DNA lesions that are then
manifest as chromosome aberrations, which may be non-
lethal, may cause mutations, or may lead to cell death.
The numbers quoted here are from the review by Steel
(1996). A cell dose of 1 Gy leads to the production of
about 2 × 105 ion pairs per cell nucleus, of which about
2000 are produced in the cell’s DNA. It has been esti-
mated that the amount of DNA damage immediately af-
ter radiation can be quite large: 1000 single-strand breaks
and 40 double-strand breaks per Gy. Yet survival curves
for different cell types show between 0.3 and 10 lethal
lesions per gray of absorbed dose. Thus the amount of
repair that takes place is quite large, and the model that
is introduced below is an oversimplification.

A number of chemicals enhance or inhibit the radiation
damage. Some chemical reactions can “fix” (render per-
manent) the DNA damage, making it irreparable; others
can scavenge and deactivate free radicals. One of the most
important chemicals is oxygen, which promotes the for-
mation of free radicals and hence cell damage. Cells with
a poor oxygen supply are more resistant to radiation than
those with a normal supply.

19This is a simplification. It is possible for a double strand break
to repair properly. See Hall (2000), p. 19.

20In general, cells exhibit the greatest sensitivity in M and G2.
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Type A Type B

DNA

Ionizing particle

FIGURE 16.34. The two postulated types of DNA damage
from ionizing radiation for our simple model to explain the
linear-quadratic cell culture survival curve. In type-A damage
a single ionizing particle breaks both strands. Two ionizing
particles are required for type-B damage, one breaking each
strand.
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D = α/β 

FIGURE 16.35. A survival curve, showing the linear exponent
for type-A damage and the quadratic exponent for type-B
damage.

16.10.3 The Linear-quadratic Model

The linear-quadratic model is usually used to fit cell sur-
vival curves. We introduce it in terms of a simplified
model for DNA damage from ionizing radiation that
recognizes two types of damage, shown in Fig. 16.34.
In type-A damage a single ionizing particle breaks both
strands of the DNA, and the chromosome is broken into
fragments. In type-B damage, a single particle breaks
only one strand. If another particle breaks the other
strand “close enough” to the first break before repair
has taken place, then the chromosome suffers a complete
break.

The probability of type-A damage is proportional to
the dose. The average number of cells with type-A dam-
age after dose D is m = αD = D/D0, and the probability
of no damage is the Poisson probability P (0;m) = e−m =
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FIGURE 16.36. If the dose for low-LET radiations is divided
into fractions, with a few hours between fractions, all of the
single-strand breaks have been repaired, and survival follows
the same curve as for the original fraction.

e−αD. This is the dashed line in Fig. 16.35, which is re-
drawn from Fig. 16.32. For radiations with higher LET
the proportionality constant is greater, as seen in Fig.
16.32.

In type-B damage one strand is damaged by one ion-
izing particle and the other by another ionizing parti-
cle. The probability of fragmenting the DNA molecule is
therefore proportional to the square of the dose. The av-
erage number of molecules with type-B damage is βD2,
and the survival curve for type-B damage alone is e−βD2

.
This is also shown in Fig. 16.35. This leads to the linear-
quadratic model for cell survival:

Psurvival = e−αD−βD2
. (16.31)

The dose at which mortality from each mechanism is the
same is α/β, as shown in Fig. 16.35.

An extension of the cell survival experiments is the
fractionation curve shown in Fig. 16.36. After a given
dose, cells from the culture were harvested and used to
inoculate new cultures. After a few hours they were ir-
radiated again. The survival curve plotted against total
dose starts anew from the point corresponding to the first
irradiation. The initial dose of 6 Gy caused both type-
A and type-B damage. Before the second dose, the cells
with single-strand damage had been repaired, and when
the second dose was given, it acted on undamaged cells,
so that only type-A damage occurred for small additional
doses.

16.10.4 The Bystander Effect

Chromosome damage is not the entire story. The by-
stander effect in radiobiology refers to the “induction of
biological effects in cells that are not directly traversed
by a charged particle, but are in close proximity to cells
that are” [Hall (2003)].
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FIGURE 16.37. The bystander effect is seen in survival curves.
Ten percent of the cells were stained with a low concentration
of a dye. Each dyed cell was irradiated with a microbeam
of 1 to 16 α particles. The dyed and undyed cells were then
separated and cultured for survival. Survival of both the hit
and non-hit cells showed a response to the irradiation. From
E. J. Hall (2003). The bystander effect. Health Physics 85(1):
31–35 Used by permission.

One experiment showing the bystander effect involves
irradiating cells in culture and transferring some of the
culture medium to unirradiated cells, which then respond
as if they had been irradiated. The effect is absent if the
irradiated medium contains no cells. The irradiated cells
secreted some chemical into the medium that affected the
unirradiated cells. In one such experiment, apoptosis was
induced in the nonirradiated culture by quite low doses to
the irradiated cells. The dose response curve was nearly
flat.

Another type of experiment used microbeams of α par-
ticles to irradiate specific cells in a culture, and then mea-
sured the response of neighboring cells which had not
been irradiated. Survival curves for both irradiated and
unirradiated cells, vs. the number of α particles travers-
ing each irradiated cell are shown in Fig. 16.37. The sur-
vival of cells not irradiated decreased as their neighbors
were hit with more α particles. It is thought that some
chemical produced in the irradiated cells migrated into
the nonirradiated cells through gap junctions connecting
the cytoplasm of neighboring cells. Similar experiments
are done with radioactive nuclides that emit very-short
range Auger electrons (see Chapter 17). The nuclides are
attached to molecules that are selectively taken up by the
cell nucleus or cytoplasm or that bond to the cell’s DNA
[Kassis (2004)].

16.10.5 Tissue Irradiation

There is considerable variation in the shape of the sur-
vival curves for human cells (Fig. 16.38). The shaded area
labeled “human A-T cells” is for cells from patients with a

FIGURE 16.38. Survival curves for assays of human cells.
There is a wide range in initial sensitivity, but not too much
difference in final slope. The shaded area labeled “human
A-T cells” is for cells from a disease, ataxia-tangliectasia,
where repair mechanisms are lacking. Reproduced with per-
mission from E. J. Hall. Radiobiology for the Radiologist, 5th
ed. Philadelphia, Lippincott Williams & Wilkins, 2000, p. 328.

genetic disease, ataxia-tangliectasia, where repair mecha-
nisms are lacking and breakage of a single strand of DNA
leads to cell death.

The radiation damage to the DNA is not apparent un-
til the cell tries to divide. At that point, the chromosomes
are either so badly damaged that the cell fails to divide or
the damage survives in later generations as a mutation.
Some tissues respond to radiation quite quickly; others
show no effect for a long time. This is due almost en-
tirely to the duration of the G1 phase or the overall time
between cells divisions. Tissues are divided roughly into
two groups: early-responding and late-responding. Early-
responding tissues include most cancers, skin, the small
and large intestine, and the testes. Late-responding tis-
sues include spinal cord, the kidney, lung, and urinary
bladder.

The central problem of radiation oncology is how much
dose to give a patient, over what length of time, in order
to have the greatest probability of killing the tumor while
doing the least possible damage to surrounding normal
tissue. While the dose is sometimes given all at once (over
several minutes), it is usually given in fractions five days
a week for four to six weeks. Some recent treatment plans,
primarily for brachytherapy (see Sec. 17.15), use fractions
given every few hours.
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FIGURE 16.39. The fraction of cells surviving a total radia-
tion dose when the dose is divided into 1, 2, and 32 fractions,
showing how the curve approaches e−αD as the number of
fractions becomes large.

What total dose (or dose per fraction) should be given
in how many fractions, with what time between fractions?
We can answer these questions using the linear-quadratic
model. Let the dose per fraction be Df , the number of
fractions be n, and the total dose be D = nDf . We now
need to plot survival vs total dose for different numbers
of fractions. We assume that the time between fractions
allows for full repair of sublethal damage (single-strand
breaks). The probability of a cell surviving after n frac-
tions have been delivered is

Ps = Psurvival = S =
(
e−αDf−βD2

f

)n

= e−αD−βD2/n.

(16.32)
As the number of fractions becomes very large for a given
total dose, the survival curve approaches e−αD. This can
be seen in Fig. 16.39, which plots survival vs total dose
delivered in different numbers of fractions. With many
fractions the dose per fraction is very small, all the single-
strand breaks are repaired, and almost no type-B cell
deaths take place.

Early-responding tissue and tumors have been found
to have an α/β ratio of about 10 Gy. The survival curve
is primarily due to type-A damage. Late-responding tis-
sues have an α/β ratio of 2–3 Gy. There is considerable
variation in these numbers.

Some of the problems of radiation therapy and the ben-
efits of fractionation can be seen if we consider a strictly
hypothetical example in which α = 0.1 Gy−1 for both the
tumor and the surrounding tissue. The tumor is early re-
sponding with α/β = 10 Gy, and the surrounding tissue
is late responding with α/β = 2 Gy. The surrounding
tissue is actually more sensitive to the radiation than the
tumor and has a lower survival curve. Figure 16.40 shows
the cell-survival curves for 1 and 35 fractions. The tu-
mor survival in each case is shown as a dashed line. The
thicker curves correspond to delivering the dose in 35 frac-
tions. (In this example, both tissues have the same value
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FIGURE 16.40. Cell survival curves for late-responding nor-
mal tissue (LRT) and for a hypothetical tumor (T), showing
the improvement obtained by dividing the dose into fractions.
With a single fraction, the tumor survives much better than
the normal tissue. With 35 fractions, this discrepancy has been
reduced. The details are discussed in the text.

of α and the surrounding tissue receives the same dose. In
real life, α for the tumor may be greater than that for the
normal tissue, and the treatment will be more effective.)

To see the benefit of fractionation, suppose that the
patient can tolerate a dose at which only 10−6 of the
cells of the surrounding tissue survive, represented by
the horizontal line on the graph. (This is not realistic!)
For a single fraction, this corresponds to a total dose of
about 9 Gy, which, applied to the dashed line, shows that
the surviving fraction of tumor cells is about 10−2. For
35 fractions the normal tissue can tolerate about 32 Gy,
yielding 3× 10−5 as the fraction of tumor cells surviving.

Suppose next that it is possible to confine the radiation
beam so that the dose to normal tissue is only about 0.6
times that to the tumor. This means that the tissue dose
in Eq. 16.32 is multiplied by 0.6. The result is shown in
Fig. 16.41 for 35 fractions. The dose can now be as high as
53 Gy for the same effect on surrounding tissues, leading
to a tumor survival of only 10−8. We will see how beam
shaping is accomplished in the next section.

These calculations are solely to illustrate the basic prin-
ciples. Clinically useful calculations must take several ad-
ditional factors into account: the actual values of α for
the tissue and tumor under consideration, the effect of
cell growth after irradiation, the effect of the first dose
on synchronizing the cycles of the remaining cells, and
the oxygen level in the tumor cells. (The greater the oxy-
gen concentration the more sensitive the cells are, par-
ticularly for low-LET radiation. Rapidly growing tumors
often outstrip their blood supply, receive less oxygen, and
are less radio-sensitive.) Fractionation is reviewed in Or-
ton (1997) and in Hall (2000). It is also necessary to take
into account the fact that neither the tumor nor the sur-
rounding normal tissue receives a uniform dose of radia-
tion.
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FIGURE 16.41. Survival curves for the same cells as in the
previous figure, with the dose to the surrounding tissue re-
duced to 0.6 times that to the tumor. Now the probability
of tumor survival at high doses is about 0.01 times that for
the surrounding normal tissue. This shows the importance of
confining the radiation to the tumor as much as possible.
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FIGURE 16.42. The probability of eradicating the tumor (no
surviving tumor cells) as a function of dose for tumors con-
taining different numbers of cells.

16.10.6 A Model for Tumor Eradication

The target theory model can be applied to a collection of
cells to give us insight into the central problem of radia-
tion therapy: eradication of the tumor or tumor eradica-
tion. Suppose that a tumor consists of N cells with iden-
tical properties. The cells are uniformly irradiated with
dose D. If a collection of identical tumors were irradi-
ated, the number of cells surviving in each tumor would
fluctuate. The probability that a single cell survives is
ps(D), which might be given by Eq. 16.32. If this num-
ber is small and N is large, the number surviving follows
a Poisson distribution. The average number surviving is
m = Nps(D). The probability of a cure is the probability
that no tumor cells survive:

Pcure = e−m = e−Nps(D). (16.33)
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FIGURE 16.43. The probability of curing the tumor and the
probability of unacceptable damage to normal tissue vs dose.
Both the tumor and the normal tissue contain 108 cells. The
35-fraction doses shown in Fig. 16.41 have been used.

This can be evaluated using your cell-survival model of
choice.

Figure 16.42 shows a tumor eradication curve based on
the 35-fraction curve in Fig. 16.40. The larger the tumor,
the greater the dose required for cure. Figure 16.43 shows
a plot of the probability of tumor cure and the probability
of unacceptable damage to the surrounding tissue, both
based on 108 cells and the cell-survival curves in Fig.
16.41 (with the normal tissue receiving 0.6 times the dose
received by the tumor). For this model, at least 60 Gy are
required in order to have a good probability of cure; once
the dose is higher than 63 Gy, the damage to normal
tissue is unacceptable.

16.11 Radiation Therapy

The treatment of cancer must deal with two issues: erad-
ication of the primary tumor (local control), and eradica-
tion of metastases, which may be in nearby tissue or may
be at distant sites within the body. In many cases radi-
ation therapy, either alone or combined with surgery, is
the best technique for local control. Two oncologists have
provided a review of the benefits and problems of radia-
tion therapy, addressed specifically to the medical physics
community [Schulz and Kagan (2002)]. They point out
that many cancer deaths are due to metastatic disease,
so improved local control does not necessarily provide a
corresponding improvement in survival.

Which method of treatment is best can change dramat-
ically as new treatments are developed. For example, a
combination of radiation therapy and chemotherapy was
once used to treat Hodgkin’s disease; chemotherapy has
been improved to the point where radiation is no longer
necessary [DeVita (2003)].
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FIGURE 16.44. X-ray therapy was used to treat a carcinoma
of the nose. A shows the original lesion; B is the result one
year later. The patient remained asymptomatic five years after
treatment. Reprinted from William T. Moss and James D.
Cox. Radiation Oncology, 6th ed. (1989) St. Louis, Mosby,
with permission from Elsevier.

16.11.1 Classical Radiation Therapy

Doses for diagnostic radiology vary from about 10−4 to
10−2 Gy. Doses of 20–80 Gy are required to treat can-
cer. A great deal of physics is involved in planning the
treatment for each patient. [See Khan (2003).] There is
a choice of radiation beams: photons of various energies,
electrons, neutrons, protons, or α particles. Photons and
electrons are routinely available; the other sources require
special facilities. Only a few of the beam issues will be
raised here. Some of the dose measurement issues are dis-
cussed in the next section.

An example of the effectiveness of radiation therapy is
shown in Fig. 16.44 The patient developed a carcinoma
of the nose and refused surgery. Radiation with a total
dose of 50 Gy was used, and the results one year later are
shown. It is ironic that the carcinoma probably developed
because the patient was treated with x rays for acne many
years earlier.

We have already seen the importance of reducing dose
to tissue surrounding the tumor. Optimizing the dose de-
termines the kind of radiation to be used and its energy,
as well as the details of beam filtration and collimation
and how it is aimed at the patients body. For now, we dis-
cuss a photon beam. Attenuation and the 1/r2 decrease
of photon fluence help spare tissue downstream from the
beam. Since µatten decreases with increasing photon en-
ergy up to a few MeV, higher-energy photons penetrate
more deeply and must be used for treating deeper lesions.
There is also dose buildup with depth over distances com-
parable to the range of the Compton-scattered electrons.
Both of these effects are shown in Fig. 16.45.

The beam is collimated to spare normal tissue. Origi-
nally, the collimator consisted of four lead jaws that pro-
vided a rectangular opening with adjustable length and

FIGURE 16.45. The dose vs depth for x-ray beams of different
quality (energy) on the central axis of the beam. The source—
surface distance (SSD) is 100 cm and the field size is 10 cm×10
cm. The curve “3.0 mm Cu HVL” is for a photon beam that
is reduced to half intensity by a copper filter 3.0 mm thick.
The labels 4, 10 and 25 MV refer to the energy of the elec-
tron beam striking the target. From F. M. Khan (2003). The
Physics of Radiation Therapy, 3rd. ed. Philadelphia, Lippin-
cott Williams & Wilkins, p.163. c©2003 Lippincott Williams
and Wilkins.

width. Later, masks of a special lead alloy were custom-
made for each patient. A wedge was sometimes placed
in the beam to vary the intensity across the collimated
radiation field.

Figure 16.46 shows isodose contours for various beams.
In addition to the differences with depth seen in Fig.
16.45, there are significant differences in the sharpness
of the dose distribution across the beam. The extent of
the lesion to be radiated must be carefully determined
with radiographs or CT scans.

If the tumor is not near the surface, the ratio of tumor
dose to normal tissue dose can be increased by irradiating
the patient from several directions. Figure 16.47 shows
how the relative dose to a deep tumor can be increased
by irradiating with two “fields” on opposite sides of the
patient. In Fig. 16.48 three and four fields are used. The
angles of the fields can be changed by rotating the patient
couch as well as the gantry holding the photon source and
collimator.

Rectangular fields do not match the shape of the tu-
mor. Two techniques can overcome this problem. A lead-
alloy that melts at low temperature can be used to make
a collimator that is customized for each patient to match
the tumor. Or, a multi-leaf collimator can replace the
original jaws on the therapy machine. A typical multileaf
collimator has 40 pairs of tungsten alloy leaves, each ≤ 1
cm wide, which can be independently adjusted to provide
a pattern like that in Fig. 16.49. This might be used for
up to nine fields from different directions.
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FIGURE 16.46. Isodose distributions for radiation under dif-
ferent conditions, all collimated to 10 cm×10 cm. (A) Radia-
tion from an x-ray tube with 200 kVp, 0.5 m from the surface.
(B) Photons from the radioactive isotope 60Co, 0.8 m from the
surface. (C) 4-MV photons, 1 m from the surface. (D) 10-MV
photons, 1 m from the surface. From F. M. Khan, The Physics
of Radiation Therapy, 3rd. ed. p. 204. Philadelphia, Lippincott
Williams & Wilkins. c©2003 Lippincott Williams & Wilkins.

16.11.2 Modern X-ray Therapy

The goal of radiation therapy is to provide as large a dose
as possible to the tumor while sparing adjacent normal
tissue. The normal tissue may be quite close to the tu-
mor. Three-dimensional conformal radiation therapy uses
3-dimensional information about the target volume. This
is difficult, because even with 3-D display of CT, MRI or
ultrasound images, it may be impossible to see the edges
of the tumor. Nevertheless, the beam’s-eye view that can
be computed from 3-D image data can be very useful
in planning the treatment. For a discussion of conformal
radiation therapy, see Khan (2003), Chapter 19.

In classical radiotherapy, the beam was either of uni-
form fluence across the field, or it was shaped by an at-
tenuating wedge placed in the field. Intensity-modulated
radiation therapy (IMRT) is achieved by stepping the col-
limator leaves during exposure so that the fluence varies

FIGURE 16.47. Isodose distribution when the patient is irra-
diated equally from opposite sides. From F. M. Khan, The
Physics of Radiation Therapy, 3rd. ed. Philadelphia, Lip-
pincott Williams & Wilkins. c©2003 Lippincott Williams &
Wilkins.

from square to square in Fig. 16.49 [Webb (2001); Khan
(2003), Ch. 20]. One form of IMRT is helical tomotherapy
(slice therapy), which uses filtered back-projection tech-
niques with a multileaf collimator to shape the radiation
field as the patient moves axially through the beam—the
analog of a spiral CT study [Holmes et al. (1995)]. It is, of
course, impossible to make the filtered radiation field neg-
ative. This means that the dose outside the tumor is not
strictly zero, but it can be made small. These techniques
provide much better sparing of adjacent sensitive tissue
and sometimes allow a boost in dose to the tumor. One
drawback to IMRT is that although the dose to the tumor
is about the same, the total number of x rays produced
is a factor of 2–10 greater than in conventional therapy.
This requires better-shielded radiation treatment rooms.

16.11.3 Charged Particles and Neutrons

Electrons, typically between 6 and 20 MeV, are also used
for therapy. Because of the range–energy relationship, the
field falls nearly to zero in a centimeter or two. Electrons
are used primarily for skin and lip cancer, head and neck
cancer, and irradiation of lymph nodes near the surface.
Figure 16.50 shows the dose vs. depth as a percent of
the maximum dose for electron beams of several different
energies.
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FIGURE 16.48. Isodose distribution for (A) three and (B) four
radiation fields, each designed to give a relative dose of 100
at the center of the tumor. From F. M. Khan, The Physics of
Radiation Therapy, 3rd. ed. Philadelphia, Lippincott Williams
& Wilkins. c©2003 Lippincott Williams & Wilkins.

FIGURE 16.49. A multileaf collimator (MLC). The tungsten
leaves are shown in white; the opening is black.

Protons are also used to treat tumors. Their advan-
tage is the increase of stopping power at low energies. It
is possible to make them come to rest in the tissue to
be destroyed, with an enhanced dose relative to interven-
ing tissue and almost no dose distally (“downstream”) as
shown by the Bragg peak in Fig. 16.51. Placing an ab-

FIGURE 16.50. Depth–dose curves for electrons of different
energies, measured with a solid-state detector (diode) and an
ionization chamber. Both the range and the straggling increase
with increasing energy. From F. M. Khan (1986). Clinical elec-
tron beam dosimetry. In J. G. Keriakes, H. R. Elson, and C. G.
Born, eds. Radiation Oncology Physics—1986. College Park,
MD, American Association of Physicists in Medicine. AAPM
Monograph 15.

FIGURE 16.51. Energy loss vs depth for a 150 MeV proton
beam in water, with and without straggling. The Bragg peak
enhances the energy deposition at the end of the proton range.
Courtesy of W. D. Newhauser, M. D. Anderson Cancer Cen-
ter.

sorber in the proton beam before it strikes the patient
moves the Bragg peak closer to the surface. Various tech-
niques, such as rotating a variable-thickness absorber in
the beam, are used to shape the field by spreading out
the Bragg peak (Fig. 16.52). The edges of proton fields
are much sharper than for x rays and electrons. This can
provide better tissue sparing, but it also means that align-
ments must be much more precise [Moyers (2003)]. Spar-
ing tissue reduces side effects immediately after treat-
ment. It also reduces the incidence of radiation-induced
second cancers many years later. These are particularly
important in pediatric patients as the initial treatment
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FIGURE 16.52. irradiating the patient through a number of
absorbers of different thickness spreads out the region of max-
imum dose. Provided by W. D. Newhauser, M. D. Anderson
Cancer Center.

proves more successful and the patients survive longer.
Miralbell et al. (2002) estimated the incidence rate for
secondary cancers in certain pediatric cancers and found
a reduced incidence for proton therapy compared to both
conventional x ray and IMRT. Intensity-modulated pro-
ton therapy could provide even more improvement.

Proton therapy is used in a number of diseases, such
as prostate cancer [Slater et al. (2004)], retinal tumors
such as choroidal melanoma, pituitary adenoma, arteri-
ovenous malformations in the brain, and wet macular de-
generation [Habrand et al. (1995), Suit and Urie (1992),
Moyers (2003)]. Some institutions are experimenting with
intensity-modulated proton therapy (IMPT).

Fast neutrons are used for therapy [Duncan (1994)].
The dose is due to charged particles: protons, α particles
(4He nuclei), or recoil nuclei of oxygen and carbon that
result from interactions of the neutrons with the target
tissue. All of these have high LET, and the oxygen effect
is less than for low-LET radiation. Fast neutron therapy
shows promise in some salivary gland cancers [Douglas et
al. (2003)].

Boron neutron capture therapy (BNCT) is based on
a nuclear reaction which occurs when the stable isotope
10B is irradiated with neutrons, leading to the nuclear
reaction (in the notation of Chapter 17)

10
5 B +1

0 n →4
2 α +7

3 Li or 10
5 B(n, α)73Li.

Both the alpha particle and lithium are heavily ionizing
and travel only about one cell diameter. BNCT has been
tried since the 1950s; success requires boron-containing
drugs that accumulate in the tumor. The field has re-
cently been reviewed by Barth (2003).

Brachytherapy (brachy means short) involves the im-
plantation of radioactive isotopes in a tumor and will be
discussed in Chapter 17.

16.12 Dose Measurement

It is important to measure radiation doses accurately for
radiation therapy in order to compare the effectiveness of
different treatment protocols and to ensure that the de-
sired protocol is indeed being followed. Accuracies of 2%
are expected. An extensive literature about relating the
dose in the measuring instrument to the dose in surround-
ing tissue exists.21 Here we describe one of the techniques
that is used.

A basic problem in dosimetry is that the measuring
instrument has different properties than the medium in
which it is immersed. Imagine, for example, that a gas-
filled ionization chamber is placed in water. If the ra-
diation field were very large and uniform, one could in
principle use an ionization chamber whose dimensions are
large compared to the range of secondary electrons, and
the interaction of the radiation field with the chamber
gas would be the dominant effect. This is not practical.
At the other extreme, we imagine an ionization chamber
that is so small that it does not alter the radiation field
of the water. That is, its dimensions must be small com-
pared to the range of the charged particles created in the
water and passing through it.

We saw in Sec. 15.16 that the absorbed dose in a par-
allel beam of charged particles with particle fluence Φ is
(Eq. 15.76)

D =
Se

ρ
Φ.

Usually the beam consists of particles with different ki-
netic energies T . Let ΦT be the energy spectrum:

Φ =
∫ Tmax

0

ΦT dT.

Then the dose is the integral of the number of particles
with energy T times the mass stopping power for particles
of that energy:

D =
∫ Tmax

0

ΦT
Se

ρ
dT. (16.34)

We can define an average mass collision stopping power:

Se

ρ
=

1
Φ

∫ Tmax

0

ΦT
Se

ρ
dT (16.35)

so that

D = Φ
Se

ρ
. (16.36)

Let us apply this to the situation where a small detector
(“gas”) is introduced in a medium (“water”) in which we
want to know the dose. The charged particle fluence is
not altered by the detector because it is small compared

21See Attix (1986), Chap. 10ff or Khan (2003), Chapter 8.
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to the range of the charged particles. Applying Eq. 16.36
in both media, we obtain

Dw

Dg
=

(Se/ρ)w

(Se/ρ)g

≡ (Se/ρ)w
g . (16.37)

This is the Bragg–Gray relationship for the absorbed dose
in the cavity. It is standard in the literature to denote
the dimensionless ratio of the stopping powers in the two
media by (Se/ρ)w

g [or, in some books, (Sc/ρ)w
g ].

This equation is often used with ionization chambers.
The charge created in an ionization chamber of mass m
is the charge per ion pair e times the number of ion pairs
formed in mass m. The number of ion pairs is the energy
deposited, mDg, divided by the average energy required
to produce an ion pair, W :

q = e
mDg

W
. (16.38)

Combining this with Eq. 16.37 gives the dose in the
medium in terms of the charge created:

Dw =
q

m

(
W

e

)

g

(Se/ρ)w
g . (16.39)

The charge q created is usually greater than the charge
collected in the ion chamber because of recombination
of ions and electrons before collection. The collection ef-
ficiency and the chamber mass are deduced from cal-
ibration of the chamber. Once the chamber has been
calibrated, the factor (Se/ρ)w

g accounts for placing the
chamber in different media.

16.13 The Risk of Radiation

Exposure to radiation may or may not cause a notice-
able effect. Effects can include a change, which may not
be harmful; damage to cells, which may not necessarily
be deleterious to the individual; or harm, which is clini-
cally observable in the subject or possibly a descendant
(though current data suggest that genetic changes are
rare). It may take years before the harm is observed. The
International Commission on Radiological Protection in
ICRP (1991) defines the detriment to an individual who
receives a dose of radiation. It is a rather complex com-
bination of the probabillity of harm, the severity of the
harm, and the time of onset after exposure. It will be
discussed more below.

In this section we focus on the increased probability
of induction of cancer from an exposure to radiation. We
have considerably more information about human expo-
sure to ionizing radiation than we have for any other
known or suspected carcinogen [Boice (1996)]. Several
studies at moderate doses show that radiation is a rel-
atively weak carcinogen, though this is not the public
view.

We have already seen that the biological effect of radi-
ation depends on the absorbed dose, the LET, the nature
of the tissue that is irradiated, and the dose rate. It also
depends on the age of the subject. This makes it very dif-
ficult to estimate the detriment. Ideally, we would multi-
ply the dose to each organ or target in the body by the
probability of a detriment to that target from that kind
of radiation now and in the future, and sum over all the
organs in the body. This is impossible: we do not know
enough. We must simplify the problem while taking some
of these differences into account.22

16.13.1 Equivalent and Effective Dose

Equivalent Dose

Our first simplification assumes that the LET dependence
is the same for all target organs. ICRP defines the radia-
tion weighting factor WR for each radiation type R strik-
ing the body. It depends on the radiation type and energy
and is independent of organ or tissue type. The radiation
weighting factor for x rays is 1. WR is determined “with
guidance” from an earlier quantity, the relative biologi-
cal effectiveness of the radiation (RBE). The weighting
factor for each radiation WR is multiplied by the average
dose to the target organ or tissue DR,T and summed to
give the equivalent dose23 to the target organ, HT :

HT =
∑

R

WRDR,T . (16.40)

The unit of HT is the sievert (Sv).24

Detriment and Effective Dose

The detriment is a measure of the harm from an exposure
to radiation. It might be a genetic effect (relatively rare)
or the development of cancer some years later. If cancer,
it might be fatal, shortening life span, or it might cause
discomfort and inconvenience but not death. We want
to estimate the detriment when a certain equivalent dose
has been delivered to some target organs. We assume that

22RKH wishes to thank Cynthia McCullough, PhD, for a very
helpful discussion of this section

23The nomenclature here is quite confusing. ICRP used to de-
fine the dose equivalent, also denoted by H, as QD, where Q was
called the quality factor of the radiation. The radiation weighting
factor is very similar, and essentially numerically equivalent, to the
earlier quality factor, Q. Values of Q recommended by Nuclear Reg-
ulatory Commission (NRC) are 1 for photons and electrons, 10 for
neutrons of unknown energy and high-energy protons, and 20 for α
particles, multiply charged ions, fission fragments, and heavy par-
ticles of unknown charge. The ICRP has its own recommendations,
that differ slightly for protons and neutrons. See McCollough and
Schueler (2000).

24Both the sievert and the gray are J kg−1. Different names are

used to emphasize the fact that they are quite different quantities.

One is physical, and the other includes biological effects. An older

unit for H is the rem. 100 rem = 1 Sv.
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TABLE 16.4. Contribution of some organs to the whole-body
radiation detriment. From ICRP (1991) Table B-20.
Organ
(T )

Cancer
probability,
per Sv

Severe
genetic
probability,
per Sv

Corrected
for life lost
and
nonfatal
cancers,
per Sv

Tissue
weighting
factor
(WT )

Bladder 30 × 10−4 29.4× 10−4 0.04
Breast 20 × 10−4 36.4× 10−4 0.05
Stomach 110 × 10−4 100 × 10−4 0.14
Gonads 100 × 10−4 133 × 10−4 0.18
Total 500 × 10−4 752 × 10−4 1.00

the probability of developing cancer in a target organ de-
pends on the dose to that organ and not on the dose to
any other part of the body. We also assume that the prob-
abilities are small, so that if several organs have received
a radiation dose, the probability of developing cancer is
the sum of the probabilities for each organ.

Most of our information about the detriment comes
from extensive studies of atomic-bomb survivors, for
whom the entire body received a fairly uniform equivalent
dose. These survivors have now been followed for over 50
years. Other studies include patients who have been fol-
lowed for decades after receiving radiation therapy. ICRP
(1991) estimates the radiation detriment using these data
and taking into account the probability of a fatal cancer
attributable to the radiation, the weighted probability of
an attributable non-fatal cancer, the weighted probability
of severe hereditary effects, and the relative decrease in
lifespan. Table 16.4 shows four of the 14 entries in Table
B-20 of ICRP (1991). The details of the various correc-
tions are not shown; the point is to show how each organ
contributes to the total detriment.25

The effective dose26 E is a sum over all irradiated or-
gans:

E =
∑

T

WT HT =
∑

R,T

WT WRDR,T . (16.41)

The tissue weighting factor WT is the radiation detriment
for organ T from a whole body irradiation as a fraction
of the total radiation detriment. By definition, the sum
of WT over all organs equals unity. The last column of
Table 16.4 shows the WT assigned to each target organ
in ICRP (1991). See also the review by McCollough and
Schueler (2000).

As an example, consider a typical CT head scan, which
provides a significant equivalent dose to the brain, bone
marrow, thyroid, and bone surface, as shown in Table
16.5.27 The effective dose is 1.8 mSv. The probability of
developing a radiation-induced cancer is 500×10−4×1.8×

25ICRP is expected to issue revised values of WT , probably in

2007.
26An older, related quantity is the effective dose equivalent, HE =

WT QD.
27Values of HT were provided by C. McColllough.

TABLE 16.5. Major contributions to the effective dose from
a typical CT head scan.

WT HT

Organ WT HT (mSv) (mSv)

Brain 0.025 36 0.90
Bone marrow (red) 0.12 3 0.36
Thyroid 0.05 5.5 0.28
Bone surface 0.01 14 0.14
All other organs 0.10
Effective dose 1.8
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FIGURE 16.53. Various doses on a logarithmic scale. Natural
background is per year; other doses are per exposure.

10−3 = 9 × 10−5. If the whole body were to receive an
equivalent dose of 36 mSv, the probability of a radiation-
induced cancer would be 500× 10−4 × 36× 10−3 = 1.8×
10−3.

16.13.2 Comparison with Natural Background

One way to express risk is to compare medical doses to
the natural background. We are continuously exposed to
radiation from natural sources. These include cosmic ra-
diation, which varies with altitude and latitude; rock,
sand, brick, and concrete containing varying amounts
of radioactive minerals; the naturally occurring radionu-
clides in our bodies such as 14C and 40K; and radioac-
tive progeny from radon gas from the earth.28 In a
typical adult, there are about 4 × 107 radioactive dis-
integrations per hour from all internal sources. Table
16.6 and Fig. 16.53 summarize the various sources of

28Radon is chemically inert gas that escapes from the earth. Since
it is chemically inert, we breathe it in and out. When it decays in
the air (the decay scheme is described in Sec. 17.16), the decay
products attach themselves to dust particles in the air. When we
breathe these dust particles, some become attached to the lining of
the lungs, irradiating adjacent cells as they undergo further decay.
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TABLE 16.6. Typical radiation doses from natural sources.

Radiation source Detail Effective dose
rate to target
organ (mSv yr−1)

U.S. population,
average effective
dose rate (mSv
yr−1)a

Cosmic New York City 0.30 0.27
radiation Denver (1.6 km) 0.50

La Paz, Bolivia
(3.65 km)

1.8

Flying at 40,000
ft

7×10−3 mSv hr−1

Terrestrial (radioactive minerals) 0.28
Over fresh water 0
Over sea water 0.2
Sandy soil 0.1–0.25
Granite 1.3–1.6

In the body 0.4

Inhalation of radon 2.0

Total 3.0

aNCRP Report 94 (1987) Table 9.7

TABLE 16.7. Typical radiation equivalent doses for the pop-
ulation of the United States. From NCRP 93.

Equivalent
Procedure dose (mSv)

Chest X ray (AP) 0.06
Skull X ray 0.2
Mammogram 0.3–0.6
CT 1–10
Barium enema 4.0
Coronary CT angiogram 5–12
Nuclear medicine–cardiovascular 7.1

radiation exposure. The radon entry in Table 16.6 is
based on a WR of 20 for α particles from radon progeny,
the value used by NCRP.29 There is considerable uncer-
tainty in this determination: WR could be as low as 3,
in which case radon would contribute much less to the
natural background.

Diagnostic procedures give doses that are in general
comparable to the average annual background dose, as
can be seen in Table 16.7. The higher CT doses corre-
spond to pediatric CT; see Fig. 16.56. One can explain

29The dose to the lungs from radon progeny is about 1 mGy yr−1.
This is multiplied by Wr = 20 and WT = 0.12 (lungs) to arrive at
an effective dose of 2.4 mSv yr−1.

to a patient that a chest x ray is equivalent to about
one week of natural background, and a mammogram is
equivalent to a month or two. A conventional fluoroscopic
study of the lower digestive system is equivalent to about
a year of natural background.

16.13.3 Calculating Risk

Assessing the risk of radiation is complicated, since a
radiation-induced cancer, for example, may not appear
for many years. It is therefore necessary to specify how
many years one watches a population after exposure, age
at exposure, and current age. One also has to specify
whether the risk is of acquiring the disease or of dying
from it. Whatever criteria we use, we can define a risk
r(H) that depends on the equivalent dose. We then de-
fine the excess absolute risk

EAR = r(H) − r(0) (16.42)

and the excess relative risk as

ERR =
r(H) − r(0)

r(0)
=

r(H)
r(0)

− 1 =
EAR

r(0)
. (16.43)

The units of r and excess absolute risk can vary. The
risk might be per person per year, or it might be for a
certain number of years or for a lifetime exposure. The
excess relative risk has the advantage of being dimen-
sionless. It is frequently reported, even though it can
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be difficult to understand intuitively. (Plots of EAR vs.
dose for breast cancer in Japanese women and women
in the United States have nearly the same slope. How-
ever, r(0) is smaller for Japanese women, leading to a
higher ERR.)

Consider a rare disease, and suppose that the proba-
bility of acquiring the disease over a lifetime is 2× 10−3,
while in a population that has received a particular dose
of something (which might be radiation, or a chemical, or
a particular behavior) the probability is 5 × 10−3. Then
the excess absolute risk is 3 × 10−3, while the excess rel-
ative risk is 150%. A person hearing that the relative
risk has increased by 1.5 times might be unduly alarmed,
not realizing that there are only three additional cases in
1,000 people.

Statistical fluctuations can make it quite difficult to
measure excess risk. Suppose that we want to determine
whether r increases linearly with dose. Measurements at
lower doses to determine if the response is linear are dif-
ficult to make, requiring large numbers of subjects, as
the following simplified example shows. Suppose that we
have two measurements of the probability of acquiring
cancer: one at zero dose, which gives r(0), the “sponta-
neous” probability due to nonradiation causes, and one at
a fairly large dose (say 0.25 Sv, represented by the vertical
dashed line on the right in Fig. 16.54). At some lower dose
we want to make a measurement to distinguish between a
linear increase of probability with dose and a probability
that remains at the “spontaneous” value because we are
below some threshold dose for carcinogenicity. The proba-
bility p = r(H) of acquiring cancer is small, and the total
population N is large. This means that if the experiment
could be repeated several times on identical populations,
the number of persons acquiring cancer, n, would be Pois-
son distributed with mean number m = Np = Nr(H)
and standard deviation σ =

√
m. Figure 16.54 plots m

vs dose for some value of N , with dotted lines to indicate
m±σ. A measurement at the lower dose indicated by the
vertical dashed line on the left will not distinguish be-
tween the two curves. The only way to reduce the width
between the dotted lines at m±σ would be to use a larger
population N .

To be quantitative, suppose that r(H) = e + αH, with
e = 0.044 and α = 0.013 Sv−1. At a dose of 0.25 Sv,
r = 0.047. For 105 persons, the constant curve (expected
in the absence of radiation or below threshold) gives m =
4, 400 ± 66, while the linear curve gives m = 4, 730 ± 69.
The two curves are distinguishable. At a dose of 0.01 Sv,
m for the constant curve is still 4, 400± 66, while for the
linear case it is 4, 410± 66. It is impossible to distinguish
between the linear and constant curves.

The Linear Nonthreshold Model and Collective Dose

In dealing with radiation to the population at large, or
to populations of radiation workers, the policy of the var-
ious regulatory agencies has been to adopt the linear-
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FIGURE 16.54. Plot of the average number of cases from a
population N for a linear–no-threshold and a constant model.
The dashed lines represent the mean ±1 standard deviation.

nonthreshold (LNT) model to extrapolate from what is
known about the excess risk of cancer at moderately high
doses and high dose rates, to low doses, including those
below natural background.

If the excess probability of acquiring a particular dis-
ease is αH in a population N , the average number of
extra persons with the disease is

m = αNH. (16.44)

The product NH, expressed in person·Sv, is called the
collective dose. It is widely used in radiation protection,
but it is meaningful only if the LNT assumption is cor-
rect. Small doses to very large populations can give fairly
large values of m, assuming that the value of α deter-
mined at large doses is valid at small doses.

It has been suggested that there may in some cases
be a threshold for radiation-induced damage. If there is
a threshold, then the LNT model gives an overestimate.
The latest reports of expert panels continue to recom-
mend the LNT model [NCRP Report 136 (2001), Upton
(2003), BEIR Report VII (2005)], but their recommen-
dation is still questioned [Higson (2004)].

To help put the risk in perspective, consider the follow-
ing example from BEIR (2005), p. 15. Among 100 people,
about 42 will be diagnosed with cancer during their life-
time in the absence of any excess radiation. If they had
all received a dose of 0.1 Gy (100 mSv for low-LET radi-
ation), there could be one additional cancer in the group.

Even if the LNT model is correct, it can lead to reg-
ulatory decisions which are not reasonable. For exam-
ple, Brooks (2003) cites a study in which the process of
cleaning up several Department of Energy sites resulted
in more fatal worker accidents than the number of lives
that were calculated to have been saved, based on the
LNT model.
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FIGURE 16.55. Possible responses to various doses. The two
lowest-dose measurements are shown. With zero dose there is
no excess effect. The curves are discussed in the text.

Other Models

Figure 16.55 plots the excess effect vs. dose, showing four
possibilities for how some effect might depend on dose. By
definition, there is no excess effect when the dose is zero.
The two data points represent the lowest doses at which
the effect has been measured. The LNT line is a linear
interpolation to zero from these points. Lines are also
shown for three other possibilities: (1) a threshold below
which there is no excess effect, (2) a supralinear response,
which is higher than predicted by the LNT model, and (3)
hormesis. In hormesis there is a limited range in which
the excess effect is negative—a reduction in the effect.
Hormesis has been seen in the response of some organisms
to chemicals and in some cases to radiation. Two issues of
Critical Reviews in Toxicology, Vol. 31 No. 4–5 and Vol.
33, No. 3–4, have been devoted to reviews of hormetic
effects in all fields.

Some investigators feel that there is evidence for a
threshold dose, and that the LNT model overestimates
the risk [Kathren (1996); Kondo (1993); Cohen (2002)].
Mossman (2001) argues against hormesis but agrees that
the LNT model has led to “enormous problems in radi-
ation protection practice” and unwarranted fears about
radiation.

On the other hand, annual screening CTs [Brenner and
Elliston (2004)] and CTs to children [Hall (2002)], lead
to doses that are large enough so that there is a mea-
sured excess risk of developing cancer in an individual;
no LNT extrapolation to lower doses is needed. This is
shown in Fig. 16.56. A pediatric CT study can lead to a
dose in the range of 5–100 mSv. This can be compared
with data from the extensive study of 35,000 atomic bomb
survivors who have been followed for 55 years. There is a
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FIGURE 16.56. Excess relative risk for atomic bomb survivors
who were exposed to a dose of 150 mSv or less and followed for
55 years show a small, but statistically significant increase in
cancer incidence. The range of doses from pediatric CT is also
shown. Redrawn from Hall, E. J. Helical CT and cancer risk:
Introduction to session I. Pediatr. Radiol. 32: 225–227 (2002).
With kind permission of Springer Science and Business Media.

small but statistically significant excess risk of developing
cancer.

16.13.4 Radon

The question of a hormetic effect or a threshold effect has
received a great deal of attention for the case of radon,
where remediation at fairly low radon levels has been
proposed. Radon is produced naturally in many types of
rock. It is a noble gas, but its radioactive decay products
can become lodged in the lung. An excess of lung can-
cer has been well documented in uranium miners, who
have been exposed to fairly high radon concentrations
as well as high dust levels and tobacco smoke. Radon at
lower concentrations seeps from the soil into buildings
and contributes up to 55% of the exposure to the general
population. Radon concentrations in the air are measured
in the number of radioactive decays per second per cubic
meter of air. One becquerel (Bq) is one decay per second.

Figure 16.57 shows a study by B. L. Cohen (1995) that
plots annual age-adjusted lung-cancer mortality rates in
1601 counties in the United States vs the average radon
concentration measured in that county. The radon con-
centration is expressed as r/r0, where r0 is 37 Bq m−3 (1.0
pCi l−1 in old units, which will be discussed in the next
chapter). The upper two panels are for males, and the
lower two are for females. The two panels on the right are
corrected for the effects of smoking, using the radon-and-
smoking model from BEIR Report V (1990). The dashed
lines labeled Theory are based on the LNT model. The
mortality rate falls with increasing radon concentration,
though other studies have shown that it rises at radon
concentrations higher than shown here.
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FIGURE 16.57. Lung cancer mortality rates vs mean radon
level in 1601 U.S. counties. Graphs (a) and (b) are for males;
(c) and (d) are for females. Graphs (b) and (d) have been
corrected for smoking levels. Error bars show the standard
deviation of the mean. The meaning of radon level is dis-
cussed in the text. From B. L. Cohen. Test of the linear-no
threshold theory of radiation carcinogenesis for inhaled radon
decay products. Health Physics 68(2): 157–174, 1995. Used by
permission of the Health Physics Society.

Epidemiological studies are difficult and can only be
suggestive. A number of authors have criticized Cohen’s
study for dealing with county-wide averages, and Cohen
has defended his results.30 Cohen argues that his data are
valid below about 150 Bq m−3. Lubin (1999) compares
an LNT fit and Cohen’s model to several other radon
studies, shown in Fig. 16.58. The error bars are much
larger than in Cohen’s figure because the populations are
smaller. Lubin argues that this is irrelevant because Co-
hen has systematic errors. Cohen’s data points are not
inconsistent with those shown by Lubin. Recall from Ta-
ble 16.6 that the average annual dose from radon is about
2 mSv, and note where this lies on Fig. 16.56.

Even if the LNT model for radon is correct, some of our
remediation efforts are misdirected. Ayotte et al. (1998)
used the LNT model to assess the lung cancer risk from

30For example, see Lubin (1998); Cohen (1998); Lubin (1998b);
Cohen (1999); Lubin (1999) and BEIR VI (1999).

FIGURE 16.58. Relative risk (on a log scale) vs. radon concen-
tration. The data points are for several studies, not including
Cohen’s. The horizontal line shows a relative risk of 1. The
dotted line is a linear extrapolation from the miner study.
The dashed quadratic line is Cohen’s model. From Lubin, J.
H. (1999). Response to Cohen’s comments on the Lubin re-
joinder. Health Phys. 77(3): 330–332. Used by permission.

radon in Québec. They predicted a total of 109 deaths
from lung cancer in a population of 60,000. Mitigating
radon in all residences with concentrations of 200 Bq m−3

or more would reduce this number from 109 to 105. The
same number of lives would be saved by reducing smoking
by 0.04%.

Symbols Used in Chapter 16

Symbol Use Units First
used on
page

b Thickness of slice being
scanned

m 456

c Velocity of light m s−1 443
e Electron charge C 440
f Fraction of photons

that interact or
detective quantum
efficiency

451

f General function to be
represented

455

g Incremental signal
transfer function

kg C−1 442

h Planck’s constant J s 438

j Total angular
momentum quantum
number

438
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Symbol Use Units First
used on
page

k Minimum

signal-to-noise ratio

452

kB Boltzmann factor J K−1 445
l Orbital angular

momentum quantum
number

438

m Mass kg 440
me Mass of electron kg 443

m Mean number 451
m Number of scans 457
n Principal quantum

number
438

n Number of slices in a
scan

456

n Number of moles of a
substance

mol 439

n Number of fractions 462
p Probability 463
q Charge C 440

r Distance m 447
r Risk or probability varies 470
r, r0 Radon concentrations Bq m−3 472
v Voltage difference V 444
w Width of picture

element
m 456

wi Mass fraction of ith
constituent

447

x Photon
energy/electron rest
mass energy

443

x, y, z Coordinates m 441
A Proportionality

constant
C m2 kg−1 451

C Constant J−1 m−2 438
C Capacitance F 444
Cin Exposure contrast 451
Cout Brightness contrast 451
D Absorbed dose Gy (J kg−1) 440
D′ Absorbed dose in one

scan
Gy 457

D0 Reciprocal of
proportionality
constant α

Gy 460

DR,T Absorbed dose of
radiation type R to
target organ T

Gy 468

E Energy J or eV 438
E Effective dose to an or-

gan
Sv (J kg−1) 468

F Projection (integral) of
f along some direction

455

G Radiation chemical

yield

mol J−1 439

G Large signal transfer
factor

kg C−1 442

H Hounsfield CT unit 456
H Dose equivalent Sv (J kg−1) 468

HE Effective dose

equivalent
Sv 469

HT Equivalent dose Sv (J kg−1) 468
Kc Collision kerma J kg−1 440
L Length of object m 452
N Number 439
OD Optical density 441
P Probability 462

Q Quality factor 468
R Resistance Ohm (Ω) 444
S Area m2 452
S Surviving fraction 462
Se (or Sc) Collision stopping

power
J m−1 467

T Kinetic energy J 438
T0 Initial kinetic energy J 439
T Optical transmission 441

T Temperature K 445
W Mean energy expended

per ion pair formed
J or eV 439

WR Radiation weight factor 468

WT Tissue weighting factor 469
X Exposure C kg−1 440
Z Atomic number 437
α Integral of attenuation 454
α Dose proportionality

constant
Gy−1 460

α Excess risk
proportionality
constant

Gy−1 471

β Coefficient 457
β Squared dose

proportionality

constant

Gy−2 460

γ Fraction 457
γ Film contrast 441
µ, µatten Attenuation coefficient m−1 447
µen Energy absorption

coefficient
m−1 440

ν, ν0 Frequency Hz 438
ρ Density kg m−3 440
σ Standard deviation 471
Φ Particle fluence m−2 438
ΦT Particle fluence per

unit energy interval
m−2 J−1 or
m−2 eV−1

467

Ψ Energy fluence J m−2 438

Problems

Section 16.1

Problem 1 Use Eqs. 15.3 and 16.2 to answer the follow-
ing questions. Then compare your answers to values given
in tables, such as those in the Handbook of Chemistry and
Physics. What is the minimum energy of electrons strik-
ing a copper target that will cause the K x-ray lines to
appear? What is the approximate energy of the Kα line?
Repeat for iodine, molybdenum, and tungsten.

Problem 2 When tungsten is used for the anode of an x-
ray tube, the characteristic tungsten Kα line has a wave-
length of 2.1 × 10−11 m. Yet a voltage of 69, 525 V must
be applied to the tube before the line appears. Explain the
discrepancy in terms of an energy-level diagram for tung-
sten.

Problem 3 Henry Moseley first assigned atomic num-
bers to elements by discovering that the square root of the
frequency of the Kα photon is linearly related to Z. Solve
Eq. 16.2 for Z and show that this is true. Plot Z vs the
square root of the frequency and compare it to data you
look up.
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Problem 4 Compare the shapes of the curves of Eqs.
16.3a and 16.3b for hν0 = 100 keV, over the range 40–
100 keV. Are the characteristics of Eq. 16.3b reflected in
the theoretical points of Fig. 16.5?

Problem 5 Express the formula for the thick-target x-
ray energy fluence rate [Eq. 16.3a] as dΨ/dλ and plot it.

Problem 6 Starting from Eq. 16.3b, written as
dΦ/dE = (1/hν)dΨ/d(hν), use the chain rule to verify
that dΨ/dλ = (h2c2/λ3)dΦ/dE.(Recall that λν = c.)

Section 16.2

Problem 7 A beam of 0.08-MeV photons passes through
a body of thickness L. Assume that the body is all muscle
with ρ = 1.0×103 kg m−3. The energy fluence of the beam
is Ψ J m−2.

(a) What is the skin dose where the beam enters the
body?

(b) Assume the beam is attenuated by an amount e−µL

as it passes through the body. Calculate the average dose
as a function of the fluence, the body thickness, and µ.

(c) What is the limiting value of the average dose as
µL → 0?

(d) What is the limiting value of the average dose as
µL → ∞? Does the result make sense? Is it useful?

Problem 8 The obsolete unit, the roentgen (R), is de-
fined as 2.08 × 109 ion pairs produced in 0.001 293 g of
dry air. (This is 1 cm3 of dry air at standard temperature
and pressure.) Show that if the average energy required to
produce an ion pair in air is 33.7 eV (an old value), then
1 R corresponds to an absorbed dose of 8.69 × 10−3 Gy
and that 1 R is equivalent to 2.58 × 10−4 C kg−1.

Problem 9 During the 1930s and 1940s it was popular
to have an x-ray fluoroscope unit in shoe stores to show
children and their parents that shoes were properly fit.
These marvellous units were operated by people who had
no concept of radiation safety and aimed a beam of x
rays upward through the feet and right at the reproductive
organs of the children! A typical unit had an x-ray tube
operating at 50 kVp with a current of 5 mA.

(a) What is the radiation yield for 50-keV electrons on
tungsten? How much photon energy is produced with a
5-mA beam in a 30-s exposure?

(b) Assume that the x rays are radiated uniformly in
all directions (this is not a good assumption) and that the
x rays are all at an energy of 30 keV. (This is a very
poor assumption.) Use the appropriate values for striated
muscle to estimate the dose to the gonads if they are at a
distance of 50 cm from the x-ray tube. Your answer will
be an overestimate. Actual doses to the feet were typically
0.014–0.16 Gy. Doses to the gonads would be less because
of 1/r2. Two of the early articles pointing out the danger
are Hempelmann, L. H. (1949), Potential dangers in the
uncontrolled use of shoe fitting fluoroscopes, New Engl. J.

Med. 241: 335–337, and Williams, C. R. (1949), Radi-
ation exposures from the use of shoe-fitting fluoroscopes,
New Engl. J. Med. 241: 333–335.

Section 16.3

Problem 10 Rewrite Eq. 16.9 in terms of exponential
decay of the viewing light and relate the optical density to
the attenuation coefficient and thickness of the emulsion.

Problem 11 Derive the useful rule of thumb ∆(OD) =
0.43γ ∆X/X.

Problem 12 The atomic cross sections for the materials
in a gadolinium oxysulfide screen for 50-keV photons are

Element Cross section per atom (m2) A

Gd 1.00 × 10−25 157
S 3.11 × 10−27 32
O 5.66 × 10−28 16

(a) What is the cross section per target molecule of
GdO2S?

(b) How many target molecules per unit area are there
in a thickness ρdx of material?

(c) What is the probability that a photon interacts in
traversing 1.2 kg m−2 of GdO2S?

Problem 13 The film speed is often defined as the recip-
rocal of the exposure (in roentgens) required to give an
optical density that is 1 greater than the base density.
Assume that in Fig. 16.6 a relative exposure of 1 corre-
sponds to 10−5 C kg−1. Calculate the film speed.

Problem 14 A dose of 1.74 × 10−4 Gy was estimated
for part of the body just in front of an unscreened x-ray
film. Suppose that a screen permits the dose to be reduced
by a factor of 20. Calculate the skin dose on the other
side of the body (the entrance skin dose) assuming 50-keV
photons and a body thickness of 0.2 m. Ignore buildup,
and assume that only unattenuated photons are detected.

Problem 15 Find an expression for photon fluence per
unit absorbed dose in a beam of monoenergetic photons.
Then find the photon fluence for 50-keV photons that
causes a dose of 10−5 Gy in muscle.

Problem 16 A dose of 100 Gy might cause noticeable
radiation damage in a sodium iodide crystal. How long
would a beam of 100-keV photons have to continuously
and uniformly strike a crystal of 1-cm2 area at the rate
of 104 photon s−1, in order to produce this absorbed dose?
For NaI µen/ρ = 0.1158 m2 kg−1.

Problem 17 Another method to measure the absorbed
dose is by calorimetry. Show that if all the energy im-
parted warms the sample, the temperature rise is 2.39 ×
10−4 ◦C per Gy.
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Section 16.4

Problem 18 Plot µ for lead, iodine, and barium from
10 to 200 keV.

Problem 19 Use a spreadsheet to make the following
calculations. Consider a photon beam with 100 kVp.

(a) Use Eq. 16.3b to calculate the photon fluence from
a thick target at 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100 keV.

(b) The specific gravity of aluminum is 2.7. Make a ta-
ble of the photon fluence at these energies emerging from
2 and 3 mm of aluminum. Compare the features of this
table to Fig. 16.16.

(c) Use trapezoidal integration to show that the average
photon energy is 44 keV after 2-mm filtration and 47 keV
after 3-mm filtration.

(d) Repeat for 120 kVp and show that the average en-
ergies after the same filtrations are 52 and 55 keV.

Problem 20 X-ray beams have a spectrum of photon en-
ergies. It would be very laborious to measure the spectrum
every time we want to check the quality of the beam. In
addition to kVp, one simple measurement that is used to
check beam quality (related to the energy spectrum) is the
“half-value layer” HVL–the thickness of a specified ab-
sorber (often Cu or Al) that reduces the intensity of the
beam to one-half.

(a) For a monoenergetic beam, relate HVL to the at-
tenuation coefficient. What is the HVL if the attenuation
coefficient is 0.46mm−1?

(b) For a monoenergetic beam, how does the quarter-
value layer QVL relate to HVL?

(c) Suppose a beam has equal numbers of photons at two
different energies. The attenuation coefficients at these
energies are 0.46mm−1 and 0.6mm−1. Find the HVL and
QVL for this beam. You may need to plot a graph or use
a computer algebra program.

Problem 21 The “half-value layer” (HVL) is often used
to characterize an x-ray beam. It is the thickness of a
specified absorber that attenuates the beam to one-half the
original value. Figure 16.45 refers to a beam with a 3.0
mm Cu HVL. What is the value of the attenuation coef-
ficient? What monoenergetic x-ray beam does this corre-
spond to?

Problem 22 Assume an antiscatter grid is made of lead
sheets 3 mm long with a spacing between sheets of 0.3 mm.
Ignore the thickness of the sheets. If all photons hitting
the sheets are absorbed, what is the largest angle from the
incident beam direction that a photon can be scattered and
still emerge?

Section 16.5

Problem 23 Suppose that two measurements are made:
one of the combination of signal and noise, y = s + n,

and one of just the noise n. One wishes to determine
s = y − n.

(a) Find s − s in terms of y, y, n, and n.
(b) Show that if y and n are “uncorrelated,” (s − s)2 =

(y − y)2 + (n − n)2 and state the mathematical condition
for being “uncorrelated.”

(c) If y and n are Poisson distributed, under what con-
ditions is the

√
2 factor of Footnote 13 needed?

Section 16.7

Problem 24 A molybdenum target is used in special x-
ray tubes for mammography. The electron energy levels in
Mo are as follows:

K 20, 000 eV LI 2886 eV MI 505 eV
LII 2625 eV MII 410 eV
LIII 2520 eV MIII 392 eV

MIV 230 eV
MV 227 eV

What is the energy of the Kα line(s)? The Kβ line(s)
(defined in Fig. 16.2)?

Problem 25 As a simple model for mammography, con-
sider two different tissues: a mixture of 2/3 fat and 1/3
water, with a composition by weight of 12% hydrogen,
52% carbon and 36% oxygen; and glandular tissue, com-
posed of 11% hydrogen, 33% carbon, and 56% oxygen.
The density of the fat and water combination is 940 kg
m−3, and the density of glandular tissue is 1020 kg m−3.
What is the attenuation in 1 mm of fat and in 1 mm
of glandular tissue for 50-keV photons? For 30-keV pho-
tons?

Section 16.9

Problem 26 For a first-generation CT scanner with
µ = 18 m−1, ∆µ/µ = 0.005, L = 30 cm, w = 0.1 cm,
and b = 1 cm, calculate, for a scan time of 15 s,

(a) N ,
(b) m,
(c) N ′, and
(d) The dose.

Problem 27 It is often said that the number of photons
that must be detected in order to measure a difference in
fluence with a certain resolution can be calculated from
N = (∆Φ/Φ)−2. (For example, if we want to detect a
change in Φ of 1% we would need to count 104 photons.)
Use Eq. 16.20 to make this statement more quantitative.
Discuss the accuracy of the statement.

Problem 28 Spiral CT uses interpolation to calculate
the projections at a fixed value of z before reconstruction.
This has an effect on the noise. Let σ0 be the noise stan-
dard deviation in the raw projection data and σ be the
noise in the interpolated data. The interpolated signal, α,
is the weighted sum of two values: α = wα1 + (1−w)α2.
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(a) Show that the variance in α is σ2 = w2σ2
0 + (1 −

w)2σ2
0. Plot σ/σ0 vs w.

(b) Averaging over a 360 ◦scan involves integrating uni-
formly over all weights:

σ2 =
∫ 1

0

[
w2σ2

0 + (1 − w)2σ2
0

]
dw.

Find the ratio σ/σ0.

Problem 29 An experimental technique to measure
cerebral blood perfusion is to have the patient inhale
xenon, a noble gas with Z = 54, A = 131 [Suess et al.
(1995)]. The solubility of xenon is different in red cells
than in plasma. The equation used is

Arterial enhancement =
5.15θXe

(µ/ρ)w/(µ/ρ)Xe
CXe(t),

where the arterial enhancement is in Hounsfield units,
CXe is the concentration of xenon in the lungs (end tidal
volume), and

θXe = (0.011)(Hct) + 0.10.

Hct is the hematocrit: the fraction of the blood volume
occupied by red cells. Discuss why the equation has this
form.

Section 16.10

Problem 30 Use Equations 16.32 and 16.33 to obtain
expressions for dose vs number of tumor cells for a prob-
ability of cure of 50%.

Section 16.11

Problem 31 Geiger’s rule is an approximation to the
range-energy relationship:

R = AEp.

For protons in water A = 0.0022 when R is in cm and E
is in MeV. The exponent p = 1.77. This is a good approx-
imation for E < 200 MeV. Use Geiger’s approximation
to find dE/dx as a function of R for 100 MeV protons.
Make a plot to show the Bragg peak when straggling is
ignored.

Section 16.12

Problem 32 Calculate (Se/ρ)w
g in argon for 0.1-, 1.0-

and 10-MeV electrons. The values of Se/ρ for argon at
these energies are 2.918, 1.376, and 1.678 cm2 g−1.

Problem 33 An ion chamber contains 10 cm3 of air at
standard temperature and pressure. Find q vs D for 0.5-
MeV electrons.

Section 16.13

Problem 34 Suppose that the probability p per year of
some event (death, mutations, cancer, etc.) consists of a
spontaneous component S and a component proportional
to the dose of something else, D: p = S + AD. The dose
may be radiation, chemicals, sunlight, etc. Investigations
of women given mammograms showed that if p is the prob-
ability of acquiring breast cancer, S = 1.91 × 10−3 and
A = 4× 10−4 Gy−1. How many women had to be studied
to distinguish between A = 0 and the value above if D = 2
Gy? If D = 10−2 Gy?
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17
Nuclear Physics and Nuclear Medicine

Each atom contains a nucleus about 100,000 times
smaller than the atom. The nuclear charge determines
the number of electrons in the neutral atom and hence
its chemical properties. The nuclear mass determines the
mass of the atom. For a given nuclear charge there can
be a number of nuclei with different masses or isotopes. If
an isotope is unstable, it transforms into another nucleus
through radioactive decay.

In this chapter we will consider some of the properties
of radioactive nuclei and their use for medical imaging
and for treatment, primarily of cancer.

Four kinds of radioactivity measurements have proven
useful in medicine. The first involves no administra-
tion of a radioactive substance to the patient. Rather, a
sample from the patient (usually blood) is mixed with
a radioactive substance in the laboratory, and the re-
sulting chemical compounds are separated and counted.
This is the basis of various competitive binding as-
says, such as those for measuring thyroid hormone and
the availability of iron-binding sites. The most common
competitive binding technique is called radioimmunoas-
say. A wide range of proteins are measured in this
manner.

In the second kind of measurement, radioactive tracers
are administered to the patient in a way that allows the
volume of a compartment within the body to be mea-
sured. Examples of such compartments are total body
water, plasma volume, and exchangeable sodium. Time-
dependent measurements include red-blood-cell survival
and iron and calcium kinetics. Counting is of the whole
body or of blood or urine samples drawn at different times
after administration of the isotope.

For the third class of measurements, a gamma camera
generates an image of an organ from radioactive decay of
a drug that has been administered and taken up by the
organ. These images are often made as a function of time.

The fourth class is an extension of these in which to-
mographic reconstructions of body slices are made. These
include single-photon emission computed tomography and
positron emission tomography.

Radioactive isotopes are also used for therapy. The pa-
tient is given a radiopharmaceutical that is selectively
absorbed by a particular organ (for example, radioactive
iodine for certain thyroid diseases). The isotope emits
charged particles that lose their energy within a short
distance, thereby giving a high dose to the target or-
gan. Isotopes are also used in self-contained implants for
brachytherapy.

The first four sections introduce some of the nuclear
properties that are important: size, mass, and the modes
of radioactive decay and the amount of energy released.

It is important to know the dose to the patient from
a nuclear medicine procedure, and a standard technique
for calculating it has been developed by the Medical In-
ternal Radiation Dose (MIRD) Committee of the Society
of Nuclear Medicine. Sections 17.5–17.8 show the steps in
making these calculations. Section 17.9 describes some of
the pharmacological considerations in selecting a suitable
isotope, and Sec. 17.10 provides a sample dose calcula-
tion using this technique. Section 17.11 extends the dose
discussion to the special considerations when an isotope
emits Auger electrons and is bound to the DNA in the
cell nucleus.

The next few sections describe various ways of forming
images. Section 17.12 describes the gamma camera, and
Sec. 17.13 extends this to single-photon emission tomog-
raphy. Section 17.14 describes positron emission tomog-
raphy, which can be done with special equipment when
positron sources are available in the hospital.

Radiotherapy is described in Sec. 17.15, including both
the relatively common brachytherapy and the less com-
mon injection of isotopes that target particular organs.
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TABLE 17.1. Properties of nucleons, the electron, and the
neutral hydrogen atom.
Property Neutron Proton Electron H atom

Massa 1.008 664 916 1.007 276 47 0.000 548 579 9 1.007 825 035
Chargeb 0 +e −e 0
Rest 939.565 938.272 0.5110 938.783
energy
m0c2

(MeV)

Half-life ≈ 12 min Stable Stable Stable

Spin 1
2

1
2

1
2

. . .

a1 u is the mass unit; the mass of 12C is 12.000 u by definition;
1 u = 1.660 539 × 10−27 kg.

be = 1.602 177 × 10−19 C.

The final section describes the nuclear decay of radon
and some of the considerations in calculating the dose
and the risk to the general population. It supplements
the material that was introduced in Sec. 16.13.

17.1 Nuclear Systematics

An atomic nucleus is composed of Z protons and N =
A − Z neutrons. We call Z the atomic number and A
the mass number. Neutrons and protons have very simi-
lar properties, as can be seen from Table 17.1. Therefore,
they are classed as two different charge states of one par-
ticle, the nucleon.

Table 17.1 lists the rest mass and the rest energy, the
rest mass times the square of the speed of light. One can
show using special relativitythat the total energy E of an
object with rest mass m0 is related to its speed v and
kinetic energy T by

E =
m0c

2

(1 − v2/c2)1/2
= m0c

2 + T. (17.1)

In this equation c is the velocity of light. The energy and
mass of both the proton and neutral hydrogen atom are
given; the distinction will be important later.

It is customary to specify a nucleus by a symbol such
as the following for carbon (Z = 6, N = 6, A = 12):

A
ZC or 12

6 C.

The mass number used to be written as a superscript on
the right; however, this becomes confusing if the ioniza-
tion state must also be specified. It is now customary to
leave the right side of the symbol for atomic properties.
Since the element symbol corresponds to a specific atomic
number, Z is often omitted.

Different nuclei of the same element with different num-
bers of neutrons are called isotopes. Another isotope of
carbon is 11C, which has five neutrons.

The sizes of atoms are roughly constant as one goes
through the Periodic Table, with exceptions as shells are
filled. On the other hand, the size of nuclei grows steadily

FIGURE 17.1. Plot of atomic radius and nuclear radius vs.
atomic number, showing the relative constancy of the atomic
radius and the systematic increase of nuclear radius. Shell
effects in atomic radii are quite pronounced; slight shell effects
in the nuclear radius are not shown. Atomic data are from
Table 7b–3 of The American Institute of Physics Handbook,
New York, McGraw-Hill, 1957. Nuclear radii are from Eq.
17.2, using the average atomic mass to estimate A from Z.

through the periodic table. The nuclear radius R and
atomic mass number are related by

R = R0A
1/3. (17.2)

The precise value for R0 depends on how the nuclear ra-
dius is measured. If it is measured from the charge dis-
tribution, then

R0 = 1.07 × 10−15 m. (17.3)

Figure 17.1 shows how nuclear radii grow systemati-
cally, while atomic radii do not change appreciably with
A (although they do change dramatically as shells close).
The constancy of atomic size results from two competing
effects: as Z increases the outer electrons have a larger
value of the principal quantum number n. On the other
hand, the greater charge means that Coulomb attraction
makes the orbit radius smaller for a given n.

The A1/3 dependence in the nuclear case means that
the nuclear density is independent of A. To see this,
note that the volume of a spherical nucleus is 4πR3/3 =
4πR3

0A/3. Since the mass and volume are both propor-
tional to A, the density is constant. This implies that nu-
cleons can get only so close to one another, and that as
more are added, the nuclear volume increases. This con-
stant density is the same effect we see in the aggregation
of atoms in a crystal or a drop of water.
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FIGURE 17.2. Stable nuclei. Solid squares represent nuclei
which are stable and are found in nature. From Robert Eisberg
and Robert Resnick, Quantum Physics of Atoms, Molecules,
Solids, Nuclei and Particles, 2nd ed., New York, John Wiley &
Sons, 1985, p. 524. Reprinted with permission of John Wiley
& Sons.

Scattering experiments measure the force between two
nucleons. At large distances, there is no force between two
neutrons or between a neutron and a proton. (Between
two protons, of course, there is Coulomb repulsion.) As
two nucleons are brought close together, a strong attrac-
tive “nuclear” force exists; at still closer distances, the
nuclear force becomes repulsive.

If we look at the nuclei that are stable against radioac-
tive decay and are therefore found in nature, we find that
for light elements, Z = N . As Z increases, the number
of neutrons becomes greater than Z; this can be seen in
Fig. 17.2.

Eq. 17.1 shows that when an object is at rest, its total
energy (which is its internal energy) is related to its rest
mass by

E = m0c
2. (17.4)

The measurement of nuclear masses has provided one way
to determine nuclear energies. It is necessary to supply
energy to a stable nucleus to break it up into its con-
stituent nucleons (or else it would not be stable). The
binding energy (BE) of the nucleus is the total energy of
the constituent nucleons minus the energy of the nucleus:

BE = Zmpc
2 + (A − Z)mnc2 − mnuclc

2. (17.5)

It represents the amount of energy that must be added
to the nucleus to separate it into its constituent neutrons
and protons.

Suppose we add Zmec
2 to the first term. Then we have

the energy of Z protons plus the energy of Z electrons.
Except for the binding energy of each electron, this is the
same as the mass of Z neutral hydrogen atoms, which
we call Mpc

2. Similarly, we can add the mass of Z elec-
trons to mnuclc

2 and neglect the electron binding energy
to obtain Matomc2. Capital M represents the mass of a

FIGURE 17.3. The average binding energy per nucleon for sta-
ble nuclei. From R. Eisberg and R. Resnick, Quantum Physics
of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd ed.,
New York, John Wiley & Sons, 1985, p. 524. Reprinted with
permission of John Wiley & Sons.

neutral atom, while m stands for the mass of a bare nu-
cleus. For the neutron, m = M . In Eq. 17.5, we can add
Zmec

2 to the first term and add Zmec
2 to the last term,

to obtain the binding energy in terms of the masses of
the corresponding neutral particles:

BE = ZMpc2 + (A − Z)Mnc2 − Matomc2. (17.6)

This is fortunate, because neutral masses (or those for
ions carrying one or two charges) are the quantities ac-
tually measured in mass spectroscopy.

Masses are measured in unified mass units u, defined
so that the mass of neutral 12C is exactly 12 u. Carbon is
used for the standard because hydrocarbons can be made
in combinations to give masses close to any desired mass.
The carbon standard replaced one based on the natu-
rally occurring mixture of oxygen isotopes in the early
1960s. (One of the troubles with the earlier standard was
that the relative abundance of the various oxygen isotopes
varies with time and with location on the earth.) The ear-
lier unit was called the atomic mass unit, amu. One still
finds confusion in the literature about which standard is
being used, and the carbon standard is sometimes called
an amu.

One unified mass unit is related to the kilogram, the
joule, and the electron volt by

1 u = 1.660 54 × 10−27 kg,

(1 u)(c2) =
{

1.492 41 × 10−10 J
931.49 MeV.

(17.7)

If one plots the binding energy per nucleon versus mass
number as in Fig. 17.3, one sees that the binding energy
per nucleon has a maximum near A = 60, and that the av-
erage binding energy (except for light elements) is about
8 MeV per nucleon. For less stable nuclei on either side
of the stable line plotted in Fig. 17.2, the binding energy
is less than that for the nuclei shown here.
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The maximum near A = 60 is what makes both fission
and fusion possible sources of energy. A heavy nucleus
with A near 240 can split roughly in half, giving two fis-
sion products. Since the nucleons in each of the products
are more tightly bound on the average than in the original
nucleus, energy is released. This energy difference comes
almost entirely from the Z2 dependence of the Coulomb
repulsion of the protons in the nuclei. In fusion, two nu-
clei of very low A combine to give a nucleus of higher A,
for which the binding energy per nucleon is greater.

17.2 Nuclear Decay: Decay Rate and
Half-Life

If a nucleus has more energy than it would if it were in
its ground state, it can decay. If the nucleus has suffi-
cient energy, it can emit a proton, neutron, or cluster of
nucleons [α particle (42He), deuteron (21H), etc.]. When a
nucleus has enough excitation energy to decay by nuclear
emission it usually does so in such an extremely short
time that the nuclei could never be introduced in the
body after they were produced. An exception is the α de-
cay of a few elements near the upper (high-Z) end of the
periodic table. They are found in nature, either because
their lifetimes are very long or because they are formed
as the result of some other decay process that has a long
lifetime.

If a nucleus has just a small amount of excess energy, it
emits a γ ray, a photon analogous to the x ray or visible
photons emitted by an excited atom. Another process
that can occur is the emission of a positive or negative
electron, with the conversion of a proton to a neutron,
or vice versa. This is called β decay. Both γ and β decay
will be described in detail in the next two sections.

Each excited nucleus has a probability λ dt of decaying
in time dt. When there are N nuclei present, the average
number decaying in time dt is1

−dN = Nλ dt.

The rate of change of N is the activity, A(t), the number
of decays per second:

A(t) =
dN

dt
= −λN.

This leads to the familiar exponential decay of Chapter
2:

N = N0e
−λt.

The half-life T1/2 is related to λ by Eq. 2.10:

T1/2 =
0.693

λ
. (17.8)

1The decay constant is called λ in this chapter to conform to
the usage in nuclear medicine.

17.3 Gamma Decay and Internal
Conversion

When a nucleus is in an excited state, it can lose energy
by photon emission. The energy levels of the nucleus are
characterized by certain quantum numbers, and γ emis-
sion is subject to selection rules analogous to those for
x-ray emission by atoms. Half-lives for γ emission range
from 10−20 to 10+8 s.

Figure 17.4 shows an energy level diagram for 99
43Tc

(technetium), an isotope widely used in nuclear medicine,
along with some tabular material that we will need as we
progress through this chapter. There are two important
levels to consider in 99

43Tc. The ground state is not stable
but decays by β decay, considered in the next section.
However, its decay rate is so small (half-life of 2.12× 105

years) that we can ignore its decay. There is a level at an
excitation of 0.143 MeV above the ground state that has
a half-life of 6 h for γ decay. This is an unusually long
half-life; we call it a metastable state and denote it by
99mTc. Looking at the table labeled input data, we see
that there are two modes of decay of the nucleus from
this state. The first is the emission of a 0.0021-MeV γ
ray followed by a 0.1405-MeV γ ray. It occurs 0.986 of
the time. The other possibility is the emission of one γ
ray, of energy 0.1426 MeV, which happens in 0.014 of the
decays.

The notations E3, M1, and M4 in the last column of
the input data refer to the selection rules and quantum
number changes in the transitions. We will not need the
details, although they can be used to estimate the de-
cay rates. The labels E1, E2, and E3 are called electric
dipole, electric quadrupole, and electric octupole, respec-
tively. M1 means magnetic dipole, and M4 means mag-
netic 24 or magnetic hexadecapole.

Whenever a nucleus loses energy by γ decay, there is a
competing process called internal conversion. The energy
to be lost in the transition, Eγ , is transferred directly to
a bound electron (usually a K or L electron), which is
then ejected with a kinetic energy

T = Eγ − B, (17.9)

where B is the binding energy of the electron.
The mean number per disintegration in the table of

input data is the mean number of times that the indi-
cated transition between energy levels takes place. In the
table of output data, on the other hand, it means the
mean number of times that radiation is emitted. To see
the distinction, compare the γ2 entries in the input data
and output data of Fig. 17.4. The γ2 transition from the
0.1405-MeV level to the ground state occurs 0.9860 times
per disintegration. From the output data, we see that this
transition takes place by emission of a photon (γ2) 0.8787
times, by K internal conversion 0.0913 times, by L inter-
nal conversion 0.0118 times, and by M internal conver-
sion 0.0039 times (the sum is 0.9857, which agrees with
the value 0.9860 times per disintegration).
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FIGURE 17.4. Energy levels and decay data for the iso-
tope 99mTc. The various features are discussed in the text.
Reprinted by permission of the Society of Nuclear Medicine
from Dillman, L. T., and F. C. Von der Lage. MIRD Pamphlet
No. 10. Radionuclide Decay Schemes and Nuclear Parameters
for Use in Radiation Dose Estimation, 1974, p. 62.

To calculate the mean number of times a radiation is
emitted from the mean number of transitions, we need
numbers f that are the fraction of transitions involving a
particular radiation. The fraction associated with γ decay
is fr, the fraction with K internal conversion is fK , and
so forth. The sum of all these fractions is unity:

fr + fK + fL + fM + · · · = 1. (17.10)

Often these fractions are not listed in the literature.
Instead, one finds the internal conversion coefficient α.
For conversion of a K electron, it is αK = fK/fr. For the
L shell it is αL = fL/fr, and so on. One also finds in the
literature the ratio

K

L
=

fK

fL
=

αK

αL
.

A useful empirical relationship is that fM ≈ fL/3. In the
input data of Fig. 17.4, αK is called AK.

Once internal conversion has created a hole in the elec-
tronic structure of the atom, characteristic x rays and
Auger electrons will be emitted. They must also be con-
sidered in calculating the total dose from the nuclear
decay.

17.4 Beta Decay and Electron Capture

Nuclei that are not on the line of stability in Fig. 17.2
have greater internal energy and are susceptible to some
kind of decay. They can lose energy by γ emission. In
addition, nuclei above the line of stability have too many
protons relative to the number of neutrons; nuclei below
the line have relatively too many neutrons.

Two modes of decay allow a nucleus to approach the
stable line. In beta (β− or electron) decay, a neutron is
converted into a proton. This keeps A constant, lowering
N by one and raising Z by one. In positron (β+) decay,
a proton is converted into a neutron. Again A remains
unchanged, Z decreases and N increases by 1. We find β+

decay for nuclei above the line of stability and β− decay
for nuclei below the line. Figure 17.5 shows a portion of
the line of stability, a line of constant A (Z = A − N),
and the regions for β+ and β− decay.

We can plot the energy of the neutral atom for different
nuclei along the line of constant A. Since there are one
or two stable nuclei, there is some value of Z and N for
which the energy is a minimum. The energy increases in
either direction from this minimum. The first approxima-
tion to a curve with a minimum is a parabola, as shown
in Fig. 17.6 for a nucleus of odd A.2 When Z is too small,
a neutron is converted to a proton by β− decay. If Z is
too large, a proton changes to a neutron by β+ decay or
electron capture (to be described below).

2This parabola and the general behavior of the binding energy
with Z and A can be explained remarkably well by the semiempir-
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FIGURE 17.5. β− decay and β+ decay do not change A. They
do change N and Z to bring the nucleus closer to the stability
line.

FIGURE 17.6. Energy of nuclei as a function of Z for an odd
value of A (A = 135). The only stable nucleus is 135

56 Ba; nuclei
of lower Z undergo β− emission; those of higher Z undergo
β+ emission or electron capture.

When A is odd, there are an even number of protons
and an odd number of neutrons (even–odd) or vice versa
(odd–even). When we plot the energies of even-A nuclei,
we find that the masses lie on two different parabolas
(Fig. 17.7). The one for which both Z and N are odd
(odd–odd) has greater energy than the parabola for which
both are even. The reason is that nucleons have lower en-
ergy when they are paired with one another in such a
way that their spins are antiparallel. In the even–even
case, the neutrons and the protons are all paired off and
have this lower energy; in the odd–odd case there are both
an unpaired proton and an unpaired neutron, and the en-

ical mass formula [Evans (1955, Chapter 11); Eisberg and Resnick,
(1985, p. 528)].

FIGURE 17.7. Energy of even-A nuclei as a function of Z. Nu-
clei with an odd number of protons and neutrons have higher
energies than those with an even number of each. This makes
it possible for the same nucleus to decay by either β− or β+

emission.

ergy is higher. As we change Z by one, we jump back and
forth between the odd–odd and the even–even parabolas.
For odd-A nuclei, either the neutrons are paired and one
proton is not, or vice versa. There is always one unpaired
nucleon as Z changes, so there is only one parabola.

The existence of the two parabolas means that there
are usually (but not always) two stable nuclei with an
odd–odd nucleus between them that can decay by either
β− or β+ emission.

The emission of a β− particle is accompanied by the
emission of a neutrino (strictly speaking, an antineu-
trino):

A
ZX →A

Z+1 Y + β− + ν. (17.11)

The neutrino has no charge and no rest mass,3 so that
like a photon, it travels with velocity c and its energy
and momentum are related by E = pc. Neutrinos hardly
interact with matter at all, so they are quite difficult to
detect. Nevertheless they have been detected through cer-
tain specific nuclear reactions that take place on the rare
occasions when a neutrino does interact with a nucleus. A
particle that seemed originally to be an invention to con-
serve energy and angular momentum now has a strong
experimental basis.

Suppose that β decay consisted of the ejection of only
a β particle. If the original nucleus X were at rest,4 then
nucleus Y would recoil in the direction opposite the β

3Recent measurements indicate that the neutrino may have a
rest mass, but it is less than 3 eV. [S. Eidelman et al. (Particle Data

Group), Phys. Lett. B 592: 1 (2004) (URL: http://pdg.lbl.gov)]
4Its thermal energy of about 1

40
eV is negligible compared to

the energy released in decay.
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FIGURE 17.8. A typical spectrum of β particles. In this case
it is for the β decay of 210

83 Bi. From Robert Eisberg and Robert
Resnick. Quantum Physics of Atoms, Molecules, Solids, Nu-
clei, and Particles, 2nd ed., p. 566. Copyright c©1985 John
Wiley & Sons. Reproduced by permission of John Wiley &
Sons.

particle to conserve momentum; the ratio of its velocity to
that of the β particle would be given by their mass ratio.
The recoil nucleus and the β particle would each have
a definite fraction of the total energy available from the
decay, and the β particles would all have the same energy.
However, the observed β-particle energy spectrum is not
a line spectrum but a continuum ranging from zero to
the expected energy, as shown in Fig. 17.8. The missing
energy is carried by the neutrino. The different energies
correspond to different angles of emission of the neutrino
relative to the direction of the β particle. This kind of
spectrum is characteristic of three bodies emerging from
the reaction.

The total kinetic energy for the three emerging parti-
cles is

Edecay = mZ,Ac2 − mZ+1,Ac2 − mec
2.

If we add and subtract Zmec
2, the result is unchanged:

Edecay = (mZ,Ac2 + Zmec
2) − (mZ+1,Ac2 (17.12)

+ Zmec
2 + mec

2)

= MZ,Ac2 − MZ+1,Ac2.

The energy released in the decay is given by the difference
in rest energies of the initial and final neutral atoms. This
energy is shared in different amounts by the three par-
ticles; it is shared mainly by the neutrino and electron,
since the nucleus is so massive and its kinetic energy is
p2/2m. The maximum or end-point energy of the β spec-
trum in Fig. 17.8 corresponds to Edecay.

Figure 17.9 shows data for the decay of 24Na, an isotope
that has been used in nuclear medicine. The transition
labeled β2 is overwhelmingly the most common. The β2

emission is followed by two γ rays, and the end-point
energy of the β decay is 1.392 MeV. On the other hand,

FIGURE 17.9. Energy levels and data for the β decay of 24Na.
Reprinted by permission of the Society of Nuclear Medicine
from L. T. Dillman and F. C. Von der Lage. MIRD Pamphlet
No. 10. Radionuclide Decay Schemes and Nuclear Parameters
for Use in Radiation Dose Estimation, p. 19.

the average energy of the β particle is only 0.5547 MeV,
about 40% of the end-point energy.

Emission of a positron converts a proton into a neutron,
and Z decreases by one. A neutrino is also emitted:

A
ZX →A

Z−1 Y + β+ + ν. (17.13)

The decay energy is again given by

Edecay = mZ,Ac2 − mZ−1,Ac2 − mec
2.

However, this time, when we add Zmec
2 to the first term

and subtract (Z−1)mec
2 from the second term to convert
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FIGURE 17.10. Energy levels and data for the β+ decay of
18F. Reprinted by permission of the Society of Nuclear Medi-
cine from L. T. Dillman and F. C. Von der Lage. MIRD Pam-
phlet No. 10. Radionuclide Decay Schemes and Nuclear Para-
meters for Use in Radiation Dose Estimation p. 18.

these to atomic masses, the electron masses do not cancel.
Instead, we get

Edecay = MZ,Ac2 − MZ−1,Ac2 − 2mec
2. (17.14)

Positron emission will not occur unless the initial neutral
atomic mass exceeds the final neutral atomic mass by at
least 2mec

2. We remind ourselves of this by drawing a
vertical line of length 2mec

2 before drawing the slanting
line for the β+ decay, as in Fig. 17.10, the decay scheme
for 18F.

The first entry in the table of input data in Fig. 17.10 is
for electron capture. The transition energy listed is 2mec

2

more than for β+ decay. Some of the inner electrons
of the atom are close enough to the nucleus (quantum-
mechanically, the electron wave functions overlap the nu-
cleus enough) so that the electron is captured by the
nucleus, and a neutrino is emitted. In terms of nuclear
masses, an electron rest energy is added to the parent

nucleus (we ignore its kinetic energy):

Ee.c. = mec
2 + mZ,Ac2 − mZ−1,Ac2.

If we add and subtract (Z − 1)mec
2, we have

Ee.c. = MZ,Ac2 − MZ−1,Ac2. (17.15)

A K electron5 is usually captured. The energy from the
nuclear transition is given to a neutrino. No electron
emerges, but there are K x rays and Auger electrons,6

as there are any time a vacancy in the K shell occurs,
and these contribute to the radiation dose. They are not
listed in the output data of Fig. 17.10 because the K x
rays only have an energy of about 530 eV. We now un-
derstand that Auger electrons can be very important in
the dose in some cases.

There is also an entry under output data labeled anni-
hilation radiation. Once a positron has been emitted, it
slows down like any other charged particle. At some point
it combines with an electron (since the positron and elec-
tron constitute a particle–antiparticle pair), and all of the
rest energy of both particles goes into two photons.7 The
energy conservation equation is

2mec
2 = 2hν. (17.16)

For each original positron emitted, two photons are pro-
duced, each of energy mec

2 = 0.511 MeV.

17.5 Calculating the Absorbed Dose
from Radioactive Nuclei within
the Body

When a radiopharmaceutical is given to a patient for ei-
ther diagnosis or therapy, the nuclei end up in different
organs in varying amounts; for example, 99mTc-labeled
albumin microspheres injected intravenously lodge in the
lungs. The problem is to calculate the whole-body ab-
sorbed dose, the dose to the lungs, and the dose to other
organs.

The dose calculation is carried out in the following
way:8

1. Calculate the total number of nuclear transforma-
tions or disintegrations in organ h. It is called the
cumulated activity Ãh or Nh.

2. Calculate the mean energy emitted per unit cumu-
lated activity for each type of photon or particle
emitted.

5See Chapter 14.
6See Chapter 14.
7Three photons are occasionally emitted.
8Dose calculations in this chapter follow the technique and no-

tation recommended by the MIRD Committee of the Society of
Nuclear Medicine [Loevinger et al. (1988) and Stabin et al. (2005)].



17.6 Activity and Cumulated Activity 489

(a) If the radioactive nucleus can emit several types
of particles or photons per transformation, call
ni the mean number of particles or photons of
type i emitted per transformation. These in-
clude γ rays, electrons, x rays and Auger elec-
trons. [In the “output data” of Dillman and Von
der Lage (1974), ni is called the mean num-
ber per disintegration. In the more recent re-
port of Weber et al. (1989) it is called parti-
cles per transition. We have continued to show
the older tables here because the newer ones
contain only the output data.] The data are
also available in electronic form [Eckerman et
al. (1994); Stabin and da Luz (2002); RADAR
(the Radiation Group Assessment Resource),
www.doseinfo-radar.com; and the National Nu-
clear Data Center, www.nndc.bnl.gov/mird/].

(b) For each type i determine Ei, the mean energy
per particle or photon.

(c) Calculate ∆i = niEi, the mean energy emitted
per unit cumulated activity, for each type of par-
ticle or photon emitted. (In earlier MIRD liter-
ature, this was called the equilibrium absorbed
dose constant.)

3. Calculate φi(rk ← rh), the fraction of the radiation
of type i emitted in source region rh that is absorbed
in target region rk, and divide by the mass of the
target region to get the specific absorbed fraction

Φi(rk ← rh) =
φi(rk ← rh)

mk
.

(Φ has the units of inverse mass.)

4. The mean absorbed dose in organ k due to activity
in organ h, D (in J kg−1 or Gy) is

D(rk ← rh) = Ãh

∑
i niEiΦi(rk ← rh),

D(rk ← rh) = Ãh

∑
i ∆iΦi(rk ← rh).

(17.17)

5. If several organs are radioactive, a sum must be
taken over each organ:

D (rk)=
∑

hÃh

∑
i∆iΦi(rk ← rh). (17.18)

The next three sections show how to determine Ã, ∆i,
and Φi. Some tables [Snyder et al. (1969, 1976)] give val-
ues of Φi for photons of various energies. It is necessary to
multiply by ∆i and sum for the isotope of interest. These
sums must be repeated over and over again for common
radionuclides. The sum is called the mean absorbed dose
per unit cumulated activity :

S(rk ← rh) =
∑

i∆iΦi(rk ← rh), (17.19)

D(rk ← rh) = ÃhS(rk ← rh), (17.20)

D(rk) =
∑

hÃhS(rk ← rh). (17.21)

A table of S for many common radionuclides is
available [Snyder et al. (1975)]. The tables cannot be
summed over h because the values of Ãh depend on
how the isotope is administered. A computer program
OLINDA/EXM is most commonly used for these calcu-
lations [Stabin, Sparks and Crowe (2005)]. These authors
call S the dose factor.

To discuss units, imagine there is only one type of ra-
diation. In SI units the dose is simply

D (Gy) =
[
Ã (dimensionless)

]
[∆i (J)]

[
Φi (kg−1)

]
.

(17.22a)
In day-to-day calculations, it is often easier to use mixed
units and write

D(Gy) = k

(
Gy kg

MBq s MeV

)[
Ã (MBq s)

]
(17.22b)

× [∆i (MeV)]
[
Φi (kg−1)

]

In an older system of units, where the dose is in rad and
the total number of transitions is in microcurie-hour (see
below), the equation is

D(rad) =
[
Ã (µCi h)

][
∆i (g rad µCi−1 h−1)

][
Φi (g−1)

]
.

(17.22c)
The next three sections discuss cumulated activity, the

mean energy emitted, and the absorbed fraction of the
energy. Then all of these concepts are combined with ex-
amples of absorbed dose calculations.

17.6 Activity and Cumulated Activity

The activity A(t) is the number of radioactive transitions
(or transformations or disintegrations) per second. The SI
unit of activity is the becquerel (Bq):

1 Bq = 1 transition s−1. (17.23)

The earlier unit of activity, which is still used occasion-
ally, is the curie (Ci):

1 Ci = 3.7 × 1010 Bq,
1 µCi = 3.7 × 104 Bq.

(17.24)

The cumulated activity Ã is the total number of tran-
sitions that take place. The SI unit of cumulated activity
is the transition or the Bq s. Both are dimensionless. The
old unit of cumulated activity is the µCi h:

1 µCi h = 1.332 × 108 Bq s. (17.25)

Consider a sample of N0 radioactive nuclei at time
t = 0. The total number of nuclei remaining at time t is
N(t) = N0e

−λt, and the total activity is A(t) = λN(t) =



490 17. Nuclear Physics and Nuclear Medicine

A0e
−λt. The cumulated activity between times t1 and t2

is

Ã(t1, t2) =
∫ t2

t1

A(t) dt =
A0

λ

(
e−λt1 − e−λt2

)
(17.26)

= N(t1) − N(t2).

If all times are considered, t1 = 0 and t2 = ∞,

Ã = Ã(0,∞) =
A0

λ
=

A0T1/2

0.693
= 1.443A0T1/2. (17.27)

This is, as we would expect, N0.

17.6.1 The General Distribution Problem:
Residence Time

Suppose that a radioactive substance is introduced in the
body by breathing, ingestion, or injection. It may move
into and out of many organs before decaying, and it may
even leave the body. The details of how it moves depend
on the pharmaceutical to which it is attached.

The cumulated activity in organ h is the total number
of disintegrations in that organ:

Nh = Ãh =
∫ ∞

0

Ah(t) dt. (17.28)

The dose is to organ k is then

Dk =
∑

hNhS(rk ← rh). (17.29)

The units of Nh are disintegrations (dimensionless) or
Bq s. If initial activity A0 (Bq) is administered to the
patient, the ratio Nh/A0 is called the residence time in
organ h:

τh =
Nh

A0
=

Ãh

A0
=

Ãh(0,∞)
A0

. (17.30)

The residence time is the length of time that activity
at a constant rate A0 would have to reside in the organ
to give that cumulated activity. The residence time for a
given substance and organ must be determined by mea-
surement, guided by the use of appropriate models. Many
residence times have been determined and published. The
presence of an abnormality in some organ can drastically
alter the residence time.

We now calculate the cumulated activity and residence
time for some simple situations.

17.6.2 Immediate Uptake with No Biological
Excretion

This is the simplest example. A certain fraction of the
radiopharmaceutical is taken up very rapidly in some or-
gan, and it stays there. This is a good model for 99mTc–
sulfur colloid, which is used for liver imaging. About 85%
is trapped in the liver; the remainder goes to the spleen

and elsewhere [Loevinger et al. (1988), p. 23]. The activ-
ity in the organ is Ah(t) = Ahe−λt. [Note the difference
between the activity in organ h as a function of time,
Ah(t), the initial activity in organ h, Ah, and the cumu-
lated activity in organ h, Nh = Ãh.] Let the fraction of
the activity in the organ be Fh. The cumulated activity
is

Ãh = Ah

∫ ∞

0

e−λt dt =
Ah

λ
=

FhA0

λ
.

The residence time is

τh =
Ãh

A0
=

Fh

λ
= 1.443FhT1/2. (17.31)

17.6.3 Immediate Uptake with Exponential
Biological Excretion

Suppose that in addition to physical decay with decay
constant λ, the pharmaceutical moves to another organ
while it is still radioactive. Such a process can be com-
plicated, perhaps involving storage in the gut or bladder.
In other cases, the disappearance from a particular organ
may be close to exponential with a biological disappear-
ance constant λj . (Assume for now that all the radioac-
tive nuclei can disappear biologically. If some are bound
in different chemical forms, this might not be true.) If N
is the number of radioactive nuclei in the organ (not the
total number originally administered), then the rate of
change of N is

dN

dt
= −(λ + λj)N,

the solution to which is N(t) = N0e
−(λ+λj)t. The activity

is λN , not −dN/dt. Since it is proportional to N , we can
again write

Ah(t) = Ahe−(λ+λj)t = λN0e
−(λ+λj)t. (17.32)

Again, N0 = Ah/λ. The decay constant λ + λj is larger
than the physical decay constant. The effective half-life
is

(Tj)eff =
0.693
λ + λj

. (17.33)

In terms of the physical and biological half-lives T and
Tj , this is

1
(Tj)eff

=
1
T

+
1
Tj

(17.34)

or
(Tj)eff =

TTj

T + Tj
. (17.35)

The cumulated activity is

Ãh(t1, t2) = Ah

∫ t2

t1

e−(λ+λj)t dt

=
Ah

λ + λj

(
e−(λ+λj)t1 − e−(λ+λj)t2

)
.

(17.36)
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FIGURE 17.11. An example of two-compartment transfer
when λ = 1, λ1 = 2, and λ2 = 1.

The cumulated activity for all time is

Ãh =
Ah

λ + λj
= 1.443 (Tj)eff Ah. (17.37)

17.6.4 Immediate Uptake Moving through Two
Compartments

Consider the simplest two-compartment model. A total of
N0 nuclei are administered that move immediately to the
first compartment. They then move exponentially from
the first compartment to the second but do not move
back. The number in the first compartment is given by

dN1

dt
= −(λ1 + λ)N1. (17.38)

The radioactive decay constant is λ and the biological dis-
appearance rate is λ1. In compartment 2, the substance
enters from compartment 1 and is biologically removed
with constant λ2:

dN2

dt
= +λ1N1 − (λ + λ2)N2. (17.39)

Suppose we start with no nuclei in either compartment
and inject N0 nuclei in compartment 1 at t = 0. Then
one can show (see Problem 11) that

N1(t) = N0e
−(λ+λ1)t (17.40)

so

dN2

dt
= λ1N0e

−(λ+λ1)t − (λ + λ2)N2, (17.41)

the solution to which is

N2(t) = N0
λ1

λ1 − λ2

(
e−(λ+λ2)t − e−(λ+λ1)t

)
. (17.42)

These solutions are worth examining. They are plotted in
Fig. 17.11 for λ = 1, λ1 = 2, and λ2 = 1. The number of
nuclei in compartment 1 is N0e

−3t. At first, many of the
particles leaving compartment 1 enter compartment 2,
and N2 rises. When there is no more of the substance en-
tering the second compartment from the first, N2 decays
at a rate λ + λ2 = 2. This corresponds to the vanishing
of the second term in Eq. 17.42. The larger the value of
λ1, the faster the second term vanishes. For very large
values of λ1, the second term vanishes quickly, the factor
λ1/(λ1 − λ2) approaches unity, and the decay is nearly
N2(t) = N0e

−(λ+λ2)t. The case λ1 = λ2 is discussed in
Problem 13. The activities are

A1(t) = λN1(t), A2(t) = λN2(t)

and the cumulated activities are obtained by integration:

Ã1 =
A0

λ + λ1
,

Ã2 =
A0λ1

(λ + λ1)(λ + λ2)
.

(17.43)

The residence times are

τ1 =
1

λ + λ1
,

τ2 =
λ1

(λ + λ1)(λ + λ2)
.

(17.44)

17.6.5 More Complicated Situations

A number of more complicated situations are solved by
Loevinger et al. (1988). These include situations where
substances move between compartments in both direc-
tions, the experimental data for the activity have been
fit with a series of exponentials, and convolution tech-
niques are used. All of these cases are for isotopes and
pharmaceuticals used in clinical practice.
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17.6.6 Activity per Unit Mass

It is sometimes convenient to use the mean initial activity
per unit mass

Ch =
Ah

mh
Bq kg−1 (17.45)

and the cumulated mean activity per unit mass

C̃h =
Ãh

mh
=

τhA0

mh
kg−1. (17.46)

Earlier units for these were µCi g−1 and µCi h g−1.

17.7 Mean Energy Emitted per Unit
of Cumulated Activity

The mean energy emitted per unit cumulated activity ∆i

is determined by knowing ni and Ei for each particle or
photon that is emitted. For a given nuclear transforma-
tion, the ni and Ei must include all photons (whether γ
rays or x rays) and all electrons (betas, internal conver-
sion electrons, and Auger electrons). In SI units,

∆i (in J) = niEi (in J). (17.47a)

If Ei is expressed in MeV, we must use the conversion
factor 1 MeV = 1.6× 10−13 J. In the old system of units,
there is the conversion factor:

∆i (g rad µCi−1 h−1) = niEi (MeV)

× (3.7 × 104 s−1 µCi−1)(1.6 × 10−13 J MeV−1)

× (107 erg J−1)(3.6 × 103 s h−1)(10−2 rad g erg−1)
∆i = 2.13niEi. (17.47b)

Values of ∆i in the old units are found in the “output
tables” for each nucleus (see Figs. 17.4, 17.9, and 17.10).
We will calculate some values in this section to show how
it is done.

Although β particles have a complicated energy spec-
trum, they are the easiest radiation for which to deter-
mine ∆i. Values of ni are available in nuclear data tables
that show the decay schemes for the nucleus under con-
sideration, and average β energies have usually been mea-
sured. For positron decay, there are also two 0.511-MeV
annihilation photons to be considered.

Referring to 18F, Fig. 17.10, we see that 0.97 of the
decays are positron emission with an average energy of
0.2496 MeV = 4.00 × 10−14 J. Therefore, ∆i is 0.97 ×
4.00×10−14 = 3.87×10−14 J. For the old units, multiply
by 2.13/1.6 × 10−13 = 1.33 × 1013, to get ∆i = 0.516 g
rad µCi−1 h−1, which agrees with the entry under output
data of Fig. 17.10. There are two annihilation photons for
each nuclear transition, so ni = 1.94 and Ei = 0.511 MeV
for the annihilation radiation. This gives ∆i = 1.59 ×
10−13 J or 2.11 g rad µCi−1 h−1.

TABLE 17.2. Additional properties of 99
43Tc for calculation of

∆i.

Fluorescence yielda WK 0.74
K-shell binding energyb BK 0.021 04 MeV
L-shell binding energy BL 0.0028 MeV
M -shell binding energy BM 0.0005 MeV

Kα

Kα + Kβ
= 0.863 (ratio of x rays emitted)

Kβ

Kα + Kβ
= 0.137 (ratio of x rays emitted)

aEstimated using Fig. 17.14.
bBinding energies are from Handbook of Chemistry and Physics,

51st ed., Cleveland, The Chemical Rubber Co., 1966, p. E-186.

Since electron capture competes with positron emis-
sion, it is also listed in the input data for 18F as occurring
3% of the time. Most of the energy is taken away by the
neutrino, and it does not contribute to the absorbed dose.
The x rays emitted by the residual 18O have such low en-
ergies that they are not listed in the output data. For a
nucleus of higher Z, however, they would be important.

We turn now to γ emission, which often occurs after
β emission because the resulting nucleus is not in its
ground state. Internal conversion competes with the γ
emission. Let us use the specific example 99m

43 Tc, whose
decay scheme is shown in Fig. 17.4. The 6-h half-life is as-
sociated with a metastable state, and the decay produces
three possible γ rays. The “ground state” is actually not
stable, but decays by emission with a half-life of 2.1×105

yr. The problems will show that this can be neglected.
In addition to the data in the “input data” table of Fig.

17.4, we need some information about the x-ray charac-
teristics of 99Tc. These are listed in Table 17.2. The sub-
scripts of ni, Ei, and ∆i in the following all refer to the
line in the output data of Fig. 17.4.

Consider γ1. Its energy (0.0021 MeV) is less than the
binding energy of either a K or L electron, so there is no
K or L internal conversion. However, αM is very large,
and we will assume that all of the γ1 transitions are
M -shell internal conversions. In the output table (Fig.
17.4), this means that ∆1 for γ1 is zero. The energy of
the internal-conversion electron is the decay energy minus
BM : E2 = 0.0021 − 0.0005 = 0.0016 MeV. Then

∆2 = n2E2 = (0.9860)(0.0016)(1.6 × 10−13)

= 2.52 × 10−16 J.

The remaining 0.0005 MeV is taken care of by M Auger
electrons.

Now consider γ2. There can be γ rays of this energy
and internal conversion electrons from the K, L, or M
shells. We are told (input data) that αK = 0.104, and
that αK = 7.7αL. It is also known empirically that
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αL ≈ 3αM . Therefore, we can write

αK = 0.104,

αL = 0.0135,

αM = 0.0045.

Now Eq. 17.10 combined with the definition of α gives

fr + αKfr + αLfr + αMfr = 1,

fr(1 + αK + αL + αM ) = 1,

fr =
1

1.122
= 0.8913,

fK = αKfr = 0.0927,

fL = αLfr = 0.0120,

fM = αMfr = 0.0040.

(17.48)

Each of these must be multiplied by nγ2 = 0.9860 to
get the overall number of photons or internal-conversion
electrons per decay associated with γ2:

n3 = nγ2fr = (0.9860)(0.8913) = 0.8788,

n4 = nγ2fK = (0.9860)(0.0927) = 0.0914,

n5 = nγ2fL = (0.9860)(0.0120) = 0.0118,

n6 = nγ2fM = (0.9860)(0.0040) = 0.0039.

(17.49)

The energies are calculated as follows:

E3 = Eγ2 = 0.1405 MeV,

E4 = Eγ2 − BK = 0.1405 − 0.0210 = 0.1195 MeV,

E5 = Eγ2 − BL = 0.1405 − 0.0028 = 0.1377 MeV,

E6 = Eγ2 − BM = 0.1405 − 0.0005 = 0.1400 MeV.

(17.50)
The values of ∆i are the products of these:

∆3 = 1.976 × 10−14 J = 0.2627 g rad µCi−1 h−1,

∆4 = 1.748 × 10−15 J = 0.0232 g rad µCi−1 h−1,

∆5 = 2.600 × 10−16 J = 0.0035 g rad µCi−1 h−1,

∆6 = 8.736 × 10−17 J = 0.0012 g rad µCi−1 h−1.

Similar calculations for the third γ ray are left to the
problems.

We must next consider x-ray and Auger electron emis-
sion. A K-shell hole can be produced by a K internal-
conversion electron from either γ2 (n4 = 0.0913) or γ3

(n8 = 0.0088). The total number of holes per nuclear
transition is 0.1001. Of these, a fraction WK = 0.74 give
x rays. The total number per transition is 0.074. Of these,
a fraction Kα/(Kα + Kβ) = 0.863 go to Kα x rays.
These are listed as lines 11 and 12 in the output data
of Fig. 17.4. Our calculation gives n11 + n12 = 0.0639.

The table gives 0.0662 for this sum. Considering that
our value of WK was obtained independently of the
table, this is good agreement. For Kβ x rays, we get
n13 = (0.1001)(0.74)(0.137) = 0.0101. The energies of the
x rays are obtained by subtracting the binding energies:

E11(Kα1) = BK − BL = 0.0210 − 0.0028 = 0.0182 MeV,

E13(Kβ) = BK − BM = 0.0210 − 0.0005 = 0.0205 MeV.

Of the holes in the K shell, a fraction 1 − WK = 0.26
decay by emission of Auger electrons. The total number
of K holes is 0.1001; the total number of K Auger elec-
trons should therefore be (0.1001)(0.26) = 0.0260. The
notation of the “output data” table is of the form

KLM

�
an electron falls to a hole in the K shell

� from the L shell

�
with the emission of an Auger electron
from the M shell

The sum of ni for KLL and KLX (X denoting shells
above the L shell) is 0.0207, in good agreement with the
0.0260 we calculated.

17.8 Calculation of the Absorbed
Fraction

The remaining part of the dose determination problem is
the most difficult: the calculation of φ(rk ← rh), the frac-
tion of the radiation of a certain type emitted in region rh

that is absorbed in region rk. A lot has been published on
this problem; this section provides only an introduction.

17.8.1 Nonpenetrating Radiation

The simplest case is for charged particles or photons of
very low energy that lose all their energy after traveling a
short distance. If the source volume is much larger than
this distance, we can say that the target volume is the
same as the source volume:

φ(rk ← rh) =
0, rk 
= rh

1 rk = rh.
(17.51)

17.8.2 Infinite Source in an Infinite Medium

Suppose that a radioactive source is distributed uniformly
throughout a region that is so large that edge effects can
be neglected. The activity per unit mass is C, so the total
activity is Ã = MC̃, where M is the mass of the material.
The energy released is Ã∆.

This is absorbed in mass M , so the fractional absorbed
energy is 1, as in case 1. The dose is

D =
MC̃∆

M
= C̃∆. (17.52)
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FIGURE 17.12. A small volume of absorbing material is in-
troduced at distance r from a point source of γ rays.

(This is why ∆ used to be called the equilibrium absorbed
dose constant.)

17.8.3 Point Source of Monoenergetic Photons
in Empty Space

Another simple case is a point source of monoenergetic
photons in empty space. The total amount of energy re-
leased by the source is Ã∆i. If the energy of the radiation
is Ei, the number of photons is Ã∆i/Ei. At distance r the
number per unit area is Ã∆i/4πr2Ei. If a small amount
of substance of area dS, density ρ, thickness dr, and en-
ergy absorption coefficient µen is introduced as in Fig.
17.12, the amount of energy absorbed in it is Ei times the
number of photons absorbed: δE = Ã∆idS µendr/4πr2.
Therefore, the absorbed fraction is

φ =
δE

Ã∆i

=
µen dr dS

4πr2
. (17.53)

This is exactly what we expect from the definition of φ.
If the source radiates its energy isotropically, the fraction
passing through dS is dS/(4πr2). The fraction of that
energy absorbed in dr is µen dr. The specific absorbed
fraction is

Φ =
φ

M
=

φ

ρdSdr
=

µen

4πr2ρ
. (17.54)

17.8.4 Point Source of Monoenergetic Photons
in an Infinite Isotropic Absorber

If the source is not in empty space but in an infinite,
homogeneous, isotropic absorbing medium, the number
of photons at distance r from the source is modified by
the factor e−µattenrB(r), where the buildup factor B(r)
accounts for secondary photons. Therefore,

φ =
µen dr dS e−µattenr

4πr2
B(r) (17.55)

and

Φ =
µen

ρ

e−µattenr

4πr2
B(r). (17.56)

The buildup factor has been tabulated for photons of var-
ious energies in water [Berger (1968)].

17.8.5 More Complicated Cases—the MIRD
Tables

For more realistic geometries, the calculation of φ is quite
complicated. Tables for humans of average build have
been prepared by the MIRD Committee [Snyder et al.
(1969, 1975, 1976)]. A “Monte Carlo” computer calcula-
tion was used. The description below shows how it works
in principle; the actual calculations, though equivalent,
are different in detail to save computer time.

The radioactive nuclei are assumed to be distributed
uniformly throughout the source organ. A point within
the source organ is picked. The model emits a photon
of energy E in some direction, picked at random from
all possible directions. This photon is followed along its
path; for every element ds of its path, the probability of
its interacting, µattends, is calculated. The computer pro-
gram then “flips a coin” with this probability of having
heads. If a head occurs, the photon is considered to inter-
act at that point. If the interaction is Compton scattering,
the angle is picked at random with a relative probability
given by the differential cross section. The energy of a
recoil electron for that scattering angle is calculated and
deposited at the interaction site. Similar procedures are
followed for the photoelectric effect and pair production.
The scattered photon is then followed in the same way. If
a tail occurred on the first flip, the photon is allowed to
travel another distance ds and the probability of interac-
tion is again calculated. This procedure is repeated until
all the energy has been absorbed.

To determine what kind of material the photons are
traveling through, a model of the body called a phantom
is used. An example of a phantom is shown in Fig. 17.13.
This entire procedure is repeated many times for each
organ, until one has a map of the radiation deposited
in all organs by γ rays leaving that point in the source
organ.

The procedure is described in much greater detail by
Snyder et al. (1969, 1976). Table 17.3 shows a portion
of a table for φ. Note that for each photon energy there
are two columns: φ and 100σφ/φ, which is the percent
fractional standard deviation in φ, related to the square
root of the number of photons absorbed in the target
organ.

A computer code (OLINDA/EXM) is usually used to
make the calculations [Stabin et al. (2005)].

Arqueros and Montesinos (2003) provide a pedagogical
discussion of Monte Carlo simulation of γ-ray transport.
A pedagogical program for whole-body Monte Carlo cal-
culations has been developed by Hunt et al. (2004). It is
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FIGURE 17.13. The phantom used by the MIRD Committee
for calculations of the absorbed fraction. (a) A view of the
whole body. (b) Details of the heart boundaries. Reprinted
by permission of the Society of Nuclear Medicine from W. S.
Snyder, M. R. Ford, G. G. Warner, and H. L. Fisher. MIRD
Pamphlet No. 5. Estimates of Absorbed Fractions for Mono-
energetic Photon Sources Uniformly Distributed in Various
Organs of a Heterogeneous Phantom. J. Nucl. Med. 1969; 10
(Suppl. 3): 5–52, Figs. 4 and 5.

available through the RADAR web site: www.doseinfo-
radar.com.

Often most of the isotope is taken up in one or two
organs, and the rest of it distributes fairly uniformly
through the rest of the body. Using the subscript h for
the organs with the greatest activity, TB to mean total
body, and RB to mean the rest of the body,

ÃRB = ÃTB −
∑

hÃh. (17.57)

The dose is then

Dk =
∑

hÃhS(rk ← rh) + ÃRBS(rk ← RB). (17.58)

The quantity S(rk ←RB) cannot easily be tabulated,
since it depends on what organs are included in the sum
over h. Substituting the tabulated quantity S(rk ←TB)
introduces errors because the “hot” organs that have sig-
nificant activity are included a second time. One solution
to this problem is to modify the cumulated activities [Cof-
fey and Watson (1979)]. First, define a uniform total body
cumulated activity that has the same cumulated activity
per unit mass as the rest of the body:

Ãu =
mTB

mRB
ÃRB. (17.59)

This activity in the total body would give a dose

Dk = ÃuS(rk ← TB).

Then define for each organ of interest the quantity Ã∗
h,

which is the difference between the actual activity in or-
gan h and that assuming the substance is uniformly dis-
tributed in the total body:

Ã∗
h = Ãh − mh

mRB
ÃRB. (17.60)

Then the dose to organ k is

Dk =
∑

hÃ∗
hS(rk ← rh) + ÃuS(rk ← TB). (17.61)

Problem 32 shows that Eqs. 17.59–17.61 are consistent
with Eqs. 17.57 and 17.58 if

mRB

mTB
S(rk ← RB) +

∑

h

mh

mTB
S(rk ← rh) = S(rk ← TB),

(17.62)
which is consistent with a uniform source Ãu distributed
throughout the body. The dose can be determined either
by calculating the modified activities and using the total
body S in Eq. 17.61, or by calculating S for the rest of the
body from Eq. 17.62 and using the unmodified activities.
Problem 33 shows how these reformulations work in a
simple case.

17.9 Radiopharmaceuticals and
Tracers

A radioactive nucleus by itself is not very useful. It must
usually be attached to some substance that will give it
the desired biological properties, for example, to be pref-
erentially absorbed in the region of interest. It must also
be prepared in a sterile form, free of toxins that produce a
fever (pyrogens) so that it can be injected in the patient.
This section surveys some of the properties of radiophar-
maceuticals.

17.9.1 Physical Properties

The half-life must be short enough so that a reasonable
fraction of the radioactive decays take place during the
diagnostic procedure; any decays taking place later give
the patient a dose that has no benefit. (This requirement
can be relaxed if the biological excretion is rapid.) On
the other hand, the lifetime must be long enough so that
the radiopharmaceutical can be prepared and delivered
to the patient.

For diagnostic work, the decay scheme should minimize
the amount of nonpenetrating radiation. Such radiation
provides a dose to the patient but never reaches the de-
tector. This means that there should be as few charged
particles (β particles) as possible. The ideal source then is
a γ source, which means that the nucleus is in an excited
state (an isomer). Such states are usually very short-lived.
Not only should the nucleus be a γ emitter, but the inter-
nal conversion coefficient should be small, since internal
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conversion produces nonpenetrating electrons. Positron
emitters are more desirable than are β− emitters because
the positrons produce 0.5-MeV radiation that can reach
an external detector. For therapy, on the other hand, non-
penetrating radiation is ideal.

It is also necessary that the decay product have no
undesirable radiations. If the decay is a β− or β+ decay,
the product has different chemical properties from the
parent and may be taken up selectively by a different
organ. If it is also radioactive, this can confuse a diagnosis
and give an undesirable dose to the other organ.

Ease of chemical separation of the radioactive sub-
stance from whatever carrier it is produced with is also
important. It is necessary to remove the radioactive iso-
tope from stable isotopes of the same element, because
the chemicals are usually toxic. This toxicity is avoided
by giving the chemical in minute amounts, which can only
be done if the specific activity is high.

17.9.2 Biological Properties

For diagnostic work, a pharmaceutical is needed that is
taken up more by the diseased tissue to give a “hot spot”
or taken up less to give a “cold spot.” The former is easier
to see with small amounts of radioactivity, but both tech-
niques are used. For therapy one wishes to have selective
absorption of the pharmaceutical so that the radiations
will destroy the target organ but not the rest of the body.
There are several mechanisms by which a pharmaceutical
may be localized.

1. Active transport. The drug is concentrated by a spe-
cific organ against a concentration gradient. Exam-
ples are the selective concentration of iodine in the
thyroid, salivary, and gastric glands. (It is rapidly
excreted from the last two but is retained in the
thyroid). This technique is also effective for certain
drugs in the kidney.

2. Phagocytosis. Particles in the size range 1–1,000 nm
may be phagocytized—taken up by specialized cells
of the reticuloendothelial system. This can take place
in liver, bone marrow, and spleen. Particles of size
1 nm go to the Kupfer cells of the liver and to the
marrow, while larger particles (100–1,000 nm) are
gathered by phagocytes in the liver and spleen.

3. Sequestration. Still larger particles, such as red blood
cells that have been denatured by heat, are gathered
in the spleen or liver by the process called seques-
tration. The particles are trapped as the blood per-
colates through the pulp of the spleen and are later
phagocytized.

4. Capillary blockade. The capillaries have a diameter
of 7-10 µm. Particles from 20 to 40 µm diameter in-
jected into a vein will find progressively larger vessels
as they work their way through the right heart and
will be stopped in the capillaries of the lung.

FIGURE 17.14. A 99Mo–99mTc generator system. Molybde-
num is trapped in the aluminum oxide layer. Eluant intro-
duced at the top flows through and is collected at the bottom.

5. Diffusion. It is also possible for a pharmaceutical to
move through a membrane to a region of lower con-
centration. There is a blood–brain barrier between
the blood and the central nervous system that is rel-
atively impermeable even to small ions. In a brain
scan the chemical is not concentrated in normal brain
tissue but leaks into tissue where the blood–brain
barrier is compromised by a lesion.

6. Compartmental localization. A suitable pharmaceu-
tical injected in the blood may remain there a long
time, mixing well and allowing the blood volume to
be determined.

The most widely used isotope is 99mTc. As its name
suggests, it does not occur naturally on earth, since it has
no stable isotopes. We consider it in some detail to show
how an isotope is actually used. Its decay scheme has been
discussed above. There is a nearly monoenergetic 140-keV
γ ray. Only about 10% of the energy is in the form of
nonpenetrating radiation. The isotope is produced in the
hospital from the decay of its parent, 99Mo, which is a
fission product of 235U and can be separated from about
75 other fission products. The 99Mo decays to 99mTc.

Technetium is made available to hospitals through a
“generator” that was developed at Brookhaven National
Laboratories in 1957 and is easily shipped. Isotope 99Mo,
which has a half-life of 67 h, is adsorbed on an alu-
mina substrate in the form of molybdate (MoO2−

4 ). From
8 to 100 GBq of 99Mo can be provided. The heart of
such a generator (without the lead shielding) is shown in
Fig. 17.14. As the 99Mo decays, it becomes pertechnetate
(TcO−

4 ). Sterile isotonic eluting solution is introduced un-
der pressure above the alumina and passes through after
filtration into an evacuated eluate container. After re-
moval of the technetium, the continued decay of 99Mo
causes the 99mTc concentration to build up again. A gen-
erator lasts about a week.
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Several steps must be taken to prepare the pertechne-
tate as a radiopharmaceutical. First, it must be checked
for breakthrough of the 99Mo. The Nuclear Regulatory
Commission allows 1.5 × 10−4 Bq of 99Mo per Bq of
99mTc. The purity is checked by placing the eluate in
a lead sleeve that attenuates the 99mTc γ ray much more
than the ≈ 750-keV γ rays from 99Mo and measuring the
activity. It is also checked with a colorimetric test for the
presence of aluminum ion.

The eluate can be used directly for imaging brain, thy-
roid, salivary gland, urinary bladder, and blood pool, or it
can be combined with phosphate, albumin or aggregated
albumin, colloidal sulfur, or FeCl3. Commercial kits are
available for making these preparations.

For example, kits for labeling aggregated human albu-
min are commercially available. A vial containing 10 ml
of saline solution is enough for ten doses. The aggregated
albumin particles are 10–70 µm in diameter. Each milli-
liter of solution contains (4−8)×105 particles. Tin is at-
tached to the microspheres and serves to bind technetium.
Up to 109 Bq of technetium pertechnetate is added to
the vial by the user. A typical adult dose is 10–40 MBq
(3.51×105 albumin particles). The problems consider at-
taching Tc to the microspheres and what fraction of the
capillaries are blocked by this kind of study.

Other common isotopes are 201Tl, 67Ga, and 123I. Thal-
lium, produced in a cyclotron, is chemically similar to
potassium and is used in heart studies, though it is be-
ing replaced by 99mTc–sestamibi and 99mTc–tetrofosmin.
Gallium is used to image infections and tumors. Iodine
is also produced in a cyclotron and is used for thyroid
studies.

17.10 Sample Dose Calculation

We pull this discussion together by making a simplified
calculation of the dose to various organs from 99mTc-
labeled microspheres used in a lung scan. We assume that
37 MBq of 99mTc is injected, that it all lodges in the
capillaries of the lung, and that it remains there long
enough so that the half-life is the physical half-life.9 The
residence time is then τh = 1.443T1/2 = (1.443)(6) =
8.658 h, so the cumulated activity is Ãlung = (3.7 × 107)
(8.658 × 60 × 60) = 1.153 × 1012 Bq s.

The steps in calculating S and the dose are summarized
in Table 17.4, which combines information on ∆i with val-
ues of φ for lung, heart, liver, head, and the whole body.
The values of ∆i are from Fig. 17.15, which is a more

9The last is not a good assumption. The 99mTc leaches from the
microspheres into the general circulation. A more accurate calcula-
tion requires measurements and the use of a convolution integral,
as described in Loevinger et al. (1988, pp. 79–81). The principle
residence times are 4.3 h in the lung, 1.8 h in the extravascular
space, 0.83 h in the urine, 0.7 h in the kidney, and 0.6 h in the
blood.

FIGURE 17.15. The values of ∆i for 99mTc used in Table
17.4 to calculate the dose from a source in the lungs. These
are more recent values than those in Fig. 17.4. The reference
at the bottom to ruthenium-99 is because 99mTc undergoes β
decay in 3.7× 10−5 of transitions. This does not affect any of
the entries in the table. Reprinted by permission of the Society
of Nuclear Medicine from D. A. Weber, K. F. Eckerman, L.
T. Dillman, and J. C. Ryman. MIRD: Radionuclide Data and
Decay Schemes. New York, Society of Nuclear Medicine, 1989:
178–179.

recent version of the output table of Fig. 17.4. Table 17.4
refers to the line number for the entry in both Fig. 17.15
and Fig. 17.4. It is worth taking time to compare the
entries with the lines in Fig. 17.4 to see the variations
with more recent information. Values of φi(rk ← rh) are
taken to be 1 in the lung and the whole body when the
radiations are nonpenetrating, that is, photons with en-
ergy less than 25 keV or electrons. For the high-energy
photons (line 3) the values of φ are obtained by interpola-
tion to 140 keV from the values in Table 17.3 for 100 and
200 keV. The sum Sk =

∑
∆iφi, the mass of each organ,

and the dose for the cumulated activity of 1.153×1012 Bq



17.10 Sample Dose Calculation 499

T
A

B
L
E

1
7
.4

.
V

a
lu

es
o
f
∆

i
,
E

i
,
a
n
d

φ
i

fo
r

9
9
m

T
c

in
th

e
lu

n
g
.

φ
i

i, L
in

e
in F
ig

.
17

.1
5

∆
i

(G
y

kg
−

1

B
q−

1
s−

1
)

E
i

(k
eV

)
(e

de
no

te
s

an
el

ec
tr

on
)

L
un

g
H

ea
rt

L
iv

er
H

ea
d

W
ho

le
B

od
y

L
in

e
in F
ig

.
17

.4

∆
i

(g
ra

d
µ
C

i−
1

h−
1
)

1
0.

00
00

1
2.

56
×

10
−

1
6

e
1

0
0

0
1

2
0.

00
34

2
2.

64
×

10
−

1
7

e
1

0
0

0
1

0.
00

04
3

2.
00

×
10

−
1
4

14
0.

5
0.

04
95

0.
01

35
0.

01
66

0.
00

77
0.

37
85

3
0.

26
70

4
1.

70
×

10
−

1
5

e
1

0
0

0
1

4
0.

02
52

5-
7

2.
15

×
10

−
1
6

e
1

0
0

0
1

5
0.

00
31

8
4.

36
×

10
−

1
7

e
1

0
0

0
1

6
0.

00
06

9
8.

43
×

10
−

1
8

e
1

0
0

0
1

0.
00

01
14

2.
6

0.
04

95
0.

01
35

0.
01

66
0.

00
77

0.
37

85
7

0.
00

00
10

1.
08

×
10

−
1
6

e
1

0
0

0
1

8
0.

00
14

11
-1

3
3.

84
×

10
−

1
7

e
1

0
0

0
1

9
0.

00
05

14
7.

64
×

10
−

1
8

e
1

0
0

0
1

10
0.

00
01

15
1.

17
×

10
−

1
6

18
.3

7
1

0
0

0
1

11
0.

00
16

16
6.

14
×

10
−

1
7

18
.2

5
1

0
0

0
1

12
0.

00
08

17
2.

26
×

10
−

1
7

20
.6

2
1

0
0

0
1

13
0.

00
03

18
-2

2
3.

41
9
×

10
−

1
7

e
1

0
0

0
1

14
0.

00
05

23
-2

5
1.

62
3
×

10
−

1
7

e
1

0
0

0
1

15
0.

00
02

26
-2

8
3.

36
7
×

10
−

1
7

e
1

0
0

0
1

16
0.

00
45

29
7.

27
×

10
−

1
7

e
1

0
0

0
1

17
0.

00
10

∑
∆

iφ
i

3.
75

×
10

−
1
5

2.
70

×
10

−
1
6

3.
32

×
10

−
1
6

1.
54

×
10

−
1
6

1.
03

×
10

−
1
4

m
(k

g)
0.

99
9

0.
60

3
1.

83
3

5.
27

8
70

.0
36

S
=
∑

∆
iφ

i/
m

3.
76

×
10

−
1
5

4.
48

×
10

−
1
6

1.
81

×
10

−
1
6

2.
92

×
10

−
1
7

1.
48

×
10

−
1
6

D
os

e
(G

y)
A

0
=

37
M

B
q

4.
33

×
10

−
3

5.
16

×
10

−
4

2.
09

×
10

−
4

3.
36

×
10

−
5

1.
70

×
10

−
4



500 17. Nuclear Physics and Nuclear Medicine

TABLE 17.5. Some typical doses for nuclear medicine procedures.

Study and agent A0 (MBq) Organ and high-
est dose (mSv)

Total body
dose (mSv)

Effective
dose (mSv)

Bone 555 Bladder wall 51 2.0 4.4
99mTc–pyrophosphate

Heart 55 Kidneys 20 3.6 13
201Tl–chloride

Liver 185 Bladder wall 17 0.9 2.6
99mTc–sulfur colloid

Source: Adapted from Table 9-3 in P. B. Zanzonico, A. B. Brill, and D. V.
Becker, Radiation dosimetry, Chapter 9 in H. N. Wagner, Jr., Z. Szabo, and
J. W. Buchanan, eds. Principles of Nuclear Medicine, 2nd. ed. Philadelphia,
Saunders (1995).

s are shown on the bottom lines. The dose to the lungs is
4.3×10−3 Gy. The whole body dose is much less because
the absorbed energy is divided by the mass of the entire
body. The value of φ shows that about 38% of the photon
energy is absorbed in the body.

The dose to the lungs is considerably greater than in a
chest x ray; however, a chest x ray is almost useless for
diagnosing a pulmonary embolus. The whole body dose
is not unreasonable.

Table 17.5 shows some typical doses from various nu-
clear medicine procedures. The effective dose is defined
on p. 468.

17.11 Auger Electrons

In Sec. 15.9 we discussed the deexcitation of atoms, in-
cluding the emission of Auger and Coster–Kronig elec-
trons. The Auger cascade means that several of these
electrons are emitted per transition. If a radionuclide is
in a compound that is bound to DNA, the effect of sev-
eral electrons released in the same place is to cause as
much damage per unit dose as high-LET radiation. Lin-
ear energy transfer was defined in Chapter 15. A series of
reports on this effect have been released by the American
Association of Physicists in Medicine (AAPM) [Sastry
(1992); Howell (1992); Humm et al. (1994)].

Many electrons (up to 25) can be emitted for one
nuclear transformation, depending on the decay scheme
[Howell (1992)]. The electron energies vary from a few eV
to a few tens of keV. Corresponding electron ranges are
from less than 1 nm to 15 µm. The diameter of the DNA
double helix is about 2 nm. A number of experiments [re-
viewed in the AAPM reports, also Kassis (2004)] show
that when the radioactive substance is in the cytoplasm
the cell damage is like that for low-LET radiation in Fig.
15.32 with relative biological effectiveness (RBE) = 1.
When it is bound to the DNA, survival curves are much
steeper, as with the α particles in Fig. 15.32 (RBE ≈ 8).
When it is in the nucleus but not bound to DNA the RBE

FIGURE 17.16. A scintillator with a lead collimator to give
directional sensitivity.

is about 4. The fraction of the Auger emitter that binds
to the DNA depends on the chemical agent to which the
nuclide is attached. There is also a significant bystander
effect [Kassis (2004)].

17.12 Detectors; The Gamma Camera

Nuclear medicine images do not have the inherent spa-
tial resolution of diagnostic x-ray images; however, they
provide functional information: the increase and decrease
of activity as the radiopharmaceutical passes through the
organ being imaged.

Early measurements were done with single detectors
such as the scintillation detector10 shown in Fig. 17.16.
Directional sensitivity is provided by a collimator, which
can be cylindrical or tapered. Single detectors are still
used for in vitro measurements and for thyroid uptake
studies.

Two-dimensional images can be taken with the scin-
tillation camera or gamma camera shown in Figs. 17.17
and 17.18. The scintillator is 6–12 mm thick and about 60
cm across. Modern scintillators are rectangular. The scin-
tillator is viewed by an array of 50–100 photomultiplier
tubes arranged in a hexagonal array. The tube nearest

10Scintillation detectors were discussed in Sec. 16.3.
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FIGURE 17.17. Side view of a scintillation camera. A collima-
tor allows photons from the patient to strike the scintillator
directly above the source. An array of photomultiplier tubes
records the position and energy of the detected photon.

FIGURE 17.18. A square scintillator viewed by an array of
67 photomultiplier tubes. The hexagonal arrangement of the
tubes above the scintillator gives the closest spacing between
tubes.

where the photon interacts receives the greatest signal.
Signals from each tube are combined to give the total
energy signal and x and y position signals.

The collimator is a critical component of the gamma
camera. The channels are usually hexagonal, with walls
just thick enough to stop most of the photons which
do not pass down the collimator opening. The collima-
tor usually has parallel channels; single pinholes, diverg-
ing, and converging channels are sometimes used and can
lead to geometric distortions of the image [Cherry et al.
(2003), p. 221, 239ff)]. The spatial resolution depends
on the distance from the source to the collimator, as
shown for one collimator in Fig. 17.19. There are trade-
offs between sensitivity and resolution [Links and Eng-

dahl (1995)]. Some of the aspects of collimator design are
discussed in Problems 48–50.

Figure 17.20 shows a bone scan of a child taken with
a gamma camera. The 99mTc–diphosphonate is taken up
in areas of rapid bone growth. Bone growth at the epi-
physes at the end of each bone can be seen. There are
also hot spots at the injection site, in one kidney, and in
the bladder.

Nuclear medicine can show physiologic function. For
example, if the isotope is uniformly distributed in the
blood, viewing the heart and synchronizing the data ac-
cumulation with the electrocardiogram (gating) allows
one to measure blood volume in the heart when it is full
and contracted, and to calculate the ejection fraction, the
fraction of blood in the full left ventricle that is pumped
out. Fig. 17.21, shows pictures and contours of the heart
at end-systole and end-diastole. The imaging agent was
99mTc-labeled human red blood cells.

Figure 17.22 shows a series of images taken at six dif-
ferent angles around a patient who has had a lung trans-
plant. The left lung is new and shows considerably more
activity than the diseased right lung.

17.13 Single-Photon Emission
Computed Tomography

Still another detection scheme, single-photon emission
computed tomography (SPECT), is analogous to com-
puted tomography (CT). The detector is sensitive to all
radioactivity along a line passing through the patient.
The counting rate is thus proportional to a projection
through the patient, and a cross-sectional slice can be re-
constructed from a series of projections, just as was done
with x-ray CT using the techniques in Ch. 12. A series of
images like those in Fig. 17.22, but at more angles, are
used to reconstruct a three-dimensional image that can
then be viewed from any direction, with slices at any de-
sired depth. A SPECT scan is shown in Fig. 17.23. There
are five reconstructed slices in planes parallel to the long
axis of the heart. The left ventricle is prominent, and the
right ventricle can be seen faintly in the last few slices.

One of the problems with SPECT is photon attenua-
tion along the projection line. This is shown in Fig. 17.24
for a cylindrical source with uniform activity through-
out. Let AV be the activity per unit volume, and ignore
variations in 1/r2. The projection F (x) is

F (x) =
∫ a

−a

AV (x, y)∆x∆z e−µ(y+a) dy, (17.63)

where dy ∆x∆z is the volume detected. When AV (x, y)
is constant (a uniform activity distribution), this can be
integrated to give

F =
AV ∆x∆z

µ

(
1 − e−2µ(R2−x2)1/2

)
. (17.64)
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This is plotted in Fig. 17.25 for µ = 0, µ = 10 m−1 (511-
keV annihilation radiation) and µ = 15 m−1 (140 keV
99mTc). When µ = 0, F (x) = AV (2a∆x∆z), where 2a
is the thickness of the source along the projection. Cor-
rections for attenuation are made in a number of ways.11

Other nuclides used besides 99mTc are 81mKr, 133Xe, 131I,
67Ga, 123I, and 201Tl.

17.14 Positron Emission Tomography

If a positron emitter is used as the radionuclide, the
positron comes to rest and annihilates an electron, emit-
ting two annihilation photons back to back. In positron
emission tomography (PET) these are detected in coinci-
dence. This simplifies the attenuation correction, because
the total attenuation for both photons is the same for all
points of emission along each γ ray through the body (see
Problem 54). Positron emitters are short-lived, and it is
necessary to have a cyclotron for producing them in or
near the hospital. This is proving to be less of a problem
than initially imagined. Commercial cyclotron facilities
deliver isotopes to a number of nearby hospitals. Patter-
son and Mosley (2005) found that 97% of the people in
the United States live within 75 miles of a clinical PET
facility.

We have mentioned that nuclear medicine procedures
have the potential to measure function, as the mole-
cules to which the isotopes are bound move from or-

11See Cherry et al. (2003, pp. 305–312); Larsson (1980).

TABLE 17.6. Positron emitters used in nuclear medicine.

Nuclide Half-life
11
6 C 20.3 min
13
7 N 10.0 min
15
8 O 2.1 min
18
9 F 109.7 min

gan to organ in the body. This is particularly true
for some of the lighter positron emitters, which have
the advantage of being natural constituents of mole-
cules in the body or similar to them (Table 17.6). PET
can provide a functional image with information about
metabolic activity. A very common positron agent is 18F
fluorodeoxyglucose—glucose in which a hydroxyl group
has been replaced with 18F. The PET signal is largest in
those cells that have taken up the 18F because they are ac-
tively metabolizing glucose. PET has become particularly
important in studies of brain function, where active neu-
rons are detected by an increase in their metabolism, and
in locating metastatic cancer. The number of installed
PET scanners is growing very rapidly. Most of them have
built-in CT scanners to provide accurate fused PET/CT
images.

A PET scan overlaid on a magnetic resonance (MRI)
image is shown in Fig. 17.26 The positron emitter is 15O-
labeled water. The views are described in the caption.
The subject is sequentially touching each finger of the
left hand with the thumb. Activity can be seen in the
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FIGURE 17.20. A scintillation camera “bone scan” of a
7-year-old male who received a 99mTc–diphosphonate injec-
tion. An anterior view is on the left, and a posterior view is
on the right. The scan shows an area of decreased uptake sur-
rounded by a dark ring in the right anterior skull, consistent
with an eosinophilic granuloma. Identifiable hot regions are
the injection site in the right elbow, an attempted injection
site in the right hand, the bladder, and the left kidney, which is
probably not remarkable on this exam, along with the ends of
the long bones. Photograph courtesy of B. Hasselquist, Ph.D.,
Department of Diagnostic Radiology, University of Minnesota.

FIGURE 17.21. Two gated-scintillation camera views of the
heart, imaged with 99mTc-labeled red blood cells. The dots
outline the left ventricle. On the left is end diastole (left ventri-
cle filled with blood). On the right is end systole (left ventricle
at smallest volume). The ejection fraction is 66%. Photograph
courtesy of B. Hasselquist, Ph.D., Department of Diagnostic
Radiology, University of Minnesota.

right cerebral sensorimotor cortex (slice, upper right) and
in the left cerebellum (slice, lower left). The technique
is described by Rehm et al. (1994) and Strother et al.
(1995).

FIGURE 17.22. Lung scans of a patient who has received
a lung transplant. The upper left is a posterior view; each
successive view is rotated about the patient, ending with an
anterior view on the lower right. The left lung is the trans-
plant. It has much more activity than the diseased right lung.
Photograph courtesy of B. Hasselquist, Ph.D., Department of
Diagnostic Radiology, University of Minnesota.

FIGURE 17.23. Single photon emission computed tomo-
graphic (SPECT) slices of the heart. The patient was injected
with 99mTc–tetrofosmin, an agent that is taken up by my-
ocardium. The images have been reconstructed in planes par-
allel to the axis of the heart. The dark myocardium surrounds
the blood in the left ventricle. Photograph courtesy of B. Has-
selquist, Ph.D., Department of Diagnostic Radiology, Univer-
sity of Minnesota.
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FIGURE 17.24. Projection perpendicular to the x axis for
a radioactive source of uniform concentration, including the
effect of photon attenuation.

17.15 Brachytherapy and Internal
Radiotherapy

Brachytherapy (brachy means short) involves implant-
ing in a tumor sources for which the radiation falls off
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FIGURE 17.26. A positron emission tomography (PET) scan
is overlayed on an MR image. At the upper left is a three-
-dimensional MRI of the brain viewed from above and to
the right. At the bottom the image has been sliced through
the motor strip and cerebellum, and the two pieces are sep-
arated. The PET image has been overlaid on the slice. The
positron emitter is 15O-labeled water. The subject is sequen-
tially touching each finger of the left hand with the thumb.
Activity can be seen in the right cerebral sensorimotor cortex
(slice, upper right) and in the left cerebellum (slice, lower left).
Image courtesy of Prof. Kelly Rehm, University of Minnesota
and the PET Imaging Service, Veterans Administration Med-
ical Center, Minneapolis.

rapidly with distance because of attenuation, short range,
or 1/r2. Originally the radioactive sources (seeds) were
implanted surgically, resulting in high doses to the oper-

ating room personnel. In the afterloading technique, de-
veloped in the 1960s, hollow catheters are implanted sur-
gically and the sources inserted after the surgery. Remote
afterloading, developed in the 1980s, places the sources
by remote control, so that only the patient receives a ra-
diation dose.

We saw in Chapter 16 that fractionation of the dose re-
sults in better sparing of normal tissue for a given proba-
bility of killing the tumor. Afterloading allows the sources
to be placed and removed, but it is often difficult for
the patient to tolerate the catheters for long periods of
time. This has led to the development of high-dose-rate
brachytherapy (HDR), in which the dose is given in one
or a few fractions over the course of a day or two [Nag
(1994)]. Though this is much easier for the patient, tis-
sue sparing is not as great as with a longer treatment.
Current practice seeks to compensate for this by meticu-
lous treatment planning based on an extended version of
the linear-quadratic model, and by making sure that the
tumor receives much higher doses than the surrounding
normal tissue.

Radium was the first brachytherapy source, but it has
been replaced by a number of nuclei that decay by β−

emission or electron capture. Conventional low-dose-rate
brachytherapy is delivered at 0.4–1.0 Gy hr−1. High dose
rates are about 1 Gy min−1.

Patients with coronary artery disease are often treated
with balloon angioplasty, in which a coronary artery is
dilated by inserting a balloon on the end of a catheter
into the femoral artery in the leg and from there through
the aorta and into the coronary artery. One problem is
restenosis or reclosure of the artery. Restenosis can be
reduced by placing a stent—a helical coil of wire—in the
artery at the time of the angioplasty. Restenosis some-
times occurs within a stent, though the rate of recur-
rence is reduced by using a stent which elutes (gives off)
a restenosis-inhibiting drug. If restenosis does occur, it
can be treated by placing a string of radioactive seeds in
the stent. Treatments may use either a gamma emitter,
192Ir, for 20 minutes, or a beta emitter (90Sr/90Y) for 3
minutes [Kaluza and Raizner (2004); Fox (2002)].

Internal radiotherapy treats the patient with a radionu-
clide in a chemical that is selectively taken up by the tu-
mor. The classic example is the administration by mouth
of capsules containing 131I for treatment of hyperthy-
roidism and thyroid cancer. Other nuclides are being used
experimentally for breast and neuroendocrine tumors and
melanoma [Fritzberg and Wessels (1995)]. A radionuclide
for this purpose should emit primarily nonpenetrating ra-
diation, have a physical half-life long compared to the
biological half-life, have a large activity per unit mass,
and exhibit a high degree of specificity for the tumor. If
the nuclide can be delivered within the cell, then Auger
electrons can be exploited. One way to achieve high con-
centrations in the tumor is radioimmunotherapy : mon-
oclonal antibodies are tagged with the radionuclide [see
the special issue of Medical Physics edited by Buchsbaum
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and Wessels (1993)]. It turns out that double-strand DNA
breaks from Auger cascades occur more often than had
been expected, and that the bystander effect is important.
The use of Auger electrons from nuclides attached to the
appropriate antibodies for cancer therapy is under active
development; see Kassis (2004). The MIRD formulation
can be adapted to the dose calculations [Watson et al.
(1993)]. Radionuclide therapy is described for a general
audience by Coursey and Nath (2000).

17.16 Radon

The naturally occurring radioactive nuclei are either pro-
duced continuously by cosmic γ ray bombardment, or
they are the products in a decay chain from a nucleus
whose half-life is comparable to the age of the earth.
Otherwise they would have already decayed. There are
three naturally occurring radioactive decay chains near
the high-Z end of the periodic table. One of these is the
decay products from 238

92 U, shown in Fig. 17.27. The half-
life of 238U is 4.5 × 109 yr, which is about the same as
the age of the earth. A series of α and β decays lead to
radium, 226Ra, which undergoes α decay with a half-life
of 1620 yr to radon, 222Rn.

Uranium, and therefore radium and radon, are present
in most rocks and soil. Radon, a noble gas, percolates
through grainy rocks and soil and enters the air and wa-
ter in different concentrations. Although radon is a noble
gas, its decay products have different chemical properties
and attach to dust or aerosol droplets which can collect
in the lungs. High levels of radon products in the lungs
have been shown by both epidemiological studies of ura-
nium miners and by animal studies to cause lung cancer
[Committee on the Biological Effects of Ionizing Radia-
tions, BEIR IV (1988); BEIR VI (1999)]. The deposition
process is quite complicated. A certain fraction of the de-
cay products attach to aerosol droplets. That fraction is
an important parameter in estimating the dose, because
the unattached particles are deposited in the airways;
those that have attached to aerosols also are also de-
posited in the airways, the site depending on the droplet
size. The rate at which natural mucus clearing from the
lungs removes them is also variable.

The 222
86 Rn decay scheme is shown in Fig. 17.28. (Alter-

nate branches that occur very rarely are not shown.) The
shaded nuclides are the greatest contributors to the dose.
Radon is a noble gas; once it decays the other shaded nu-
clides decay shortly after. Radon dosimetry is described
on pp. 137–158 of BEIR IV (1988) and in BEIR VI (1999).
Typical uranium activities in soil are 20 Bq kg−1 (range
7–40), leading to radon concentrations in the air over av-
erage soil of about 4 Bq m−3.

The working level (WL) has been defined to be any
combination of the shaded isotopes in Fig. 17.28 in 1 liter
of air at ambient temperature and pressure that results
in the ultimate emission of 1.3 × 105 MeV of α-particle
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FIGURE 17.27. Decay of 238U to radon.

energy. This is about the energy liberated by the decay
products in equilibrium with 100 pCi (3.7 Bq) of radon.
Thus, 1 WL corresponds to 3.7 Bq l−1 or 3700 Bq m−3.
More recently, the activity of radon and its decay prod-
ucts has been described by the Potential Alpha Energy
Concentration (PAEC) [BEIR VI (1999), p. 179]. Its units
are J m−3.

The working-level month (WLM) measures the total
radon exposure and is 1 WL for 170 h (1 month of 40-h
work weeks). Another unit is the PAEC multiplied by the
number of hours exposure, measured in J h m−3. There
are 3.5 × 10−3 J h m−3 per WLM.

Dose estimates for the miners and for the general popu-
lation require models of aerosol size, unattached fraction,
target cells, exercise level, and occupancy factors that
are described in BEIR IV (1988). Averaging over all of
these variables shows a dose in the lungs of about 6 mGy
per WLM, with a factor-of-2 uncertainty because of these
variables.

The report uses a time-since-exposure model to esti-
mate the risk of lung cancer on the basis of four stud-
ies of groups of miners. The model predicts a relative
risk ratio that is unity for no exposure and increases lin-
early to 3.5 for a continuous exposure of 5 WLM per year
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over a lifetime.12 The report uses the linear-non-threshold
model to estimate risks to the general population at small
exposures. The issue of applying the linear-no-threshold
model was discussed in Sec. 16.13. See particularly the

12BEIR IV (1988), Fig. 2.2. This is averaged by BEIR over smok-

ers and nonsmokers and by me over sex.

data from the Cohen study in Fig. 16.57. Typical radon
concentrations in houses are usually less than 4r0 or 4
pCi l−1 (128 Bq m−3) or 0.04 WL. (We saw in Sec. 16.13
that r0 = 37Bq m−3 = 1 pCi l−1). Exposure to r0 for 24
h per day for one year gives 0.5 WLM. The miners had
exposures of 5–100 WLM per year, over periods of 3–20
years.

Symbols Used in Chapter 17

Symbol Use Units First

used on

page

a Distance m 501

b Source to collimator

distance

m 511

c Speed of light m s−1 482

d Width of collimator

channel

m 511

e Electron charge C 482

fr Fraction of transition

energy released as photons

485

fK , fL Fraction of transition

energy released in K- or

L-shell internal conversion

485

g Detector efficiency 511

h Planck’s constant J s 488

h, k Denote specific organs 489

l Collimator thickness m 511

m0 Rest mass kg 482

mx Rest mass of particle type

x

kg 483

ni Mean number (fraction) of

emissions of type i per

transition

489

p Momentum kg m s−1 486

rh, rk Source and target regions 489

r Distance m 494

r0 Radon concentration unit Bq m−3 506

s Path length m 494

t Time s 484

t Collimator septum

thickness

m 511

v Speed m s−1 482

w Distance across collimator

wall in the direction of

photon travel

m 511

x, y, z Position m 501

A Mass number 482

A, A0 Activity Bq 484

Ãh Cumulated activity in

organ h

Bq s 489

B Buildup factor 494

B, BK , BL Binding energy eV 484

Ch, C̃h Activity and cumulated

activity per unit mass in

organ h

Bq kg−1;

kg−1

492

D Dose J kg−1

(Gy)

489

E, Eγ Energy J, eV 482

Fh Fraction of activity in

organ h

490
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Symbol Use Units First
used on
page

Fh Fraction of activity in organ h 490
F Projection Bq 501
K Geometric factor 511

M, MX Mass kg 487
N Neutron number 482
N, N0 Number of nuclei 484

R, R0 Nuclear radius m 482
R Radius of disk m 501
Rt, Ro True and observed counting

rates
s−1 510

S Mean absorbed dose per unit
cumulated activity

J kg−1 489

S Area m2 494
T Kinetic energy J, eV 482
T Time s 508
T1/2 Half-life s 484

Tj Half-life for jth biological
disappearance process

s 490

WK Fluorescence yield for K shell 493
Z Atomic number (number of

protons)
482

αK , αL Internal conversion coefficient 485
αh Fraction of total activity in

organ h
508

β−, β+ Electron and positron (in β
decay)

485

λ Physical decay constant s−1 484
λj Decay constant for jth

biological process
s−1 490

µ Attenuation coefficient m−1 501
µen Energy absorption coefficient m−1 494
ν, ν Neutrino, antineutrino 486
ν Photon frequency Hz 488
ρ Density kg m−3 494

σφ Standard deviation of φ 494
φi Absorbed fraction 489
τ Detector dead time s 510
τh Residence time in organ h s 490
∆i Mean energy emitted in

radiation type i
J 489

Φj Specific absorbed fraction kg−1 489

Problems

Section 17.1

Problem 1 The best current (2002) value for the mass
of the proton is 1.007276467 u. The mass of the electron is
5.485799095× 10−4 u. The binding energy of the electron
in the hydrogen atom is 13.6 eV. Calculate the mass of
the neutral hydrogen atom.

Problem 2 Solve Eq. 17.1 for the kinetic energy, T .
Show that when v � c, it reduces to the familiar T =
m0v

2/2.

Problem 3 The rest energy of the 184
74 W nucleus is

171, 303 MeV. The average binding energies of the elec-

trons in each shell are

Shell Number of electrons BE per electron (eV)

K 2 69,525
L 8 11,023
M 18 2,125
N 32 215
O 12 35
P 2 1

Calculate the atomic rest energy of tungsten.

Section 17.4

Problem 4 Refer to Figs. 17.2 and 17.5. Uranium splits
roughly in half when it undergoes nuclear fission. Will the
fission fragments decay by β+ or β− emission?

Problem 5 The following nuclei of mass 15 are known:
15
6 C, 15

7 N, and 15
8 O. Of these, 15N is stable. How do the

others decay?

Problem 6 Look up the decay schemes of the following
isotopes (for example, in the Handbook of Chemistry and
Physics, CRC Press, or at www.nndc.bnl.gov/). Com-
ment on their possible medical usefulness: 3H, 15O, 13N,
18F, 22Na, 68Ga, 64Cu, 11C, 123I, and 56Ni.

Problem 7 Look up the half-lives of the isotopes in Fig.
17.6 (for instance in the Handbook of Chemistry and
Physics, CRC Press or at www.nndc.bnl.gov/). Relate
qualitatively the half life to the position of the isotope on
the parabola.

Section 17.5

Problem 8 Calculate the conversion factor k of Eq.
17.22b.

Section 17.6

Problem 9 Show that 1 Ci h = 1.332 × 108 disintegra-
tions or Bq s.

Problem 10 Obtain a numerical value for the residence
time for 99mTc-sulfur colloid in the liver if 85% of the
drug injected is trapped in the liver and remains there
until it decays.

Problem 11 Derive Eqs. 17.40–17.42.

Problem 12 Calculate numerical solutions of Eqs.
17.40 and 17.42 and plot them on semilog paper. Use
λ = 2, λ1 = 0.5, λ2 = 3.

Problem 13 Eq. 17.42 is not valid if λ1 = λ2. In that
case, try a solution of the form N2 = Bte−λt and obtain
a solution.

Problem 14 Derive Eqs. 17.43 and 17.44.
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Problem 15 The biological half-life of iodine in the thy-
roid is about 25 days. 125I has a half-life of 60 days. 132I
has a half-life of 2.3 h. Find the effective half-life in each
case.

Problem 16 For Sec. 17.6.4, with λ = 0.05 h−1, λ1 = 1
h−1, and λ2 = 0.1 h−1, find Ã1 and Ã2 in terms of the
initial activity A0 and in terms of the initial number of
nuclei N0.

Problem 17 N0 radioactive nuclei with physical decay
constant λ are injected in a patient at t = 0. The nu-
clei move into the kidney at a rate λ1, so that the num-
ber in the rest of the body falls exponentially: N(t) =
N0e

−(λ+λ1)t. Suppose that the nuclei remain in the kid-
ney for a time T before moving out in the urine. (This
is a crude model for the radioactive nuclei being filtered
into the glomerulus and then passing through the tubules
before going to the bladder.)

(a) Calculate the cumulated activity and the residence
time in the kidney by finding the total number of nuclei
entering the kidney and multiplying by the probability that
a nucleus decays during the time T that it is in the kidney.

(b) Calculate the cumulated activity and residence time
in the bladder, assuming that the patient does not void.

Problem 18 Suppose that at t = 0, 99mTc with an ac-
tivity of 370 kBq enters a patient’s bladder and stays there
for 2 h, at which time the patient voids, eliminating all of
it. What is the cumulated activity? What is the cumulated
activity if the time is 4 h?

Problem 19 Suppose that the 99mTc of the previous
problem does not enter the bladder abruptly at t = 0, but
that it accumulates linearly with time. At the end of 2 h
the activity is 370 kBq and the patient voids, eliminating
all of it. What is the cumulated activity?

Problem 20 A radioactive substance has half-life T1/2.
It is excreted from the body with biological half-life T1.
N0 radioactive nuclei are introduced in the body at t = 0.
Find the total number that decay inside the body.

Problem 21 The fractional distribution function αh is
the fraction of the total activity which is in organ h:
αh(t) = Ah(t)/A(t) = Ah(t)/A0e

−λt.
(a) Show that τh =

∫∞
0

αh(t)e−λtdt.
(b) Calculate α1(t) and α2(t) for Eqs. 17.40 and 17.42

and show that integration of these expressions leads to
Eqs. 17.44.

Problem 22 Suppose that the fractional distribution
function (defined in the previous problem) is α(t) = 1, t <
T ; α(t) = b, t > T ; (b < 1). Find the residence time.
This is a simple model for the situation where a bolus (a
fixed amount in a short time) of some substance passes
through an organ once and is then distributed uniformly
in the blood.

Problem 23 The distribution function qh(t) is defined
to be the activity in organ h corrected for radioactive de-
cay to a reference time. If the correction is from time t
to time 0, find an expression for qh(t) in terms of Ah(t).

Problem 24 The “official” definition of the fractional
distribution function αh(t) is the ratio of the distribution
function qh(t) produced by a bolus administration to the
patient, divided by the activity A0 in the bolus. Show that
this is equivalent to the definition in Problem 21.

Problem 25 Show that if the uptake in a compart-
ment is not instantaneous but exponential, with subse-
quent exponential decay, the cumulated activity is Ã =
1.443A0(TeTue/Tu), where Te is the effective half-life for
excretion, and Tue = TuT1/2/(Tu + T1/2). Hint: See Eq.
17.43.

Section 17.7

Problem 26 Use the output data of Fig. 17.4 to esti-
mate values for WK , Kα/(Kα+Kβ), and Kβ/(Kα+Kβ).
Compare your values to those used in Table 17.2.

Problem 27 Rearrange the output data of Fig. 17.4.
Find the total ∆ for emission of photons below 30 keV
and charged particles. Rank the radiations in the order
they contribute to the dose.

Problem 28 Calculate the entries in the output data of
Fig. 17.4 for γ3, using the same techniques that were used
in the text for γ1 and γ2.

Problem 29 The isotope 133
54 Xe is used for studies of

pulmonary function by inhalation. It decays by β emis-
sion with a half-life of 5.3 days to 133

55 Cs. The maximum
β energy is 0.346 MeV; the average is 0.100 MeV. The
cesium then emits a 0.081-MeV γ ray. The Cs has the
following properties:

αK = 1.46, αL = 2.35, αM = 0.078

EK = 0.031 MeV, BK = 0.036 MeV, BL = 0.006 MeV.

Calculate ∆i for the β particle, the γ ray, K and L in-
ternal conversion electrons, and Kα x rays. Assume that
all x rays are Kα.

Problem 30 Nitrogen-13 has a half-life of 10 min. All
of the disintegrations emit a positron with end point en-
ergy 1.0 MeV (average energy 0.488 MeV). There is no
electron capture. Make a table of radiations that must be
considered for calculating the absorbed dose and deter-
mine Ei and ∆i for each one.

Problem 31 A patient swallows 3.5 × 109 Bq of 131I.
The half-life of the iodine is 8 days. Ten minutes later
the patient vomits all of it. If none had yet left the stom-
ach and all was vomited, determine the cumulated activity
and residence time in the stomach.
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Section 17.8

Problem 32 Derive Eq. 17.61 by substituting Eqs. 17.59
and 17.60 in Eq. 17.58. You will also have to justify and
use Eq. 17.62.

Problem 33 The body consists of two regions. Region 1
has mass m1 and cumulated activity Ã1. It is completely
surrounded by region 2 of mass m2 and cumulated activity
Ã2 = Ã0−Ã1. We can say that the mass of the total body
is mTB = m1 + m2 = m1 + mRB. A single radiation is
emitted with disintegration energy ∆. The radiation is
nonpenetrating so that

φ(1 ← 1) = φ(2 ← 2) = 1,

φ(1 ← 2) = φ(2 ← 1) = 0.

(a) What are φ(TB← 1) and φ(TB← 2)?
(b) What are the corresponding values of Φ and S?
(c) Show that directly from the definition, Eq. 17.58

D1 = Ã1∆/m1,

D2 = DRB = Ã2∆/m2,

DTB = Ã0∆/(m1 + m2)

(d) Calculate Ãu and Ã∗
1.

(e) What is S(1 ←TB)? Remember that φ is calculated
for activity uniformly distributed within the source region.

(f) Calculate the dose to region 1 using Eq. 17.61 and
show that it agrees with (c).

(g) Evaluate S(1 ←RB) using Eq. 17.62 and show that
it agrees with S(1 ← 2).

Problem 34 The body consists of two regions. Region 1
has mass m1 and cumulated activity Ã1. It is completely
surrounded by region 2 of mass m2 and cumulated activ-
ity Ã2. A single radiation is emitted with disintegration
energy ∆. The characteristics of the radiation are such
that

φ(1 ← 1) + φ(2 ← 1) = 1,

φ(1 ← 2) + φ(2 ← 2) + φ(0 ← 2) = 1,

where φ(0 ← 2) represents energy from region 2 that has
escaped from the body. Obtain expressions for the dose to
each region and the whole body dose.

Section 17.9

Problem 35 Consider the decay of a parent at rate λ1

to an offspring that decays with rate λ2.
(a) Write a differential equation for the amount of off-

spring present.
(b) Solve the equation.
(c) Discuss the solution when λ2 > λ1.
(d) Discuss the solution when λ2 < λ1.
(e) Plot the solution for a technetium generator that is

eluted every 24 h.

Problem 36 N0 nuclei of 99mTc are injected into the
body. What is the maximum activity for the decay of the
metastable state? When does the maximum activity for
decay of the ground state occur if no Tc atoms are ex-
creted? What is the ratio of the maximum metastable
state activity to the maximum ground-state activity?

Problem 37 If 1 µCi of 99mTc is injected in the blood
and stays there, relate the activity in a sample drawn time
t later to the volume of the sample and the total blood vol-
ume. If the gamma rays are detected with 100% efficiency,
what will be the counting rate for a 10-ml sample of blood
if the blood volume is 5 liters? (Using non-SI units was
intentional.)

Problem 38 Assume that aggregated human albumin is
in the form of microspheres. A typical dose of albumin
microspheres is 0.5 mg of microspheres containing 80
MBq of 99mTc and 15 µg of tin. There are 1.85 × 106

microspheres per mg.
(a) How many 99mTc atoms are there per microsphere?
(b) How many tin atoms per microsphere?
(c) How many technetium atoms per tin atom?
(d) What fraction of the surface of a microsphere is

covered by tin? Assume the sphere has a density of 103

kg m−3.

Problem 39 It is estimated that the total capillary sur-
face area in the lung is 90 m2. Assume each capillary has
50 segments, each 10 µm long, and a radius of 5 µm.

(a) How many capillaries are there in the lung?
(b) There are about 3 × 108 alveoli in both lungs. How

many capillaries per alveolus are there?
(c) An alveolus is 150–300 µm in diameter. Are the

above answers consistent?
(d) A typical dose of albumin microspheres is 0.5 mg

with an average diameter of 25 µm. There are 1.85 ×
106 spheres per mg. What fraction of the capillaries are
blocked if there is good mixing?

Section 17.10

Problem 40 The half-life of 99mTc is 6.0 h. The half-
life of 131I is 8.07 day. Assume that the same initial ac-
tivity of each is given to a patient and that all of the
substance remains within the body.

(a) Find the ratio of the cumulated activity for the two
isotopes.

(b) 99mTc emits 0.141-MeV photons. For each decay of
131I the most important radiations are 0.89 β− of average
energy 0.192 MeV and 0.81 photons of 0.365 MeV. If all
of the decay energy were absorbed in the body, what would
be the ratio of doses for the same initial activity?

Problem 41 A patient is given an isotope which spreads
uniformly through the lungs. It emits a single radiation: a
γ ray of energy 50 keV. There are no internal-conversion
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electrons. The cumulated activity is 40 GBq s. Find the
absorbed dose in the liver (m = 1.83 kg).

Problem 42 The decay of 99mTc can be approximated
by lumping all of the decays into two categories:

Radiation Ei (MeV) ∆i (J)

γ 0.14 2 × 10−14

Electrons and soft x rays 2.76 × 10−15

Sulfur colloid labeled with 100 MBq of 99mTc is given to a
patient and is taken up immediately by the liver. Assume
it stays there. Find the dose to the liver, spleen, and whole
body. Use the following information:

Absorbed fraction for a source in
the liver

Target organ Mass (kg) E(γ) = 0.1 MeV E(γ) = 0.2 MeV

Liver 1.833 0.165 0.158
Spleen 0.176 0.000 606 0.000 645
Whole body 70.0 0.454 0.415

Problem 43 An ionization-type smoke detector con-
tains 4.4 µCi of 241Am. This isotope emits α particles
(which we will ignore) and a 60-keV γ ray, for which
n = 0.36. The half-life is 458 yr.

(a) How many moles of 241Am are in the source?
(b) Ignoring attenuation, backscatter, and buildup in

any surrounding material (such as the cover of the smoke
detector), what is the absorbed dose in a small sample
of muscle located 2 m away, if the muscle is under the
detector for 8 h per day for 1 year?

Problem 44 One mCi of a radioactive substance lodges
permanently in a patient’s lungs. The substance emits
a single 80-keV γ ray. It has a half-life of 12 h. Find
the cumulated activity and the dose to the liver (mass
1833 g).

Problem 45 The dose calculation for microspheres in
the lung was an oversimplification because technetium
leaches off the spheres. The footnote in Section 17.10 lists
some more realistic residence times. If none of the tech-
netium is excreted from the body, the sum of all the resi-
dence times will still be 8.7 h. Assume that the residence
time in the lungs is 4.3 h and the residence time in the
rest of the body is 4.4 h.

(a) Show that Ãu = 4.46 × 3, 600 × A0 and Ã∗
lung =

4.24 × 3, 600 × A0.
(b) For a source distributed uniformly throughout the

total body, the absorbed fractions for 140-keV photons
are φ(lung←TB) = 0.0053, φ(TB←TB) = 0.3572. Split
the radiation into penetrating and nonpenetrating compo-
nents:

S(lung ← TB)

= (φnonpen∆nonpen + φpenetrating∆penetrating)/mlung.

Remember that for activity uniformly distributed in the
total body, φ(lung←TB) = mlung/mTB and use some of
the information in Table 17.4 to show that

S(lung ← TB) = 1.463 × 10−16 J kg−1,

S(TB ← TB) = 1.414 × 10−16 J kg−1.

(c) Calculate the dose to the lungs and the total body
dose for an initial activity of 37 MBq. Compare the values
to those in Table 17.4.

Section 17.12

Problem 46 Nuclear counting follows Poisson statis-
tics. Show that for a fixed average counting rate R (counts
per second) the standard deviation of a sum of N mea-
surements each of length T is the same as a single mea-
surement of duration NT . (Hint: You will first have to
consider the situation where one measures y = x1 +
x2 + · · · and find the variance of y in terms of the
variances of the xi when there is no correlation between
the xi.)

Problem 47 The interaction of a photon in a nuclear
detector (an “event”) initiates a process in the detector
that lasts for a certain length of time. A second event
occurring within a time τ of the first event is not recorded
as a separate event. Suppose that the true counting rate
is Rt. A counting rate Ro is observed.

(a) A nonparalyzable counting system is “dead” for a
time τ after each recorded event. Additional events that
occur during this dead time are not recorded but do not
prolong the dead time. Show that Rt = Ro(1 − Roτ)and
Ro = Rt/(1 + Rtτ).

(b) A paralyzable counting system is unable to record
a second event unless a time τ has passed since the last
event. In other words, an event occurring during the dead
time is not only not recorded, it prolongs the dead time.
Show that in this case Ro = Rte

−Rtτ . (Hint: Use the
Poisson distribution of Appendix J to find the fraction of
events separated by a time greater than τ . The probability
that the next event occurs between t and t + dt is the
probability of no event during time t multiplied by the
probability of an event during dt.)

(c) Plot Ro vs. Rt for the two cases when τ is fixed.
The easiest way to do this is to plot Roτ vs. Rtτ .

Problem 48 Two channels of a collimator for a gamma
camera are shown in cross section, along with the path
of a photon that encounters the minimum thickness of
collimator septum (wall).
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 w 

 t  d 

 l 

(a) Show that if (d + t)/l � 1, then w/t = l/(2d + t).
(b) If transmission through the septum is to be less than

5%, what is the relationship between t, d, l, and µ? Eval-
uate this for 99mTc and for a positron emitter.

Problem 49 Photons from a point source a distance b
below a collimator pass through channels out to a distance
a from the perpendicular to the collimator passing through
the source.

 l 

 b 

 d 

Point Source

 a 

(a) Find an expression for a in terms of b, d, and l.
(b) Assume that a is related to the spatial frequency

k for which the modulation transfer function (MTF) =
0.5 in Fig. 17.19 by a = K/k, where K is a constant.
Calculate the thickness l of the collimator.

Problem 50 The collimator efficiency of a gamma cam-
era is defined to be the fraction of the γ rays emitted
isotropically by a point source that pass through the colli-
mator into the scintillator.

(a) Consider a circular channel of diameter d in the
collimator directly over the source. Show that the frac-
tion of the photons striking the scintillator after passing
through that channel is d2/16(l + b)2. (Assume that any
photons that strike the septum are lost).

(b) Use the result of the previous problem to estimate
the number of channels through which at least some pho-
tons from the point source pass. Assume that the fraction
of collimator area that is occupied by channels rather than
lead is [d/(d + t)]2.

(c) Calculate the geometric efficiency g assuming that
all channels that pass any photons have the same effi-
ciency as the one on the perpendicular from the source.
Show that it is of the form

g = K2

(
d

l

)2(
d

d + t

)2

and evaluate K. More detailed calculations show that K
is about 0.24 for a hexagonal array of round holes and
0.26 for hexagonal holes.13

(d) How does the detector efficiency relate to the colli-
mator resolution?

Section 17.13

Problem 51 (a) Derive Eq. 17.64 from Eq. 17.63.
(b) Calculate the limit of Eq. 17.64 when there is no

attenuation.

Problem 52 The attenuation distortion for SPECT can
be reduced by making measurements on opposite sides of
the patient and taking the geometric mean. The geometric
mean of variables x1 and x2 is (x1x2)1/2. Calculate the
geometric mean of two SPECT measurements on opposite
sides of the patient. Ignore possible 1/r2 effects.

Problem 53 Consider a radioactive source having a
uniform activity per unit volume AV and the square
geometry shown below.

x

y

R

(a) Calculate the projection F (x) including the effects of
attenuation with coefficient µ.

(b) Plot F (x) for µ = 0 and for µR = 3.

Section 17.14

Problem 54 Suppose that A positrons are emitted from
a point per second. They come to rest and annihilate

13Cherry et al. (2003, p. 242); R. P. Grenier, M. A. Bender, and R.
H. Jones (1974). A computerized multicrystal scintillation gamma
camera, Chapter 3 in H. G. Hine and J. A. Sorenson, eds. Instru-
mentation in Nuclear Medicine. New York, Academic, Vol. 2.
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within a short distance of their source. When a positron
annihilates, two photons are emitted in opposite direc-
tions. Two photon detectors are set up on opposite sides
of the source. The source is distance r1 from the first de-
tector, of area S1, and r2 from the second detector of area
S2. The area S2 is large enough so that the second photon
will definitely enter detector 2 if the first photon enters
detector 1. Assume that both detectors count with 100%
efficiency.

S1

S2

r1

a1
r2a2

(a) Show that the number of counts in the first detector
would be 2AS1/4πr2

1 if there were no attenuation between
source and detector, and that it is (2AS1/4πr2

1)e
−µa1 if

attenuation in a thickness a1 of the body is considered.
(b) Detector 2 detects the second photon for every pho-

ton that strikes detector 1. Assuming a uniform attenua-
tion coefficient and body thickness a2, find an expression
for the number of events in which both photons are de-
tected.

Problem 55 Positron emission tomography relies on
simultaneous detection of the back-to-back annihilation
gamma rays (a “coincidence”). In addition to true coin-
cidences, there can be “scatter coincidences” in which an-
nihilation photons coming from a point that is not on the
line between the two detectors enter both detectors. There
can also be “random coincidences” which arise from pho-
tons from completely independent decays that occur nearly
simultaneously. Consider a ring of detectors around a
patient. Make three drawings showing true coincidences,
scatter coincidences and random coincidences.

Section 17.16

Problem 56 The half-life of 235U is 7×108 yr. The age
of the earth is 4.5 billion years. What fraction of the
235U that existed on the earth when it was first formed
is present now?

Problem 57 There are three naturally occurring decay
series beginning with three long-lived isotopes: 238U (Figs.
17.27 and 17.28), 235U, and 232Th. The 232Th series be-
gins with the α decay of 232Th (half-life = 1.4×1010 yr) to

nucleus A which undergoes β− decay to nucleus B which
undergoes β− decay to nucleus C which undergoes α de-
cay to nucleus D which undergoes α decay to nucleus E,
etc. Make a chart like Fig. 17.27 showing the first five
steps in the series, and identify the five nuclei A– E.

Problem 58 One way to determine the age of biologi-
cal remains is “carbon-14 dating.” The common isotope
of carbon is stable 12C. The rare isotope 14C decays with
a half-life of 5,370 yr. 14C is constantly created in the
atmosphere by cosmic rays. The equilibrium between pro-
duction and decay results in about 1 of every 1012 atoms
of carbon in the atmosphere being 14C, mostly as part of
a CO2 molecule. As long as the organism is alive, the
ratio of 12C to 14C in the body is the same as in the
atmosphere. Once the organism dies, it no longer incor-
porates 14C from the atmosphere, and the number of 14C
nuclei begins to decrease. Suppose the remains of an or-
ganism have one 14C for every 1013 12C nuclei. How long
has it been since the organism died?

Problem 59 Consider a fictitious two-step decay series
analogous to the more complex series shown in Fig. 17.27.
The series starts with isotope A which decays at rate λ1

to isotope B. Isotope B decays to isotope C with rate λ2.
Isotope C is stable.

(a) Derive the differential equation governing the num-
ber of nuclei NA, NB, and NC . Where else in this chapter
have you seen the same equations?

(b) Solve the differential equations using the initial con-
ditions NA(0) = N, NB(0) = NC(0) = 0. Make sure your
solutions make sense for t → 0 and t → ∞.

(c) Find NB/NA in the limit λ2 � λ. Ignore short
times. Also find activities AA and AB. Explain physically
how such a small number of nuclei NB can contribute so
much to the total activity.
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18
Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) (formerly called
nuclear magnetic resonance imaging) provides very-high-
resolution images without ionizing radiation. There is also
the potential for more elaborate imaging, including flow,
diffusion, and the signature of particular atomic environ-
ments.

Magnetic resonance phenomena are more complicated
than x-ray attenuation or photon emission by a radioac-
tive nucleus. MRI depends upon the behavior of atomic
nuclei in a magnetic field, in particular, the orientation
and motion of the nuclear magnetic moment in the field.
The patient is placed in a strong static magnetic field
(typically 1–4 T). This is usually provided by a hollow
cylindrical (solenoidal) magnet, though some machines
use other configurations so that the physician can carry
out procedures on the patient while viewing the MRI
image. Other coils apply time-varying spatial gradients
to the magnetic field, along with radio-frequency signals
that cause the magnetization changes described below.
Still other coils detect the very weak radio-frequency sig-
nals resulting from these changes.

First, we must understand the property that we are
measuring. Section 18.1 describes the behavior of a mag-
netic moment in a static magnetic field, and Sec. 18.2
shows how the nuclear spin is related to the magnetic
moment. Section 18.3 introduces the concept of the mag-
netization vector, which is the magnetic moment per unit
volume, while Sec. 18.4 develops the equations of mo-
tion for the magnetic moment. In order to describe the
motion of the magnetization, it is convenient—in fact,
almost essential—to use the rotating coordinate system
described in section 18.5.

To make a measurement, the nuclear magnetic mo-
ments originally aligned with the static magnetic field
are made to rotate or precess in a plane perpendicular to
the static field, after which the magnetization gradually
returns to its original value. This relaxation phenomenon

FIGURE 18.1. A magnetic dipole in a magnetic field. The
dipole can be either a bar magnet or a current loop.

is described in Sec. 18.6. Sections 18.7 and 18.8 describe
ways in which the magnetization can be manipulated for
measurement or imaging.

Imaging techniques are finally introduced in Sec. 18.9.
Sections 18.10 and 18.11 describe how chemical shifts and
blood flow can affect the image or can themselves be
imaged. The last two sections describe functional MRI
(fMRI) and diffusion effects.

18.1 Magnetic Moments in an
External Magnetic Field

Magnetic resonance imaging detects the magnetic dipoles
in the nuclei of atoms in the human body. We saw in
Chapter 8 that isolated magnetic monopoles have never
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been observed [see Eq. 8.6], and that magnetic fields are
produced by moving charges or electric currents. In some
cases, such as bar magnets, the external field is the same
as if there were magnetic charges occurring in pairs or
dipoles.1 The strength of a dipole is measured by its mag-
netic dipole moment µ. (In Chapter 8 the magnetic dipole
moment was called m to avoid confusion with µ0. In this
chapter we use µ to avoid confusion with the quantum
number m and to be consistent with the literature in the
field.) The magnetic dipole moment is analogous to the
electric dipole moment of Chapter 7; however, it is pro-
duced by a movement of charge, such as charge moving
in a circular path. The units of µ are J T−1 or A m2.
We saw that when a magnetic dipole is placed in a mag-
netic field as in Fig. 18.1, it is necessary to apply an ex-
ternal torque τ ext to keep it in equilibrium. This torque,
which is required to cancel the torque exerted by the mag-
netic field, vanishes if the dipole is aligned with the field.
The torque exerted on the dipole by the magnetic field
B is

τ = µ × B (18.1)

(This is Eq. 8.4.)
The potential energy of the dipole is the work that

must be done by τ ext to change the dipole’s orientation
in the magnetic field without changing any kinetic en-
ergy it might have. To increase angle θ by an amount dθ
requires that work be done on the dipole–magnetic field
system. This work is the increase in potential energy of
the system:

dU = µB sin θ dθ. (18.2)

This can be integrated to give the change in potential
energy when the angle changes from θ1 to θ2:

U(θ2) − U(θ1) = −µB(cos θ2 − cos θ1).

If the energy is considered to be zero when the dipole is
at right angles to B, then the potential energy is

U(θ) = −µB cos θ = −µ · B. (18.3)

In many cases the moving charges that give rise to the
magnetic moment of an object possess angular momen-
tum L. Often the magnetic moment is parallel to and
proportional to the angular momentum: µ = γ L. The
proportionality factor γ is called the gyromagnetic ratio
(sometimes called the magnetogyric ratio). When such an
object is placed in a uniform magnetic field, the result-
ing motion can be quite complicated. The torque on the
object is τ = µ×B = γ L×B. It is not difficult to show
(Problem 1) that the torque is the rate of change of the

1Dipoles can be arranged so that their fields nearly cancel, giv-

ing rise to still higher order moments such as the quadrupole mo-

ment or the octupole moment. (See Chapter 7). A configuration for

which the quadrupole moment is important is two magnets in a line

arranged as N-S-S-N.

FIGURE 18.2. A particle of charge q and mass m travels in
a circular orbit. It has a magnetic moment µ and angular
momentum L. If the charge is positive, µ and L are parallel;
if it is negative they are in opposite directions.

angular momentum, τ = dL/dt. Therefore the equation
of motion is

γ(L × B) =
dL
dt

(18.4a)
or

γ(µ × B) =
dµ

dt
. (18.4b)

Solutions to these equations are discussed in Sec. 18.4.

18.2 The Source of the Magnetic
Moment

Atomic electrons and the protons and neutrons in the
atomic nucleus can possess both angular momentum and
a magnetic moment. The magnetic moment of a particle
is related to its angular momentum. We can derive this
relationship for a charged particle moving in a circular
orbit. We saw in Chapter 8 that the magnitude of the
magnetic moment of a current loop is the product of the
current i and the area of the loop S:

|µ| = µ = iS. (18.5)

The direction of the vector is perpendicular to the plane
of the loop. Its direction is defined by a right-hand rule:
curl the fingers of your right hand in the direction of
current flow and your thumb will point in the direction
of µ (see the right-hand part of Fig. 18.1). This is the
same right-hand rule that relates the circular motion of
a particle to the direction of its angular momentum.

Suppose that a particle of charge q and mass m moves
in a circular orbit of radius r as in Fig. 18.2. The speed
is v and the magnitude of the angular momentum is L =
mvr. The effective current is the charge q multiplied by
the number of times it goes past a given point on the
circumference of the orbit in one second: i = qv/2πr. The
magnetic moment has magnitude µ = iS = iπr2 = qvr/2.
Since the angular momentum is L = mvr and µ and L
are both perpendicular to the plane of the orbit, we can
write

µ =
( q

2m

)
L = γ L. (18.6)
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TABLE 18.1. Values of the spin and gyromagnetic ratio for a
free electron and various nuclei of interest.

γ = ωLarmor/B
Particle Spin (s−1 T−1) ν/B (MHz T−1)

Electron 1
2 1.7608 × 1011 2.8025 × 104

Proton 1
2 2.6753 × 108 42.5781

Neutron 1
2 1.8326 × 108 29.1667

23Na 3
2 0.7076 × 108 11.2618

31P 1
2 1.0829 × 108 17.2349

The quantity γ = q/2m is the gyromagnetic ratio for
this system. The units γ of are T−1 s−1 (see Problem 2).
The magnetic moment and the orbital angular momen-
tum are parallel for a positive charge and antiparallel for
a negative charge.

An electron or a proton also has an intrinsic magnetic
moment quite separate from its orbital motion. It is as-
sociated with and proportional to the intrinsic or “spin”
angular momentum S of the particle. We write

µ = γ S. (18.7)

The value of γ for a spin is not equal to q/2m.
Two kinds of spin measurements have biological impor-

tance. One is associated with electron magnetic moments
and the other with the magnetic moments of nuclei. Most
neutral atoms in their ground state have no magnetic
moment due to the electrons. Exceptions are the transi-
tion elements that exhibit paramagnetism. Free radicals,
which are often of biological interest, have an unpaired
electron and therefore have a magnetic moment. In most
cases this magnetic moment is due almost entirely to the
spin of the unpaired electron.

Magnetic resonance imaging is based on the magnetic
moments of atomic nuclei in the patient. The total angu-
lar momentum and magnetic moment of an atomic nu-
cleus are due to the spins of the protons and neutrons, as
well as any orbital angular momentum they have inside
the nucleus. Table 18.1 lists the spin and gyromagnetic
ratio of the electron and some nuclei of biological interest.

If the nuclear angular momentum is I with quantum
number I, the possible values of the z component of
I are m�, where m = −I, (−I + 1), ..., I. For I = 1

2 ,
the values are −1/2 and 1/2, while for I = 3

2 they are
−3/2,−1/2, 1/2 and 3/2. The direction of the external
magnetic field defines the z axis, and the energy of a spin
is given by −µ · B = −γ I · B = −γm�B. The difference
between adjacent energy levels is γB�, and the angular
frequency of a photon corresponding to that difference is
ωphoton = γB.

18.3 The Magnetization

The MR image depends on the magnetization of the tis-
sue. The magnetization of a sample, M, is the average
magnetic moment per unit volume. In the absence of an
external magnetic field to align the nuclear spins, the
magnetization is zero. As an external magnetic field B is
applied, the spins tend to align in spite of their thermal
motion, and the magnetization increases, proportional at
first to the external field. If the external field is strong
enough, all of the nuclear magnetic moments are aligned,
and the magnetization reaches its saturation value.

We can calculate how the magnetization depends on B.
Consider a collection of spins of a single nuclear species
in an external magnetic field. This might be the hydro-
gen nuclei (protons) in a sample. The spins do not inter-
act with each other but are in thermal equilibrium with
the surroundings, which are at temperature T . We do
not consider the mechanism by which they reach thermal
equilibrium. Since the magnetization is the average mag-
netic moment per unit volume, it is the number of spins
per unit volume, N , times the average magnetic moment
of each spin: M = N 〈µ〉.

To obtain the average value of the z component of the
magnetic moment, we must consider each possible value
of quantum number m. We multiply the value of µz corre-
sponding to each value of m by the probability that m has
that value. Since the spins are in thermal equilibrium with
the surroundings, the probability is proportional to the
Boltzmann factor of Chapter 3, e−(U/kBT ) = eγm�B/kBT .
The denominator in Eq. 18.8 normalizes the probability:

〈µz〉 =
γ�

I∑

m=−I

meγm�B/kBT

I∑

m=−I

eγm�B/kBT

. (18.8)

At room temperature γI�B/kBT � 1 (see Problem 4),
and it is possible to make the approximation ex ≈ 1 + x.
The sum in the numerator then has two terms:

I∑

m=−I

m +
γ�B

kBT

I∑

m=−I

m2.

The first sum vanishes. The second is I(I + 1)(2I + 1)/3.
The denominator is

I∑

m=−I

1 +
γ�B

kBT

I∑

m=−I

m.

The first term is 2I + 1; the second vanishes. Therefore
we obtain

〈µz〉 =
γ2

�
2I(I + 1)
3kBT

B. (18.9)

The z component of M is

Mz = N 〈µz〉 =
Nγ2

�
2I(I + 1)

3kBT
B, (18.10)

which is proportional to the applied field.
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FIGURE 18.3. The system with initial magnetization M has
been given just enough additional angular momentum to pre-
cess about the direction of the static magnetic field B. The
rate of change of M is perpendicular to both M and B. For
short time intervals, ∆M = γ(M × B) ∆t.

18.4 Behavior of the Magnetization
Vector

A remarkable result of quantum mechanics is that the
average or expectation value of a spin obeys the classical
Equation 18.4b:

d 〈µ〉
dt

= γ (〈µ〉 × B) (18.11)

whether or not B is time dependent [Slichter (1978), p.
20]. Multiplying by the number of spins per unit volume
we obtain

dM
dt

= γ (M × B) . (18.12)

This equation can lead to many different behaviors of M,
some of which are quite complicated.

The simplest motion occurs if M is parallel to B, in
which case M does not change because there is no torque.
Another relatively simple motion, called precession, is
shown in Figure 18.3. With the proper initial conditions
M (and 〈µ〉) precess about the direction of B. That is,
they both rotate about the direction of B with a constant
angular velocity and at a fixed angle θ with the direction
of B. Since M×B is always at right angles to M, dM/dt
is at right angles to M, and the angular momentum does
not change magnitude. The analytic solution can be in-
vestigated by writing Eq. 18.12 in Cartesian coordinates
when B is along the z axis:

dMx

dt
= γMyBz,

dMy

dt
= −γMxBz,

dMz

dt
= 0.

(18.13)

FIGURE 18.4. If several spins precess in the xy plane at
slightly different rates, the total spin amplitude decreases due
to dephasing.

One possible solution to these equations is

Mz = M‖ = const,
Mx = M⊥ cos(−ωt),

My = M⊥ sin(−ωt).
(18.14)

You can verify that these are a solution for arbitrary val-
ues of M⊥ and M‖ as long as ω = ω0 = γBz. This is called
the Larmor precession frequency. The minus sign means
that for positive γ the rotation is clockwise in the xy
plane. The classical Larmor frequency is equal to the fre-
quency of photons corresponding to the energy difference
given by successive values of µ · B. For this solution the
initial values of M at t = 0 are Mx(0) = M⊥, My(0) = 0,
and Mz(0) = M‖.

We need to modify the equation of motion, Eq. 18.12,
to include changes in M that occur because of effects
other than the magnetic field. Suppose that M has some-
how been changed so that it no longer points along the z
axis with the equilibrium value given by Eq. 18.10. Ther-
mal agitation will change the populations of the levels
so that Mz returns to the equilibrium value, which we
call M0. We postulate that the rate of exchange of energy
with the reservoir is proportional to how far the value of
Mz is from equilibrium:

dMz

dt
=

1
T1

(M0 − Mz) .

The quantity T1, which is the inverse of the proportion-
ality constant, is called the longitudinal relaxation time
or spin–lattice relaxation time.

We also postulate an exponential disappearance of the
x and y components of M with a transverse relaxation
time T2 (sometimes called the spin–spin relaxation time).
(This assumption is often not a good one. For example,
the decay of Mx and My in ice is more nearly Gaussian
than exponential.) The equations are

dMx

dt
= −Mx

T2
,

dMy

dt
= −My

T2
.

The transverse relaxation time is always shorter than
T1. Here is why. A change of Mz requires an exchange
of energy with the reservoir. This is not necessary for
changes confined to the xy plane, since the potential en-
ergy (µ · B) does not change in that case. Mx and My

can change as Mz changes, but they can also change by



18.5 A Rotating Coordinate System 519

other mechanisms, such as when individual spins precess
at slightly different frequencies, a process known as de-
phasing. The angular velocity of precession can be slightly
different for different nuclear spins because of local varia-
tions in the static magnetic field; the angular velocity can
also fluctuate as the field fluctuates with time. These vari-
ations and fluctuations are caused by neighboring atomic
or nuclear magnetic moments or by inhomogeneities in
the external magnetic field. Figure 18.4 shows how de-
phasing occurs if several magnetic moments precess at
different rates.

Combining these approximate equations for relaxation
in the absence of an applied magnetic field with Eq. 18.12
for the effect of a magnetic field gives the Bloch equa-
tions:2

dMz

dt
=

1
T1

(M0 − Mz) + γ (M × B)z ,

dMx

dt
= −Mx

T2
+ γ (M × B)x ,

dMy

dt
= −My

T2
+ γ (M × B)y .

(18.15)

While these equations are not rigorous and there is no
reason for the relaxation to be strictly exponential, they
have proven to be quite useful in explaining many facets
of nuclear spin magnetic resonance.

One can demonstrate by direct substitution the follow-
ing solution to Eqs. 18.15 for a static magnetic field B
along the z axis:

Mx = M0e
−t/T2 cos(−ω0t),

My = M0e
−t/T2 sin(−ω0t),

Mz = M0(1 − e−t/T1),

(18.16)

where ω0 = γB. This solution corresponds to what hap-
pens if M is somehow made to precess in the xy plane.
(We will see how to accomplish this in Sec. 18.5.) The
magnetization in the xy plane is initially M0, and the
amplitude decays exponentially with time constant T2.
The initial value of Mz is zero, and it decays back to M0

with time constant T1. A perspective plot of the trajec-
tory of the tip of vector M is shown in Fig. 18.5.

18.5 A Rotating Coordinate System

18.5.1 Transforming to the Rotating
Coordinate System

It is much easier to describe the motion of M in a co-
ordinate system that is rotating about the z axis at the
Larmor frequency. Figure 18.6 shows a vector M and two

2Felix Bloch and Edward Purcell shared the 1952 Nobel Prize
in Physics for their discovery of nuclear magnetic resonance.
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FIGURE 18.5. The locus of the tip of the magnetization M
when it relaxes according to Eqs. 18.16.
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FIGURE 18.6. The vector M can be represented by compo-
nents along x and y or along x′ and y′.

coordinate systems, xy and x′y′. The z component of M
is unchanged. By considering the other components in
Fig. 18.6, we see that

Mx = Mx′ cos θ − My′ sin θ,

My = Mx′ sin θ + My′ cos θ (18.17a)
Mz = Mz′.

This can also be written in matrix form. A rotation
through angle θ around the z axis gives

M =




Mx

My

Mz



 =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1








Mx′

My′

Mz′



 = RM′.

(18.17b)
Rotations about the other axes are discussed in Problem
12. Note that rotating the coordinate system that de-
scribes a fixed vector is equivalent to rotating the vector
in the opposite direction, so the results quoted in Problem
12 apply to both situations.

For a three-dimensional coordinate system rotating
clockwise around the z axis, θ = −ωt, the z-component
of M is unchanged, and the transformation equations are

Mx = Mx′ cos(−ωt) − My′ sin(−ωt),

My = Mx′ sin(−ωt) + My′ cos(−ωt), (18.18)

Mz = Mz′ .
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The time derivative of M is obtained by differentiating
each component and remembering that M′ can also de-
pend on t:

dMx

dt
=

dMx′

dt
cos(−ωt) − dMy′

dt
sin(−ωt)

+ ωMx′ sin(−ωt) + ωMy′ cos(−ωt),

dMy

dt
=

dMx′

dt
sin(−ωt) +

dMy′

dt
cos(−ωt) (18.19)

− ωMx′ cos(−ωt) + ωMy′ sin(−ωt),

dMz

dt
=

dMz′

dt
.

We can use these expressions to write the equations
of motion in the rotating frame. First consider a sys-
tem without relaxation effects and with a static field Bz

along the z axis. We will show that the components of
M in a system rotating at the Larmor frequency are con-
stant. The equations of motion are given in Eqs. 18.13.
In terms of variables in the rotating frame, the equation
for dMx/dt becomes

dMx′

dt
cos(−ωt) − dMy′

dt
sin(−ωt)

+ ωMx′ sin(−ωt) + ωMy′ cos(−ωt)
= γ [Mx′ sin(−ωt) + My′ cos(−ωt)] Bz.

If the frame rotates at the Larmor frequency ω0 = γBz,
the third and fourth terms on the left are equal to the
right-hand side. The equation becomes

dMx′

dt
cos(−ω0t) −

dMy′

dt
sin(−ω0t) = 0.

Under the same circumstances, the equation for dMy/dt
gives

dMx′

dt
sin(−ω0t) +

dMy′

dt
cos(−ω0t) = 0.

Solving these simultaneously shows that dMx′/dt = 0
and dMy′/dt = 0. Therefore in the rotating system Mx′

and My′ are constant. Equation 18.13 showed that Mz′

is constant, so the components of M are constant in the
frame rotating at the Larmor frequency. Using Eqs. 18.18
to transform back to the laboratory system gives the so-
lution Eq. 18.14.3

3For those familiar with vector analysis, the general relation-
ship between the time derivative of any vector M in the laboratory
system and a system rotating with angular velocity Ω is

(
dM

dt

)

lab

=

(
∂M

∂t

)

rot

+ Ω × M.

This can be applied to the magnetization combined with Eq. 18.12
to give

(
∂M

∂t

)

rot

= γ(M × B) − Ω × M = γM ×
(
B +

Ω

γ

)
,

which vanishes if γB = −Ω.

18.5.2 An Additional Oscillating Field

The next problem we consider in the rotating coordinate
system is the addition of an oscillating magnetic field
B1 cos(ωt) along the x axis, fixed in the laboratory sys-
tem. We will show that if the applied field is at the Lar-
mor frequency, the equations of motion in the rotating
system, Eqs. 18.25, are quite simple but very important.
They are given below.

They are derived as follows. From the x component of Eq.

18.12,

dMx

dt
= γ(MyBz − MzBy),

we obtain (remembering that the x′y′ system is rotating at

the Larmor frequency ω0)

dMx′

dt
cos(−ω0t) −

dMy′

dt
sin(−ω0t) + ω0Mx′ sin(−ω0t)

+ ω0My′ cos(−ω0t)
= γBz [Mx′ sin(−ω0t) + My′ cos(−ω0t)] .

Since ω0 = γBz , the last two terms on the left cancel the

terms on the right, leaving

dMx′

dt
cos(−ω0t) −

dMy′

dt
sin(−ω0t) = 0. (18.20)

Similarly, the y-component of Eq. 18.12,

dMy

dt
= γ(MzBx − MxBz),

transforms and reduces to (remembering that Mz = Mz′)

dMx′

dt
sin(−ω0t) +

dMy′

dt
cos(−ω0t) = γB1Mz′ cos(−ωt).

(18.21)
The z-component of Eq. 18.12 is

dMz

dt
= γ(MxBy − MyBx), (18.22)

which transforms to

dMz′

dt
= −γB1Mx′ cos(ωt) sin(−ω0t)

− γB1My′ cos(ωt) cos(−ω0t).

It is possible to eliminate Mx′ from Eqs. 18.20 and 18.21 by

multiplying Eq. 18.20 by − sin(−ω0t), multiplying Eq. 18.21

by cos(−ω0t), and adding. The result is

dMy′

dt
= γB1Mz′ cos(ωt) cos(−ω0t). (18.23)

A similar technique can be used to eliminate My′ from these

two equations:

dMx′

dt
= γB1Mz′ cos(ωt) sin(−ω0t). (18.24)
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18.5.3 Nutation

Equations 18.22–18.24 are the equations of motion for the
components of M in the rotating system. If ω 
= ω0, the
motion is complicated, but averaged over many Larmor
periods the right-hand side of each equation is zero. If the
applied field oscillates at the Larmor frequency, ω = ω0,
then the cos2(−ω0t) factors average to 1

2 while factors
like sin(−ω0t) cos(−ω0t) average to zero.

The averaged equations are a very important result:

dMx′

dt
= 0, (18.25a)

dMy′

dt
=

γB1

2
Mz′ , (18.25b)

dMz′

dt
= −γB1

2
My′ . (18.25c)

The first equation says that if Mx′ is initially zero, it
remains zero. Let us define a new angular frequency

ω1 =
γB1

2
. (18.26)

It is the frequency of nutation or rotation caused by B1

oscillating at the Larmor frequency. It is much lower than
the Larmor frequency because B1 � Bz. In terms of ω1,
Eqs. 18.25b and 18.25c become

dMz′

dt
= −ω1My′ ,

dMy′

dt
= ω1Mz′ .

These are a pair of coupled linear differential equations
with constant coefficients. Differentiating one and substi-
tuting it in the other gives

d2Mz′

dt2
= −ω1

dMy′

dt
= −ω2

1Mz′ , (18.27)

which has a solution (a and b are constants of integration)

Mz′ = a sin(ω1t) + b cos(ω1t). (18.28)

From Eq. 18.25c we get

My′ = − 1
ω1

dMz′

dt
= −a cos(ω1t) + b sin(ω1t). (18.29)

The values of a and b are determined from the initial
conditions. For example, if M is initially along the z axis,
a = 0 and b = M0. Then

Mx′ = 0,

My′ = M0 sin(ω1t), (18.30)
Mz′ = M0 cos(ω1t).

This kind of motion—precession about the z axis com-
bined with a change of the projection of M on z—is called
nutation.

(a)
x

y

z

(b) (c)

Nutation

Relaxation

M

M 2 + M 2( )1/ 2

x'

y'

z'
z'

x' y'

FIGURE 18.7. The locus of the tip of the magnetization M
when an oscillating magnetic field B1 is applied for a time t
such that ω1t = π/2. This is often called a “π/2” pulse. (a)
The rotating frame. (b) The laboratory frame. (c) Plots of Mz′

vs (M2
x′+M2

y′)1/2 showing the difference between nutation and
relaxation.
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FIGURE 18.8. A “π pulse.” B1 is applied for a time t = π/ω1

and rotates M to point along the −z axis. (a) The rotating
frame. (b) The laboratory frame.

18.5.4 π and π/2 Pulses

From Eqs. 18.30 it is easy to see that turning B1 on for
a quarter of a period of ω1 (a 90 ◦ pulse or π/2 pulse,
t = T/4 = π/2ω1) nutates M into the x′y′ plane, while
a 180 ◦ or π pulse nutates M to point along the −z axis.
M nutates about the rotating x′ axis. Shifting the phase
of B1 changes the axis in the x′y′ plane about which M
nutates. It may seem strange that an oscillating magnetic
field pointing along an axis fixed in the laboratory frame
causes rotation about an axis in the rotating frame. The
reason is that B1 is also oscillating at the Larmor fre-
quency, so that its amplitude changes in just the right
way to cause this behavior of M. Figures 18.7 and 18.8
show this nutation in both the rotating frame and the
laboratory frame for a π/2 pulse and a π pulse.

Figure 18.7(c) emphasizes the difference between nuta-
tion and relaxation by plotting Mz vs the projection of M
in the x′y′ plane. For nutation the components of M are
given by Eqs. 18.30, the magnitude of M is unchanged,
and the locus is a circle. For relaxation the components
are given by Eqs. 18.16.

Another interesting solution is one for which the initial
value of M is

Mx′(0) = M0 cos α,

My′(0) = M0 sin α,
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FIGURE 18.9. A magnetic field B1 pointing along the labo-
ratory x axis and oscillating at the Larmor frequency causes
nutation of M through an angle π around the rotating x′

axis. In this case M was initially in the x′y′ plane. The mo-
tion shown here is plotted from Eqs. 18.30 in (a) the rotating
and (b) the laboratory frames.

Mz′(0) = 0.

This corresponds to an M that has already been nutated
into the x′y′ plane. Substituting these values in Eqs. 18.28
and 18.29 shows that b = 0 and a = M0 sinα. Then the
solution is

Mx′(t) = M0 cos α,

My′(t) = M0 sin α cos(ω1t), (18.31)

Mz′(t) = −M0 sin α sin(ω1t).

This solution is plotted in Fig. 18.9 in both the rotating
frame and the laboratory frame for the case of a π pulse
(a pulse of duration π/ω1). The effect is to nutate M
about the x′ axis in the rotating coordinate system. We
will see later that this is a very useful pulse.

18.6 Relaxation Times

Since longitudinal relaxation changes the value of Mz and
hence µ · B, it is associated with a change of energy of
the nucleus. The principal force that can do work on the
nuclear spin and change its energy arises from the fact
that the nucleus is in a fluctuating magnetic field due
to neighboring nuclei and the electrons in paramagnetic
atoms.

One way to analyze the effect of this magnetic field is
to say that the change of spin energy E is accompanied
by the emission or absorption of a photon of frequency
νphoton = E/h, or ωphoton = ω0. An increase of spin en-
ergy requires the absorption of a photon at the Larmor
frequency (stimulated absorption). This will have a high
probability if the fluctuating magnetic field has a large
Fourier component at the Larmor frequency. A decrease
of spin energy is accompanied by the emission of a pho-
ton. This can happen spontaneously in a vacuum (spon-
taneous emission), or it can be stimulated by the pres-
ence of other photons at the Larmor frequency (stimu-

r
θ

µ

Br

Bθ

FIGURE 18.10. The magnetic field components of a dipole in
spherical coordinates point in the directions shown.

lated emission). These relative probabilities can be cal-
culated using quantum mechanics. Stimulated emission
or absorption is much more probable than is spontaneous
emission.

The random magnetic field at a nucleus fluctuates be-
cause of the movement of the nucleus in the magnetic field
of nearby atoms and nuclei. If the field changes rapidly
enough, it will have Fourier components at the Larmor
frequency that can induce transitions that cause Mz to
change by absorption or stimulated emission. To get an
idea of the strength of the field involved, consider the
field at one hydrogen nucleus in a water molecule due to
the other hydrogen nucleus. The field due to a magnetic
dipole is given by

Br =
µ0

4π

2µ

r3
cos θ,

Bθ =
µ0

4π

µ

r3
sin θ, (18.32)

Bφ = 0,

where angle θ is defined in Fig. 18.10. (The factor
µ0/4π ≡ 10−7 T m A−1 is required in SI units.) The mag-
netic field at one hydrogen nucleus in a water molecule
due to the other hydrogen nucleus is about (3−4)×10−4

T (see Problem 14). Consider the water molecule shown
in Fig. 18.11. We refer to each hydrogen nucleus as a
proton. The z components of the proton magnetic mo-
ments are shown. If the water molecule is oriented as in
Fig. 18.11(a), the field at one proton due to the other
has a certain value. If the water molecule remains fixed
in space, as in ice, the field is constant with time. If the
molecule is tumbling as in liquid water, the orientation
changes as in Fig. 18.11(b), and the field changes with
time.

When the molecules are moving randomly, the fluctu-
ating magnetic field components are best described by
their autocorrelation functions. The simplest assumption
one can make4 is that the autocorrelation function φ11

4A more complete model recognizes that different atoms experi-
ence fluctuating fields with different correlation times and that fre-
quency components at twice the Larmor frequency also contribute.
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(a) (b)

FIGURE 18.11. The z components of the magnetic moments
of two protons in a water molecule are shown for two different
molecular orientations, (a) and (b). When the water molecule
is fixed in space, as in ice, the magnetic field that one proton
produces in the neighborhood of the other is static. When the
water molecule tumbles, as in a liquid or gas, the field that
one proton produces at the other changes with time.

TABLE 18.2. Approximate relaxation times at 20 MHz.

T1 (ms) T2 (ms)

Whole blood 900 200
Muscle 500 35
Fat 200 60
Water 3,000 3,000

of each magnetic field component is exponential and that
each field component has the same correlation time τC :

φ11(τ) ∝ e−|τ |/τC . (18.33)

The Fourier transform of the autocorrelation function
gives the power at different frequencies. It has only cosine
terms because the autocorrelation is even. Comparison
with the Fourier transform pair of Eq. 11.100 shows that
the power at frequency ω is proportional to τC/(1+ω2τ2

C).
With the assumption that the transition rate, which is
1/T1, is proportional to the power at the Larmor fre-
quency, we have [see also Slichter (1978), p. 167, or Dixon
et al. (1985)]

1
T1

=
CτC

1 + ω2
0τ2

C

, (18.34)

where C is the proportionality constant.
The correlation time in a solid is much longer than

in a liquid. For example, in liquid water at 20 ◦C it is
about 3.5 × 10−12 s; in ice it is about 2 × 10−6 s. Figure
18.12 shows the behavior of T1 as a function of correlation
time, plotted from Eq. 18.34 with C = 5.43×1010 s−2. For
short correlation times T1 does not depend on the Larmor
frequency. At long correlation times T1 is proportional to
the Larmor frequency, as can be seen from Eq. 18.34. The
minimum in T1 occurs when ω0 = 1/τC in this model.

Table 18.2 shows some typical values of the relaxation
times for a Larmor frequency of 20 MHz. Neighboring
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T1 at 29 MHz
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FIGURE 18.12. Plot of T1 and T2 vs correlation time of the
fluctuating magnetic field at the nucleus. The dashed lines
are for a Larmor frequency of 29 MHz; the solid lines are for
10 MHz. Experimental points are shown for water (open dot)
and ice (solid dots).

paramagnetic atoms reduce the relaxation time by caus-
ing a fluctuating magnetic field. For example, adding 20
ppm of Fe3+ to pure water reduces T1 from 3,000 to 20
ms.

Differences in relaxation time are easily detected in an
image. Different tissues have different relaxation times.
A contrast agent containing gadolinium (Gd3+), which
is strongly paramagnetic, is often used in magnetic res-
onance imaging. It is combined with many of the same
pharmaceuticals used with 99mTc, and it reduces the re-
laxation time of nearby nuclei.

The hemoglobin that carries oxygen in the blood exists
in two forms: oxyhemoglobin and deoxyhemoglobin. The
former is diamagnetic and the latter is paramagnetic, so
the relaxation time in blood depends on the amount of
oxygen in the hemoglobin. The imaging technique that
exploits this is called BOLD (blood oxygen level depen-
dent).

The same model for the fluctuating fields which led to
Eq. 18.34 gives an expression for T2:

1
T2

=
CτC

2
+

1
2T1

, (18.35)

T2 =
2

CτC

[
1 + ω2

0τ2
C

2 + ω2
0τ2

C

]
.

There is a slight frequency dependency to T2 for values of
the correlation time close to the reciprocal of the Larmor
frequency.

Another effect that causes the magnetization to rapidly
decrease is dephasing. Dephasing across the sample oc-
curs because of inhomogeneities in the externally-applied
field. Suppose that the spread in Larmor frequency and
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the transverse relaxation time are related by T2∆ω = K.
(UsuallyK is taken to be 2.) The spread in Larmor fre-
quencies ∆ω is due to a spread in magnetic field ∆B
experienced by the nuclear spins in different atoms. The
total variation in B is due to fluctuations caused by the
magnetic field of neighbors and to variation in the applied
magnetic field across the sample:

∆Btot = ∆Binternal + ∆Bexternal.

Therefore

∆ωtot = ∆ωinternal + ∆ωexternal.

The total spread is associated with the experimental
relaxation time, T ∗

2 = K/∆ωtot. The “true” or “non-
recoverable” relaxation time T2 = K/∆ωinternal is due
to the fluctuations in the magnetic field intrinsic to the
sample. Therefore

1
T ∗

2

=
1
T2

+
γ∆Bexternal

K
. (18.36)

T2 is called the nonrecoverable relaxation time because
various experimental techniques can be used to compen-
sate for the external inhomogeneities, but not the internal
atomic ones.

18.7 Detecting the Magnetic
Resonance Signal

We have now seen that a sample of nuclear spins in a
strong magnetic field has an induced magnetic moment;
that it is possible to apply a sinusoidally varying magnetic
field and nutate the magnetic moment to precess at any
arbitrary angle with respect to the static field; and that
the magnetization then relaxes or returns to its original
state with two characteristic time constants, the longitu-
dinal and transverse relaxation times. We next consider
how a useful signal can be obtained from these spins. This
is done by measuring the weak magnetic field generated
by the magnetization as it precesses in the xy plane.

Suppose that a sample is at the origin. The motions
plotted in Fig. 18.7 suggest that one way to produce a
magnetization rotating in the xy plane is to have a sta-
tic field along the z axis, combined with a coil in the yz
plane (perpendicular to the x axis) connected to a gen-
erator of alternating current at frequency ω0. Turning
on the generator for a time ∆t = π/2ω1 = π/γB1 ro-
tates the magnetization into the xy plane (a 90 ◦ or π/2
pulse). If the generator is then turned off, the same coil
can be used to detect the changing magnetic flux due to
the rotating magnetic moments. The resulting signal, an
exponentially damped sine wave, is called the free induc-
tion decay (FID).

To estimate the size of the signal induced in the coil,
imagine a magnetic moment µ = M∆V rotating in the
xy plane as shown in Fig. 18.13. The voltage v induced

x

y

z

Coil

FIGURE 18.13. A magnetic moment rotating in the xy plane
induces a voltage in a pickup coil in the yz plane. The coil is
viewed from slightly to the right of the coil.

x

y

z

Coil

θ

Br

xµ

FIGURE 18.14. A dipole along the x axis generates a flux
through the shaded circle in the yz plane that is equal and
opposite to that through the hemispherical cap. The drawing
is viewed from slightly to the right of the yz plane.

in a one-turn coil in the yz plane is the rate of change of
the magnetic flux through the coil:

v = −∂Φ
∂t

= − ∂

∂t

∫∫
B · dS.

The magnetic field far from a magnetic dipole can be
written most simply in spherical coordinates [Eqs. 18.32].
We need the flux through the coil of radius a in the yz
plane. However, Eqs. 18.32 are not valid close to the di-
pole. Since a fundamental property of the magnetic field
is that for a closed surface

∫∫
B ·dS = 0, the flux through

the coil in Fig. 18.13 is the negative of the flux Φ through
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the hemispherical cap in Fig. 18.14:

Φ = −
∫

Br2πa2 sin θ dθ = −µ0

4π

4πµx

a

∫ π/2

0

cos θ sin θ dθ

= −µ0

4π

2πµx

a
. (18.37)

At any instant µ can be resolved into components along x
and y. The component pointing along y contributes no net
flux through the spherical cap of Fig. 18.14. Therefore,
the flux for a magnetic moment µ = M∆V , where M is
given by Eqs. 18.16, is

Φ = −µ0

4π

2πM0∆V

a
e−t/T2 cos(−ω0t).

The induced voltage is −∂Φ/∂t:

v =
µ0

4π

2πM0∆V

a
e−t/T2

(
− 1

T2
cos(−ω0t) + ω0 sin(−ω0t)

)
.

Since 1/T2 � ω0, this can be simplified to

v = −µ0

4π

ω0

a
2πM0∆V e−t/T2 sin(−ω0t).

If the value of Mz which exists at thermal equilibrium
has been nutated into the xy plane, then M0 is given by
the Mz of Eq. 18.10. For a spin-1

2 particle (and using the
fact that ω0 = γB0) we obtain

v = −µ0

4π

πN ∆V γ3
�

2B2
0

2kBTa
e−t/T2 sin(−ω0t). (18.38)

Here N ∆V is the total number of nuclear spins involved,
B0 is the field along the z axis, and a is the radius of
the coil that detects the free-induction-decay signal. For
a volume element of fixed size, as in magnetic resonance
imaging, the sensitivity is inversely proportional to the
coil radius. If the sample fills the coil, as in most labora-
tory spectrometers, then ∆V ∝ a2 and the sensitivity is
proportional to a.

18.8 Some Useful Pulse Sequences

Many different ways of applying radio-frequency pulses
to generate B1 have been developed by nuclear magnetic
resonance spectroscopists for measuring relaxation times.
There are five “classic” sequences, which also form the
basis for magnetic resonance imaging.

18.8.1 Free-Induction-Decay (FID) Sequence

Free induction decay was described in Sec. 18.7. A π/2
pulse nutates M into the xy plane, where its precession
induces a signal in a pickup coil. The signal is of the form
e−(t/T∗

2 ) sin(−ω0t), where T ∗
2 is the experimental trans-

verse relaxation time, including magnetic field inhomo-
geneities due to the apparatus as well as those intrinsic

Pulse π/2 π/2

 TR 

Mz 1-e-t/T1

Mx e-t/T2*

FIGURE 18.15. Pulse sequence and signal for a free-induc-
tion-decay measurement.

Pulse
π/2

π

 TR 

π
π/2

 TI 

Mz 

Mx

FIGURE 18.16. The inversion recovery sequence allows deter-
mination of T1 by making successive measurements at various
values of the interrogation time TI .

to the sample. Figure 18.15 shows the pulse sequence, the
value of Mx, and the value of Mz. The signal is propor-
tional to Mx. The pulses can be repeated after time TR

for signal averaging. It is necessary for TR to be greater
than, say, 5T1 in order for Mz to return nearly to its
equilibrium value between pulses.

18.8.2 Inversion-Recovery (IR) Sequence

The inversion-recovery sequence allows measurement of
T1. A π pulse causes M to point along the −z axis. There
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FIGURE 18.17. Two magnetic moments are shown in the x′y′

plane in the rotating coordinate system. Moment a rotates
at the Larmor frequency and remains aligned along the y′

axis. Moment b rotates clockwise with respect to moment
a. (a) Both moments are initially in phase. (b) After time
TE/2 moment b is clockwise from moment a. (c) A π pulse
nutates both moments about the x′ axis. (d) At time TE both
moments are in phase again.

is not yet any signal at this point. Mz returns to equilib-
rium according to Mz = M0

[
1 − 2e−(t/T1)

]
. A π/2 inter-

rogation pulse at time TI rotates the instantaneous value
of Mz into the xy plane, thereby giving a signal propor-
tional to M0

[
1 − 2e−(TI/T1)

]
, as shown in Fig. 18.16. The

process can be repeated; again the repeat time must ex-
ceed 5T1.

You can see from Fig. 18.16 that there will be no signal
at all if TI/T1 = 0.693. If TI is less than this, the Mx

signal will be inverted (negative). Unless special detector
circuits are used which allow one to determine that Mx

is negative, the results can be confusing.
Inversion recovery images take a long time to acquire

and there is ambiguity in the sign of the signal. There are
also problems with the use of a π pulse for slice selection
[defined in Sec. 18.9; the details of the problems are found
in Joseph and Axel (1984)].

18.8.3 Spin–Echo (SE) Sequence

The pulse sequence shown in Fig. 18.17 can be used to
determine T2 rather than T ∗

2 . Initially a π/2 pulse nutates
M about the x′ axis so that all spins lie along the rotat-
ing y′ axis. Figure 18.17(a) shows two such spins. Spin a
continues to precess at the same frequency as the rotating
coordinate system; spin b is subject to a slightly smaller
magnetic field and precesses at a slightly lower frequency,
so that at time TE/2 it has moved clockwise in the rotat-

Pulse π/2 π

 TR 

ππ/2

Mz 

Mx e(-t/T2)

FIGURE 18.18. The pulse sequence and magnetization com-
ponents for a spin–echo sequence.

ing frame by angle θ, as shown in Fig. 18.17(b). At this
time a π pulse is applied that rotates all spins around
the x′ axis. Spin a then points along the −y′ axis; spin
b rotates to the angle shown in Fig. 18.17(c). If spin b
still experiences the smaller magnetic field, it continues to
precess clockwise in the rotating frame. At time TE both
spins are in phase again, pointing along −y′ as shown
in Fig. 18.17(d). The resulting signal is called an echo,
and the process for producing it is called a spin-echo se-
quence. The formation of an echo depends only on the
fact that the magnetic field at the nucleus remained the
same before and after the π pulse; it does not depend on
the specific value of the dephasing angle. Therefore, all
of the spin dephasing that has been caused by a time-
independent magnetic field is reversed in this process.
There remains only the dephasing caused by fluctuating
magnetic fields. Figure 18.18 shows the pulse sequence
and signal.

18.8.4 Carr–Purcell (CP) Sequence

When a sequence of π pulses that nutate M about the x′

axis are applied at TE/2, 3TE/2, 5TE/2, etc., a sequence
of echoes are formed, the amplitudes of which decay with
relaxation time T2. This is shown in Fig. 18.19. Referring
to Fig. 18.17, one can see that the echoes are aligned alter-
nately along the −y′ and +y′ axes. One advantage of the
Carr–Purcell sequence is that it allows one to determine
rapidly many points on the decay curve. Another advan-
tage relates to diffusion. The molecules that contain the
excited nuclei may diffuse. If the external magnetic field
B0 is not uniform, the molecules can diffuse to another
region where the magnetic field is slightly different. As
a result the rephasing after a pulse does not completely
cancel the initial dephasing. This effect is reduced by the
Carr–Purcell sequence (see Problem 38).
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Pulse π/2 π π

TE/2 TE TE TE

π π

Mz 

Mx e(-t/T2)

FIGURE 18.19. The Carr–Purcell pulse sequence. All pulses
nutate about the x′ axis. Echoes alternate sign. The enve-
lope of echoes decays as e−t/T2 , where T2 is the unrecoverable
transverse relaxation time.
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FIGURE 18.20. The effect of the Carr–Purcell–Meiboom–Gill
pulse sequence on the magnetization. This is similar to Fig.
18.17 except that the π pulses rotate around the y′ axis. Mo-
ment b rotates clockwise in the x′y′ plane. (a) Both moments
are initially in phase. (b) After time TE/2 moment b is clock-
wise from moment a. (c) A π pulse rotates both moments
about the y′ axis. (d) At time TE both moments are in phase
again.

18.8.5 Carr–Purcell–Meiboom–Gill (CPMG)
Sequence

One disadvantage of the CP sequence is that the π pulse
must be very accurate or a cumulative error builds up
in successive pulses. The Carr–Purcell–Meiboom–Gill se-

Pulse π/2 π(y') π(y')

TE/2 TE TE TE

π(y') π(y')

Mz 

Mx e(-t/T2)

FIGURE 18.21. The CPMG pulse sequence.

quence overcomes this problem. The initial π/2 pulse nu-
tates M about the x′ axis as before, but the subsequent
pulses are shifted a quarter cycle in time, which causes
them to rotate about the y′ axis. This is shown in Fig.
18.20. To see why this pulse sequence is less sensitive to
errors in the duration of the π pulses, consider moment
a. In the CP sequence, Fig. 18.17, a π pulse that is too
long will nutate a too far, and it will have a smaller com-
ponent in the x′y′ plane. The next pulse will nutate it
even further. In Fig. 18.20, the π pulses will not affect
moment a at all. This is explored further in Problems 26
and 27.

18.9 Imaging

Many more techniques are available for imaging with
magnetic resonance than for x-ray computed tomogra-
phy. They are described by Joseph (1985), by Cho et al.
(1993), by Vlaardingerbroek and den Boer (2002), and by
Liang and Lauterbur (2000). One of these authors, Paul
C. Lauterbur, shared with Sir Peter Mansfield the 2003
Nobel Prize in Physiology or Medicine for the discovery
of magnetic resonance imaging.

Creation of the images requires the application of gra-
dients in the static magnetic field Bz which cause the
Larmor frequency to vary with position. The first gradi-
ent is applied in the z direction during the π/2 pulse so
that only the spins in a slice in the patient are selected
(nutated into the xy plane). Slice selection is followed
by gradients of Bz in the x and y directions. These also
change the Larmor frequency. If the gradient is applied
during the readout, the Larmor frequency of the signal
varies as Bz varies with position. If the gradient is ap-
plied before the readout, it causes a position-dependent
phase shift in the signal which can be detected.
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(a) (b) (c)

z

Bz

During π / 2

pulse z

FIGURE 18.22. (a) Magnetic field lines for a magnetic field
that increases in the z direction. (b) A plot of Bz vs z with
and without a gradient. (c) After application of a field gradient
in the z direction during the specially shaped rf pulse, all of
the spins in the shaded slice are excited, that is, they are
precessing in the xy plane.

We discuss several reconstruction methods here. Pro-
jection reconstruction is similar to CT reconstruction, but
is slow and rarely used. A two-dimensional Fourier tech-
nique known as spin warp or phase encoding forms the
basis of the techniques used in most machines. We also
describe briefly some techniques that are even faster. Fi-
nally, we discuss how the image contrast can be modified
by changing the pulse sequence parameters.

Our initial discussion is based on a spin–echo pulse
sequence, repeated with a repetition time TR as shown in
Fig. 18.18.

18.9.1 Slice Selection

First, suppose we simply apply a π/2 pulse to the entire
sample in a 1.5-T machine (ω0 = 401×106 s−1; ν0 = 63.9
MHz). If the duration of this pulse is to be, say, 5 ms,
it requires a constant amplitude of the radio-frequency
magnetic field

B1 = π/γ∆t = 2.35 × 10−6 T. (18.39)

The pulse lasts for 3×105 cycles at the Larmor frequency.
The frequency spread of the pulse is about 200 Hz. This
excites all the proton spins in the entire sample.

For MR imaging, we want to select a thin slice in the
sample. In order to select a thin slice (say ∆z = 1 cm)
we apply a magnetic field gradient in the z direction
while applying a specially shaped B1 signal. In a static
magnetic field B0, the field lines are parallel. The field
strength is proportional to the number of lines per unit
area and does not change. With the gradient applied in
the volume of interest, the field lines converge, and the
field increases linearly with z as shown in Figs. 18.22(a)

and 18.22(b):
Bz(z) = B0 + Gzz. (18.40)

We adopt a notation in which G represents a partial
derivative of the z component of the magnetic field:

G =






Gx

Gy

Gz




 =






∂Bz/∂x

∂Bz/∂y

∂Bz/∂z




 . (18.41)

In a typical machine, Gz = 5 × 10−3 T m−1. For a
slice thickness ∆z = 0.01 m, the Larmor frequency
across the slice varies from ω0 − ∆ω to ω0 + ∆ω, where
∆ω = γGz∆z/2 = 6.68 × 103 s−1 (∆f = 1.064 kHz).

It is possible to make the signal Bx(t) consist of a uni-
form distribution of frequencies between ω0 − ∆ω and
ω0 + ∆ω, so that all protons are excited in a slice of
thickness ∆z from −∆z/2 to +∆z/2. Let the amplitude
of Bx in the interval (ω, dω) be A. Using Eq. 11.55, Bx(t)
is given by

Bx(t) =
A

2π

∫ ω0+∆ω

ω0−∆ω

cos(ωt) dω

=
A∆ω

π

sin(∆ωt)
∆ωt

cos(ω0t). (18.42)

This has the form B1(t) cos(ω0t), where B1(t) =
(A∆ω/π) sin(∆ωt)/(∆ωt). The function sin(x)/x has its
maximum value of 1 at x = 0. It is also called the sinc(x)
function. The angle φ through which the spins are nu-
tated is

φ =
∫ ∞

−∞
ω1(t) dt =

γ

2

∫ ∞

−∞
B1(t) dt

=
γA∆ω

2π

∫ ∞

−∞

sin(∆ωt)
∆ωt

dt

=
γA

2
.

For a π/2 pulse, A = π/γ. The maximum value of B1 is
therefore ∆ω/γ = Gz∆z/2, as shown in Fig. 18.23. The
Bx pulse does not have an abrupt beginning; it grows
and decays as shown. In practice, it is truncated at some
distance from the peak where the lobes are small.

While the gradient is applied, the transverse compo-
nents of spins at different values of z precess at different
rates (see Problem 32). Therefore it is necessary to apply
a gradient Gz of opposite sign after the π/2 pulse is fin-
ished in order to bring the spins back to the phase they
had at the peak of the slice selection signal. The gradient
is removed when all of the spins in the slice shown in Fig.
18.22(c) are back in phase. They then continue to precess
in the xy plane at the Larmor frequency. This gives the
first Mx pulse in Fig. 18.24. This initial free-induction-
decay pulse is not used for imaging.

The voltage induced in the pickup coil surrounding the
sample is proportional to the free induction decay of M
in the entire slice. That is, the voltage signal induced in
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B1(t)

t
 

 = 2π/γ Gz ∆z

= ∆ω/γ = Gz ∆z/2
A ∆ω/π

 π/∆ω 

Bx(t )

C(ω)

ω0 − ∆ω ω0    ω0 + ∆ω 
= ω0 + γGz∆z/2

FIGURE 18.23. (a) The Bx(t) signal shown is used to selec-
tively excite a slice. It consists of cos(ω0t) modulated by a
sinc(x) or sin(x)/x pulse B1(t). (b) The frequency spectrum
contains a uniform distribution of frequencies.

Bx
π/2 π

Mx

Gz

FIGURE 18.24. A slice selection pulse sequence. While a gra-
dient Gz is applied, a π/2 Bx (rf) pulse nutates the spins in a
slice of thickness z into the xy plane. A negative Gz gradient
restores the phase of the precessing spins. The echo after the
π pulse is from the entire slice.

the pickup coil is proportional to
∫

M(x, y, z) cos(−ω0t)
f(t) dV , where M(x, y, z) is the magnetization per unit
volume that was nutated into the xy plane, cos(−ω0t)
represents the change in signal as M rotates in the xy
plane at the Larmor frequency, and f(t) represents relax-
ation, signal buildup during an echo, and so on. Figure
18.24 shows the echo after a subsequent π pulse.

We assume that changes in f(t) are slow compared to
the Larmor frequency and neglect them here. Then the
signal from an element dxdy in the slice is

v(t) = Adxdy ∆z M(x, y, z) cos(−ω0t). (18.43)

Constant A includes all the details of the detecting coils
and receiver.

B0, ω0 

B
Gradientz

x 
o

r 
y

FIGURE 18.25. A gradient in Bz causes the Larmor frequency
to vary with position. If the signal is measured while the gra-
dient is applied, the Larmor frequency varies with position. If
the signal is measured after the gradient has been applied and
removed, a position-dependent phase shift remains.

Bx
π/2 π

Mx

Gz

Gx

FIGURE 18.26. A gradient Gx is applied during x readout.
The echo signal between ω and ω + dω is proportional to the
magnetization in a strip between x and x+dx, integrated over
all values of y.

18.9.2 Readout in the x Direction

We now need to extract x and y position information from
v(t). This is done by creating gradients of Bz in the x or
y directions. As shown in Fig. 18.25, if the signal is mea-
sured while a gradient is applied, the Larmor frequency
varies with position. Suppose that Bz is given a gradient
Gx in the x direction during the echo signal readout, as
shown in Fig. 18.26. The spins that echo in the shaded
slice between x and x+dx in Fig. 18.27 will be precessing
with a Larmor frequency between ω and ω + dω, where
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x

Bz

FIGURE 18.27. Because the gradient Gx is applied during
readout, the Larmor frequency of all spins in the shaded slice
is between ω and ω + dω.

ω = ω0 + γGxx. The signal from the entire slice is

v(t) = A∆z

∫
dx

(∫
dy M(x, y, z)

)
cos[−ω(x)t].

(18.44)
We use the fact that ω(x) = ω0+γGxx to write the signal
as

v(t) = A∆z

∫
dx

[(∫
dy M(x, y, z)

)
cos(−ω0t − γGxxt)

]
.

(18.45)

Since the z slice has already been selected, let us sim-
plify the notation by dropping the z dependence of M.
The electronics in the detector multiply v(t) by cos(ω0t)
or sin(ω0t) and average over many cycles at the Larmor
frequency. The results are two signals that form the basis
for constructing the image:

sc(t) = v(t) cos(ω0t) ∝
∫∫

dx dy M(x, y) cos(−γGxxt),

ss(t) = v(t) sin(ω0t) ∝
∫∫

dx dy M(x, y) sin(−γGxxt).
(18.46)

The time average is over many cycles at the Larmor fre-
quency but a time short compared to 2π/γGxxmax.

18.9.3 Projection Reconstruction

By inspecting Eq. 18.46 and remembering the relation-
ship between ω and x, we see that the Fourier transforms
of sc(t) and ss(t) are both proportional to

∫
M(x, y) dy.

(Of course, the signals are digitized and one actually deals
with discrete transforms.) This means that sc or ss can be
Fourier analyzed to determine the amount of signal in the
frequency interval (ω, dω) corresponding to (x, dx), which
is proportional to the projection

∫
M(x, y) dy along the

shaded strip. In Sec. 12.5 we learned how to reconstruct
an image from a set of projections. The entire readout
process can therefore be repeated with the gradient ro-
tated slightly in the xy plane (that is, with a combination
of Gx and Gy during readout). This is indicated in Fig.
18.28, which indicates many scans, with different values
of Gx and Gy, related by Gx/Gy = tan θ, where θ is

Bx
π/2 π

Mx

Gz

Gx

Gy

FIGURE 18.28. Projection reconstruction techniques can be
used to form an image. A series of measurements are taken,
each with simultaneous gradients Gx and Gy.

the angle between the projection and the x axis. All of
the techniques for reconstruction from projections that
were developed for computed tomography can be used to
reconstruct M(x, y). Sending the proper combination of
currents through the x and y gradient coils rotates the
gradient; no rotating mechanical components are needed.

18.9.4 Phase Encoding

Techniques are available for magnetic resonance imaging
that are not available for computed tomography. They
are based on determining directly the Fourier coefficients
in two or three dimensions. The basic technique is called
spin warp or phase encoding. We saw in Fig. 18.25 that
if a gradient is applied after the π/2 slice-selection pulse,
a position-dependent phase shift remains even after the
gradient is turned off. Let us make this quantitative. We
wish to construct an image of M(x, y), modified by the
function f(t) that accounts for relaxation, etc. For sim-
plicity of notation we again assume f is unity and sup-
press the z dependence, since slice selection has already
been done. We will construct M(x, y) from its Fourier
transform. The Fourier transform of M(x, y) is given by
Eqs. 12.9:

M(x, y) =
(

1
2π

)2 ∫ ∞

−∞
dkx

∫ ∞

−∞
dky

× [C(kx, ky) cos(kxx + kyy)
+ S(kx, ky) sin(kxx + kyy)]. (18.47a)
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with the coefficients given by

C(kx, ky) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy M(x, y) cos(kxx + kyy),

(18.47b)

S(kx, ky) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy M(x, y) sin(kxx + kyy).

(18.47c)
Our problem is to determine C and S and from them
construct the image.

The information from the x readout gives us C(kx, 0)
and S(kx, 0) directly. We show this for the cosine trans-
form. From Eq. 18.47b

C(kx, 0) =
∫ ∞

−∞
dx

(∫ ∞

−∞
dy M(x, y)

)
cos(kxx).

(18.48)
Comparing this to the expression for sc(t) in Eq. 18.46,
we see that

C(kx, 0) ∝ sc(kx/γGx). (18.49a)

Similarly,
S(kx, 0) ∝ ss(kx/γGx). (18.49b)

The times at which sc and ss are measured and there-
fore the values of kx are, of course, discrete. The discus-
sion in Sec. 12.3 shows that the values of kx are multiples
of the lowest spatial frequency: kx = m ∆k = mk0 =
2πm/Lx. The corresponding times to measure the signal
are tm = 2πm/LxγGx. The spatial extent of the image
in the x direction or “field of view” Lx determines the
spacing ∆kx. The desired pixel size determines the max-
imum value of kx or m: ∆x = π/kmax = Lx/2mmax. The
discrete values of kx are shown in Fig. 18.29(a).

The next problem is to make a similar determination
for nonzero values of ky. To do so, a gradient Gy =
∂Bz/∂y is applied at some time between slice selection
and readout. This makes the Larmor frequency vary in
the y direction. If the phase-encoding pulse is due to a
uniform gradient that lasts for a time Tp, the total phase
change is

∆φ =
∫

ω(t) dt = γGyTpy = kyy. (18.50)

The readout signal, Eq. 18.44, is replaced by

v(t) = A∆z

∫
dx

∫
dy M(x, y) cos[ω(x)t+kyy]. (18.51)

Note that the added phase does not depend on t. How-
ever, the cosine term must now be included in both the x
and y integrals. Carrying through the mathematics of the
detection process shows that temporal Fourier transfor-
mation of the signals determines C(kx, ky) and S(kx, ky)
for all values of kx and for the particular value of ky de-
termined by the Gy phase selection pulse. Different values
of the Gy pulse give the coefficients for different values
of ky, as shown in Fig. 18.29. Both positive and nega-
tive gradients are used to give both positive and negative

kx

ky
Gz

Gx

Gy

M x

kx

ky
Gz

Gx

Gy

M x

kx

ky
Gz

Gx

Gy

Mx

(a)

(b)

(c)

FIGURE 18.29. (a) The signal measured while the x gradi-
ent is applied gives the spatial Fourier transform of the image
along the kx axis. (b) The addition of a phase-encoding gradi-
ent sets a nonzero value for ky so that the readout determines
the spatial Fourier transform along a line parallel to the kx

axis. (c) Phase encoding along the x axis as well shifts the line
along which the coefficients are determined.

values of ky. Application of a gradient Gx during the
phase-encoding time (in addition to the readout gradi-
ent) changes the starting value of kx. This allows one to
determine the coefficients for negative values of kx. This
figure has been drawn without taking into account that
the application of a π pulse changes kx to −kx and ky

to −ky. The gradients and signals for this spin–echo de-
termination are shown in Fig. 18.30. The coefficients are
substituted in Eq. 18.47a to reconstruct M(x, y, z) for the
z slice in question.

18.9.5 Other Pulse Sequences

Dozens of other pulse sequences have been invented, all
of which are based on the fundamentals presented here.
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Bx
π/2 π

Mx

Gz

Gx

Gy

FIGURE 18.30. The signals in a standard phase encoding.
The pulse sequence is repeated for each value of ky.

Bx
π/2 π π π

Mx

Gz

Gx

Gy

FIGURE 18.31. A fast spin echo sequence uses a single
π/2 slice selection pulse followed by multiple echo rephasing
pulses. A correction must be made for the transverse decay.

We mention only a few, and there are many variations of
these. For details, see Bernstein et al. (2004).

Fast spin echo or turbo spin echo uses a single π/2
pulse, followed by a series of π pulses, as shown in Fig.
18.31. Each π pulse produces an echo, though the echo
amplitudes decay and a correction for this must be made
in the image reconstruction. Each Gy pulse increments
or “winds” the phase by a fixed amount. A negative Gx

pulse resets the positions of the kx values. Faster image
acquisition sequences not only save time, but they may
allow the image to be obtained while the patient’s breath
is held, thereby eliminating motion artifacts.

Bx
π/2

Mx

Gz

Gx

Gy

FIGURE 18.32. Echo planar imaging uses a very uniform mag-
net and eliminates the rephasing π pulses.

The major problem with conventional spin echo is that
one must wait a time TR � T1 between measurements
for different values of ky. One way to speed things up is
to use the intervening time to make measurements in a
slice at a different value of z. Another technique is to use
a flip angle smaller than π/2. Suppose the flip angle is
α = 20 ◦. This gives a transverse magnetization propor-
tional to sin 20 ◦ = 0.34 while reducing the longitudinal
magnetization to cos 20 ◦ = 0.94. Thus, k space can be
sampled until the transverse signal has decayed and an-
other α flip pulse can immediately be applied to restore
the transverse magnetization.

Echo-planar imaging (EPI) eliminates the π pulses. It
requires a magnet with a very uniform magnetic field,
so that T2 (in the absence of a gradient) is only slightly
greater than T ∗

2 . The gradient fields are larger, and the
gradient pulse durations shorter, than in conventional
imaging. The goal is to complete all the k-space mea-
surements in a time comparable to T ∗

2 . In EPI the echoes
are not created using π pulses. Instead, they are created
by dephasing the spins at different positions along the x
axis using a Gx gradient, and then reversing that gradient
to rephase the spins, as shown in Fig. 18.32. Whenever
the integral of Gx(t) is zero, the spins are all in phase
and the signal appears. A large negative Gy pulse sets
the initial value of ky to be negative; small positive Gy

pulses (“blip”) then increase the value of ky for each suc-
cessive kx readout. Echo-planar imaging requires strong
gradients—at least five times those for normal studies—
so that the data can be acquired quickly. Moreover, the
rise- and fall-times of these pulses are short, which in-
duces large voltages in the coils. Eddy currents are also
induced in the patient, and it is necessary to keep these
below the threshold of sensitivity. These problems can be
reduced by using sinusoidally varying gradient currents.
Image reconstruction takes longer, because the sample
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points in k-space are not on a rectangular grid. The engi-
neering problems are discussed in Schmitt et al. (1998), in
Vlaardingerbroek and den Boer (2002) and in Bernstein
et al.(2004).

High spatial frequencies give the sharp edge detail in
an image; the lowest spatial frequencies give the overall
contrast. (We saw this in Figs. 12.9 and 12.10.) Changing
the order of sampling points in k space can be useful. For
example, when the image may be distorted by blood flow
(see Sec. 18.11), it is possible to change the gradients in
such a way that the values of k near zero are measured
right after the excitation. This gives the proper signal
within the volume of the vessel. The higher spatial fre-
quencies, which show vessel edges, are less sensitive to
blood flow and are acquired later.

A three-dimensional Fourier transform of the image can
be obtained by selecting the entire sample and then phase
encoding in both the y and z directions while doing fre-
quency readout along x. One must step through all values
of ky for each value of kz. This forms the basis for imag-
ing very small samples with very high resolution (MRI
microscopy).

18.9.6 Image Contrast and the Pulse
Parameters

The appearance of an MR image can be changed drasti-
cally by adjusting the repetition time and the echo time.
Problem 24 derives a general expression for the ampli-
tude of the echo signal when a series of π/2 pulses are
repeated every TR seconds. The magnetic moment in the
sample at the time of the measurement, considering both
longitudinal and transverse relaxation, is

M(TR, TE) = M0

(
1 − 2e−TR/T1+TE/2T1 + e−TR/T1

)

× e−TE/T2 . (18.52)

If TR � TE , this simplifies to

M(TR, TE) = M0(1 − e−TR/T1)e−TE/T2 , (18.53)

where M0 is proportional to the number of proton spins
per unit volume N , as shown in Eq. 18.10. We consider an
example that compares muscle (M0 = 1.02 in arbitrary
units, T1 = 500 ms, and T2 = 35 ms) with fat (M0 = 1.24,
T1 = 200 ms, and T2 = 60 ms).

Figure 18.33 shows two examples where TR is relatively
long and M0 returns nearly to its initial value between
pulses. If the echo time is short, then the image is nearly
independent of both T1 and T2 and it is called a density-
weighted image. If TE is longer, then the transverse decay
term dominates and it is called a T2-weighted image. The
signal is often weak and therefore noisy because there has
been so much decay.

Figure 18.34 shows what happens if the repetition time
is made small compared to T1. This is a T1-weighted image
because the differences in T1 are responsible for most of
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Long TE

FIGURE 18.33. The intensity of the signal from different tis-
sues depends on the relationship between the repetition time
and echo times of the pulse sequence, and the relaxation times
of the tissues being imaged. This figure and the next show the
magnetization curves for two tissues: muscle (relative proton
density 1.02, T1 = 500 ms, T2 = 35 ms) and fat (relative pro-
ton density 1.24, T1 = 200 ms, T2 = 60 ms). The repetition
time is 1,500 ms, which is long compared to the longitudinal
relaxation times. A long echo time gives an image density that
is very sensitive to T2 values. A short echo time (even shorter
than shown) gives an image that depends primarily on the
spin density.
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FIGURE 18.34. The tissue parameters are the same as in Fig.
18.33. The repetition time is short compared to the longitudi-
nal relaxation time. As a result, the first echo must be ignored.
With a short TE , the image density depends strongly on the
value of T1.

the difference in signal intensity. Notice also that the very
first pulse nutates the full M0 into the transverse plane,
so an echo after the first pulse would give an anomalous
reading. Echoes are measured only for the second and
later pulses.
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FIGURE 18.35. Spin–echo images taken with short and long
values of TE , showing the difference in T2 values for different
parts of the brain. Photograph courtesy of R. Morin, Ph.D.,
Department of Diagnostic Radiology, University of Minnesota.

Suppose that the value of T2 for fat had been shorter
than the value for muscle. Then there would have been
a value of TE for which the two transverse magnetiza-
tion curves crossed, and the two tissues would have been
indistinguishable in the image. At larger values of TE ,
their relative brightnesses would have been reversed. Fig-
ure 18.35 shows spin–echo images taken with two different
values of TE , for which the relative brightnesses are quite
different.

18.9.7 Safety

Safety issues in MRI include forces on magnetic objects in
and around the patient such as aneurysm clips, hairpins,
pacemakers, wheel chairs, and gas cylinders [Shellock
(2002), Kanal et al. (2002)], absorbed radio-frequency en-
ergy (Problem 19), and induced currents from rapidly
changing magnetic field gradients. The rapid changes of
magnetic field can stimulate nerves and muscles, cause
heating in electrical leads and certain tattoos, and possi-
bly induce ventricular fibrillation. Induced fields are re-
viewed by Schaefer et al. (2000).

18.10 Chemical Shift

If the external magnetic field is very homogeneous, it is
possible to detect a shift of the Larmor frequency due to a
reduction of the magnetic field at the nucleus because of
diamagnetic shielding by the surrounding electron cloud.
The modified Larmor frequency can be written as

ω = γB0(1 − σ). (18.54)

Typical values of σ are in the range 10−5−10−6. They are
independent of B0, as expected for a diamagnetic effect
proportional to B0. Measurements are made by Fourier
transformation of the free-induction-decay signal, aver-
aged over many repetitions if necessary to provide the
resolution required to detect the shift.

A great deal of work has been done with 31P, because
of its presence in adenosine triphosphate and adenosine

FIGURE 18.36. A series of 31P NMR spectra from the forearm
of a normal adult showing the change in various chemical-shift
peaks with exercise. Peak A is inorganic phosphate; C is phos-
phocreatine; D, E, and F are from the three phosphates in
ATP. One can see the disappearance of ATP and phosphocre-
atine with exercise, accompanied by the buildup of inorganic
phosphate. From R. L. Nunally (1985). NMR spectroscopy
for in vivo determination of metabolism; an overview, in S.
R. Thomas and R. L. Dixon, eds. NMR in Medicine: The In-
strumentation and Clinical Applications, College Park, MD,
AAPM. Used by permission.

FIGURE 18.37. A chemical shift spectrum for 31P taken from
the visual cortex at the back of the brain using a 7-tesla ma-
chine. From H. Lei, X.-H. Zhu, X.-L. Zhang and K. Ugur-
bil. In vivo 31P magnetic resonance spectroscopy of the hu-
man brain at 7 T: An initial experience. Magn. Reson. Med.
49:199–205 (2003). Used by permission. Image courtesy of
Professor Kamil Ugurbil.

diphosphate (ATP and ADP). Free energy is supplied for
many processes in the body by the conversion of ATP
to ADP. Figure 18.36 shows shifts in the 31P peaks due
to metabolic changes. With exercise the ATP and phos-
phocreatine peaks diminish and the inorganic phosphate
peak increases. Fig. 18.37 shows a very high resolution
chemical shift spectrum from the human visual cortex
taken with a 7-tesla machine.
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FIGURE 18.38. The image on the left displays 31P chemical
shift data as spectra from individual voxels. The image of the
slice from which these data are obtained is shown below the
spectra. The slice cuts through the cerebellum and tempo-
ral lobes of the brain (solid outline). The dashed lines mark
skeletal muscle which also contains phosphorylated metabo-
lites, with a higher creatine phosphate level (PCr) compared
to brain. The slice on the right is through brain only. Image
courtesy of Prof. Kamil Ugurbil.

It is also possible to make chemical shift images. Figure
18.38 shows a series of 31P spectra from the brain. An
image of the slice from which these data are obtained
is shown below the spectra. The slice on the left cuts
through the cerebellum and temporal lobes of the brain.
It also includes some skeletal muscle. The slice on the
right is through brain only.

18.11 Flow Effects

Flow effects can distort a magnetic resonance image.
Spins initially prepared with one value of M can flow out
of a slice before the echo and be replaced by spins that
had a different initial value of M. This is called washout.
Spins that have been shifted in phase by a field gradient
can flow to another location before the readout pulse is
applied. Axel (1985) reviews the effect on images. This
technique has also been used to measure blood flow [Bat-
tocletti et al. (1981)].

To understand the washout effect consider a simple
model in which a blood vessel is perpendicular to the
slice, as shown in Fig. 18.39. To simplify further, assume

v

vt
∆z

FIGURE 18.39. A blood vessel is perpendicular to the slice.
The model developed in the text assumes plug flow, that is,
all of the blood is flowing with the same speed v.

that all the blood flows with the same speed v, indepen-
dent of where it is in the vessel. This is called plug flow.

First consider washout of the excited spins. Suppose
that at time TE/2 a π pulse is applied to the slice in
Fig. 18.39 and that the echo is measured at time TE . The
shaded area in the vessel represents new blood that flows
in during time t. If the flow velocity is zero, no new blood
flows in, all of the blood in the slice was excited, and the
signal has full strength. If the velocity is greater than
2∆z/TE , all of the spins that were flipped by the pulse
will leave the sensitive region by the time of the echo, and
there will be no signal. Because we assume plug flow, the
fraction washed out is a linear function of velocity up
to the critical value of v. The fraction of excited spins
remaining at TE is given by

f =





1 − vTE

2∆z
, v < 2∆z/TE

0, v ≥ 2∆z/TE .

(18.55)

Now consider washout of spins between pulses. We saw
that the effect of repetition and echo times on the MRI
signal is given by Eq. 18.52, which, if TR � TE , simplifies
to Eq. 18.53. For low velocities (v < ∆z/TR) there is an
enhancement of the signal because blood with a larger
value of Mz flows into the sensitive region. For vTR < ∆z,
the factor in parentheses in Eq. 18.53 is replaced by

vTR

∆z
+
(

1 − vTR

∆z

)(
1 − e−TR/T1

)
.

The first term represents spins that flow in and the second
those that still remain and that are still affected by the
previous pulse. This can be rearranged as

(
1 − e−TR/T1

)
+

vTR

∆z
e−TR/T1 . (18.56)

This factor has the value 1 − e−TR/T1 for small v and
is proportional to v when v � TR/∆z. More compli-
cated models can be developed. Phase changes because
the blood flows through magnetic field gradients are also
important.
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FIGURE 18.40. Functional MRI in three planes: (a) sagittal
(side) view; (b) coronal (front) view; (c) axial view. The layers
viewed in (b) and (c) are indicated by the lines in (a). Bright
spots superimposed on the image show activity in the visual
cortex and in some structures between the eye and the visual
cortex. The magnetic field is 4 T. Adapted from Chen et al.
(1998). Image supplied by Professor Kamil Ugurbil.

18.12 Functional MRI

Magnetic resonance imaging provides excellent structural
information. Various contrast agents can provide infor-
mation about physiologic function. For example, various
contrast agents containing gadolinium are injected intra-
venously. They leak through a damaged blood-tissue bar-
rier and accumulate in the damaged region. At small con-
centrations T1 is shortened.

One can also inject a contrast agent and watch its first
pass through the circulatory system. Such an agent typ-
ically changes the magnetic susceptibility and shortens
T2.

The term functional magnetic resonance imaging
(fMRI) usually refers to a technique developed in the
1990s that allows one to study structure and function
simultaneously. The basis for fMRI is inhomogeneities
in the magnetic field caused by the differences in the
magnetic properties of oxygenated and deoxygenated
hemoglobin. No external contrast agent is required. Oxy-
genated hemoglobin is less paramagnetic than deoxyhe-
moglobin. If we make images before and after a change
in the blood flow to a small region of tissue (perhaps
caused by a change in its metabolic activity), the differ-
ence between the two images is due mainly to changes in
the blood oxygenation. One usually sees an increase in
blood flow to a region of the brain when that region is
active. This blood oxygenation level dependent (BOLD)
contrast in the two images provides information about
the metabolic state of the tissue, and therefore about the
tissue function [Ogawa et al. (1990); Price et al. (2002)].
A recent image of the brain during visual stimulation is

shown in Fig. 18.40. In addition to the visual cortex in (c),
activity is seen in the lateral geniculate nucleus [(b) and
(c)], which is on the pathway from the eye to the visual
cortex. Functional MRI provides functional information
similar to that from PET (Sec. 17.14), but without the
need for radionuclides.

Another recent technique that can be classified as func-
tional is the detection of prostate cancer that has metas-
tasized to a lymph node when the metastasis is not yet
apparent by other imaging techniques. Monocrystalline
iron oxide particles injected in the blood will be taken up
by normal lymph nodes but not those with metastases.
The technique is effective for lymph nodes larger than 5
mm [Harisinghani et al. (2003); see also the commentary
by Koh et al. (2003)].

18.13 Diffusion and Diffusion Tensor
MRI

Our analysis of MRI so far assumes that the nuclei are
stationary except for rotation of their spin axis. In prac-
tice, these nuclei are free to diffuse throughout the tissue
(Chapter 4). The magnetization M depends on the total
number of particles per unit volume with average spin
components 〈µx〉, 〈µy〉, and 〈µz〉. In the rotating coordi-
nate system there is no precession. In the absence of re-
laxation effects 〈µ〉 does not change. In that case changes
in M depend on changes in the concentration of particles
with particular components of 〈µ〉, so the rate of change
of each component of 〈µ〉 is given by a diffusion equation.
For example, for Mx,

∂Mx

∂t
= D∇2Mx.

If the processes are linear, this diffusion term can be
added to the other terms in the Bloch equations. The
details are given in Problem 38.

In a spin-echo pulse sequence, the amplitude of the echo
will be smaller if the spins have diffused to different loca-
tions within the tissue between the time of the excitation
pulse and the echo. This artifact degrades the signal dur-
ing traditional MRI, but can be valuable if one wants to
measure the diffusion constant. The rate of diffusion de-
pends sensitively on temperature, so measurements of the
diffusion constant provide a way to monitor internal tem-
peratures noninvasively [Delannoy et al. (1991)]. Moseley
et al. (1990) showed that diffusion MRI is valuable for
detecting regional cerebral ischemia, and it has become a
useful tool in stroke research.

Diffusion can be monitored during a spin-echo sequence
by applying magnetic field gradients of the same magni-
tude and duration before and after the π pulse, as shown
in Fig. 18.41. If a spin is stationary, these gradients have
no effect: they shift the phase of the spins in one direc-
tion before the π pulse, but shift the phase in the other
direction after the π pulse, restoring the original phase.
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Bx
π/2 π

Mx

Gz

Gx

Gy

FIGURE 18.41. A simplified pulse sequence for diffusion ten-
sor imaging. The sequence is similar to that shown in Fig.
18.30, for 2-D imaging using phase encoding. The first FID
signal is not seen because the Gx and Gy gradients dephase
the spins. The diffusion gradients, shown in gray, are applied
before and after the π pulse. For stationary spins, any phase
shift produced by the first diffusion gradient is canceled by an
opposite phase shift produced by the second diffusion gradi-
ent. Spins that diffuse during this pulse sequence are affected
differently by the first and second diffusion gradients, which
affects the signal. For diffusion tensor imaging the gradients
must be applied in all three directions. For more details, see
Mattiello et al. (1994).

However, for spins that diffuse from one location to an-
other between the application of the gradients, the phase
shift of the first gradient is not cancelled by an opposite
phase shift in the second, so the gradients introduce a net
phase shift. This shift lowers the echo amplitude, with the
reduction depending on the square of the gradient and the
diffusion constant (Problem 38).

In some tissues, such as nerve fibers, diffusion is
anisotropic, meaning that the diffusion constant depends
on direction. In such cases the effect of diffusion depends
on the direction of the magnetic field gradient. Basser et
al. (1994) extended diffusion MRI so that the entire diffu-
sion tensor is measured. The diffusion tensor (or matrix)
is similar to the conductivity tensor discussed in Sec. 7.9.
Using matrix notation, the fluence rate of diffusing par-
ticles with aligned nuclear spins is related to the particle
concentration by




jx

jy

jz



 = −




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz.
















∂C

∂x

∂C

∂y

∂C

∂z

.












(18.57)

One can show that the diffusion matrix is always sym-
metric: Dyx = Dxy, etc.

Diffusion is usually greater along the direction of the
nerve or muscle fibers. Since the orientation of the fibers
change throughout the body, the elements of the diffusion
tensor vary as well. However, some features of the diffu-
sion tensor, such as the trace (see Problem 40), are inde-
pendent of the fiber direction, and are particularly useful
when monitoring diffusion in anisotropic tissue, such as
the white matter of the brain. In addition, the diffusion
tensor contains information about the fiber direction, al-
lowing one to map fiber tract trajectories noninvasively
using MRI [Basser et al. (2000)]. See also the review by
Thomas et al. (2000).

Symbols Used in Chapter 18

Symbol Use Units First

used on

page

a Loop radius m 525

a, b Constants J T−1 m−3 521

f Fraction 535

h Planck’s constant J s 522

� Planck’s constant (re-

duced)

J s 517

i Current A 516

jx,jy ,jz fluence rate m−2 s−1 537

kB Boltzmann constant J K−1 517

kx, ky , kz Spatial frequency m−1 530

m Mass kg 516

m Azimuthal quantum

number

517

m Integer 531

q Electric charge C 516

r Radius m 516

s Signal V 530

t Time s 516

v Velocity m s−1 516

v Voltage difference V 524

x Dimensionless
variable

528

x, y, z Axes m 518

x′, y′, z′ Axes (rotating) m 519

∆z Slice thickness m 528

A Amplitude T s 529

A Constant V T J−1 530

B,B Magnetic field T 516

B1 Oscillating magnetic

field

T 520

C Constant in

expression for

relaxation time

s−2 523

E Energy J 522

Gx, Gy , Gz Gradient of Bz in the

x, y, or z direction

T m−1 528

I Nuclear angular mo-

mentum

kg m2 s−1 517

I Nuclear angular

momentum quantum

number

517

K Constant 524
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Symbol Use Units First
used on
page

L,L Orbital angular
momentum

kg m2 s−1 516

M,M Magnetization J T−1 m−3 517

N Number of spins per
unit volume

m−3 517

R Rotation matrix 519

S Area m2 516
S Spin angular momen-

tum
kg m2 s−1 517

T Temperature K 517

T Period s 521
TE Time of echo s 526
TI Interrogation time s 526
TR Repetition time

between pulse
sequences

s 528

T1 Longitudinal
relaxation time

s 518

T2 Transverse relaxation
time

s 518

T ∗
2 Experimental

transverse relaxation

time

s 524

Tp Length of gradient
pulse

s 531

U Potential energy J 516
V Volume m3 525
α Arbitrary angle 522
γ Gyromagnetic ratio T−1 s−1 516
µ, µ Magnetic moment J T−1 516
µ0 Magnetic

permeability of space
T m A−1 516

ν Frequency Hz 517
θ Angle 516
σ Chemical shift factor 534
τ, τ Torque N m 516
τ Shift time for

autocorrelation
s 523

τC Correlation time s 523
ω Angular frequency s−1 517
ω1 Angular frequency

for B1 rotation
s−1 521

ω0 Larmor angular
frequency

s−1 519

φ Azimuthal angle 522
φ Phase 531
φ11 Autocorrelation

function
523

Φ Magnetic flux weber (T
m2)

525

Ω Angular velocity
vector

s−1 520

Problems

Section 18.1

Problem 1 Show that for a particle of mass m located
at position r with respect to the origin, the torque about
the origin is the rate of change of the angular momentum
about the origin.

Section 18.2

Problem 2 Show that the units of γ are T−1 s−1.

Problem 3 Find the ratio of the gyromagnetic ratio in
Table 18.1 to the value q/2m for the electron and proton.

Section 18.3

Problem 4 Evaluate the quantity γm�B/kBT and the
Larmor frequency for electron spins and proton spins in
magnetic fields of 0.5 and 4.0 T at body temperature (310
K).

Problem 5 Verify that
∑

1 = 2I + 1,
∑

m = 0, and∑
m2 = I(I + 1)(2I + 1)/3, when the sums are taken

from −I to I, in the cases that I = 1
2 , 1, and 3

2 .

Problem 6 Obtain an expression for the magnetization
analogous to Eq. 18.10 in the case I = 1

2 when one cannot
make the assumption γ�B/kBT � 1.

Problem 7 Calculate the coefficient of B in Eq. 18.10
for a collection of hydrogen nuclei at 310 K when the
number of hydrogen nuclei per unit volume is the same
as in water.

Section 18.4

Problem 8 Verify that Eqs. 18.16 are a solution of Eqs.
18.15.

Problem 9 Calculate the value of M2
x + M2

y + M2
z for

relaxation Eqs. 18.16 when T1 = T2.

Problem 10 Equations 18.16 correspond to a solution
of the Bloch equations in the presence of a static field B.
What would be the solutions if initially Mx = 0,My = 0,
and Mz = −M0?

Section 18.5

Problem 11 (a) Use Fig. 18.6 to derive Eq. 18.18.
(b) Show that

Mx′ = Mx cos θ + My sin θ,

My′ = −Mx sin θ + My cos θ.

(c) Combine these equations with the equations for Mx

and My to show that the application of both transforma-
tions brings one back to the starting point.

Problem 12 Equation 18.17 shows how to transform the
components of a vector in the primed system (rotated an
angle θ clockwise from the unprimed system) into the un-
primed system. Use the arguments of Section 18.5 to de-
rive the following transformation matrices for counter-
clockwise rotations.
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(a) Angle α about the x axis:



1 0 0
0 cos α sin α
0 − sin α cos α





(b) Angle β about the y axis:



cos β 0 − sin β

0 1 0
sin β 0 cos β



 ,

(c) Angle θ about the z axis:



cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 .

Why are the minus signs different from those in Eq.
18.17b?

Problem 13 Calculate M2 = M2
x + M2

y + M2
z for the

solution of Eqs. 18.30 and compare it to the results of
Problem 9.

Section 18.6

Problem 14 Use Eqs. 18.32 to find the magnetic field at
one proton due to the other proton in a water molecule
when both proton spins are parallel to each other and per-
pendicular to the line between the protons. The two pro-
tons form an angle of 104.5 ◦ and are each 96.5 × 10−12

m from the oxygen.

Problem 15 The magnetic field at a distance of 0.15
nm from a proton is 4×10−4 T. What change in Larmor
frequency does this ∆B cause? How long will it take for a
phase difference of π radians to occur between a precess-
ing spin feeling this extra field and one that is not?

Problem 16 Consider a collection of spins that are
aligned along the x axis at t = 0. They precess in the xy
plane with different angular frequencies spread uniformly
between ω − ∆ω/2 and ω + ∆ω/2. If the total magnetic
moment per unit volume is M0 at t = 0, show that at
time T = 4/∆ω it is M0 sin(2)/2 = 0.455M0.

Problem 17 What is the contribution to the transverse
relaxation time for a magnetic field of 1.5 T with a uni-
formity of 1 part per million? The nonrecoverable relax-
ation time of brain is about 2.5 ms. What dominates the
measured transverse relaxation in brain?

Problem 18 Suppose the two dipoles of the water mole-
cule shown below point in the z direction while the line
between them makes an angle θ with the x axis. Deter-
mine the angle θ for which the magnetic field of one dipole
is perpendicular to the dipole moment of the other. For
this angle the interaction energy is zero. This θ is called
the “magic angle” and is used when studying anisotropic
tissue such as cartilage [Xia (1998)].

θ

Section 18.7

Problem 19 In solving this problem, you will develop a
simple model for estimating the radio-frequency energy
absorption in a patient undergoing an MRI procedure.

(a) Consider a uniform conductor with electrical con-
ductivity σ. If it is subject to a changing magnetic field
B1(t) = B1 cos(ω0t), apply Eq. 8.19 to a circular path
of radius R at right angles to the field to show that the
electric field at radius R has amplitude E0 = Rω0B1/2.
(Because this is proportional to R, the model gives the
skin dose, along the path for which R is largest.)

(b) Use Ohm’s law in the form j = σE to show that the
time average power dissipated per unit volume of material
is p = σE2

0/2 = σR2ω2
0B2

1/8 and that if the mass density
of the material is ρ, the specific absorption rate (SAR)
or dose rate is SAR = σR2ω2

0B2
1/8ρ.

(c) If the radio-frequency signal is not continuous but
is pulsed, show that this must be modified by the “duty
cycle” factor ∆t/TR, where ∆t is the pulse duration and
TR is the repetition period.

(d) Combine these results with the fact that rotation
through an angle θ (usually π or π/2) in time ∆t requires
B1 = 2θ/γ∆t and that ω0 = γB0, to obtain SAR =
(1/TR∆t)(σ/2ρ)(R2/4)B2

0θ2.
(e) Use typical values for the human body—R = 0.17

m, σ = 0.3 S m−1—to evaluate this expression for a π/2
pulse.

(f) For B0 = 0.5 T and SAR< 0.4 W kg−1 determine
the minimum value of ∆t for TR = 1 s. Also find B1.

(g) For 180 ◦ pulses, what is the dose in Gy? (This
should not be compared to an x-ray dose because this is
nonionizing radiation.)

Problem 20 Use Eq. 18.38 to calculate the initial am-
plitude of a signal induced in a one-turn coil of radius
0.5 m for protons in a 1-mm cube of water at 310 K in
a magnetic field of 1.0 T. (The answer will be too small
a signal to be useful; multiple-turn coils must be used.)

Section 18.8

Problem 21 Plot the maximum amplitude of an inver-
sion recovery signal vs. the interrogation time if the de-
tector is sensitive to the sign of the signal and if it is
not.
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Problem 22 (a) Obtain an analytic expression for the
maximum value of the first and second echo amplitudes
in a Carr–Purcell pulse sequence in terms of T2 and TE.

(b) Repeat for a CPMG pulse sequence.

Problem 23 Consider the behavior of Mz in Figs. 18.19
and 18.21. The general equation for Mz is Mz = M0 +
Ae−t/T1 . After several π pulses, the value of Mz is flip-
ping from −b to b. Find the value of b.

Problem 24 Consider a spin–echo pulse sequence (Fig.
18.18). Find

(a) Mz just before the π pulse at TE/2,
(b) Mz just after the π pulse at TE/2,
(c) Mz just before the π/2 pulse at TR, and
(d) the first and second echo amplitudes as a function

of TE, TR, T1 and T2. (The second amplitude is the same
as all subsequent amplitudes.)

Problem 25 This problem uses matrices to analyze the
spin-echo pulse sequence. Use the rotation matrices given
in Problem 12. Start with M = (0, 0,M0). Rotate M
about x′ by π/2, then about z′ by θ, then about x′ by π,
and finally about z′ by θ. What are the final components
of M? Identify what pulse sequence or physical process
corresponds to each rotation. Why would θ be nonzero in
the rotating reference frame? What would be the signifi-
cance if the final M is independent of θ?

Problem 26 (a) Make a three-dimensional sketch of
Fig. 18.17. Assume spin a is initially aligned with the
y′ axis and spin b is 30 ◦ clockwise from spin a. Then
make similar sketches for a Carr–Purcell sequence that
rotates the spins about the x′ axis at the following times:
just before the π pulse at TE/2, just after the π pulse at
TE/2, at TE , just before the π pulse at 3TE/2, just af-
ter the π pulse at 3TE/2, and at 2TE. Assume that the π
pulse rotates the spins exactly 180 ◦ . Then make sketches
when the π pulses rotate the spins by 185 ◦.

(b) Repeat for a CPMG pulse sequence that rotates spin
a and spin b around the y′ axis. Again, consider two cases:
the π pulses rotate by 180 ◦ and 185 ◦. Your sketches will
show the advantage of the CPMG pulse sequence when
there is an error in the duration of the π pulse.

Problem 27 This problem uses the matrices introduced
in Problem 12 to examine the difference between the
Carr–Purcell and the Carr–Purcell–Meiboom–Gill pulse
sequences.

(a) Start with M = (0, 0,M0). Rotate about x′ by π/2,
about z′ by θ, about x′ by π, about z′ by θ again, about
x′ by π, and about z′ by θ. What is the final result? This
process corresponds to the first two echoes produced by a
Carr–Purcell pulse sequence.

(b) Repeat the analysis of part (a), but change the two π
rotations about x′ to two π+δ rotations about x′. Assume
δ � π and use the approximations cos(π+δ) = − cos δ ≈
−1 and sin(π + δ) = − sin δ ≈ −δ to simplify your result.
Keep only terms in order δ. What is your final result?

This process corresponds to the first two echoes produced
by a Carr-Purcell pulse sequence in which the π pulses
have slightly wrong amplitudes.

(c) Repeat the analysis of part (b) but change the ro-
tations about x′ to be rotations about y′. What are the
differences between the CP and CPMG pulse sequences?
Explain why the CPMG pulse sequence is superior to the
CP pulse sequence.

Section 18.9

Problem 28 Show that an alternative expression for
the field amplitude required for a π/2 pulse is B1 =
B0π/ω0∆t = B0/2ν∆t.

Problem 29 A certain MRI machine has a static mag-
netic field of 1.0 T. Spins are excited by applying a field
gradient of 3 mT m−1. If the slice is to be 5 mm thick,
what is the Larmor frequency and the spread in frequen-
cies that is required?

Problem 30 Consider a pair of gradient coils of radius
a perpendicular to the z axis and located at z = ±

√
3a/2.

The current flows in the opposite direction in each single-
turn coil.

(a) Use the results of Problem 8.9 to obtain an expres-
sion for Bz along the z axis.

(b) For a gradient of 5 mT m−1 at the origin and a =
10 cm, find the current required in a single-turn coil.

Problem 31 Find a linear approximation for Eq. 18.53
for very small values of TE and TR, and discuss why it is
called a T1-weighted image.

Problem 32 The slice selection gradient Gz must be ap-
plied for a time τ which is at least as long as the duration
of the B1 pulse. Suppose that τ = 6 × 2π/(γGz∆z) (see
Fig. 18.23). How much has the phase at the top of the
slice (z = ∆z) changed with respect to the middle of the
slice (z = 0)?

Problem 33 Relate the resolution in the y direction to
Gy and Tp.

Problem 34 Discuss the length of time required to ob-
tain a 256× 256 image in terms of TR and TE. The field
of view is 15 cm square. Consider both projection recon-
struction and spin warp images. Introduce any other pa-
rameters you need.

Problem 35 The limiting noise in a well-designed ma-
chine is due to thermal currents in the body. The noise
is proportional to B0 and the volume Vn sampled by the
radio-frequency pickup coil. The noise is also proportional
to T−1/2, where T is the time it takes to acquire the im-
age. Show that the signal-to-noise ratio is proportional
to B0T

1/2Vv/Vn, where Vv is the volume of the picture
element.
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Section 18.10

Problem 36 The chemical shift difference between wa-
ter and fat is ∆σ = 3.5 ppm. This can cause a spatial
shift of the images from fat and water if the readout gra-
dients are large. Estimate this shift for a 1.5 T machine
and a gradient of 5 mT m−1.

Section 18.11

Problem 37 Use the model of Sec. 18.11 to plot the flow
correction as a function of velocity for TE = 10 ms, T1 =
900 ms, and T2 = 400 ms, when (a) TR = 50 ms, (b)
TR = 200 ms.

Section 18.13

Problem 38 This problem shows how to extend the
Bloch equations to include the effect of diffusion of the
molecules containing the nuclear spins in an inhomoge-
neous external magnetic field. Since M is the magnetiza-
tion per unit volume, it depends on the total number of
particles per unit volume with average spin components
〈µx〉, 〈µy〉, and 〈µz〉. In the rotating coordinate system
there is no precession. In the absence of relaxation effects
〈µ〉 does not change. In that case changes in M depend
on changes in the concentration of particles with partic-
ular components of 〈µ〉, so the rate of change of each
component of 〈µ〉 is given by a diffusion equation. For
example, for Mx,

∂Mx′

∂t
= D∇2Mx′ .

If the processes are linear this diffusion term can be added
to the other terms in the Bloch equations. Suppose that
there is a uniform gradient in Bz, Gz, and that the coordi-
nate system rotates with the Larmor frequency for z = 0.
When z is not zero, the rotation term does not quite can-
cel the (M × B)z term.

(a) Show that the x and y Bloch equations become

∂Mx′

∂t
= +γGzzMy′ − Mx′

T2
+ D∇2Mx′ ,

∂My′

∂t
= −γGzzMx′ − My′

T2
+ D∇2My′ .

(b) Show that in the absence of diffusion

Mx′ = M(0)e−t/T2 cos(γGzzt),

My′ = M(0)e−t/T2 sin(γGzzt).

(c) Suppose that M is uniform in all directions. At t = 0
all spins are aligned. Spins that have been rotating faster
in the plane at z + ∆z will diffuse into plane z. Equal
numbers of slower spins will diffuse in from plane z−∆z.
Show that this means that the phase of M will not change
but the amplitude will.

(d) It is reasonable to assume that the amplitude of the
diffusion-induced decay will not depend on z as long as
we are far from boundaries. Therefore try a solution of
the form

Mx′ = M(0)e−t/T2 cos(γGzzt)A(t),

My′ = M(0)e−t/T2 sin(γGzzt)A(t),

and show that A must obey the differential equation

1
A

dA

dt
= −Dγ2G2

zt
2,

which has a solution A(t) = exp(−Dγ2G2
zt

3/3).
(e) Show that if there is a rotation about y′ at time

TE/2, then at time TE Mx is given by

Mx(TE) = −M0 exp(−TE/T2) exp(−Dγ2G2
zT

3
E/12).

Hint: This can be done formally from the differential
equations. However, it is much easier to think physically
about the meaning of each factor in the expressions shown
in (d) for Mx′ and My′ . This result means that a CPMG
sequence with short TE intervals can reduce the effect of
diffusion when there is an external gradient.

Problem 39 A commercial MRI machine is operated
with a magnetic gradient of 3 mT m−1 while a slice is
being selected. What is the effect of diffusion? Use the
diffusion constant for self-diffusion in water and the re-
sults of Problem 38. Compare the correction factor to
exp(−TE/T2) when T2 = 75 ms.

Problem 40 When a coordinate system is rotated as in
Fig. 18.6, the diffusion tensor or diffusion matrix, which
is always symmetric, transforms as

(
Dx′x′ Dx′y′

Dx′y′ Dy′y′

)
=
(

cos θ sin θ
− sin θ cos θ

)

×
(

Dxx Dxy

Dxy Dyy

)(
cos θ − sin θ
sin θ cos θ

)
.

We have not proved this; note that the rightmost matrix is
the same one that would be seen if Eq. 18.17 were written
in matrix form:

(
Mx

My

)
=
(

cos θ − sin θ
sin θ cos θ

)(
Mx′

My′

)
.

(a) Perform the matrix multiplication and find expres-
sions for Dx′x′ , Dx′y′ , and Dy′y′ in terms of Dxx, Dxy,
Dyy, and θ.

(b) Find the angle θ such that Dx′y′ is zero (the diffu-
sion tensor is diagonal). This is equivalent to finding the
orientation of the fibers in the tissue.

(c) The trace of a matrix is the sum of its diagonal
elements. Show that the trace of the diffusion matrix in
the rotated coordinates, Dx′x′ +Dy′y′ , is equal to the trace
of the diffusion matrix in the original coordinates, Dxx +
Dyy. Thus, the trace of the diffusion tensor is independent
of fiber direction.
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Appendix A
Plane and Solid Angles

A.1 Plane Angles

The angle θ between two intersecting lines is shown in
Fig. A.1. It is measured by drawing a circle centered on
the vertex or point of intersection. The arc length s on
that part of the circle contained between the lines mea-
sures the angle. In daily work, the arc length is marked
off in degrees.

In some cases, there are advantages to measuring the
angle in radians. This is particularly true when trigono-
metric functions have to be differentiated or integrated.
The angle in radians is defined by

θ =
s

r
. (A.1)

Since the circumference of a circle is 2πr, the angle
corresponding to a complete rotation of 360 ◦ is 2πr/r =
2π. Other equivalences are

Degrees Radians

360 2π
57.2958 1
1 0.01745

(A.2)

Since the angle in radians is the ratio of two distances, it
is dimensionless. Nevertheless, it is sometimes useful to

FIGURE A.1. A plane angle θ is measured by the arc length
s on a circle of radius r centered at the vertex of the lines
defining the angle.

1.0

0.8

0.6

0.4

0.2

0.0

y

806040200

θ (degrees)

y = tan θ
y = sin  θ 

y = θ  (radians)

FIGURE A.2. Comparison of y = tan θ, y = θ (radians), and
y = sin θ.

specify that something is measured in radians to avoid
confusion.

One of the advantages of radian measure can be seen
in Fig. A.2. The functions sin θ, tan θ, and θ in radians
are plotted vs angle for angles less than 80 ◦. For angles
less than 15 ◦, y = θ is a good approximation to both
y = tan θ (2.3% error at 15 ◦) and y = sin θ (1.2% error
at 15 ◦).

A.2 Solid Angles

A plane angle measures the diverging of two lines in two
dimensions. Solid angles measure the diverging of a cone
of lines in three dimensions. Figure A.3 shows a series of
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FIGURE A.3. A cone of rays in three dimensions.

FIGURE A.4. The solid angle of this cone is Ω = S/r2. S is
the surface area on a sphere of radius r centered at the vertex.

rays diverging from a point and forming a cone. The solid
angle Ω is measured by constructing a sphere of radius r
centered at the vertex and taking the ratio of the surface
area S on the sphere enclosed by the cone to r2:

Ω =
S

r2
. (A.3)

This is shown in Fig. A.4 for a cone consisting of the
planes defined by adjacent pairs of the four rays shown.
The unit of solid angle is the steradian (sr). A complete

FIGURE A.5. For small angles, the arc length is very nearly
equal to the length of the tangent to the circle.

sphere subtends a solid angle of 4π steradians, since the
surface area of a sphere is 4πr2.

When the included angle in the cone is small, the dif-
ference between the surface area of a plane tangent to
the sphere and the sphere itself is small. (This is diffi-
cult to draw in three dimensions. Imagine that Fig. A.5
represents a slice through a cone; the difference in length
between the circular arc and the tangent to it is small.)
This approximation is often useful. A 3 × 5-in. card at a
distance of 6 ft (72 in.) subtends a solid angle which is
approximately

3 × 5
722

= 2.9 × 10−3 sr.

It is not necessary to calculate the surface area on a
sphere of 72 in. radius.

Problems

Problem 1 Convert 0.1 radians to degrees. Convert
7.5 ◦ to radians.

Problem 2 Use the fact that sin θ ≈ θ ≈ tan θ to esti-
mate the sine and tangent of 3 ◦. Look up the values in a
table and see how accurate the approximation is.

Problem 3 What is the solid angle subtended by the
pupil of the eye (radius = 3 mm) at a source of light
30 m away?



Appendix B
Vectors; Displacement, Velocity, and Acceleration

B.1 Vectors and Vector Addition

A displacement describes how to get from one point to
another. A displacement has a magnitude (how far point
2 is from point 1 in Fig. B.1) and a direction (the direc-
tion one has to go from point 1 to get to point 2). The
displacement of point 2 from point 1 is labeled A. Dis-
placements can be added: displacement B from point 2
puts an object at point 3. The displacement from point
1 to point 3 is C and is the sum of displacements A and
B:

C = A + B. (B.1)

A displacement is a special example of a more general
quantity called a vector. One often finds a vector defined
as a quantity having a magnitude and a direction. How-
ever, the complete definition of a vector also includes the
requirement that vectors add like displacements. The rule
for adding two vectors is to place the tail of the second
vector at the head of the first; the sum is the vector from
the tail of the first to the head of the second.

A displacement is a change of position so far in such a
direction. It is independent of the starting point. To know
where an object is, it is necessary to specify the starting
point as well as its displacement from that point.

FIGURE B.1. Displacement C is equivalent to displacement
A followed by displacement B: C = A + B.

Displacements can be added in any order. In Fig. B.2,
either of the vectors A represents the same displacement.
Displacement B can first be made from point 1 to point
4, followed by displacement A from 4 to 3. The sum is
still C:

C = A + B = B + A. (B.2)

The sum of several vectors can be obtained by first
adding two of them, then adding the third to that sum,
and so forth. This is equivalent to placing the tail of each
vector at the head of the previous one, as shown in Fig.
B.3. The sum then goes from the tail of the first vector
to the head of the last.

The negative of vector A is that vector which, added
to A, yields zero:

A + (−A) = 0. (B.3)

It has the same magnitude as A and points in the oppo-
site direction.

Multiplying a vector A by a scalar (a number with no
associated direction) multiplies the magnitude of vector
A by that number and leaves its direction unchanged.

FIGURE B.2. Vectors A and B can be added in either order.
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1

2

3

4

5 Sum

FIGURE B.3. Addition of several vectors.

FIGURE B.4. Vector A has components Ax and Ay.

B.2 Components of Vectors

Consider a vector in a plane. If we set up two perpen-
dicular axes, we can regard vector A as being the sum
of vectors parallel to each of these axes. These vectors,
Ax and Ay in Fig. B.4, are called the components of A
along each axis1. If vector A makes an angle θ with the x
axis and its magnitude is A, then the magnitudes of the
components are

Ax = A cos θ,
Ay = A sin θ.

(B.4)

The sum of the squares of the components is A2
x + A2

y =
A2 cos2 θ + A2 sin2 θ = A2(sin2 θ + cos2 θ). Since, by
Pythagoras’ theorem, this must be A2, we obtain the
trigonometric identity

cos2 θ + sin2 θ = 1. (B.5)

In three dimensions, A = Ax + Ay + Az. The magni-
tudes can again be related using Pythagoras’ theorem, as
shown in Fig. B.5. From triangle OPQ, A2

xy = A2
x + A2

y.
From triangle OQR,

A2 = A2
xy + A2

z = A2
x + A2

y + A2
z. (B.6)

In our notation, Ax means a vector pointing in the x
direction, while Ax is the magnitude of that vector. It can

1Some texts define the component to be a scalar, the magnitude

of the component defined here.

FIGURE B.5. Addition of components in three dimensions.

become difficult to keep the distinction straight. There-
fore, it is customary to write x̂, ŷ, and ẑ to mean vectors
of unit length pointing in the x, y, and z directions. (In
some books, the unit vectors are denoted by ı̂, ̂, and k̂
instead of x̂, ŷ, and ẑ.) With this notation, instead of
Ax, one would always write Axx̂.

The addition of vectors is often made easier by using
components. The sum A + B = C can be written as

Axx̂ + Ayŷ + Az ẑ + Bxx̂ + Byŷ + Bz ẑ

= Cxx̂ + Cyŷ + Cz ẑ.

Like components can be grouped to give

(Ax + Bx)x̂ + (Ay + By)ŷ + (Az + Bz)ẑ
= Cxx̂ + Cyŷ + Cz ẑ.

Therefore, the magnitudes of the components can be
added separately:

Cx = Ax + Bx,
Cy = Ay + By,
Cz = Az + Bz.

(B.7)

B.3 Position, Velocity, and
Acceleration

The position of an object at time t is defined by specifying
its displacement from an agreed-upon origin:

R(t) = x(t)x̂ + y(t)ŷ + z(t)ẑ.

The average velocity vav(t1, t2) between times t1 and t2
is defined to be

vav(t1, t2) =
R(t2) − R(t1)

t2 − t1
.

This can be written in terms of the components as

vav =
(

x(t2) − x(t1)
t2 − t1

)
x̂ +

(
y(t2) − y(t1)

t2 − t1

)
ŷ

+
(

z(t2) − z(t1)
t2 − t1

)
ẑ.
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The instantaneous velocity is

v(t) =
dR
dt

=
dx

dt
x̂ +

dy

dt
ŷ +

dz

dt
ẑ

= vx(t)x̂ + vy(t)ŷ + vz(t)ẑ. (B.8)

The x component of the velocity tells how rapidly the x
component of the position is changing.

The acceleration is the rate of change of the velocity
with time. The instantaneous acceleration is

a(t) =
dv
dt

=
dvx

dt
x̂ +

dvy

dt
ŷ +

dvz

dt
ẑ.

Problems

Problem 1 At t = 0, the position of an object is given
by R = 10x̂ + 5ŷ, where R is in meters. At t = 3 s, the
position is R = 16x̂−10ŷ. What was the average velocity
between t = 0 and 3 s?



Appendix C
Properties of Exponents and Logarithms

In the expression am, a is called the base and m is
called the exponent. Since a2 = a×a, a3 = a×a×a, and

am = (a × a × a × · · · × a)
m times

,

it is easy to show that

aman = (a × a × a × · · · × a)
m times

(a × a × a × · · · × a)
n times

,

aman = am+n. (C.1)

If m > n, the same technique can be used to show that

am

an
= am−n. (C.2)

If m = n, this gives

1 =
am

am
= am−m = a0,

a0 = 1. (C.3)

The rules also work for m < n and for negative exponents.
For example,

(a−n)(an) = 1

so
a−n =

1
an

. (C.4)

Finally,

(am)n = (am × am × am × · · · × am)
n times

,

(am)n = amn. (C.5)

If y = ax, then by definition, x is the logarithm of
y to the base a: x = loga(y). If the base is 10, since
100 = 102, 2 = log10(100). Similarly, 3 = log10(1000),
4 = log10(10000), and so forth.

The most useful property of logarithms can be derived
by letting

y = am,

z = an,

w = am+n,

so that
m = loga y,

n = loga z,

m + n = loga w.

Then, since am+n = aman,

w = yz,

loga(yz) = loga w = loga y + loga z. (C.6)

This result can be used to show that

log(ym) = log(y × y × y × · · · × y)

= log(y) + log(y) + log(y) + · · · + log(y),

log(ym) = m log y.

(C.7)

All logarithms in this book, unless labeled with a spe-
cific base, are to base e (see Chap. 2). These are the
so-called natural logarithms. We will denote the natural
logarithm by ln, using log10 when we want logarithms to
the base 10.

Problems

Problem 1 What is log2(8)?

Problem 2 If log10(2) = 0.3, what is log10(200)?
log10(2 × 105)?

Problem 3 What is log10(
√

10)?



Appendix D
Taylor’s Series

Consider the function y(x) shown in Fig. D.1. The
value of the function at x1, y1 = y(x1), is known. We
wish to estimate y(x1 + ∆x).

The simplest estimate, labeled approximation 0 in Fig.
D.1, is to assume that y does not change: y(x1 + ∆x) ≈
y(x1). A better estimate can be obtained if we assume
that y changes everywhere at the same rate it does at x1.
Approximation 1 is

y(x1 + ∆x) ≈ y(x1) +
dy

dx

∣
∣
∣
∣
x1

∆x.

The derivative is evaluated at point x1.
An even better estimate is shown in Fig. D.2. Instead of

fitting the curve by the straight line that has the proper
first derivative at x1, we fit it by a parabola that matches
both the first and second derivatives. The approximation

y

xx1

y1

y(x)

Approximation 0

Approximation 1

Actual

x1 + ∆x

(dy/dx)|x1
∆x

FIGURE D.1. The zeroth-order and first-order approxima-
tions to y(x).

is

y(x1 + ∆x) ≈ y(x1) +
dy

dx

∣
∣
∣
∣
x1

∆x +
1
2

d2y

dx2

∣
∣
∣
∣
x1

(∆x)2.

That this is the best approximation can be derived in
the following way. Suppose the desired approximation is
more general and uses terms up to (∆x)n = (x − x1)n:

yapprox = A0+A1(x−x1)+A2(x−x1)2+· · ·+An(x−x1)n

(D.1)

The constants A0, A1, . . . , An are determined by making
the value of yapprox and its first n derivatives agree with
the value of y and its first n derivatives at x = x1. When
x = x1, all terms with x − x1 in yapprox vanish, so that

yapprox(x1) = A0.

y

x

y(x)

Approximation 2

x1 x1 + ∆x

(dy/dx)|x1
∆x 

   + (1/2)(d2y/dx2)|x1
(∆x)2 

FIGURE D.2. The second-order approximation fits y(x) with
a parabola.
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TABLE D.1. y = e2x and its derivatives.

Function or derivative Value at x1 = 0

y = e2x 1

dy

dx
= 2e2x 2

d2y

dx2
= 4e2x 4

d3y

dx3
= 8e2x 8

TABLE D.2. Values of y and successive approximations.

1 + 2x+
x y = e2x 1 + 2x 1 + 2x + 2x2 2x2 + 4

3x3

−2 0.0183 −3.0 5.0 −5.67
−1.5 0.0498 −2.0 2.5 −2.0
−1 0.1353 −1.0 1.0 −0.33
−0.4 0.4493 0.2000 0.5200 0.4347
−0.2 0.6703 0.6000 0.6800 0.6693
−0.1 0.8187 0.8000 0.8200 0.8187
0 1.0000 1.0000 1.0000 1.0000
0.1 1.2214 1.2000 1.2200 1.2213
0.2 1.4918 1.4000 1.4800 1.4907
0.4 2.2255 1.8000 2.1200 2.2053
1.0 7.389 3.0000 5.0000 6.33
2.0 54.60 5.0 13.0 23.67

The first derivative of yapprox is

d(yapprox)
dx

= A1+2A2(x−x1)+3A3(x−x1)2+· · ·+nAn(x−x1)n−1.

The second derivative is

2A2 + 3 × 2A3(x − x1) + · · · + n(n − 1)An(x − x1)n−2,

and the nth derivative is

n(n − 1)(n − 2) · · · 2An = n!An.

Evaluating these at x = x1 gives

d(yapprox)
dx

∣
∣
∣
∣
x1

= A1,

d2(yapprox)
dx2

∣
∣
∣
∣
x1

= 2 × 1 × A2,

d3(yapprox)
dx3

∣
∣
∣
∣
x1

= 3 × 2 × 1 × A3,

dn(yapprox)
dxn

∣
∣
∣
∣
x1

= n!An.
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FIGURE D.3. The function y = e2x with Taylor’s series ex-
pansions about x = 0 of degree 0, 1, 2, and 3.
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FIGURE D.4. An enlargement of Fig. D.3 near x = 0.

Combining these expressions for An with Eq. D.1, we get

y(x1 + ∆x) ≈ y(x1) +
N∑

n=1

1
n!

dny

dxn

∣
∣
∣
∣
x1

(∆x)n. (D.2)

Tables D.1 and D.2 and Figs. D.3 and D.4 show how
the Taylor’s series approximation gets better over a larger
and larger region about x1 as more terms are added. The
function being approximated is y = e2x. The derivatives
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are given in Table D.1. The expansion is made about
x1 = 0.

Finally, the Taylor’s series expansion for y = ex about
x = 0 is often useful. Since all derivatives of ex are ex,
the value of y and each derivative at x = 0 is 1. The
series is

ex = 1 + x +
1
2!

x2 +
1
3!

x3 + · · · =
∞∑

m=0

xm

m!
. (D.3)

(Note that 0! = 1 by definition.)

Problems

Problem 1 Make a Taylor’s series expansion of y = a+
bx + cx2 about x = 0. Show that the expansion exactly
reproduces the function.

Problem 2 Repeat the previous problem, making the ex-
pansion about x = 1.

Problem 3 (a) Make a Taylor’s series expansion of
the cosine function about x = 0. Remember that
d(sin x)/dx = cos x and d(cos x)/dx = − sin x.

(b) Make a Taylor’s series expansion of the sine func-
tion.



Appendix E
Some Integrals of Sines and Cosines

The average of a function of x with period T is defined
to be

〈f〉 =
1
T

∫ x′+T

x′
f(x) dx. (E.1)

The sine function is plotted in Fig. E.1(a). The integral
over a period is zero, and its average value is zero. The
area above the axis is equal to the area below the axis.
Figure E.1(b) shows a plot of sin2 x. Since sinx varies
between −1 and +1, sin2 x varies between 0 (when sinx =
0) and +1 (when sin x = ±1). Its average value, from
inspection of Fig. E.1(b) is 1

2 . If you do not want to trust
the drawing to convince yourself of this, recall the identity
sin2 θ + cos2 θ = 1. Since the sine function and the cosine
function look the same, but are just shifted along the axis,
their squares must also look similar. Therefore, sin2 θ and
cos2 θ must have the same average. But if their sum is
always 1, the sum of their averages must be 1. If the two
averages are the same, then each must be 1

2 .
These same results could have been obtained analyti-

cally by using the trigonometric identity

sin2 x =
1
2
− 1

2
cos 2x. (E.2)

The integrals of sinx and cos x are
∫

sin ax dx = −1
a

cos ax,

∫
cos ax dx =

1
a

sin ax.

(E.3)

-1

0

1

Av = 1/2

-1
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Av = 0

FIGURE E.1. (a) Plot of y = sin x. (b) Plot of y = sin2 x.

-1

0

1

0 2π

(a) (b)

FIGURE E.2. Plot of one period of (a) y = sin x sin 2x; (b)
y = sin x cos x.

These could be used to show that the average value of
sin x or cos x is zero. Then Eq. E.2 could be used to show
that the average of sin2 x is 1

2 .
The integral of sin2 x over a period is its average value

times the length of the period:

∫ T

0

sin2 x dx =
∫ T

0

cos2 x dx =
T

2
. (E.4)

We will also encounter integrals like

∫ T

0

sinmx sin nx dx, m 
= n,

∫ T

0

cos mx cos nx dx, m 
= n, (E.5)

∫ T

0

cos mx sin nx dx, m = n, m 
= n.

All these integrals are zero. This can be shown using in-
tegral tables. Or, you can see why the integrals vanish
by considering the specific examples plotted in Fig. E.2.
Each integrand has equal positive and negative contribu-
tions to the total integral.



Appendix F
Linear Differential Equations with Constant Coefficients

The equation
dy

dt
+ by = a (F.1)

is called a linear differential equation because each term
involves only y or its derivatives [not y(dy/dt) or (dy/dt)2,
etc.]. A more general equation of this kind has the form

dNy

dtN
+ bN−1

dN−1y

dtN−1
+ · · · + b1

dy

dt
+ b0y = f(t). (F.2)

The highest derivative is the Nth derivative, so the equa-
tion is of order N . It has been written in standard form
by dividing through by any bN that was there originally,
so that the coefficient of the highest term is one. If all
the b’s are constants, this is a linear differential equation
with constant coefficients. The right-hand side may be
a function of the independent variable t, but not of y. If
f(t) = 0, it is a homogeneous equation; if f(t) is not zero,
it is an inhomogeneous equation.

Consider first the homogeneous equation

dNy

dtN
+ bN−1

dN−1y

dtN−1
+ · · · + b1

dy

dt
+ b0y = 0. (F.3)

The exponential est (where s is a constant) has the
property that d(est)/dt = sest, d2(est)/dt2 = s2est,
dn(est)/dtn = snest. The function y = Aest satisfies Eq.
F.3 for any value of A and certain values of s. The equa-
tion becomes

A
(
sNest + bN−1s

N−1est + · · · + b1se
st + b0e

st
)

= 0,

A
(
sN + bN−1s

N−1 + · · · + b1s + b0

)
est = 0.

This equation is satisfied if the polynomial in parentheses
is equal to zero. The equation

sN + bN−1s
N−1 + · · · + b1s + b0 = 0 (F.4)

is called the characteristic equation of this differential
equation. It can be written in a much more compact form
using summation notation:

N∑

n=0

bnsn = 0, (F.5)

with bN = 1.
For Eq. F.1, the characteristic equation is s + b = 0 or

s = −b, and a solution to the homogeneous equation is
y = Ae−bt.

If the characteristic equation is a polynomial, it can
have up to N roots. For each distinct root sn, y = Anesnt

is a solution to the differential equation. (The question
of solutions when there are not N distinct roots will
be taken up below.) This is still not the solution to the
equation we need to solve. However, one can prove1 that
the most general solution to the inhomogeneous equation
consists of the homogeneous solution,

y =
N∑

n=1

Anesnt,

plus any solution to the inhomogeneous equation. The
values of the arbitrary constants An are picked to satisfy
some other conditions that are imposed on the problem.
If we can guess the solution to the inhomogeneous equa-
tion, that is fine. However we get it, we need only one
such solution to the inhomogeneous equation. We will
not prove this assertion, but we will apply it to the first-
and second-order equations and see how it works.

1See, for example, G. B. Thomas. Calculus and Analytic Geom-
etry, Reading, MA, Addison-Wesley (any edition).
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F.1 First-order Equation

The homogeneous equation corresponding to Eq. F.1 has
solution y = Ae−bt. There is one solution to the inhomo-
geneous equation that is particularly easy to write down:
when y is constant, with the value y = a/b, the time
derivative vanishes and the inhomogeneous equation is
satisfied. The most general solution is therefore of the
form

y = Ae−bt +
a

b
.

If the initial condition is y(0) = 0, then A can be deter-
mined from 0 = Ae−b0 + a/b. Since e0 = 1, this gives
A = −a/b. Therefore

y =
a

b

(
1 − e−bt

)
. (F.6)

A physical example of this is given in Sec. 2.7.

F.2 Second-order Equation

The second-order equation

d2y

dt2
+ b1

dy

dt
+ b0y = 0 (F.7)

has a characteristic equation s2 + b1s + b0 = 0 with roots

s =
−b1 ±

√
b2
1 − 4b0

2
. (F.8)

This equation may have no, one, or two solutions.
If it has two solutions s1 and s2, then the general solu-

tion of the homogeneous equation is y = A1e
s1t +A2e

s2t.
If b2

1 − 4b0 is negative, there is no solution to the equa-
tion for a real value of s. However, a solution of the form
y = Ae−αt sin(ωt + φ) will satisfy the equation. This can
be seen by direct substitution. Differentiating this twice
shows that

dy

dt
= −αAe−αt sin(ωt + φ) + ωAe−αt cos(ωt + φ),

d2y

dt2
= α2Ae−αtsin(ωt + φ) − 2αωAe−αt cos(ωt + φ)

−ω2Ae−αt sin(ωt + φ).

If these derivatives are substituted in Eq. F.7, one gets
the following results. The terms are written in two
columns. One column contains the coefficients of terms
with sin(ωt + φ), and the other column contains the co-
efficients of terms with cos(ωt + φ). The rows are labeled
on the left by which term of the differential equation they
came from.

Term Coefficients
sin(ωt + φ) cos(ωt + φ)

d2y/dt2 α2 − ω2 −2αω
b1(dy/dt) −b1α b1ω
b0y b0 0

The only way that the equation can be satisfied for all
times is if the coefficient of the sin(ωt + φ) term and the
coefficient of the cos(ωt+φ) term separately are equal to
zero. This means that we have two equations that must
be satisfied (call b0 = ω2

0):

2αω = b1ω,

α2 − ω2 − b1α + ω2
0 = 0.

From the first equation 2α = b1, while from this and the
second, α2 − ω2 − 2α2 + ω2

0 = 0, or ω2 = ω2
0 − α2. Thus,

the solution to the equation

d2y

dt2
+ 2α

dy

dt
+ ω2

0y = 0 (F.9)

is
y = Ae−αt sin(ωt + φ) (F.10a)

where
ω2 = ω2

0 − α2, α < ω0. (F.10b)

Solution F.10 is a decaying exponential multiplied by
a sinusoidally varying term. The initial amplitude A and
the phase angle φ are arbitrary and are determined by
other conditions in the problem. The constant α is called
the damping. Parameter ω0 is the undamped frequency,
the frequency of oscillation when α = 0. ω is the damped
frequency.

When the damping becomes so large that α = ω0, then
the solution given above does not work. In that case, the
solution is given by

y = (A + Bt)e−αt, α = ω0. (F.11)

This case is called critical damping and represents the
case in which y returns to zero most rapidly and with-
out multiple oscillations. The solution can be verified by
substitution.

If α > ω0, then the solution is the sum of the two
exponentials that satisfy Eq. F.8:

y = Ae−at + Be−bt, (F.12a)

where
a = α +

√
α2 − ω2

0 , (F.12b)

b = α −
√

α2 − ω2
0 . (F.12c)

When α = 0, the equation is

d2y

dt2
+ ω2

0y = 0. (F.13)

The solution may be written either as

y = C sin(ω0t + φ) (F.14a)

or as
y = A cos(ω0t) + B sin(ω0t). (F.14b)
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FIGURE F.1. Different starting points on the sine wave give
different combinations of the initial position and the initial
velocity.

The simplest physical example of this equation is a
mass on a spring. There will be an equilibrium position
of the mass (y = 0) at which there is no net force on the
mass. If the mass is displaced toward either positive or
negative y, a force back toward the origin results. The
force is proportional to the displacement and is given
by F = −ky. The proportionality constant k is called
the spring constant. Newton’s second law, F = ma, is
m(d2y/dt2) = −ky or, defining ω2

0 = k/m,

d2y

dt2
+ ω2

0y = 0.

This (as well as the equation with α 
= 0) is a second-order
differential equation. Integrating it twice introduces two
constants of integration: C and φ, or A and B. They are
usually found from two initial conditions. For the mass on
the spring, they are often the initial velocity and initial
position of the mass.

The equivalence of the two solutions can be demon-
strated by using Eqs. F.14a and a trigonometric identity
to write C sin(ω0t + φ) = C[sin ω0t cos φ + cos ω0t sin φ].
Comparison with Eq. F.14b shows that B = C cos φ, A =
C sin φ. Squaring and adding these gives C2 = A2 + B2,
while dividing one by the other shows that tanφ = A/B.

Changing the initial phase angle changes the relative
values of the initial position and velocity. This can be
seen from the three plots of Fig. F.1, which show phase
angles 0, π/4, and π/2. When φ = 0, the initial position
is zero, while the initial velocity has its maximum value.
When φ = π/4, the initial position has a positive value,
and so does the initial velocity. When φ = π/2 the initial
position has its maximum value and the initial velocity
is zero. The values of A and B are determined from the
initial position and velocity. At t = 0, Eq. F.14b and its
derivative give y(0) = A, dy/dt(0) = ω0B.

The term in the differential equation equal to
2α(dy/dt) corresponds to a drag force acting on the mass
and damping the motion. Increasing the damping coef-
ficient α increases the rate at which the oscillatory be-
havior decays. Figure F.2 shows plots of y and dy/dt for
different values of α.

t

Overdamped

t

Critically damped

t

Underdamped

FIGURE F.2. Plot of y(t) (solid line) and dy/dt (dashed line)
for different values of α.

TABLE F.1. Solutions of the harmonic oscillator equation.

d2y

dt2
+ 2α

dy

dt
+ ω2

0y = 0

Case Criterion Solution

Underdamped α < ω0 y = Ae−αt sin(ωt + φ)
ω2 = ω2

0 − α2

Critically damped α = ω0 y = (A + Bt)e−αt

Overdamped α > ω0 y = Ae−at + Be−bt

a = α + (α2 − ω2
0)1/2

b = α − (α2 − ω2
0)1/2

The second-order equation we have just studied is
called the harmonic oscillator equation. Its solution is
needed in Chap. 8 and is summarized in Table F.1.

Problems

Problem 1 From Eq. F.14 with ω0 = 10, find A, B, C,
and φ for the following cases:

(a) y(0) = 5, (dy/dt)(0) = 0.
(b) y(0) = 5, (dy/dt)(0) = 5.
(c) y(0) = 0, (dy/dt)(0) = 50.
(d) What values of A, B, and C would be needed to

have the same φ as in case (b) and the same amplitude
as in case (a)?

Problem 2 Verify Eq. F.11 in the critically damped
case.

Problem 3 Find the general solution of the equation

d2y

dt2
+ 2α

dy

dt
+ ω2

0y =
{

0, t ≤ 0
ω2

0y0, t ≥ 0

subject to the initial conditions y(0) = 0, (dy/dt)(0) = 0
(a) for critical damping, α = ω0,
(b) for no damping, and
(c) for overdamping, α = 2ω0.



Appendix G
The Mean and Standard Deviation

TABLE G.1. Quiz scores.

Student No. Score Student No. Score

1 80 16 71
2 68 17 83
3 90 18 88
4 72 19 75
5 65 20 69
6 81 21 50
7 85 22 81
8 93 23 94
9 76 24 73
10 86 25 79
11 80 26 82
12 88 27 78
13 81 28 84
14 72 29 74
15 67 30 70

In many measurements in physics or biology there may
be several possible outcomes to the measurement. Dif-
ferent values are obtained when the measurement is re-
peated. For example, the measurement might be the num-
ber of red cells in a certain small volume of blood, whether
a person is right-handed or left-handed, the number of
radioactive disintegrations of a certain sample during a
5-min interval, or the scores on a test.

Table G.1 gives the scores on an examination admin-
istered to 30 people. These results are also plotted as a
histogram in Fig. G.1.

The table and the histogram give all the information
that there is to know about the experiment unless the
result depends on some variable that was not recorded,
such as the age of the student or where the student was
sitting during the test.

In many cases the frequency distribution gives more
information than we need. It is convenient to invent some
quantities that will answer the questions: Around what
values do the results cluster? How wide is the distribution
of results? Many different quantities have been invented
for answering these questions. Some are easier to calculate
or have more useful properties than others.

The mean or average shows where the distribution is
centered. It is familiar to everyone: add up all the scores
and divide by the number of students. For the data given
above the mean is x = 77.8.

It is often convenient to group the data by the value
obtained, along with the frequency of that value. The
data of Table G.1, are grouped this way in Table G.2.
The mean is calculated as

x =
1
N

∑

i

fixi =
∑

i fixi∑
i fi

,

where the sum is over the different values of the test scores
that occur. For the example in Table G.2, the sums are∑

i fi = 30,
∑

i fixi = 2335, so x = 2335/30 = 77.8. If a
large number of trials are made, fi/N can be called the
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FIGURE G.1. Histogram of the quiz scores in Table G.1
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TABLE G.2. Quiz scores grouped by score

Score
number i

Score xi Frequency of
score, fi

fixi

1 50 1 50
2 65 1 65
3 67 1 67
4 68 1 68
5 69 1 69
6 70 1 70
7 71 1 71
8 72 2 144
9 73 1 73
10 74 1 74
11 75 1 75
12 76 1 76
13 78 1 78
14 79 1 79
15 80 2 160
16 81 3 243
17 82 1 82
18 83 1 83
19 84 1 84
20 85 1 85
21 86 1 86
22 88 2 176
23 90 1 90
24 93 1 93
25 94 1 94

probability pi of getting result xi. Then

x =
∑

i

xipi. (G.1)

Note that
∑

pi = 1.
The average of some function of x is

g(x) =
∑

i

g(xi)pi. (G.2)

For example,
x2 =

∑

i

(xi)2pi.

The width of the distribution is often characterized by
the dispersion or variance:

(∆x)2 = (x − x)2 =
∑

i

pi(xi − x)2. (G.3)

This is also sometimes called the mean square variation:
the mean of the square of the variation of x from the
mean. A measure of the width is the square root of this,
which is called the standard deviation σ. The need for
taking the square root is easy to see since x may have
units associated with it. If x is in meters, then the vari-
ance has the units of square meters. The width of the
distribution in x must be in meters.

A very useful result is

(x − x)2 = x2 − x2.

To prove this, note that (xi − x)2 = x2
i − 2xix + x2. The

variance is then

(∆x)2 =
∑

i

pix
2
i − 2

∑

i

xi x pi +
∑

i

pix
2.

The first sum is the definition of x2. The second sum has a
number x in every term. It can be factored in front of the
sum, to make the second term −2x

∑
xipi, which is just

−2(x)2. The last term is (x)2
∑

pi = (x)2. Combining all
three sums gives Eq. G.4. In summary,

σ =
√

(∆x)2,
σ2 = (∆x)2 = (x − x)2 = x2 − x2.

(G.4)

This equation is true as long as the pi’s are accurately
known. If the pi’s have only been estimated from N exper-
imental observations, the best estimate of σ2 is N/(N−1)
times the value calculated from Eq. G.4.

For the data of Fig. G.1, σ = 9.4. This width is shown
along with the mean at the top of the figure.

Problems

Problem 1 Calculate the variance and standard devia-
tion for the data in Table G.2.



Appendix H
The Binomial Probability Distribution

Consider an experiment with two mutually exclusive
outcomes that is repeated N times, with each repetition
being independent of every other. One of the outcomes
is labeled “success”; the other is called “failure.” The
experiment could be throwing a die with success being a
three, flipping a coin with success being a head, or placing
a particle in a box with success being that the particle is
located in a subvolume v.

In a single try, call the probability of success p and the
probability of failure q. Since one outcome must occur
and both cannot occur at the same time,

p + q = 1. (H.1)

Suppose that the experiment is repeated N times. The
probability of n successes out of N tries is given by the bi-
nomial probability distribution, which is stated here with-
out proof.1 We can call the probability P (n;N), since
it is a function of n and depends on the parameter N .
Strictly speaking, it depends on two parameters, N and
p: P (n;N, p). It is2

P (n;N) = P (n;N, p) =
(

N !
n!(N − n)!

)
pn(1 − p)N−n.

(H.2)
The factor N !/[n!(N − n)!] counts the number of dif-

ferent ways that one can get n successful outcomes; the
probability of each of these ways is pn(1− p)N−n. In the
example of three particles in Sec. 3.1, there are three ways
to have one particle in the left-hand side. The particle can
be either particle a or particle b or particle c. The factor

1A detailed proof can be found in many places. See, for example,

F. Reif (1964). Statistical Physics. Berkeley Physics Course, Vol. 5,
New York, McGraw-Hill, p. 67.

2N ! is N factorial and is N(N − 1)(N − 2) · · · 1. By definition,
0! = 1.

gives directly
(

N !
n!(N − n)!

)
=

3!
1!2!

=
3 × 2 × 1
(1)(2 × 1)

=
6
2

= 3.

The remaining factor, pn(1 − p)N−n, is the probability
of taking n tries in a row and having success and taking
N − n tries in a row and having failure.

The binomial distribution applies if each “try” is in-
dependent of every other try. Such processes are called
Bernoulli processes (and the binomial distribution is of-
ten called the Bernoulli distribution). In contrast, if the
probability of an outcome depends on the results of the
previous try, the random process is called a Markov
process. Although such processes are important, they are
more difficult to deal with and are not discussed here.

Some examples of the use of the binomial distribu-
tion are given in Chap. 3. As another example, consider
the problem of performing several laboratory tests on a
patient. In the 1970s it became common to use auto-
mated machines for blood-chemistry evaluations of pa-
tients; such machines automatically performed (and re-
ported) 6, 12, 20, or more tests on one small sample of
a patient’s blood serum, for less cost than doing just one
or two of the tests. But this meant that the physician
got a large number of results—many more than would
have been asked for if the tests were done one at a time.
When such test batteries were first done, physicians were
surprised to find that patients had many more abnormal
tests than they expected. This was in part because some
tests were not known to be abnormal in certain diseases,
because no one had ever looked at them in that disease.
But there still was a problem that some tests were ab-
normal in patients who appeared to be perfectly healthy.

We can understand why by considering the following
idealized situation. Suppose that we do N independent
tests, and suppose that in healthy people, the probabil-
ity that each test is abnormal is p. (In our vocabulary,
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FIGURE H.1. Measurement of the probablity that a clini-
cally normal patient having a battery of 12 tests done has
n abnormal tests (solid line) and a calculation based on the
binomial distribution (dashed line). The calculation assumes
that p = 0.05 and that all 12 tests are independent. Several of
the tests in this battery are not independent, but the general
features are reproduced.

having an abnormal test is “success”!). The probability
of not having the test abnormal is q = 1 − p. In a per-
fect test, p would be 0 for healthy people and would be 1
in sick people; however, very few tests are that discrim-
inating. The definition of normal vs abnormal involves
a compromise between false positives (abnormal test re-
sults in healthy people) and false negatives (normal test
results in sick people). Good reviews of this problem have
been written by Murphy and Abbey3 and by Feinstein.4

In many cases, p is about 0.05. Now suppose that p is the
same for all the tests and that the tests are independent.
Neither of these assumptions is very good, but they will
show what the basic problem is. Then, the probability
for all of the N tests to be normal in a healthy patient is
given by the binomial probability distribution:

P (0;N, p) =
N !

0!N !
p0qN = qN .

If p = 0.05, then q = 0.95, and P (0;N, p) = 0.95N . Typi-
cal values are P (0; 12) = 0.54, and P (0; 20) = 0.36. If the
assumptions about p and independence are right, then
only 36% of healthy patients will have all their tests nor-
mal if 20 tests are done.

Figure H.1 shows a plot of the number of patients in a
series who were clinically normal but who had abnormal

3E. A. Murphy and H. Abbey (1967). The normal range—a com-
mon misuse. J. Chronic Dis. 20: 79.

4A. R. Feinstein (1975). Clinical biostatistics XXVII. The de-
rangements of the normal range. Clin. Pharmacol. Therap. 15: 528.

tests. The data have the general features predicted by
this simple model.

We can derive simple expressions to give the mean and
standard deviation if the probability distribution is bino-
mial. The mean value of n is defined to be

n =
N∑

n=0

nP (n;N) =
N∑

n=0

N !n
n!(N − n)!

pn(1 − p)N−n.

The first term of each sum is for n = 0. Since each term
is multiplied by n, the first term vanishes, and the limits
of the sum can be rewritten as

N∑

n=1

N !n
n!(N − n)!

pn(1 − p)N−n.

To evaluate this sum, we use a trick. Let m = n − 1 and
M = N − 1. Then we can rewrite various parts of this
expression as follows:

n

n!
=

1
(n − 1)!

=
1
m!

,

pn = ppm,

N ! = (N)(N − 1)!,
(N − n)! = [N − 1 − (n − 1)]! = (M − m)!.

The limits of summation are n = 1 or m = 0, and n = N
or m = M . With these substitutions

n = Np

M∑

m=0

M !
m!(M − m)!

pm(1 − p)M−m.

This sum is exactly the sum of a binomial distribution
over all possible values of m and is equal to one. We have
the result that, for a binomial distribution,

n = Np. (H.3)

This says that the average number of successes is the total
number of tries times the probability of a success on each
try. If 100 particles are placed in a box and we look at half
the box so that p = 1

2 , the average number of particles
in that half is 100 × 1

2 = 50. If we put 500 particles in
the box and look at 1

10 of the box, the average number
of particles in the volume is also 50. If we have 100 000
particles and v/V = p = 1/2000, the average number is
still 50.

For the binomial distribution, the variance σ2 can be
expressed in terms of N and p using Eq. G.4. The average
of n2 is

n2 =
∑

n

P (n;N)n2 =
N∑

n=0

N !
n!(N − n)!

n2pn(1 − p)N−n.

The trick to evaluate this is to write n2 = n(n − 1) + n.
With this substitution we get two sums:

n2 =
N∑

n=0

N !
n!(N − n)!

n(n − 1)pnqN−n

+
N∑

n=0

N !n
n!(N − n)!

pnqN−n.
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FIGURE H.2. Plot of [p(1 − p)]1/2.

The second sum is n = Np. The first sum is rewritten by
noticing that the terms for n = 0 and n = 1 both vanish.
Let m = n − 2 and M = N − 2:

n2 = Np + N(N − 1)
M∑

m=0

M !
m!(M − m)!

p2pmqM−m

= Np + N(N − 1)p2 = Np + N2p2 − Np2.

Therefore,

(∆n)2 = n2 − n2 = Np − Np2 = Np(1 − p) = Npq.

For the binomial distribution, then,

σ =
√

Npq =
√

nq.

The standard deviation for the binomial distribution
for fixed p goes as N1/2. For fixed N , it is proportional
to
√

p(1 − p), which is plotted in Fig. H.2. The maximum
value of σ occurs when p = q = 1

2 . If p is very small, the
event happens rarely; if p is close to 1, the event nearly
always happens. In either case, the variation is reduced.
On the other hand, if N becomes large while p becomes
small in such a way as to keep n fixed, then σ increases
to a maximum value of

√
n. This variation of σ with N

and p is demonstrated in Fig. H.3. Figures H.3(a)–H.3(c)
show how σ changes as N is held fixed and p is varied.
For N = 100, p is 0.05, 0.5, and 0.95. Both the mean
and σ change. Comparing Fig. H.3(b) with H.3(d) shows
two different cases where n = 50. When p is very small
because N is very large in Fig. H.3(d), σ is larger than
in Fig. H.3(b).

Problems

Problem 1 Calculate the probability of throwing
0, 1, . . . , 9 heads out of a total of nine throws of a coin.

Problem 2 Assume that males and females are born
with equal probability. What is the probability that a cou-
ple will have four children, all of whom are girls? The
couple has had three girls. What is the probability that
they will have a fourth girl? Why are these probabilities
so different?
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N = 100
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n = 50
σ = 5
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N = 100(a)
 
p = 0.05
_
n = Np = 5
 
σ2 = Np(1-p) 
= 100(.05)(.95) 
= 4.75
 
σ = 2.18

(c)
 
p = 0.95
_ 
n = Np = 95
 
σ2 = Np(1 - p) 
= 100(0.95)(0.05) 
= 4.75
 
σ = 2.18

FIGURE H.3. Examples of the variation of σ with N and p.
(a), (b), and (c) show variations of with p when N is held
fixed. The maximum value of σ occurs when p = 0.5. Note
that (a) and (c) are both in the top panel. Comparison of (b)
and (d) shows the variation of σ as p and N change together
in such a way that n remains equal to 50.

Problem 3 The Mayo Clinic reported that a single stool
specimen in a patient known to have an intestinal parasite
yields positive results only about 90% of the time [R. B.
Thomson, R. A. Haas, and J. H. Thompson, Jr. (1984).
Intestinal parasites: The necessity of examining multiple
stool specimens. Mayo Clin. Proc. 59: 641–642]. What
is the probability of a false negative if two specimens are
examined? Three?

Problem 4 The Minneapolis Tribune on October 31,
1974 listed the following incidence rates for cancer in the
Twin Cities greater metropolitan area, which at that time
had a total population of 1.4 million. These rates are com-
pared to those in nine other areas of the country whose
total population is 15 million. Assume that each study was
for one year. Are the differences statistically significant?
Show calculations to support your answer. How would
your answer differ if the study were for several years?

Type of cancer Incidence per 100 000
population per year
Twin Cities Other

Colon 35.6 30.9
Lung (women) 34.2 40.0
Lung (men) 63.6 72.0
Breast (women) 81.3 73.8
Prostate (men) 69.9 60.8
Overall 313.8 300.0



566 Appendix H. The Binomial Probability Distribution

Problem 5 The probability that a patient with cystic fi-
brosis gets a bad lung illness is 0.5% per day. With treat-
ment, which is time consuming and not pleasant, the daily

probability is ten times less.5 Show that the probability of
not having an illness in a year is 16% without treatment
and 83% with treatment.

5These numbers are from W. Warwick, MD, private commu-
nication. See also A. Gawande, The bell curve. The New Yorker,
December 6, 2004, pp. 82–91.



Appendix I
The Gaussian Probability Distribution

Appendix H considered a process that had two mutu-
ally exclusive outcomes and was repeated N times, with
the probability of “success” on one try being p. If each
try is independent, then the probability of n occurrences
of success in N tries is

P (n;N, p) =
N !

(n!)(N − n)!
pn(1 − p)N−n. (I.1)

This probability distribution depends on the two para-
meters N and p. We have seen two other parameters,
the mean, which roughly locates the center of the distri-
bution, and the standard deviation, which measures its
width. These parameters, n and σ, are related to N and
p by the equations

n = Np,

σ2 = Np(1 − p).

It is possible to write the binomial distribution formula
in terms of the new parameters instead of N and p. At
best, however, it is cumbersome, because of the need to
evaluate so many factorial functions. We will now develop
an approximation that is valid when N is large and which
allows the probability to be calculated more easily.

The procedure is to take the log of the probability,
y = ln(P ) and expand it in a Taylor’s series (Appendix
D) about some point. Since there is a value of n for which
P has a maximum and since the logarithmic function is
monotonic, y has a maximum for the same value of n. We
will expand about that point; call it n0. Then the form
of y is

y = y(n0) +
dy

dn

∣
∣
∣
∣
n0

(n − n0) +
1
2

d2y

dn2

∣
∣
∣
∣
n0

(n − n0)2 + · · · .

Since y is a maximum at n0, the first derivative vanishes
and it is necessary to keep the quadratic term in the ex-
pansion.

3

2

1

0

y

1412108642
m

y=ln(m)

FIGURE I.1. Plot of y = ln m used to derive Stirling’s ap-
proximation.

To take the logarithm of Eq. I.1, we need a way to han-
dle the factorials. There is a very useful approximation
to the factorial, called Stirling’s approximation:

ln(n!) ≈ n ln n − n. (I.2)

To derive it, write ln(n!) as

ln(n!) = ln 1 + ln 2 + · · · + ln n =
n∑

m=1

lnm.

The sum is the same as the total area of the rectangles
in Fig. I.1, where the height of each rectangle is lnm and
the width of the base is one. The area of all the rectangles
is approximately the area under the smooth curve, which
is a plot of ln m. The area is approximately

∫ n

1

ln mdm = [m ln m − m]n1 = n ln n − n + 1.

This completes the proof of Eq. (I.2). Table I.1 shows val-
ues of n! and Stirling’s approximation for various values
of n. The approximation is not too bad for n > 100.
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TABLE I.1. Accuracy of Stirling’s approximation.

n n! ln(n!) n ln n − n Error % Error

5 120 4.7875 3.047 1.74 36
10 3.6 × 106 15.104 13.026 2.08 14
20 2.4 × 1018 42.336 39.915 2.42 6
100 9.3 × 10157 363.74 360.51 3.23 0.8

We can now return to the task of deriving the binomial
distribution. Taking logarithms of Eq. I.1, we get

y = ln P = ln(N !) − ln(n!) − ln(N − n)!
+ n ln p + (N − n) ln(1 − p).

With Stirling’s approximation, this becomes

y = N ln N − n ln n − N ln(N − n) + n ln(N − n)
+ n ln p + (N − n) ln(1 − p). (I.3)

The derivative with respect to n is

dy

dn
= − ln n + ln(N − n) + ln p − ln(1 − p).

The second derivative is

d2y

dn2
= − 1

n
− 1

N − n
.

The point of expansion n0 is found by making the first
derivative vanish:

0 = ln
(N − n)p
n(1 − p)

.

Since ln 1 = 0, this is equivalent to (N −n0)p = n0(1−p)
or n0 = Np. The maximum of y occurs when n is equal
to the mean. At n = n0 the value of the second derivative
is

d2y

dn2
= − 1

Np
− 1

N(1 − p)
= − 1

Np(1 − p)
.

It is still necessary to evaluate y0 = y(n0). If we try to
do this by substitution of n = n0 in Eq. I.3, we get zero.
The reason is that the Stirling approximation we used is
too crude for this purpose. (There are additional terms
in Stirling’s approximation that make it more accurate.)
The easiest way to find y(n0) is to call it y0 for now and
determine it from the requirement that the probability
be normalized. Therefore, we have

y = y0 −
1

2Np(1 − p)
(n − Np)2

so that, in this approximation,

P (n) = ey = ey0e−(n−Np)2/[2Np(1−p)].

With Np = n, ey0 = C0, and Np(1 − p) = σ2, this is

P (n) = C0e
−(n−n)2/2σ2

.

FIGURE I.2. Evaluating the normalization constant.

FIGURE I.3. The allowed values of x are closely spaced in
this case.

To evaluate C0, note that the sum of P (n) for all n
is the area of all the rectangles in Fig. I.2. This area is
approximately the area under the smooth curve, so that

1 = C0

∫ ∞

−∞
e−(n−n)2/2σ2

dn.

It is shown in Appendix K that half of this integral is

∫ ∞

0

dx e−bx2
=

1
2

√
π

b
.

Therefore the normalization integral is (letting x = n−n)
∫ ∞

−∞
e−x2/2σ2

dx =
√

2πσ2.

The normalization constant is C0 = 1/
√

2πσ2, so that
the Gaussian or normal probability distribution is

P (n) =
1√

2πσ2
e−(n−n)2/2σ2

. (I.4)

It is possible, as in the case of the random-walk prob-
lem, that the measured quantity x is proportional to n
with a very small proportionality constant, x = kn, so
that the values of x appear to form a continuum. As
shown in Fig. I.3, the number of different values of n [each
with about the same value of P (n)] in the interval dx is
proportional to dx. The easiest way to write down the
Gaussian distribution in the continuous case is to recog-
nize that the mean is x = kn, and the standard deviation
is σ2

x = (x − x)2 = x2 − x2 = k2n2 − k2n2 = k2σ2.
The term P (x)dx is given by P (n) times the number
of different values of n in dx. This number is dx/k.
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Therefore,

P (x)dx = P (n)
dx

k
= dx

1
k
√

2πσ2
e−(x/k−x/k)2/2σ2

= dx
1√

2πσx

e−(x−x)2/2σ2
x . (I.5)

To recapitulate: the binomial distribution in the case of
large N can be approximated by Eq. I.4, the Gaussian or
normal distribution, or Eq. I.5 for continuous variables.
The original parameters N and p are replaced in these
approximations by n (or x) and σ.



Appendix J
The Poisson Distribution

Appendix H discussed the binomial probability distrib-
ution. If an experiment is repeated N times, and has two
possible outcomes, with “success” occurring with proba-
bility p in each try, the probability of getting that out-
come x times in N tries is

P (x;N, p) =
N !

x!(N − x)!
px(1 − p)N−x.

The distribution of possible values of x is characterized
by a mean value x = Np and a variance σ2 = Np(1− p).
It is possible to specify x and σ2 instead of N and p to
define the distribution.

Appendix I showed that it is easier to work with the
Gaussian or normal distribution when N is large. It is
specified in terms of the parameters x and σ2 instead of
N and p:

P (x;x, σ2) =
1

(2πσ2)1/2
e−(x−x)2/2σ2

.

The Poisson distribution is an approximation to the
binomial distribution that is valid for large N and for
small p (when N gets large and p gets small in such a way
that their product remains finite). To derive it, rewrite
the binomial probability in terms of p = x/N :

P (x) =
N !

x!(N − x)!
(x/N)x(1 − x/N)N−x

=
N !

x!(N − x)!
1

Nx
xx

(
1 − x

N

)N (
1 − x

N

)−x

.

(J.1)

It is necessary next to consider the behavior of some of
these factors as N becomes very large. The factor (1 −
x/N)N approaches e−x as N → ∞, by definition (see p.
32). The factor N !/(N − x)! can be written out as

N(N − 1)(N − 2) · · · 1
(N − x)(N − x − 1) · · · 1 = N(N−1)(N−2) · · · (N−x+1).

If these factors are multiplied out, the first term is Nx,
followed by terms containing Nx−1, Nx−2,. . . , down to
N1. But there is also a factor Nx in the denominator of
the expression for P , which, combined with this gives

1 + (something)N−1 + (something)N−2 + · · · .

As long as N is very large, all terms but the first can
be neglected. With these substitutions, Eq. J.1 takes the
form

P (x) =
1
x!

xxe−x

(
1 − x

N

)−x

. (J.2)

The values of x for which P (x) is not zero are near
x, which is much less than N . Therefore, the last term,
which is really [1/(1 − p)]x, can be approximated by one,
while such a term raised to the Nth power had to be ap-
proximated by e−x. If this is difficult to understand, con-
sider the following numerical example. Let N = 10 000
and p = 0.001, so x = 10. The two terms we are con-
sidering are (1 − 10/10 000)10 000 = 4.517 × 10−5, which
is approximated by e−10 = 4.54 × 10−5, and terms like
(1 − 10/10 000)−10 = 1.001, which is approximated by 1.

With these approximations, the probability is P (x) =
[(x)x/x!]e−x or, calling x = m,

P (x) =
mx

x!
e−m. (J.3)

This is the Poisson distribution and is an approximation
to the binomial distribution for large N and small p, such
that the mean x = m = Np is defined (that is, it does not
go to infinity or zero as N gets large and p gets small).

This probability, when summed over all values of x,
should be unity. This is easily verified. Write

∞∑

x=0

P (x) = e−m
∞∑

x=0

mx

x!
.
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TABLE J.1. Comparison of the binomial, Gaussian, and Pois-
son distributions.

Binomial P (x;N, p) =
N !

x!(N − x)!
px(1 − p)N−x

x = m = Np
σ2 = Np(1 − p) = m(1 − p)

Gaussian P (x;m,σ) =
1

(2πσ2)1/2
e−(x−m)2/2σ2

Poisson P (x;m) =
mx

x!
e−m

m = Np
σ2 = m

But the sum on the right is the series for em, and
e−mem = 1. The same trick can be used to verify that
the mean is m:

∞∑

x=0

xP (x) =
∞∑

x=0

x
mx

x!
e−m =

∞∑

x=1

x
mx

x!
e−m.

The index of summation can be changed from x to y =
x − 1:
∞∑

x=0

xP (x) =
∞∑

y=0

(y + 1)
(y + 1)!

myme−m = m

∞∑

y=0

my

y!
e−m = m.

One can show that the variance for the Poisson distribu-
tion is σ2 = (x − m)2 = m.

Table J.1 compares the binomial, Gaussian, and Pois-
son distributions. The principal difference between the
binomial and Gaussian distributions is that the latter is
valid for large N and is expressed in terms of the mean
and standard deviation instead of N and p. Since the
Poisson distribution is valid for very small p, there is only
one parameter left, and σ2 = m rather than m(1 − p).

The Poisson distribution can be used to answer ques-
tions like the following:

1. How many red cells are there in a small square in
a hemocytometer? The number of cells N is large;
the probability p of each cell falling in a particular
square is small. The variable x is the number of cells
per square.

2. How many gas molecules are found in a small volume
of gas in a large container? The number of tries is
each molecule in the larger box. The probability that
an individual molecule is in the smaller volume is
p = V/V0, where V is the small volume and V0 is the
volume of the entire box.

3. How many radioactive nuclei (or excited atoms) de-
cay (or emit light) during a time dt? The probability
of decay during time dt is proportional to how long
dt is: p = λdt. The number of tries is the N nuclei
that might decay during that time.
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m = Nλt
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P(1)
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FIGURE J.1. Plot of P (0) through P (3) vs Nλt.

The last example is worth considering in greater detail.
The probability p that each nucleus decays in time dt is
proportional to the length of the time interval: p = λdt.
The average number of decays if many time intervals are
examined is

m = Np = Nλ dt.

The probability of x decays in time dt is

P (x) =
(Nλdt)x

x!
e−Nλdt.

As dt → 0, the exponential approaches one, and

P (x) → (Nλdt)x

x!
.

The overwhelming probability for dt → 0 is for there to
be no decays: P (0) ≈ (Nλdt)0/0! = 1. The probability
of a single decay is P (1) = Ndt; the probability of two
decays during dt is (Nλdt)2/2, and so forth.

If time interval t is finite, it is still possible for the
Poisson criterion to be satisfied, as long as p = λt is
small. Then the probability of no decays is

P (0) = e−m = e−Nλt.

The probability of one decay is

P (1) = (Nλt)e−Nλt.

This probability increases linearly with t at first and then
decreases as the exponential term begins to decay. The
reason for the lowered probability of one decay is that
it is now more probable for two or more decays to take
place in this longer time interval. As t increases, it is more
probable that there are two decays than one or none; for
still longer times, even more decays become more proba-
ble. The probability that n decays occur in time t is P (n).
Figure J.1 shows plots of P (0), P (1), P (2), and P (3), vs
m = Nλt.
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Problems

Problem 1 In the United States one year, 400 000 peo-
ple were killed or injured in automobile accidents. The
total population was 200 000 000. If the probability of be-
ing killed or injured is independent of time, what is the
probability that you will escape unharmed from 70 years
of driving?

Problem 2 Large proteins consist of a number of
smaller subunits that are stuck together. Suppose that an
error is made in inserting an amino acid once in every
105 tries; p = 10−5. If a chain has length 1000, what is
the probability of making a chain with no mistakes? If the
chain length is 105?

Problem 3 The muscle end plate has an electrical re-
sponse whenever the nerve connected to it is stimulated.
I. A. Boyd and A. R. Martin [The end plate potential
in mammalian muscle. J. Physiol. 132: 74–91 (1956)]

found that the electrical response could be interpreted as
resulting from the release of packets of acetylcholine by
the nerve. In terms of this model, they obtained the fol-
lowing data:

Number of packets reaching
the end plate

Number of times
observed

0 18
1 44
2 55
3 36
4 25
5 12
6 5
7 2
8 1
9 0

Analyze these data in terms of a Poisson distribution.



Appendix K
Integrals Involving e−ax2

FIGURE K.1. An element of area in polar coordinates.

Integrals involving e−ax2
appear in the Gaussian dis-

tribution. The integral

I =
∫ ∞

−∞
e−ax2

dx

can also be written with y as the dummy variable:

I =
∫ ∞

−∞
e−ay2

dy.

These can be multiplied together to get

I2=
∫ ∞

−∞

∫ ∞

−∞
dxdy e−ax2

e−ay2
=
∫ ∞

−∞

∫ ∞

−∞
dxdy e−a(x2+y2).

A point in the xy plane can also be specified by the polar
coordinates r and θ (Fig. K.1). The element of area dxdy
is replaced by the element rdrdθ:

I2 =
∫ 2π

0

dθ

∫ ∞

0

r dr e−ar2
= 2π

∫ ∞

0

r dr e−ar2
.

To continue, make the substitution u = ar2, so that du =
2ardr. Then

I2 = 2π

∫ ∞

0

1
2a

e−u du =
π

a

[
−e−u

]∞
0

=
π

a
.

The desired integral is, therefore,

I =
∫ ∞

−∞
e−ax2

dx =
√

π

a
. (K.1)

This integral is one of a general sequence of integrals
of the general form

In =
∫ ∞

0

xne−ax2
dx.

From Eq. K.1, we see that

I0 =
I

2
=

1
2

√
π

a
. (K.2)

The next integral in the sequence can be integrated
directly with the substitution u = ax2:

I1 =
∫ ∞

0

xe−ax2
dx =

1
2a

∫ ∞

0

e−udu =
1
2a

. (K.3)

A value for I2 can be obtained by integrating by parts:

I2 =
∫ ∞

0

x2e−ax2
dx.

Let u = x and dv = xe−ax2
dx = −(1/2a)d(e−ax2

).
Since

∫
udv = uv −

∫
vdu,

∫ ∞

0

x3e−ax2
dx = −xe−ax2

2a
+

1
2a

∫
e−ax2

dx.

This expression is evaluated at the limits 0 and ∞. The
term xe−ax2

vanishes at both limits. The second term is
I0/2a. Therefore,

I2 =
1

2 × 2a

√
π

a
.
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This process can be repeated to get other integrals in
the sequence. The even members build on I0; the odd
members build on I1. General expressions can be written.
Note that 2n and 2n + 1 are used below to assure even
and odd exponents:
∫ ∞

0

x2ne−ax2
dx =

1 × 3 × 5 × (2n − 1)
2n+1an

√
π

a
, (K.4)

∫ ∞

0

x2n+1e−ax2
dx =

n!
2an+1

, (a > 0). (K.5)

The integrals in Appendix I are of the form
∫ ∞

−∞
e−x2/2σ2

dx.

This integral is 2I0 with a = 1/(2σ2). Therefore, the in-
tegral is

√
2πσ2.

Integrals of the form

J =
∫ ∞

0

xne−axdx,

can be transformed to the forms above with the substi-
tution y = x1/2, x = y2, dx = 2y dy. Then

J =
∫ ∞

0

y2ne−ay2
2y dy = 2

∫ ∞

0

y2n+1e−ay2
dy.

Therefore
∫ ∞

0

xne−axdx =
n!

an+1
=

Γ(n + 1)
an+1

. (K.6)

The gamma function Γ(n) = (n−1)! if n is an integer. Un-
like n!, it is also defined for noninteger values. Although
we have not shown it, Eq. K.6 is correct for noninteger
values of n as well, as long as a > 0 and n > −1.

Problems

Problem 1 Use integration by parts to evaluate

I3 =
∫ ∞

0

x3e−ax2
dx.

Compare this result to Eq. K.5.

Problem 2 Show that
∫∞
−∞ xe−ax2

dx = 0. Note the
lower limit is −∞, not 0. There is a hard way and an
easy way to show this. Try to find the easy way.



Appendix L
Spherical and Cylindrical Coordinates

FIGURE L.1. Spherical coordinates.

It is possible to use coordinate systems other than the
rectangular (or Cartesian) (x, y, z): In spherical coordi-
nates (Fig. L.1) the coordinates are radius r and angles
θ and φ:

x = r sin θ cos φ,

y = r sin θ sin φ, (L.1)

z = r cos θ.

In Cartesian coordinates a volume element is defined
by surfaces on which x is constant (at x and x+ dx), y is
constant, and z is constant. The volume element is a cube
with edges dx, dy, and dz. In spherical coordinates, the
cube has faces defined by surfaces of constant r, constant
θ, and constant φ (Fig. L.2). A volume element is then

dV = (dr)(r dθ)(r sin θ dφ) = r2 sin θ dθ dφ dr. (L.2)

To calculate the divergence of vector J, resolve it into
components Jr, Jθ, and Jφ, as shown in Fig. L.2. These
components are parallel to the vectors defined by small
displacements in the r, θ, and φ directions. A detailed

FIGURE L.2. The volume element and element of surface area
in spherical coordinates.

calculation1 shows that the divergence is

div J = ∇ · J =
1
r2

∂

∂r
(r2Jr) +

1
r sin θ

∂

∂θ
(sin θ Jθ)

+
1

r sin θ

∂

∂φ
(Jφ). (L.3)

The gradient, which appears in the three-dimensional
diffusion equation (Fick’s first law), can also be written
in spherical coordinates. The components are

(∇C)r =
∂C

∂r
,

(∇C)θ =
1
r

∂C

∂θ
, (L.4)

(∇C)φ =
1

r sin θ

∂C

∂φ
.

1H. M. Schey (2005). Div, Grad, Curl, and All That. 4th. ed.
New York, Norton.
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FIGURE L.3. A cylindrical coordinate system.

Figure L.2 also shows that the element of area on the
surface of the sphere is (r dθ)(r sin θ dφ) = r2 sin θ dθ dφ.
The element of solid angle is therefore

dΩ = sin θ dθ dφ.

This is easily integrated to show that the surface area of
a sphere is 4πr2 or that the solid angle is 4π sr.

S = r2

∫ π

0

sin θ dθ

∫ 2π

0

dφ = 2πr2

∫ π

0

sin θ dθ

= 2πr2 [− cos θ]π0 = 4πr2.

Similar results can be written down in cylindrical co-
ordinates (r, φ, z), shown in Fig. L.3.

Table L.1 shows the divergence, gradient and curl in
rectangular, cylindrical, and spherical coordinates, along
with the Laplacian operator ∇2.

TABLE L.1. The vector operators in rectanguar, cylindrical
and spherical coordinates.
Rectangular, Cylindrical Spherical

x, y, z r, φ, z r, θ, φ

Gradient

(∇C)x =
∂C

∂x
(∇C)r =

∂C

∂r
(∇C)r =

∂C

∂r

(∇C)y =
∂C

∂y
(∇C)φ =

1

r

∂C

∂φ
(∇C)θ =

1

r

∂C

∂θ

(∇C)z =
∂C

∂z
(∇C)z =

∂C

∂z
(∇C)φ =

1

r sin θ

∂C

∂φ

Laplacian

∇2C =
∂2C

∂x2
∇2C =

1

r

∂

∂r

(
r
∂C

∂r

)
∇2C =

1

r2

∂

∂r

(
r2 ∂C

∂r

)

+
∂2C

∂y2
+

1

r2

∂2C

∂φ2
+

∂2C

∂z2
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂C

∂θ

)

+
∂2C

∂z2
+

1

r2 sin2 θ

∂2C

∂φ2

Divergence

∇ · j =
∂jx

∂x
∇ · j =

1

r

∂(rjr)

∂r
∇ · j =

1

r2

∂(r2jr)

∂r

+
∂jy

∂y
+

∂jz

∂z
+

1

r

∂jφ

∂φ
+

∂jz

∂z
+

1

r sin θ

∂(sin θjθ)

∂θ

+
1

r sin θ

∂jφ

∂φ

Curl

(∇× j)x =
∂jz

∂y
(∇× j)r =

1

r

∂jz

∂φ
(∇× j)r =

1

r sin θ

−∂jy

∂z
−

∂jφ

∂z
×
[

∂(sin θ jφ)

∂θ
− ∂(jθ)

∂φ

]

(∇× j)y =
∂jx

∂z
(∇× j)φ =

∂jr

∂z
(∇× j)θ =

1

r sin θ

−∂jz

∂x
−∂jz

∂r
×
[

∂jr

∂φ
−

sin θ∂(rjφ)

∂r

]

(∇× j)z =
∂jy

∂x
(∇× j)z =

1

r

∂(rjφ)

∂r
(∇× j)φ

−∂jx

∂y
−1

r

∂jr

∂φ
=

1

r

[
∂(rjθ)

∂r
− ∂jr

∂θ

]



Appendix M
Joint Probability Distributions

In both physics and medicine, the question often arises
of what is the probability that x has a certain value xi

while y has the value yj . This is called a joint probability.
Joint probability can be extended to several variables.
This appendix derives some properties of joint probabil-
ities for discrete and continuous variables.

M.1 Discrete Variables

Consider two variables. For simplicity assume that each
can assume only two values. The first might be the pa-
tients health, with values healthy and sick ; the other
might by the results of some laboratory test, with re-
sults normal and abnormal. Table M.1 shows the values
of the two variables for a sample of 100 patients. The joint
probability that a patient is healthy and has a normal test
result is P (x = 0, y = 0) = 0.6; the probability that a pa-
tient is sick and has an abnormal test is P (1, 1) = 0.15.
The probability of a false positive test is P (0, 1) = 0.20;
the probability of a false negative is P (1, 0) = 0.05.

The probability that a patient is healthy regardless of
the test result is obtained by a summing over all possible
test outcomes: P (x = 0) = P (0, 0)+P (0, 1) = 0.6+0.2 =
0.8.

In a more general case, we can call the joint proba-
bility P (x, y), the probability that x has a certain value

TABLE M.1. The results of measurements on 100 patients
showing whether they are healthy or sick and whether a lab-
oratory test was normal or abnormal.

Healthy (x = 0) Sick (x = 1)
Normal test (y = 0) 60 5
Abnormal test (y = 1) 20 15

FIGURE M.1. The results of measuring two continuous vari-
ables simultaneously. Each experimental result is shown as a
point.

independent of y Px(x), and so forth. Then

Px(x) =
∑

y P (x, y)

Py(y) =
∑

x P (x, y).
(M.1)

Since any measurement must give some value for x and
y, we can write

1 =
∑

x Px(x) =
∑

x

∑
y P (x, y),

1 =
∑

y Py(y) =
∑

y

∑
x P (x, y).

(M.2)
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FIGURE M.2. Perspective drawing of p(x, y).

M.2 Continuous Variables

When a variable can take on a continuous range of values,
it is quite unlikely that the variable will have precisely
the value x. Instead, there is a probability that it is in
the interval (x, dx), meaning that it is between x and
x + dx. For small values of dx, the probability that the
value is in the interval is proportional to the width of the

interval. We will call it px(x)dx. The extension to joint
probability in two dimensions is p(x, y)dxdy. This is the
probability that x is in the interval (x, dx) and y is in the
interval (y, dy). Figure M.1 shows each outcome of a joint
measurement as a dot in the xy plane. The probability
that x is in (x, dx) regardless of the value of y is

px(x)dx =
(∫

p(x, y)dy

)
dx. (M.3)

It is proportional to the total number of dots in the ver-
tical strip in Fig. M.1. Normalization requires that

1 =
∫

px(x)dx =
∫

dx

∫
dy p(x, y). (M.4)

The first strip could be taken horizontally:

1 =
∫

py(y)dy =
∫

dy

∫
dx p(x, y).

Figure M.2 shows a perspective drawing of p(x, y). The
volume of the shaded column is p(x, y)dxdy. The volume
of the slice is px(x)dx. The entire volume under the sur-
face is equal to one.



Appendix N
Partial Derivatives

When a function depends on several variables, we may
want to know how the value of the function changes when
one or more of the variables is changed. For example, the
volume of a cylinder is

V = πr2h.

How does V change when r is changed while the height
of the cylinder is kept fixed?

V (r + ∆r) = π(r + ∆r)2h = π(r2 + 2r∆r + ∆r2)h.

Subtracting the original volume, we have

∆V = π(2r∆r + ∆r2)h.

In the limit of small ∆r, this is

dV = 2πhrdr.

This is the same answer we would have gotten if h had
been regarded as a constant. The partial derivative of V
with respect to r is defined to be
(

∂V

∂r

)

h

= lim
∆r→0

(
V (r + ∆r, h) − V (r, h)

∆r

)
= 2πrh.

The subscript h in the partial derivative symbol means
that h is held fixed during the differentiation. Sometimes
it is omitted; when it is not there, it is understood that
all variables except the one following the ∂ are held fixed.

If the cylinder radius is held fixed while the height is
varied, we can write

∆V = V (r, h + ∆h) − V (r, h) = πr2∆h.

The partial derivative is
(

∂V

∂h

)

r

= lim
∆h→0

(
V (r, h + ∆h) − V (r, h)

∆h

)
= πr2.

Suppose now that we allow small changes in both r and
h. The difference in volume is

∆V = V (r + ∆r, h + ∆h) − V (r, h).

We can add and subtract the term V (r, h + ∆h):

∆V = V (r + ∆r, h + ∆h) − V (r, h + ∆h)
+ V (r, h + ∆h) − V (r, h)

=
V (r + ∆r, h + ∆h) − V (r, h + ∆h)

∆r
∆r

+
V (r, h + ∆h) − V (r, h)

∆h
∆h.

In the limit as ∆r and ∆h → 0, the first term is

(
∂V

∂r

)

h

∆r

evaluated at h + ∆h. If the derivatives are continuous at
(r, h), the derivative evaluated at (r, h+∆h) is negligibly
different from the derivative evaluated at (r, h). There-
fore, we can write

dV =
(

∂V

∂r

)

h

dr +
(

∂V

∂h

)

r

dh.

This result is true for several variables. For a function
w(x, y, z)

dw =
(

∂w

∂x

)

y,z

dx +
(

∂w

∂y

)

x,z

dy +
(

∂w

∂z

)

x,y

dz. (N.1)
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The derivatives are evaluated as though the variables
being held fixed were ordinary constants. If w = 3x2yz4,

(
∂w

∂x

)

y,z

= 6xyz4,

(
∂w

∂y

)

x,z

= 3x2z4,

(
∂w

∂z

)

x,y

= 12x2yz3.

It is also possible to take higher derivatives, such as
∂2w/∂x2 or ∂2w/∂x∂y. One important result is that the
order of differentiation is unimportant, if the function, its
first derivatives, and the derivatives in question are con-
tinuous at the point where they are evaluated. Without
filling in all the details of a rigorous proof, we will simply
note that

f =
∂w

∂x
= lim

∆x→0

(
w(x + ∆x, y) − w(x, y)

∆x

)

g =
∂w

∂y
= lim

∆y→0

(
w(x, y + ∆y) − w(x, y)

∆y

)
.

The mixed partials are

∂2w

∂y∂x
=

∂f

∂y
= lim

∆y→0

(
f(x, y + ∆y) − f(x, y)

∆y

)
= lim

∆x→0
∆y→0

×
(

w(x + ∆x, y + ∆y) − w(x, y + ∆y) − w(x + ∆x, y) + w(x, y)

∆x ∆y

)

∂2w

∂x∂y
=

∂g

∂x
= lim

∆y→0
∆x→0

×
(

w(x + ∆x, y + ∆y) − w(x + ∆x, y) − w(x, y + ∆y) + w(x, y)

∆x ∆y

)
.

The right side of each of these equations is the same,
except for the order of the terms. Thus

∂

∂x

∂w

∂y
=

∂

∂y

∂w

∂x

Problems

Problem 1 If w = 12x3y+z, find the three partial deriv-
atives ∂w/∂x, ∂w/∂y, and ∂w/∂z.

Problem 2 If V = xyz and x = 5, y = 6, z = 2, find
dV when dx = 0.01, dy = 0.02, and dz = 0.03. Make a
geometrical interpretation of each term.



Appendix O
Some Fundamental Constants and Conversion Factors

The values of the fundamental constants are
from the 2002 least-squares adjustment, available at
physics.nist.gov/PhysRefData/contents-constants.html.

Symbol Constant Value SI units

c Velocity of light in 2.997 925× 108 m s−1

vacuum
e Elementary charge 1.602 177× 10−19 C
F Faraday constant 9.648 53× 104 C mol−1

g Standard acceleration 9.806 65 m s−2

of free fall
h Planck’s constant 6.626 069× 10−34 J s
� Planck’s constant 1.054 572× 10−34 J s

(reduced)
6.582 119× 10−16 eV s

kB Boltzmann’s constant 1.380 651× 10−23 J K−1

8.617 343× 10−5 eV K−1

me Electron rest mass 9.109 382× 10−31 kg
mec2 Electron rest energy 8.187 105× 10−14 J

5.109 99× 105 eV
mp Proton rest mass 1.672 622× 10−27 kg
NA Avogadro’s number 6.022 142× 1023 mol−1

re Classical electron radius 2.817 940× 10−15 m
R Gas constant 8.314 47 J mol−1

K−1

u Mass unit (12C standard) 1.660 538× 10−27 kg

uc2 Mass unit (energy units) 9.314 94× 108 eV
ε0 Electrical permittivity 8.854 19× 10−12 C2 N−1

of space m−2

1/4πε0 8.987 55× 109 N m2 C−2

σSB Stefan Boltzmann 5.670 40× 10−8 W m−2

constant K−4

λC Compton wavelength 2.426 31× 10−12 m
of electron

µB Bohr magneton 9.274 009× 10−24 J T−1

µ0 Magnetic permeability 4π × 10−7 T m A−1

of space
µN Nuclear magneton 5.050 783× 10−27 J T−1

Some of the more useful conversion factors for con-
verting from older units to SI units are listed. They are
taken from Standard for Metric Practice, ASTM E 380-
76, Copyright 1976 by the American Society for Testing
and Materials, Philadelphia.

To convert from To Multiply by

angstrom meter 1.000 000 × 10−10

atmosphere (standard) pascal 1.013 250 × 105

bar pascal 1.000 000 × 105

barn meter2 1.000 000 × 10−28

calorie (thermochemical) joule 4.184 000

centimeter of pascal 1.333 22 × 103

mercury (0 ◦C)

centimeter of pascal 9.806 38 × 101

water (4 ◦C)

centipoise pascal second 1.000 000 × 10−3

curie becquerel 3.700 000 × 1010

dyne newton 1.000 000 × 10−5

electron volt joule 1.602 18 × 10−19

erg joule 1.000 000 × 10−7

fermi (femtometer) meter 1.000 000 × 10−15

gauss tesla 1.000 000 × 10−4

liter meter3 1.000 000 × 10−3

mho siemens 1.000 000

millimeter of mercury pascal 1.333 22 × 102

poise pascal second 1.000 000 × 10−1

roentgen coulomb 2.58 × 10−4

per kilogram

torr pascal 1.333 22 × 102
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A scan, 352
AAPM, 383, 384, 397, 445, 500
Abbey, H., 564
Abductor muscle, 7
Aberration

chromatic, 389
spherical, 389

Ablation, 381
Able, K. P., 217, 224
Able, M. A., 217, 224
Abramowitz, M., 199, 201, 250, 253, 338, 340
Absolute temperature, 57
Absorbed dose, 427
Absorption coefficient, 365
Absorption edge, 404
Acceleration, 547
Accommodation, 389
Acetabulum, 7
Acetylcholine, 104, 137, 185, 573
ACHD, 376
Achilles tendon, 6
Acoustic impedance, 346
Actinometry, 383
Action potential, 135

foot, 174
Gaussian approximation, 182
propagating, 159
space-clamped, 158

Activating function, 200
Active transport, 497
Activity, 76, 484, 489

cumulated, 488, 489
Activity vector, 180
Adair, R. K., 244, 247, 253, 317, 323
Adenosine triphosphate (ATP), 3
Adiabatic approximation, 416
Adiabatic process, 54

ADP, 67, 534
Afterloading, 504
Ahlen, S. P., 418, 420, 423, 434
Aine, C., 225
Air

acoustic impedance, 346
attenuation, 350
density and specific heat, 61
speed of sound, 345

Alberts, B., 459
Albumin, 129, 130
Aldroubi, A., 542
Algae, 217
Aliasing, 294, 309

in an image, 331
Allen, A. P., 47
Allen, R. D., 103
Allison, J., 542
Allos, S. H., 225
α particle, 424, 484, 505
Alternans, 282
Alveoli, 1, 19, 77, 104, 256
American Association of Physicists in Medicine, see

AAPM
American Heart Association, 195
Ampere, 145
Ampere’s law, 206, 213, 216

and Biot-Savart law, 220
Amplitude attenuation coefficient, 350
Ampullae of Lorenzini, 244, 252
Anaplasia, 378
Anderka, M., 293, 323
Anderson, H. L., 357
Anderson, J. R., 513
Anesthetic, 163
Angelakos, J. D., 175
Angiography, 376, 453
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Angioplasty, 504
Angioscopy, 376
Angstrom, 3
Angular momentum, 516
Anisotropy, 191, 192
Annihilation radiation, 414, 488
Anode, 193
Anode break excitation, 173
Anomalous rectification, 251
Antineutrino, 486
Antiscatter grid, 450
Antonini, E., 76
Antzelevitch, C., 185, 201
Anumonwo, J. B., 165, 175
Aorta, 20, 456
Apoptosis, 458
Aquaspirillum magnetotacticum, 217
Aqueous, 388
Arai, S., 224
Armstrong, B. K., 380, 397
Arqueros, F., 425, 434, 494, 512
Arteriole, 20
Artificial insemination, 72
Artificial kidney, 120
Ascites, 116
Ashley, J. C., 435
Astigmatism, 389
Astumian, R. D., 244, 247, 252–254, 317–319, 323
Ataxia-tangliectasia, 461
Athens, J. W., 323
Atherosclerosis, 376
Atkins, P. W., 70, 79
Atmosphere, 43

pressure variation, 60, 75
Atmosphere (pressure unit), 14
Atomic deexcitation, 410
Atomic energy levels, 402
Atomic number, 482
Atoms per unit volume, 366
ATP, 67, 534
Atrioventricular node, see see AV node
Attenuation

of sound wave, 349
water, 350

Attenuation coefficient, 365
amplitude, 350
effective, 368
intensity, 350
linear, 409
mass, 409

Attenunator
ladder, 171

Attix, F. H., 407, 414, 420, 422, 426, 429, 430, 434,
440, 445, 467, 477

Attractor, 262, 269
Auditory evoked response, 308
Auger electron, 410, 425, 485, 500, 504

cascade, 411, 438
Augmented limb leads, 188
Austin-Seymour, M., 478
Autocorrelation function, 299, 522

of exponential pulse, 305
and energy spectrum, 305
and power spectrum, 301
of noise, 314
of sine wave, 300
of square wave, 300

AV node, 185, 194
Average, 561

ensemble, 52
time, 52

Average reference recording, 196, 201
Avogadro’s number, 59, 85, 409

definition in SI units, 366
Axel, L., 526, 535, 542
Axelrod, D., 96, 108, 109
Axon, 2, 135

cable model, 149
electric field, 148
membrane capacitance, 149, 163
membrane capacitance and conductance, 150
membrane equivalent circuit, 155
membrane time constant, 150
myelinated, 136, 160
potassium gate, 157
potassium Nernst potential, 155
potential outside, 177
sodium conductance, 157
sodium gate, 158
sodium Nernst potential, 155
space-clamped, 154, 158
surface charge density, 149
unmyelinated, 136, 160
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Fick’s law, 88, 91, 99
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half-power, 311
spatial, 326, 329

Frequency response, 280, 310
glucose and insulin, 312

Fresnel zone, 352
Freund, H. U., 434
Fricke dosimeter, 445
Friedman, R. N., 212, 224, 225
Fritzberg, A. R., 504, 513
Froelich, J. W., 542
Fruit fly, 239

shaker mutant, 239
Fuchs, A. F., 29, 133, 175, 284
Fujimoto, J. G., 370, 398
Function

piecewise continuous, 295
Functional MRI, 536
Fundamental constants, 583
Fundamental equation of thermodynamics, 65
Fung, Y. C., 12, 13, 29
Furocoumarins, 380
Fusion

nuclear, 484
Fuster, V., 398

Gabbe, E. E., 224
Gadolinium, 523, 536
Gadolinium oxysulfide, 441
Gain, 258

open-loop, 258
Galanski, M., 479
Galletti, P. M., 120, 133
67Ga, 498, 502
Gamma (film), 441
Gamma camera, 500
Gamma decay, 484
Gamma function, 576
Gammiatoni, L., 317, 323
Gangrene, 146



Index 597

Gans, D. S., 399
Gap junctions, 184
Gap phase, 459
Gardner, M. J., 225
Garfinkel, A., 276, 282–284
Garg, M. L., 435
Garg, R. R., 435
Garrard, C. L., 225
Gas

ideal, 60, 61
Gas constant, 60
Gas multiplication, 444
Gasiorowicz, S., 374, 398
Gaskill, J. D., 329, 341
Gastric juice, 63
Gastrocnemius, 6
Gating current, 241
Gatland, I. R., 288, 323
Gauss, 204
Gauss’s law, 138

for magnetic field, 205
free and bound charge, 144

Gaussian distribution, 91, 99, 568
Gauvin, D., 477
Gawande, A., 566
Geddes, L. A., 136, 175, 193, 201, 202
Geetha, J., 284
Geiger counter, 444
Geiger’s rule, 477
Geise, R., 451, 453, 454
Gel dosimeter, 445
Geller, A. C., 398
Genant, H. K., 442, 478
General thermodynamic relationship, 65
Generalized force, 64
Gennari, F. J., 117, 133
Germanium, 445
Gevins, A., 212, 226
Giasson, C. J., 381, 398
Gibbs factor, 76
Gibbs free energy, 65, 66
Gibbs paradox, 68
Gibbs phenomenon, 296
Gielen, F. L. H., 212, 223, 224
Gilchrist, B. A., 380, 398
Giles, W. R., 175
Gillooly, J. F., 47, 74, 79
Gilmour, R. F., 283
Gimm, H. A., 404, 434
Gingl, Z., 318, 323
Gingras, S., 477
Ginzburg, L., 281, 283
Giorgiani, G., 398
Gittelson, K., 284
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Hyperthyroidism, 504
Hypertrophy, 378
Hypoproteinemia, 116
Hysteresis, 13, 19

magnetic, 216

Ice ages, 317
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intravascular, 377
Magnetic shielding, 214
Magnetic stimulation, 222
Magnetic susceptibility, 203, 216
Magnetism

and special relativity, 203
Magnetite, 216, 217, 222
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