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Preface

From the Preface to the Third Edition, by Russell K.

Hobbie:

Between 1971 and 1973 I audited all the
courses medical students take in their first two
years at the University of Minnesota. I was
amazed at the amount of physics I found in these
courses and how little of it is discussed in the
general physics course.

I found a great discrepancy between the
physics in some papers in the biological research
literature and what I knew to be the level of un-
derstanding of most biology majors or premed
students who have taken a year of physics. It was
clear that an intermediate-level physics course
would help these students. It would provide the
physics they need and would relate it directly to
the biological problems where it is useful.

This book is the result of my having taught
such a course since 1973. It is intended to serve
as a text for an intermediate course taught in
a physics department and taken by a variety of
majors. Since its primary content is physics, I
hope that physics faculty who might shy away
from teaching a conventional biophysics course
will consider teaching it. I also hope that re-
search workers in biology and medicine will find
it a useful reference to brush up on the physics
they need or to find a few pointers to the cur-
rent literature in a number of areas of bio-
physics. (The bibliography in each chapter is
by no means exhaustive; however, the references
should lead you quickly into a field.) The course
offered at the University of Minnesota is taken
by undergraduates in a number of majors who
want to see more physics with biological applica-
tions and by graduate students in physics, bio-

physical sciences, biomedical engineering, phys-
iology, and cell biology.

Because the book is intended primarily for
students who have taken only one year of
physics, I have tried to adhere to the following
principles in writing it:

. Calculus is used without apology. When an impor-

tant idea in calculus is used for the first time, it is
reviewed in detail. These reviews are found in the
appendices.

. The reader is assumed to have taken physics and to

know the basic vocabulary. However, I have tried to
present a logical development from first principles,
but shorter than what would be found in an intro-
ductory course. An exception is found in Chapters
14-18, where some results from quantum mechanics
are used without deriving them from first principles.
(My students have often expressed surprise at this
change of pace.)

. I have not intentionally left out steps in most deriva-

tions. Some readers may feel that the pace could be
faster, particularly after a few chapters. My students
have objected strongly when I have suggested step-
ping up the pace in class.

. Each subject is approached in as simple a fashion as

possible. I feel that sophisticated mathematics, such
as vector analysis or complex exponential notation,
often hides physical reality from the student. I have
seen electrical engineering students who could not
tell me what is happening in an RC circuit but could
solve the equations with Laplace transforms.

The Fourth Edition follows the tradition of earlier
editions. The book now has a second author: Bradley
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J. Roth of Oakland University. Both of us have en-
joyed this collaboration immensely. We have added a
chapter on sound and ultrasound, deleting or shorten-
ing topics elsewhere, in order to keep the book only
slightly longer than the Third Edition. Some of the
deleted material is available at the book’s website:
http://www.oakland.edu/ roth/hobbie.htm.

The Fourth Edition has 44% more end-of-chapter prob-
lems than the Third Edition; most highlight biological
applications of the physical principles. Many of the prob-
lems extend the material in the text. A solutions manual
is available to those teaching the course. Instructors can
use it as a reference or provide selected solutions to their
students. The solutions manual makes it much easier for
an instructor to guide an independent-study student. In-
formation about the Solutions manual is available at the
book’s website.

Chapter 1 reviews mechanics. Translational and ro-
tational equilibrium are introduced, with the forces in
the heel and hip joint as clinical examples. Stress and
strain, hydrostatics, incompressible viscous flow, and the
Poiseuille-Bernoulli equation are discussed, with exam-
ples from the circulatory system. The chapter concludes
with a discussion of Reynolds number.

Chapter 2 is essential to nearly every other chapter
in the book. It discusses exponential growth and decay
and gives examples from pharmacology and physiology
(including clearance). The logistic equation is discussed.
Students are also shown how to use semilog and log-log
graph plots and to determine power-law coefficients using
a spreadsheet. The chapter concludes with a brief discus-
sion of scaling.

Chapter 3 is a condensed treatment of statistical
physics: average quantities, probability, thermal equilib-
rium, entropy, and the first and second laws of thermody-
namics. Topics treated include the following: the Boltz-
mann factor and its corollary, the Nernst equation; the
principle of equipartition of energy; the chemical poten-
tial; the general thermodynamic relationship; the Gibbs
free energy; and the chemical potential of a solution. You
can plow through this chapter if you are a slave to thor-
oughness, touch on the highlights, or use it as a reference
as the topics are needed in later chapters.

Chapter 4 treats diffusion and transport of solute in
an infinite medium. Fick’s first and second laws of dif-
fusion are developed. Steady-state solutions in one, two
and three dimensions are described. An important model
is a spherical cell with pores providing transport through
the cell membrane. It is shown that only a small number
of pores are required to keep up with the rate of diffusion
toward or away from the cell, so there is plenty of room
on the cell surface for many different kinds of pores and
receptor sites. The combination of diffusion and drift (or
solvent drag) is also discussed. Finally, a simple random-
walk model of diffusion is introduced.

Chapter 5 discusses transport of fluid and neutral
solutes through a membrane. This might be a cell mem-

brane, the basement membrane in the glomerulus of the
kidney, or a capillary wall. The phenomenological trans-
port equations including osmotic pressure are introduced
as the first (linear) approximation to describe these flows.
Countercurrent transport is described. Finally, a hydro-
dynamic model is developed for right-cylindrical pores.
This model provides expressions for the phenomenologi-
cal coeflicients in terms of the pore radius and length. It
is also used to calculate the net force on the membrane
when there is flow.

After reviewing the electric field, electric potential, and
circuits, Chapter 6 describes the electrochemical changes
that cause an impulse to travel along a nerve axon or
along a muscle fiber before contraction. Two models
are considered: electrotonus (when the membrane obeys
Ohm’s law) and the Hodgkin-Huxley model (when the
membrane is nonlinear). Saltatory conduction in myeli-
nated fibers is described. The dielectric properties of the
membrane are modeled in terms of its molecular struc-
ture. Some simple changes to the membrane conductiv-
ity give rise to a periodically repeating action potential.
Finally, a general relationship is developed between dif-
fusive transport, resistance and capacitance for a given
geometry.

Chapter 7 shows how an electric potential is generated
in the medium surrounding a nerve or muscle cell. This
leads to the current dipole model for the electrocardio-
gram. The model is refined to account for the anisotropy
of the electrical conductivity of the heart. We then discuss
electrical stimulation, which is important for pacemakers,
stimulating nerve and muscle cells, and defibrillation. Fi-
nally, the model is extended to the electroencephalogram.

Chapter 8 shows how the currents in a conducting
nerve or muscle cell generate a magnetic field, leading to
the magnetocardiogram and the magnetoencephalogram.
Some bacteria (and probably some higher organisms)
contain magnetic particles used for determining spatial
orientation in the earth’s magnetic field. The mechanism
by which these bacteria are oriented is described. The de-
tection of weak magnetic fields and the use of changing
magnetic fields to stimulate nerve or muscle cells are also
discussed.

Chapter 9 covers a number of topics at the cellu-
lar and membrane level. It begins with Donnan equilib-
rium, where the presence of an impermeant ion on only
one side of a membrane leads to the buildup of a po-
tential difference across the membrane, and the Gouy—
Chapman model for how ions redistribute near the mem-
brane to generate this potential difference. The Debye—
Hiickel model is a simple description of the neutralization
of ions by surrounding counterions. The Nernst—Planck
equation provides the basic model for describing com-
bined diffusion and drift in an applied electric field. It also
forms the basis for the Goldman—Hodgkin—Katz model
for zero total current in a membrane with a constant elec-
tric field. Gated membrane channels are then discussed.
Noise is inescapable in all signalling situations. After



developing the basic properties of shot noise and John-
son noise, we show how a properly adapted shark can
detect very weak electric fields with a reasonable signal-
to-noise ratio. The chapter concludes with a discussion of
the basic physical principles that must be kept in mind
when assessing the possibility of biological effects of weak
electric and magnetic fields.

Chapter 10 describes feedback systems in the body. It
starts with the regulation of breathing rate to stabilize
the carbon dioxide level in the blood, moves to linear
feedback systems with one and two time constants, and
then to nonlinear models. We show how nonlinear sys-
tems described by simple difference equations can exhibit
chaotic behavior, and how chaotic behavior can arise in
continuous systems as well. Examples of feedback systems
include Cheyne-Stokes respiration, heat stroke, pupil size,
oscillating white-blood-cell counts, waves in excitable me-
dia, and period doubling and chaos in the heart.

Chapter 11 shows how the method of least squares un-
derlies several important techniques for analyzing data.
These range from simple curve fitting to discrete and con-
tinuous Fourier series, power spectra, correlation func-
tions, and the Fourier transform. We then describe the
frequency response of a linear system and the frequency
spectrum of noise. We conclude with a brief discussion
of testing data for chaotic behavior and the important
concept of stochastic resonance.

Armed with the tools of the previous chapter, we turn
to images in Chapter 12. Images are analyzed from the
standpoint of linear systems and convolution. This leads
to the use of Fourier analysis to describe the spatial fre-
quencies in an image and the reconstruction of an image
from its projections. Both Fourier techniques and filtered
backprojection are discussed.

Chapter 13 is new in the Fourth Edition. It discusses
acoustics, hearing, and medical ultrasound.

Chapter 14 discusses the visible, infrared, and ultravi-
olet regions of the electromagnetic spectrum. The scat-
tering and absorption cross sections are introduced and
are used here and in the next three chapters. We then de-
scribe the diffusion model for photon transport in turbid
media. Biological examples of infrared scattering include
the near infrared, optical coherence tomography, Raman
scattering, and the far infrared. Thermal radiation emit-
ted by the body can be detected; the emission of infrared
radiation by the sun includes ultraviolet light, which in-
jures skin. Protection from ultraviolet light is both pos-
sible and prudent. The definitions of various radiomet-
ric quantities have varied from one field of research to
another. We present a coherent description of radiomet-
ric, photometric and actinometric definitions. We then
turn to the eye, showing how spectacle lenses are used
to correct errors of refraction. The chapter closes with a
description of the quantum limitations to dark-adapted
vision.

Preface xvii

Chapter 15, like Chapter 3, has few biological examples
but sets the stage for later work. It describes how photons
and ionizing charged particles such as electrons lose en-
ergy in traversing matter. These interaction mechanisms,
both in the body and in the detector, are fundamental to
the formation of a radiographic image and to the use of
radiation to treat cancer.

Chapter 16 describes the use of x rays for medical di-
agnosis and treatment. It moves from production to de-
tection, to the diagnostic radiograph. We discuss image
quality and noise, followed by angiography, mammogra-
phy, fluoroscopy, and computed tomography. After briefly
reviewing radiobiology, we discuss therapy and dose mea-
surement. The chapter closes with a section on the risks
from radiation.

Chapter 17 introduces nuclear physics and nuclear
medicine. The different kinds of radioactive decay are de-
scribed. Dose calculations are made using the fractional
absorbed dose method recommended by the Medical In-
ternal Radiation Dose committee of the Society of Nu-
clear Medicine. Auger electrons can magnify the dose de-
livered to a cell or to DNA. This can potentially provide
new methods of treatment. Diagnostic imaging includes
single photon emission tomography and positron emis-
sion tomography. Therapies include brachytherapy and
internal radiotherapy. A section on the nuclear physics of
radon closes the chapter.

Chapter 18 develops the physics of magnetic resonance
imaging. We show how the basic pulse sequences are
formed and used for slice selection, readout, image re-
construction and to manipulate image contrast. We close
with chemical shift imaging, flow effects, functional MRI,
and diffusion and diffusion tensor MRI.

Biophysics is a very broad subject. Nearly every branch
of physics has something to contribute, and the bound-
aries between physics and engineering are blurred. Each
chapter could be much longer; we have attempted to pro-
vide the essential physical tools. Molecular biophysics has
been almost completely ignored: excellent texts already
exist, and this is not our area of expertise. This book has
become long enough.

We would appreciate receiving any corrections or sug-
gestions for improving the book.

Finally, thanks to our long-suffering families. We never
understood what these common words really mean,
nor the depth of our indebtedness, until we wrote the
book.

Russell K. Hobbie

Professor of Physics Emeritus, University of Minnesota
(hobbie@umn.edu)

Bradley J. Roth

Associate Professor of Physics, Oakland University
(roth@oakland.edu)



1

Mechanics

This chapter introduces some concepts from mechanics
that are of biological or medical interest. We begin with
a discussion of sizes important in biology. Then we turn
to the forces on an object that is in equilibrium and cal-
culate the forces experienced by various bones and mus-
cles. In Sec. 1.8 we introduce the concept of mechanical
work, which will recur throughout the book. The next
two sections describe how materials deform when forces
act on them. Sections 1.11 through 1.14 discuss the forces
in stationary and moving fluids. These concepts are then
applied to laminar viscous flow in a pipe, which is a model
for the flow of blood and the flow of fluid through pores
in cell membranes. The chapter ends with a discussion of
the circulatory system.

1.1 Distances and Sizes

In biology and medicine, we study objects than span a
wide range of sizes: from giant redwood trees to individ-
ual molecules. Therefore, we begin with a brief discussion
of length scales. The basic unit of length in the metric sys-
tem is the meter (m): about the height of a three-year-old
child. For objects much larger or smaller than a meter,
we add a prefix as shown in Table 1.1. For example, a
kilometer is formed by adding the prefix “kilo”, which
means times one thousand (10> m = 1 km). Living or-
ganisms rarely if ever reach a size of 1 km; the tallest trees
are about 0.1 km (100 m) high. A few animals (whales,
dinosaurs) reach the size of tens of meters, but most or-
ganisms are a few meters or less in size.

The diversity of life becomes more obvious as we move
down to smaller length scales. One one-hundredth of a
meter is called a centimeter (1 cm = 1072 m). The cen-
timeter is still common in the medical literature, although
it is going out of style among metric purists who prefer

TABLE 1.1. Common prefixes used in the metric system.

Prefix Abbreviation Multiply by
giga G 10°

mega M 108

kilo  k 103

milli m 1073

micro u 1076

nano n 1079

pico p 10-12

femto f 10710

atto a 1018

to use only prefixes that are factors of one thousand.!
One one-thousandth of a meter is a millimeter (1 mm =
1072 m), about the thickness of a dime. We can still
see objects of this size, but we can’t study their detailed
structure with the unaided eye.

The microscope enables us to study objects many times
smaller than 1 mm. The natural unit for measuring such
objects is 107% m or 1073 mm, called a micrometer
(1pym = 1075 m). The nickname for the micrometer is
the “micron.”Figure 1.1 shows the relative sizes of ob-
jects in the range of 1 mm to 1 pm and encompasses
the length scale of cell biology. Many small structures
of our body are this size. For instance, our lungs con-
sist of a branching network of tubes through which air
flows. These tubes end in small, nearly spherical air sacs
called alveoli [Fig. 1.1(b)]. Each alveolus has a diameter
of about 250 pm, and this size is set by the diffusion prop-
erties of air (Chapter 4). Protozoans are a type of small
one-celled animal. A paramecium is a protozoan about

1We find that restricting ourselves to prefixes that are a multiple
of 1000 makes it easier to remember relative sizes.
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100 pm

FIGURE 1.1. Objects ranging in size from 1 mm down to 1
pm. (a) A paramecium, (b) an alveolus (air sac in the lung),
(c) a cardiac cell, (d) red blood cells, and (e) Escherichia coli
bacteria.

250 pm long [Fig. 1.1(a)]. The cells in multicellular ani-
mals tend to be somewhat smaller than protozoans. For
instance, the mammalian cardiac cell (a muscle cell found
in the heart, Chapter 7) shown in Fig. 1.1(c) is about 100
pm long and 20 ym in diameter. Nerve cells have a long
fiber-like extension called an azon. Axons come in a va-
riety of sizes, from 1 pm diameter up to tens of microns.
The squid contains a giant axon nearly one millimeter
in diameter. This axon played an important role in our
understanding of how nerves work (Chapter 6).

Our red blood cells (erythrocytes) carry oxygen to all
parts of our body. (Actually, red blood cells are not true
cells at all, but rather “corpuscles”). Red blood cells are
disk-shaped, with a diameter of about 8 ym and a thick-
ness of 2 ym [Fig. 1.1(d)]. Blood flows through a branch-
ing network of vessels (Section 1.17), the smallest of which
are capillaries. Each capillary has a diameter of about 8
pm, meaning that the red blood cells can barely pass
through it single-file.

One valuable skill in physics is the ability to
make order-of-magnitude estimates, meaning to calculate
something approximately right. For instance, suppose we
want to calculate the number of cells in the body. This is
a difficult calculation, because cells come in all sizes and
shapes. But for some purposes we only need an approx-
imate answer (say, within a factor of ten). For example:
cells are roughly 10 pm in size, so their volume is about
(10 pm)3, or (10x1076)3 = 10715 m3. An adult is roughly
2 m tall and about 0.3 m wide, so our volume is about 2 m
x 0.3m x 0.3 m, or 0.18 m®. We are made up almost en-
tirely of cells, so the number of cells in our body is about
(0.18 m*) /(107 m?), or roughly 2 x 10**. Some prob-
lems at the end of the chapter ask you to make similar
order-of-magnitude calculations.
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100 nm

FIGURE 1.2. Objects ranging in size from 1 ym down to 1 nm.
(a) the human immunodeficiency virus (HIV), (b) hemoglobin
molecules, (c) a cell membrane, (d) a DNA molecule, (e) glu-
cose molecules.

Most cells are larger than a few microns. But many
cells (called eukaryotes) are complex structures that con-
tain organelles about this size. Mitochondria, organelles
where many of the chemical processes providing cells with
energy take place, are typically about 2 pm long. Proto-
plasts, organelles found in plant cells where photosynthe-
sis changes light energy to chemical energy, are also about
2 pm long.

The simplest cells are called prokaryotes and contain
no subcellular structures. Bacteria are the most common
prokaryotic cells. The bacterium Escherichia coli, or E.
coli, is about 2 pm long [Fig. 1.1(e)], and has been studied
extensively.

To examine structures smaller than bacteria, we must
measure lengths that are smaller than a micron. One-
thousandth of a micron is called a nanometer (1 nm =
10~2 m). Figure 1.2 shows objects having lengths from 1
nm to 1 pum. E. coli bacteria, which seemed so tiny com-
pared to cells in Fig. 1.1, are giants on the nanometer
length scale, being 20 times longer than the 100 nm scale
bar in Fig. 1.2. Viruses are tiny packets of genetic mater-
ial encased in protein. On their own they are incapable of
metabolism or reproduction, so some scientist don’t even
consider them as living organisms. Yet, they can infect
a cell and take control of its metabolic and reproductive
functions. The length scale of viruses is one-tenth of a mi-
cron, or 100 nm. For instance, HIV (the virus that causes
AIDS) is roughly spherical with a diameter of about 120
nm [Fig. 1.2(a)]. Some viruses, called bacteriophages, in-
fect and destroy bacteria. Most viruses are too small to
see in a light microscope. The resolution of a microscope
is limited by the wavelength of light, which is about 500
nm (Chapter 14). Thus, with a microscope we can study
cells in detail, we can see bacteria without much resolu-
tion, and we can barely see viruses, if we can see them at
all.

Below 100 nm, we enter the world of individual mole-
cules. Proteins are large, complex macromolecules that
are vitally important for life. For example, hemoglobin is



the protein in red blood cells that binds to and carries
oxygen. Hemoglobin is roughly spherical, about 6 nm in
diameter [Fig. 1.2(b)]. Many biological functions occur in
the cell membrane (see Chapter 5). Membranes are made
up of layers of lipid (fat), often with proteins and other
molecules embedded in them [Fig. 1.2(c)]. A typical cell
membrane is about 10 nm thick. The molecule adeno-
sine triphosphate (ATP), crucial for energy production
and distribution in cells, is about 2 nm long (Chapter 3).
Chemical energy is stored in molecules called carbohy-
drates. A common (and relatively small) carbohydrate is
glucose (CgH120¢), which is about 1 nm long [Fig. 1.2(e)].
Genetic information is stored in long, helical strands of
deozyribonucleic acid (DNA). DNA is about 2.5 nm wide,
and the helix completes a turn every 3.4 nm along its
length [Fig. 1.2(d)].

At the 1-nm scale and below, we reach the world of
small molecules and individual atoms. Water is the most
common molecule in our body. It consists of two atoms
of hydrogen and one of oxygen. The distance between
adjacent atoms in water is about 0.1 nm. The distance 0.1
nm (100 pm) is used so much at atomic length scales that
it has earned a nickname: the angstrom (A). Like the cm,
this unit is going out of fashion as the use of nanometer
becomes more common. Individual atoms have diameters
of 100 or 200 pm.

Below the level of 100 pm, we leave the realm of biology
and enter the world of subatomic physics. The nuclei of
atoms (Chapter 17) are very small, and their sizes are
measured in femtometers (1 fm = 1071° m).

One cannot possibly memorize the size of all biological
objects: there are simply too many. The best one can do
is remember a few mileposts along the way. Table 1.2 con-
tains a rough guide to how large a few important biolog-
ical objects are. Think of these as rules of thumb. Given
the diversity of life, one can certainly find exceptions to
these rules, but if you memorize Table 1.2 you will have
a rough framework to organize your thinking about size.
To examine the relative sizes of objects in more detail,
see Morrison et al. (1994) or Goodsell (1998).

1.2 Forces and Translational
Equilibrium

There are several ways that we can introduce the idea of
force, depending on the problem at hand and our philo-
sophical bent. For our present purposes it will suffice to
say that a force is a push or a pull, that forces have both
a magnitude and a direction, and that they give rise to
accelerations through Newton’s second law, F = ma. Ex-
periments show that forces add like displacements, so they
can be represented by wvectors. (Some of the properties
of vectors are reviewed in Appendix B; others are intro-
duced as needed.) Vectors will be denoted by boldfaced
characters.
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TABLE 1.2. Approximate sizes of biological objects.

Object Size
Protozoa 100 pm
Cells 10 pm
Bacteria 1 pm
Viruses 100 nm
Macromolecules 10 nm
Molecules 1 nm
Atoms 100 pm

One finds experimentally that an object is in transla-
tional equilibrium if the vector sum of all the forces acting
on the body is zero. Equilibrium means that the object
either remains at rest or continues to move with a con-
stant velocity. That is, it is not accelerated. Translational
means that only changes of position are being considered;
changes of orientation of the object with respect to the
axes are ignored.

We must consider all the forces that act on the object.
If the object is a person standing on both feet, the forces
are the upward force of the floor on each foot and the
downward force of gravity on the person (more accurately,
the vector sum of the gravitational force on every cell in
the person). We do not consider the downward force that
the person’s feet exert on the floor. It is also possible to
replace the sum of the gravitational force on each cell
of the body with a single downward gravitational force
acting at one point, the center of gravity of the body.

The forces that add to zero to give translational equi-
librium need not all act at one point on the object. If the
object is a person’s leg and the leg is at rest, there are
three forces exerted on the leg by other objects (Fig. 1.3).
Force F is the push of the floor up on the bottom of the
foot. The various pushes and pulls of the rest of the body

(b)

(a)

FIGURE 1.3. Forces on the leg in equilibrium. Each force is
exerted by some other object. (a) The points of application
are widely separated. (b) The sum of the forces is zero.
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on the leg through the hip joint and surrounding muscles
have been added together to give Fy. The gravitational
pull of the earth downward on the leg is F3. Force F,
acts on the bottom of the leg, Fy acts on the top, and F3
acts somewhere in between. If the leg is in equilibrium
the sum of these forces is zero, as shown in Fig. 1.3(b).
Although the points of application of the forces can be
ignored in considering translational equilibrium, they are
important in determining whether or not the object is in
rotational equilibrium. This is discussed shortly.

The Greek letter ¥ (capital sigma) is usually used to
mean a sum of things. With this notation, the condition
for translational equilibrium can be written

ZFizo.

The subscript ¢ is used to label the different forces acting
on the body. A notation this compact has a lot hidden in
it. This is a vector equation, standing for three equations:

> Fi. =0,
%

> Fiy =0,
> F.=o.

Often the subscript i is omitted and the equations are
written as Y F, =0, > F, =0, > F, = 0. In this nota-
tion, a component is positive if it points along the positive
axis and negative if it points the other way.

Sometimes, as in the next example, we draw forces in
particular directions and assume that these directions are
positive. If the subsequent algebra happens to give a so-
lution that is negative, the force points opposite the di-
rection assumed.

As an example, consider the person standing on both
feet as in Fig. 1.4. The earth pulls down at some point
with force W. The floor pushes up on the right foot with
force F'; and on the left foot with force Fy. To determine
what the condition for translational equilibrium tells us

(1.1)

(1.2)

(a) {b)

FIGURE 1.4. A person standing. (a) The forces on the person.
(b) A free-body or force diagram.

about the forces, draw the force diagram or free-body di-
agram of Fig. 1.4(b). This diagram is an abstraction that
ignores the points at which the forces are applied to the
body. We can get away with this abstraction because we
are considering only translation. When we consider rota-
tional equilibrium, we will have to redraw the diagram
showing the points at which the various forces act on the
person. If all the forces are vertical, then there is only one
component of each force to worry about, and the equilib-
rium condition gives F; + Fo — W =0, or Fy + F5, =W.
The total force of the floor pushing up on both feet is
equal to the pull of the earth down.

If there is a sideways force on each foot, translational
equilibrium provides two conditions: Fi, + Fo, = 0, and
Fiy +Fy — W =0.

This is all that can be learned from the condition for
translational equilibrium. If the person stands on one
foot, then F; = 0 and F», = W. If the person stands
with equal force on each foot, then Fy = Fy = W/2.

1.3 Rotational Equilibrium

If the object is in rotational equilibrium, then another
condition must be placed upon the forces. Rotational
equilibrium means that the object either does not rotate
or continues to rotate at a constant rate (with a constant
number of rotations per second). Consider the object of
Fig. 1.5, which is a rigid rod pivoted at point X so that it
can rotate in the plane of the paper. Forces F; and F» are
applied to the rod in the plane of the paper at distances r1
and 7y from the pivot and perpendicular to the rod. The
pivot exerts the force F3 on the rod needed to maintain
translational equilibrium. If both F; and Fy are perpen-
dicular to the rod, they are parallel. They must also be
parallel to F3, and translational equilibrium requires that
Fs =F; + Fs.

Experiment shows that there is no rotation of the rod
if Fyry = Fyry. The condition for rotational equilibrium
can be stated in a form analogous to that for translational
equilibrium if we define the torque, T, to be

Ti :TiFi- (13)

With this definition goes an algebraic sign convention:
the torque is positive if it tends to produce a counter-
clockwise rotation. The rod is in rotational equilibrium if

FIGURE 1.5. A rigid rod free to rotate about a pivot at point
X.



F, =Fsing

0

FIGURE 1.6. A force F is applied to an object at point P. The
object can rotate about point O. Vectors r and F determine
the plane of the paper.

the algebraic sum of all the torques is zero:
ZTi = Z’/‘iFL' =0.
i i

Note that F3 contributes nothing to the torque because
r3 is zero.

The torque is defined about a certain point, X. It de-
pends on the distance from the point of application of
each force to X.?2 As long as the object is in transla-
tional equilibrium, the torque can be evaluated around
any point. This theorem, which we will not prove, of-
ten allows calculations to be simplified, because taking
torques about certain points can cause some forces not
to contribute to the torque equation.

The torque can also be calculated if the force is not at
right angles to the rod. Imagine an object free to rotate
about point O in Fig. 1.6. Force F lies in the plane of the
paper but is applied in some arbitrary direction at point
P. The vectors r and F determine the plane of the paper
if they are not parallel. Force F can be resolved into two
components: one parallel to r, Fjj = F'cos 6, and the other
perpendicular to r, /|, = F'sinf. The component parallel
to r will not cause any rotation about point O. (Pull on
an open door parallel to the plane of the door; there is
no rotation.) The torque is therefore

(1.4)

T=rF =rFsin6. (1.5)
The perpendicular distance from the line along which the
force acts to point X is rsin@. It is often called the mo-
ment arm, and the torque is the magnitude of the force
multiplied by the moment arm.

The angle € is the angle of rotation from the direction
of r to the direction of F. It is called positive if the ro-
tation is counterclockwise. For the angle shown in Fig.
1.6 sin @ has a positive value, and the torque is positive.
Figure 1.7(a) shows an angle between 90° and 180° for
which the torque and sin 8 are still positive. Figure 1.7(b)
shows an angle between 180° and 360 °, for which both

2The discussion associated with Fig. 1.5 suggests that torque is
taken about an axis, rather than a point. In a three-dimensional
problem the torque is taken about a point.
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(b)

FIGURE 1.7. (a) When 0 is between 0° and 180 °, both sin 6
and the torque are positive. (b) When 6 is between 180 ° and
360 °, both sin 6 and the torque are negative.

the torque and sinf are negative. In all cases, Eq. 1.5
gives the correct sign for the torque.

To summarize: the torque due to force F applied to a
body at point P must be calculated about some point O.
If r is the vector from O to P, the magnitude of the torque
is equal to the magnitude of r times the magnitude of F,
times the sine of the angle between r and F. The angle
is measured counterclockwise from r to F.

1.4 Vector Product

Torque can be thought of as a vector, 7. Its magnitude
is Frsinf. The only direction uniquely defined by vec-
tors r and F is perpendicular to the plane in which they
lie. This is also the direction of an axis about which the
torque would cause a rotation. However, there is ambigu-
ity about which direction along this line to assign to the
torque. The convention is to say that a positive torque
points in the direction of the thumb of the right hand
when the fingers curl in the direction of positive rotation
from r to F.> When r and F point in the same direction,
so that no plane is defined, the magnitude of the torque
is zero.

The product of two vectors according to the foregoing
rules is called the cross product or vector product of the
two vectors. One can use a shorthand notation

T=rxF. (1.6)

There is another way to write the cross product. If
both r and F are resolved into components, as shown in
Fig. 1.8, then the cross product can be calculated by ap-
plying the rules above to the components. Since F, is per-
pendicular to r; and parallel to ry, its only contribution
is a counterclockwise torque 7, Fy. The only contribution
from F, is a clockwise torque, —ry,F,,. The magnitude of
the cross product is therefore

T:TxFy_TyF];' (17)

3This arbitrariness in assigning the sense of 7 means that it
does not have quite all the properties that vectors usually have. It
is called an axial vector or a pseudovector. It will not be necessary
in this book to worry about the difference between a real vector
and an axial vector.
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Ty

T X

FIGURE 1.8. The cross product r x F is calculated by resolv-
ing r and F into components.

Note that this is the (signed) sum of each component of
the force multiplied by its moment arm.

The equivalence of this result to Eq. 1.5 can be verified
by writing Eq. 1.7 as

7= (rcosB)(Fsina) — (rsin 8)(F cos o),

T=rF (sinacosf — cosasinf3) .

There is a trigonometric identity that
sin (o — 3) = sinacos § — cos asin S.

Since 8 = o — @ (from Fig. 1.8), this is equivalent to
T =rFsinf.

When vectors r and F lie in the zy plane, T points
along the z axis. If r and F point in arbitrary directions,
Eq. 1.7 gives the z component of 7. One can apply the
same reasoning for other components and show that

Ty = ryFy, — 1, Fy,
Ty =12 Fy — 1. F, (1.8)
Ty = 1oy — 1y Fy.

If you are familiar with the rules for evaluating determi-
nants, you will see that this is equivalent to the notation

X v 2
T=|Ts Ty T2 (1.9)
F, F, F.

1.5 Force in the Achilles Tendon

The equilibrium conditions can be used to understand
many problems in clinical orthopedics. Two are discussed
in this book: forces that sometimes cause the Achilles
tendon at the back of the heel to break, and forces in the
hip joint.

The Achilles tendon connects the calf muscles (the gas-
trocnemius and the soleus) to the calcaneus at the back
of the heel (Fig. 1.9). To calculate the force exerted by

Achilles tendon

FIGURE 1.9. Simplified anatomy of the foot.

this tendon on the calcaneus when a person is standing
on the ball of one foot, assume that the entire foot can
be regarded as a rigid body. This is our first example of
creating a model of the actual situation. We try to sim-
plify the real situation to make the calculation possible
while keeping the features that are important to what is
happening. In this model the internal forces within the
foot are being ignored.

Figure 1.10 shows the force exerted by the tendon on
the foot (Fr), the force of the leg bones (tibia and fibula)
on the foot (Fp), and the force of the floor upward, which
is equal to the weight of the body (W). The weight of
the foot is small compared to these forces and will be
neglected. Measurements on a few people suggest that
the angle the Achilles tendon makes with the vertical is
about 7°.

Translational equilibrium requires that

Frcos(7°)+ W — Fpcosf =0, (1.10)
Frsin(7°) — Fpsinf = 0.
FT
7° WA
| It | "w
5.6 cm | 10cm

FIGURE 1.10. Forces on the foot, neglecting its own weight.



To write the condition for rotational equilibrium, we need
to know the lengths of the appropriate vectors rp and
ry, assuming that the torques are taken about the point
where Fp is applied to the foot. In our simple model we
ignore the contributions of the horizontal components of
any forces to the torque equation. This is not essential (if
we are willing to make more detailed measurements), but
it simplifies the equations and thereby makes the process
clearer. The horizontal distances measured on one of the
authors are rp = 5.6 cm and ry = 10 cm, as shown in
Fig. 1.10. The torque equation is

10W — 5.6Frcos7° = 0. (1.11)

This equation can be solved for the tension in the tendon:

10W

Fr=——"-—
T 5.6cos7°

= 1.8W. (1.12)

This result can now be used in Eq. 1.10 to find Fp, =
Fp cos0:

(1.8)(W)(0.993) + W = Fp cos b,

2.8W = Fpcosf. (1.13)
From Eqgs. 1.10 and 1.12, we get
(1.8)(W)(0.122) = Fpsinb,
0.22W = Fpsiné. (1.14)

Equations 1.13 and 1.14 are squared and summed and
the square root taken to give Fg = 2.8W, while they can
be divided to give

0.22
tanf = —— = 0.079
an 28 ,

0=45°.

The tension in the Achilles tendon is nearly twice the
person’s weight, while the force exerted on the leg by
the talus is nearly three times the body weight. One can
understand why the tendon might rupture.

1.6 Forces on the Hip

The forces in the hip joint can be several times the per-
son’s weight, and the use of a cane can be very effective
in reducing them.

As a person walks, there are moments when only one
foot is on the ground. There are then two forces acting on
the body as a whole: the downward pull of the earth W
and the upward push of the ground on the foot N. The
pull of the earth may be regarded as acting at the center
of gravity of the body [Halliday et al. (1992, Chap. 13)].
The center of gravity is located on the midline (if the
limbs are placed symmetrically), usually in the lower ab-
domen [Williams and Lissner (1962), Chap. 5.] If torques
are taken about the foot, then the center of gravity must
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O

W

o

FIGURE 1.11. A person standing on one foot must place the
foot under the center of gravity, which is on or near the mid-
line.

be directly over the foot so that there will be no torque
from either force. This situation is shown in Fig. 1.11.
The condition for translational equilibrium requires that
N=W.

The anatomy of the pelvis, hips, and leg is shown
schematically in Fig. 1.12. Fourteen muscles and several
ligaments connect the pelvis to the femur. Extensive mea-
surements of the forces exerted by the abductor* muscles
in the hip have been made by Inman (1947). If the leg is
considered an isolated system as in Fig. 1.12, the follow-
ing forces act:

F: The net force of the abductor muscles, acting on the
greater trochanter. These muscles are primarily the
gluteus medius and gluteus minimus, shown as a sin-
gle band of muscle in Fig. 1.12.

R: The force of the acetabulum (the socket of the pelvis)
on the head of the femur.

N: The upward force of the floor on the bottom of the
foot (in this case, equal to W).

W: The weight of the leg, acting vertically down-
ward at the center of gravity of the leg. Wy, ~ W/7
[Williams and Lissner (1962), Chap. 5].

Inman found that F acts at about a 70° angle to
the horizontal. In a typical adult, the distance from the
greater trochanter to the midline is about 18 cm, the hor-
izontal distance from the greater trochanter to the center
of gravity of the leg is about 10 cm, and the distance from
the greater trochanter to the middle of the head of the
femur is about 7 cm.

A free-body diagram is shown in Fig. 1.13. The middle
of the head of the femur will turn out to be very close
to the intersection of the line along which R acts and a
horizontal line drawn from the point where F acts. This
means that if torques are taken about this intersection
point (point O), there will be no contributions from R or
from the horizontal component of F. The intersection is

4To abduct means to move away from the midline of the body.
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Head of femur
fits in acetgbulum
of pelvis

Greater
trocchanter

Femur.

Center of gravity
of leg

Abduction

FIGURE 1.12. Pertinent features of the anatomy of the leg.

about 7 cm toward the midline from the point of applica-
tion of F. Since N = W and W ~ W/7, the equilibrium
equations are

> F,=Fsin(70°) = R, - W/T+ W =0, (L.15)

> F,=Fcos(70°) — R, =0, (1.16)

> 7= —Fsin(70°)(7) = (W/7)(10—-T7) + W(18—7) = 0.

The last of these equations can be written as 11W — %W—
6.6F = 0, from which F' = 1.6WW. The magnitude of the
force in the abductor muscles is about 1.6 times the body
weight.

Equations 1.15 and 1.16 can now be used to find R,
and R,:

R, = Fcos(70°) = (1.6)(W)(0.342) = 0.55W,

R, = Fsin(70 °)+§W: (1.6)(W)(0.94)-+0.86WW = 2.361.

+—— 18

FIGURE 1.13. A free-body diagram of the forces acting on the
leg. Torques are taken about point O, which is the intersection
of a line along which R acts and a horizontal line through the
point at which F is applied. This point is 7 cm toward the
midline (medially) from the greater trochanter.

The angle that R makes with the vertical is given by

R,
t =—=0.23
an ¢ 7 ,

Y

¢ =13°.

The magnitude of R is R = (R2 + Rz)l/2 =2.4W.

If the patient had not had to put the foot under the
center of gravity of the body, the moment arm of the
only positive torque, 11W, could have been much less,
and this would have been balanced by a smaller value of
F. This can be done by having the patient use a cane
on the opposite side, so that the foot need not be right
under the center of gravity. This will be explored in the
next section. Conversely, if the patient were carrying a



FIGURE 1.14. The femoral epiphysis and the direction of R.

suitcase in the opposite hand, the center of mass would
be moved away from the midline, the foot would still have
to be placed under the center of mass, and the moment
arm, and hence F, would be even larger (Problem 11).

One very interesting conclusion of Inman’s study was
that the force R always acts along the neck of the femur in
such a direction that the femoral epiphysis has very little
sideways force on it. The epiphysis is the growing portion
of the bone (Fig. 1.14) and is not very well attached to
the rest of the bone. If there were an appreciable sideways
force, the epiphysis would slip sideways, and indeed it
sometimes does (Fig. 1.15). This is a serious problem,
since if the blood supply to the epiphysis is compromised,
there will be no more bone growth.

Suppose that, for some reason, the gluteal muscles are
severed. The patient can no longer apply force F to the
greater trochanter; Eq. 1.16 shows that then R, must be
zero. This change in the direction of R causes a rotation

FIGURE 1.15. X-ray of a slipped femoral epiphysis in an ado-
lescent male. (Courtesy of the Department of Diagnostic Ra-
diology, University of Minnesota.)
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FIGURE 1.16. A person using a cane on the left side (front
view) to favor the right hip.

of the epiphyseal plate and a gradual reshaping of the
femur.

1.7 The Use of a Cane

A cane is beneficial if used on the side opposite to the
affected hip (Fig. 1.16). We ignore the fact that the arm
holding the cane has moved, thereby shifting slightly the
center of mass, and we assume that the force of the
ground on the cane is vertical. If we assume that the tip
of the cane is about 30 cm (12 in.) from the midline and
supports one-sixth of the body weight, then we can apply
the equilibrium conditions to learn that IV +éW—W =0,
so N = %W. Torques taken about the center of mass give
(30)(%) — 2(2)W = 0, z = 6 cm. (Figure 1.16 is not to
scale.)

Having the foot 6 cm from the midline reduces the force
in the muscle and the joint. To find out how much, con-
sider the force diagram in Fig. 1.17. The most difficult
part of the problem is working out the various moment
arms. Assume that the slight movement of the leg has not
changed the point about which we take torques (point O).
Again, R contributes no torque about this point. The
horizontal distance of F from this point is still 7 cm.
The force of the ground on the leg is now 5W/6, and its
moment arm is 18 — 6 — 7 = 5 cm. The weight of the
leg, W/7, acts at the center of mass of the leg, which is
still %—g of the distance from the greater trochanter to
the foot. Its horizontal position is therefore % of the
horizontal distance from the greater trochanter to the
foot: (10)(12)/18 = 6.67 cm. The moment arm is 7—6.67
cm= 0.33 cm. The torque equation is

w SW
—F 51n(70°)(7) + (7> (033) + (6) (5) = 0
It is solved by writing it as
—6.58F + 0.047TW 4+ 4.17W =0,

F =0.64W.



10 1. Mechanics

———————g

Tf
e

FIGURE 1.17. A force diagram for the leg when a cane is
being used and the leg is 6 cm from the midline.

Even though the cane supports only one-sixth of the body
weight, F' has been reduced from 1.6W to 0.64W by the
change in the moment arm.

The force of the acetabulum on the head of the femur
can be determined from the conditions for translational
equilibrium:

Fcos(70°) — R, =0,

R, = 0.22,
W 5
FSin(?OO) _Ry — 7 + EW = 07
R, = 1.29W.

The resultant force R has magnitude (R2 + R2)!/2 =
1.3W. This compares to the value 2.4W without the cane.
The force in the joint has been reduced by slightly more
than the body weight. It is interesting to read what an
orthopedic surgeon had to say about the use of a cane.
The following is from the presidential address of W. P.

Blount, M.D., to the Annual Meeting of the American
Academy of Orthopedic Surgeons, January 30, 1956:

The patient with a wise orthopedic surgeon
walks with crutches for six months after a frac-
ture of the neck of the femur. He uses a stick for
a longer time—the wiser the doctor, the longer
the time. If his medical adviser, his physical
therapist, his friends, and his pride finally drive
him to abandon the cane while he still needs one,
he limps. He limps in a subconscious effort to
reduce the strain on the weakened hip. If there
is restricted motion, he cannot shift his body
weight, but he hurries to remove the weight from
the painful hip joint when his pride makes him
reduce the limp to a minimum. The excessive
force pressing on the aging hip takes its toll in
producing degenerative changes. He should not
have thrown away the stick.®

1.8 Work

So far this chapter has considered only situations in which
an object is in equilibrium. If the total force on the object
is not zero, the object experiences an acceleration a given
by Newton’s second law:

F = ma.

The study of how forces produce accelerations is called
dynamics. It is an extensive field that will be discussed
only briefly here.

Suppose an object moves along the x axis with veloc-
ity v,. If it is subject to a force in the x direction Fj,
it will be accelerated, and the velocity will change ac-
cording to F, = ma, = m(dv,/dt). If F, is known as
a function of time, then this equation can be written as
dv, = (1/m) F,(t)dt, and it can be integrated, at least
numerically.

In this context it is useful to define the kinetic energy

1
B, = —muv2.
k= 5MU;

(1.17)
As long as F, acts, the object is accelerated and the ki-
netic energy changes. We can gain some understanding
of how it changes by noting that

a1 o\ _  dug
dr \ 2= ) T M

5Quoted with permission from W. P. Blount. Don’t throw away
the cane. J. Bone Joint Surg. 38A: 695-708. Copyright (© 1956
J. Bone Joint Surg. This article was first quoted to the physics
community by G. B. Benedek and F.M.H. Villars. Physics with II-
lustrative Examples from Medicine and Biology. Vol. 1. Mechanics.
Reading, MA, Addison-Wesley, 1973, pp. 3-8.

= F,u,. (1.18)



Therefore F,v, is the rate at which the kinetic energy is
changing with time. It is called the power due to force
F,. The units of kinetic energy are kg m? s~2 or joules
(J); the units of power are J s™! or watts (W).

If v, and F, are both positive, the acceleration in-
creases the object’s velocity, the kinetic energy increases,
and the power is positive. If v, and F, are both negative,
v, decreases—becomes more negative—but the magni-
tude of the velocity increases. The kinetic energy in-
creases with time, and the power is positive. If v, and
F, point in opposite directions, then the effect of the ac-
celeration is to reduce the magnitude of v,, the kinetic
energy decreases, and the power is negative.

Equation 1.18 can be written as

d (1 dz

Both sides of this equation can be integrated with respect

to t: . ;
*d (1 2 dz
— (= = F — dt.
/t1 g <2mvw> dt /t1 (1) 7 dt

The indefinite integral corresponding to the left-hand side
is the integral with respect to time of the derivative of

Imv? and is therefore %mvfc. If F, is known not as a

2
function of ¢ but as a function of z, it is convenient to

write the right-hand side as

/ Fy(x)de =W.

1

This quantity is called the work done by force F, on the
object as it moves from 1 to x2. The complete equation
is therefore

[1mvi]2 _ {1%}4 = /x Fo(e)de=W. (L.19)

Z1

The increase in kinetic energy of the body as it moves
from position 1 (at time 1) to position 2 (at time 2) is
equal to the work done on the body by the force F,.. The
work done on the body by force F, is the area under the
curve of F}, vs x, between points x; and xo. This is shown
in Fig. 1.18.

If several forces act on the body, then the acceleration
is given by Newton’s second law, where F is the total force
on the body. The change in kinetic energy is therefore the
work done by the total force or the sum of the work done
by each individual force.

When the force and displacement vectors point in any
direction, the kinetic energy is defined to be

Lo o

1
Ej, = smv® = -m(va + v, + v2).

5 5 (1.20)

Differentiating this expression with respect to time shows
that the power is given by an extension of Eq. 1.18:
dE}

e = Fyv, + Fyv, + Fov,.

1.8 Work 11
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FIGURE 1.18. The work done by F} is the shaded area under
the curve between x; and x2.

0 v
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X

FIGURE 1.19. Aligning the axes so that v is along the x axis
and F is in the zy plane shows that an alternative expression
for F-vis Fuvcos6.

This particular combination of vectors F and v is called
the scalar product or dot product. It is written as F - v.

There is another way to write the scalar product. If
F and v are not parallel, they define a plane. Align the
x axis with v so that v, and v, are zero, and choose
the direction of y so that F is in the xy plane (Fig. 1.19).
Then it is easy to see that F - v = F,v, = Fvcosf, where
is 0 the angle between F and v.

To summarize, the power is

dE
P = T;ZF.V:FUCOSHZFJC%*'FyUy
¥ Fu.,. (1.21)

Equation 1.21 can be integrated in the same manner as
above to obtain

AEk:/Fwda:—i-/Fydy—F/dez:/F-ds. (1.22)

This is the general expression for the work done by force
F on a point mass that undergoes displacement s.
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FIGURE 1.20. A rod subject to a force F along it.
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1.9 Stress and Strain

Whenever a force acts on an object, it undergoes a change
of shape or deformation. Often these deformations can be
ignored, as they were in the previous sections. In other
cases, such as the contraction of a muscle, the expan-
sion of the lungs, or the propagation of a sound wave,
the deformation is central to the problem and must be
considered. This book will not develop the properties of
deformable bodies extensively; nevertheless deformable
body mechanics is important in many areas of biology
[Fung (1993)]. We will develop the subject only enough
to be able to consider viscous forces in fluids.

Consider a rod of cross-sectional area S. One end is an-
chored, and a force F' is exerted on the other end parallel
to the rod (Fig. 1.20). Effects of weight will be ignored.
A surface force is transmitted across any surface defined
by an imaginary cut perpendicular to the axis of the rod.
A surface force is exerted by the substance to the right
of the cut on the substance to the left (and vice versa,
in accordance with Newton’s third law: when object A
exerts a force on object B, object B exerts an equal and
opposite force on object A). The surface force per unit
area is called the stress. In this case, when the surface is
perpendicular to the axis of the rod and the force is along
the axis of the rod, it is called a normal stress:

(1.23)

In the general case there can also be a component of stress
parallel to the surface.

The strain €, is the fractional change in the length of
the rod:

€n = % (1.24)

If increasing stress is applied to a typical substance, the
strain increases linearly with the stress for small stresses.
Then it increases even more rapidly. At higher strains it
may be necessary to reduce the stress to maintain the
same strain. Finally, at a high enough strain, the sample
breaks. This is plotted in Fig. 1.21. Because of the double-
valuedness of the strain as a function of stress, the strain
is usually plotted as the independent variable, as on the
right in Fig. 1.21.

Strain ()
Stress (s,

- L

Strain (e,)
(b)

Stress (s, )
(@)

FIGURE 1.21. A typical stress—strain relationship. On the
left, stress is the independent variable. On the right, strain is
the independent variable. Strain is usually used as the inde-
pendent variable because it is often a double-valued function
of the stress.

In the linear region, the relationship between stress and

strain is written as

Sn = Eep. (1.25)
The proportionality constant E is called Young’s mod-
ulus. Since the strain is dimensionless, E has the di-
mensions of stress. Various units are N m~2 or pascal
(Pa), dyn cm~2, psi (pound per square inch), and bar
(1 bar = 14.5 psi= 10° Pa= 10° dyn cm~2).

If the stress is increased enough, the bar breaks. The
value of the stress when the bar breaks under tension
is called the tensile strength. The material will also
rupture under compressive stress; the rupture value is
called the compressive strength. Table 1.3 gives values of
Young’s modulus, the tensile strength, and the compres-
sive strength for steel, long bone (femur), and wood (wal-
nut).

In some materials, the stress depends not only on the
strain, but on the rate at which the strain is produced.
It may take more stress to stretch the material rapidly
than to stretch it slowly, and more stress to stretch it than

TABLE 1.3. Young’s modulus, tensile strength, and compres-
sive strength of various materials in Pa.

Material E Tensile Compressive
strength strength

Steel (ap- 20 x 1019 50 x 107

prox.) ¢

Femur 14 x 1019  83x107 1.8 x 107

(wet)

Walnut ¢ 0.8 x 10'° 4.1 x 10" 5.2 x 107

@ American Institute of Physics Handbook (1957). New York,
McGraw-Hill, pp. 2-70.

bB. K. F. Kummer (1972), Biomechanics of bone. In Y. C.
Fung, et al. eds., Biomechanics—Its Foundations and Objec-
tives. Englewood Cliffs, NJ, Prentice-Hall, p. 237.

€U.S. Department of Agriculture (1955). Wood Handbook,
Handbook No. 72. Washington, D.C., U.S. Government Printing
Office, p. 74.
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FIGURE 1.22. A pressure—volume curve for a normal lung,
showing hysteresis. The elastic recoil pressure is the difference
between the pressure in the alveoli (air sacs) of the lung and
the thorax just outside the lung. From P. T. Macklem.Tests
of lung mechanics. N. Engl. J. Med. 293: 339-342. Copyright
© 1975 Massachusetts Medical Society. All rights reserved.
Drawing courtesy of Prof. Macklem.

to maintain a fixed strain. Such materials are called wis-
coelastic. They are often important biologically but will
not be discussed here [Fung (1993)].

Still other materials exhibit hysteresis. The stress—
strain relationship is different when the material is be-
ing stretched than when it is allowed to return to its
unstretched state. This difference is observed even if the
strain is changed so slowly that viscoelastic effects are
unimportant. Figure 1.22 shows a pressure—volume curve
for the lung. It is related to the stress—strain relationship
for the lung tissue and shows hysteresis.

1.10 Shear

In a shear stress, the force is parallel to the surface across
which it is transmitted.® In a shear strain, the deforma-
tion increases as one moves in a direction perpendicular
to the deformation. Examples of shear stress and strain
are shown in Fig. 1.23. The shear stress is

F

5a = (1.26)

and the shear strain is

(1.27)

€s =

9
-

6This discussion of stress and strain has been made simpler than
is often the case. In general, the force F across any surface is a vec-
tor. It can be resolved into a component perpendicular to the sur-
face and two components parallel to the surface. One can speak of
nine components of stress: Szaz, Szy, Szz, Syz, Syy, Syz, Sz, Szy, Szz-
The first subscript denotes the direction of the force and the sec-
ond denotes the normal to the surface across which the force acts.
Components sz, syy and s, are normal stresses; the others are
shear stresses. It can be shown that szy = syz, and so forth.
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FIGURE 1.23. Shear stress and strain.
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FIGURE 1.24. A volume element of fluid used to show that
the pressure in a fluid at rest is the same in all directions.

It is possible to define a shear modulus G analogous to
Young’s modulus when the shear strain is small:

ss = Ges. (1.28)

1.11 Hydrostatics

We now turn to some topics in the mechanics of fluids
that will be useful for understanding several phenomena,
including the circulation and fluid movement through
membranes in Chapter 5. Hydrostatics is the description
of fluids at rest. A fluid is a substance that will not sup-
port a shear when it is at rest. When the fluid is in motion,
there can be a shear force called viscosity.

An immediate consequence of the definition of a fluid is
that when the fluid is at rest, all the stress is normal. The
normal stress is called the pressure. The pressure at any
point in the fluid is the same in all directions. This can be
demonstrated experimentally, and it can be derived from
the conditions for equilibrium. Consider the small volume
of fluid shown in Fig. 1.24. It has a length a perpendicu-
lar to the page. This volume is in equilibrium. Since the
fluid at rest cannot support a shear, the pressure is per-
pendicular to each face, and there is no other force across
each face. To prove this, assume that the pressures per-
pendicular to the three faces can be different, and call
them pq, po, and p3. The force exerted across face 1 is
prabsin @, acting downward. The force across face 2 is
poabcosf acting to the right. Across face 3 it is psab,
with vertical component pzabsinf and horizontal com-
ponent pzabcosf. The vertical components sum to zero
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FIGURE 1.25. The fluid in volume dzdydz is in equilibrium.

only if p; = p3, while the horizontal components sum to
zero only if p3 = po. Since this result is independent of
the value of 6, the pressure must be the same in every
direction.

Next, consider how the pressure changes with posi-
tion. Suppose that p depends on the coordinates p =
p(r,y,z) and that the density of the fluid is p kg m~3.
The only external force acting is gravity in the direc-
tion of the —z axis. The fluid in the volume dxdydz of
Fig. 1.25 is in equilibrium. In the y direction there is
a force to the right across the left-hand face equal to
p(z,y, z)dzdz and to the left across the right-hand face
equal to —p(x, y+dy, z)dzxdz. These are the only forces in
the y direction, and their magnitudes must be the same.
Therefore p does not change in the y direction. A similar
argument shows that p does not change in the = direc-
tion. In the z direction there are three terms: the upward
force across the bottom face, the downward force across
the top face, and the pull of gravity. The weight of the
fluid is its mass (p dxdydz) times the gravitational accel-
eration g (g = 9.8 m s~2). The three forces must add to
zero:

p(x,y, z) dedy — p(z,y, z + dz) dedy — pg dedydz = 0.

For small changes in height, dz, it is possible to approxi-
mate” p(z,y, z +dz) by p(x,y,2) + (dp/dz) dz. With this
approximation, the equilibrium equation is

dxdydz (dp - pg> =0.
dz

This equation can be satisfied only if

dp _

= (1.29)

—pg.

This is a differential equation for p(z). It is a particularly
simple one, since the right-hand side is constant if p and

7See Appendix D on Taylor’s series for a more complete discus-
sion of this approximation.

g are constant: dp = —pgdz. Integrating this gives

/dp: fpg/dz,

p=—pgz+c

The constant of integration is determined by knowing the
value of p for some value of z. If p = pg when z = 0, then
po = ¢ and

p=po— pgz. (1.30)

With a constant gravitational force per unit volume act-
ing on the fluid, the pressure decreases linearly with in-
creasing height. The ST unit of pressure is N m~2 or pascal
(Pa). The density is expressed in kg m~3, so that pg has
units of N m™2 and pgz is in N m~2. Pressures are of-
ten given as equivalent values of z in some substance, for
example, in millimeters of mercury (torr) or centimeters
of water. In such cases, the value of z must be converted
to an equivalent value of pgz before calculations involv-
ing anything besides pressure are done. The density of
water is 1 g cm™2 or 10® kg m—3. The density of mer-
cury is 13.6 x 10 kg m~3, so 1 torr = 133 Pa. Another
common unit for pressure is the atmosphere (atm), equal
to 1.01 x 10° Pa. One atmosphere is approximately the
atmospheric pressure at sea level.

1.12 Buoyancy

Buoyancy effects are important when an object is im-
mersed in a fluid. We are all familiar with buoyant effects
when swimming; they are also important in instruments
such as the centrifuge. Consider an object of density p
immersed in a fluid of density pguiq- The net force on
such an object is the sum of the gravitational force and
a force arising from the pressure gradient in the fluid. To
visualize this, consider a small object with sides dz, dy,
dz. We have just seen that the pressure on the bottom
face is greater than the pressure on the top face. There-
fore there is an upward force on the cube. The total force
on the object is then

d

F= (_p — pg) dxdydz.
dz

Since the pressure gradient in the fluid is —pguiag, the

total force is

F = (pfivia — p) 9V, (1.31)

where V' is the volume of the object. The second term
is the object’s weight, directed downward. The first term
is called the buoyant force and is directed upward. The
buoyant force reduces the “effective weight” of the object
and depends on the difference of densities of the object
and the surrounding fluid.

Animals are made up primarily of water, so their den-
sity is approximately 10® kg m~2. The buoyant force de-
pends on the animal’s environment. Terrestrial animals



live in air, which has a density of 1.2 kg m~3. The buoy-
ant force on terrestrial animals is very small compared
to their weight. Aquatic animals live in water, and their
density is almost the same as the surrounding fluid. The
buoyant force almost cancels the weight, so the animal
is essentially “weightless.” Gravity plays a major role in
the life of terrestrial animals, but only a minor role for
aquatic animals. Denny (1993) explores the differences
between terrestrial and aquatic animals in more detail.

1.13 Compressibility

Increasing the pressure on a fluid causes a deformation
and a decrease in volume. The compressibility « is defined

as
AV

- = —kAD.
Since AV/V is dimensionless, x has the units of inverse
pressure, N~! m? or Pa~'. In many liquids the compress-
ibility is quite small (e.g., 5 x 10710 Pa~1! for water), and
for many purposes, such as flow through pipes, compress-
ibility can be ignored. Other effects, such as the transmis-
sion of sound through a fluid, depend on deformation, and
compressibility cannot be ignored.

(1.32)

1.14  Viscosity

A fluid at rest does not support a shear. If the fluid is
moving, a shear force can exist. At large velocities the
flow of the fluid is turbulent and may be difficult or im-
possible to calculate. We will consider only cases in which
the velocity is low enough so that the flow is smooth. This
means that particles of dye introduced into the fluid to
monitor its motion flow along smooth lines called stream-
lines. A streamline is tangent to the velocity vector of the
fluid at every point along its path. There is no mixing of
fluid across streamlines; the flow is laminar (in layers).
Laminar flow is often used in rooms where dirt or bac-
terial contamination is to be avoided, such as operating
rooms or manufacturing clean rooms. Clean air enters
and passes through the room without mixing. Any con-
taminants picked up are carried out in the air.

A fluid can support a viscous shear stress if the shear
strain is changing. One way to create such a situation
is to immerse two parallel plates, each of area S, in the
fluid, and to move one parallel to the other as in Fig.
1.26. If the fluid in contact with each plate sticks to the
plate,® the fluid in contact with the lower plate is at rest
and that in contact with the upper plate moves with the
same velocity as the plate. Between the plates the fluid
flows parallel to the plates, with a speed that depends

8This is called the “no-slip” boundary condition. There are ex-
ceptions.

1.13 Compressibility 15

FIGURE 1.26. Forces F and —F are needed to make the top
plate move in a viscous fluid while the bottom plate remains
stationary. The velocity profile is also shown.

on position as shown in Fig. 1.26. The variation of ve-
locity between the plates gives rise to a velocity gradient
dv, /dy. Note that this is the rate of change of the shear
strain.

In order to keep the top plate moving and the bottom
plate stationary, it is necessary to exert a force of magni-
tude F' on each plate: to the right on the upper plate and
to the left on the lower plate. The resulting shear stress
or force per unit area is in many cases proportional to
the velocity gradient:

F dv,
g =1 &y (1.33)
The constant 7 is called the coefficient of viscosity. Often
this equation is written with a minus sign, in which case
F is the force of the fluid on the plate rather than the
plate on the fluid. The units of 7 are N s m~2 or kg m~!
s~ or Pa s. Older units are the dyn s cm™2 or poise,
the centipoise, and the micropoise. 1 poise = 0.1 Pa s.
Equation 1.33 gives the force exerted by fluid above the
plane at height y on the fluid below the plane. In the case
of the parallel plates, the force from above on fluid in the
slab between y and y + dy is the same in magnitude as
(and opposite in direction to) the force exerted by the
fluid below the slab. Therefore there is no net force on
the fluid in the slab, and the fluid moves with constant
velocity. Fluids that are described by Eq. 1.33 are called
Newtonian fluids. Many fluids are not Newtonian.
Since dv, /dy is the rate of change of the shear strain,
Eq. 1.27, Eq. 1.33 can be written

F deg
S = —= = .
at

The rate of change of the shear strain is also called the
shear rate.

1.15 Viscous Flow in a Tube

Biological fluid dynamics is a well-developed area of
study [Lighthill (1975); Mazumdar (1992); Vogel (1994)].
External biological fluid dynamics is concerned with
locomotion—from single-celled organisms to swimming
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FIGURE 1.27. Longitudinal and transverse cross sections of
the tube. Newton’s first law is applied to the shaded volume.

fish and flying birds. Internal biological fluid dynamics
deals with mass transport within the organism. Two ob-
vious examples are flow in the airways and the flow of
blood.

Consider laminar viscous flow of fluid through a pipe
of constant radius R, and length Az. Ignore for now the
gravitational force. The pressure at the left end of a seg-
ment of pipe is p(x); at the right end it is p(x + Az). For
now consider the special case in which none of the fluid is
accelerated, so the total force on any volume element of
the fluid is zero. The velocity profile must be as shown in
Fig. 1.27: zero at the walls and a maximum at the center.
Our problem is to determine v(r).

Let us determine the forces acting on the shaded cylin-
der of fluid of radius r shown in Fig. 1.27. Since gravity
is ignored, there are only three forces acting on the vol-
ume. The fluid on the left exerts a force mr?p(z) acting
to the right in the direction of the positive x axis. The
fluid on the right exerts a force —mr?p(x + Ax) (the mi-
nus sign because it points to the left). The slower-moving
fluid outside the shaded region exerts a viscous drag force
across the cylindrical surface at radius 7. The area of the
surface is 2wrAx. The force points to the left. Its mag-
nitude is 2nrAxzn |dv/dr|. Since dv/dr is negative, we
obtain the correct sign by writing it as 27r Az n (dv/dr).
Since the fluid is not accelerating, the forces sum to zero:

72 [p(z) — p(z + Az)] + 27 Az (dv/dr) =0, (1.34)

which can be rearranged to give

dr 2 Az dx 2n’ '
This can be integrated:
/dv: x <dp> /rdr,
n \ dx
1 [dp\ ,
v(r) = 1 (da:) e+ A (1.36)

For flow to the right dp/dz is negative. Therefore it is
convenient to write Ap as the pressure drop from x to z+
dx: Ap = p(z)—p(z+Az). Then the first term in Eq. 1.36
is —(1/4n)(Ap/Ax)r?. The constant of integration can be

vAt —3p

FIGURE 1.28. Flow of fluid across the plane at B.

Al

determined assuming the “no-slip” boundary condition:
that the velocity of the fluid immediately adjacent to a
solid is the same as the velocity of the solid itself. Because
the wall is at rest, the velocity of the fluid is zero at the
wall (r = R,,). The final result is

o(r) = 1 Ap

L Ap s o
_477A:r(R re).

P

(1.37)

The total flow rate or volume flux or volume current i
is the volume of fluid per second moving through a cross
section of the tube. Its units are m® s~!. The volume
fluence rate or volume flux density® or current density j,
is the volume per unit area per unit time across some
small area in the tube. The units of j, are m® s7! m=2
orm s~ 1.

In fact, j, is just the velocity of the fluid at that point.
To see this, consider the flow of an incompressible fluid
during time At. In Fig. 1.28 the fluid moves to the right
with velocity v. At ¢t = 0, the fluid just to the left of plane
B crosses the plane; at t = At, that fluid that was at A
at t = 0 crosses plane B. All the fluid between plane A
and plane B crosses plane B during the time interval At.
The volume fluence rate is

(volume transported)  SvAt
— —»

(area)(time) T SAt (1.38)

j'u =

It may seem unnecessarily confusing to call the fluence
rate or flux density j, instead of v; however, this notation
corresponds to a more general notation in which j means
the fluence rate or flux density of anything per unit area
per unit time, and the subscript v, s, or ¢ tells us whether
it is the fluence rate of volume, solute particles, or electric
charge.

To find the volume current 7, j, must be integrated
over the cross-sectional area of the pipe. The volume of
fluid crossing the washer-shaped area 27rdr is j,27rdr =
v2nrdr. The total flux through the tube is therefore

R,
1= / Jo(r)2mr dr,
0

. 2mAp Ry

= 1.
i I Az (1.39)

(Rg — r2) rdr.

9Some authors call j, the flux. The nomenclature used here is
consistent throughout the book.



To integrate this, let u = RZQ) —r2. Then du = —2rdr and
the integral is R, /4. Therefore

B TR Ap
8y Az

(1.40)

is the flux of a viscous fluid through a pipe of radius
R, due to a pressure gradient (Ap/Ax) along the pipe.
The dependence of ¢ on R;ﬁ means that small changes in
diameter cause large changes in flow.

This relationship was determined experimentally in
painstaking detail by a French physician, Jean Leonard
Marie Poiseuille, in 1835. He wanted to understand the
flow of blood through capillaries. His work and knowledge
of blood circulation at that time have been described by
Herrick (1942).

As an example of the use of Eq. 1.40, consider a pore of
the following size, which might be found in the basement
membrane of the glomerulus of the kidney:

R, =5 nm,
Ap = 15.4 torr,
n=14x10"3kgm s (1.41)
Az = 50 nm.

It is first necessary to convert 15.4 torr to Pa using Eq.
1.30 and the value of p for mercury, 13.55x10% kg m~3:

Ap = pgAz = (13.55 x 10%)(9.8)(15.4 x 107?)
=2.04x 10> Nm™2

Then Eq. 1.40 can be used:

(3.14)(5 x 1079)4(2.04 x 10?)

—79 1 —21 3 71.
(B)(1Ax 103)(50 x 10°9) _ 2x 107 mes

1 =

Now consider the general case in which we have not
only viscosity, but the fluid may be accelerated and grav-
ity is important. We continue to write Ap as the pressure
drop and consider four contributions, each of which will
be discussed:

Ap = /I2 (dp/dz) dx (1.42)

1

= Apvisc + Apgrav + Apacccll + Apacc012~

For simplicity, we restrict the derivation to an incom-
pressible fluid and a pipe of circular cross section where
the radius can change. The distance along the pipe is ©
and the radius of the pipe is R,(x). Gravitational force
acts on the fluid, and the height of the axis of the pipe
above some reference plane is z, as shown in Fig. 1.29.
Because the fluid is incompressible, the total current ¢
is independent of x. If the pipe narrows, the velocity in-
creases. Assume that changes in pipe radius occur slowly
enough so that the velocity profile remains parabolic at
every point in the pipe and we can treat x as though it

1.15 Viscous Flow in a Tube 17

FIGURE 1.29. A pipe of circular cross section with radius and
height varying along the pipe.

were a distance along the axis of the cylinder. If we define
the average velocity as

)
TR2(z)’

(x) = (1.43)

we can use Eq. 1.37 to rewrite the velocity profile as

r? 24 r?
v(r,x)Qv{l } {1 }
RZ%(x) TR2(r) R%(x)
(1.44)
The first term in Eq. 1.42 is the pressure to overcome

viscous drag. We can rewrite Eq. 1.35 as

dpvisc o 2ﬂ @
de v dr’
Using Eq. 1.44 we can write
dpyisc 8n1i
- = - . 1-45
dx TR}(x) (1.45)

We saw this earlier, solved for ¢ in a pipe of constant
radius, as Eq. 1.40. The pressure drop is obtained by in-
tegration:

xr2 T2 dp .
Apyise = _/ dpyisc = —/ ( Vlbc) dz  (1.46)
1 - dx

i [
T Ri(x)

1

To go further requires knowing R, (x).
The next term pgrayv is the hydrostatic pressure change
that we saw in Eq. 1.30:

- dpgrav
Apgmv = - dpgrav = - “ds dz = pg(z2 - Zl)-
z1

(1.47)

The last two terms of Eq. 1.42 are pressure differences
required to accelerate the fluid. When the flow is steady—
that is, the velocity depends only on position, and the
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velocity at a fixed position does not change with time—
there can still be an acceleration if the cross section of
the pipe changes. The third term, Apaccelr, provides the
force for this acceleration. It can be derived as follows.
Imagine a streamline in the fluid. No fluid crosses the
streamline. Consider a small length of streamline ds and
a small area dA perpendicular to it. Note that ds is a
small displacement along a streamline, while dz is along
the axis of the pipe. The edge of dA defines another set
of streamlines that form a tube of flow, and dAds defines
a small volume of fluid. Make ds and dA small enough so
that v is nearly the same at all points within the volume.
The mass of fluid in the volume is dm = pd Ads. We ignore
viscosity and gravity, so the only pressure difference is due
to acceleration. The net force on the volume is
dp

dF = ——dsdA.

0 (1.48)

This is equal to the mass times the acceleration dv/dt.
The acceleration of the fluid in the element is then

(1.49)

dt ~ dm o \ds

d
dfv_dF_i((f)deA_ 1 @
pdsdA  p ’

We are considering only velocity changes that occur be-
cause the fluid moves along a streamline to a different
position. We use the chain rule to write

do _ (dv) (ds\ _ (v
at ~ \ds)\dt) = "\ds )
Combining these gives

dpaccell

_ dv
as  PP\4s )

(1.50)

This can be integrated along the streamline to give

%2 (d acce 2 d
Apaccell = _/ < pdS 11) ds = +p/ v (dZ) ds
S1 X1

2 2
_ pvy _ pYy

R (1.51)

The final term Apaccer2 is the pressure change required
to accelerate the fluid between points 1 and 2 if the veloc-
ity of the fluid at a fixed position is changing with time.
This happens, for example, to blood that is accelerated
as it is ejected from the heart during systole, or to fluid
that is sloshing back and forth in a U tube. To derive this
term, again imagine a small length of streamline ds and
a small area dA perpendicular to it. In addition to ignor-
ing gravity and viscosity, we ignore changes in velocity
because of changes in cross section. There is acceleration
only if the velocity at a fixed location is changing. The
acceleration is Qv/0t. The derivative is written with 0’s
to signify the fact that we are considering only changes
in the velocity with time that occur at a fixed position.

The net force required to accelerate this mass is provided
by the pressure difference Eq. 1.48:

dv v
dF = —dAdpaccers = dm <3t) =p (6t) dAds,

0
dpaccelQ = —p (U> dS,

ot
<g:> ds. (1.52)

So 52
ApaCCCIQ = */ dpaccc12 == P/
S1 S1

All of these effects can be summarized in the generalized
Bernoulli equation:

5 v 5 dpviSC
. 8td$‘|‘\/;1 (— dS >d$

Apyise

pL—p2=Ap=p

Apaccel2

(1.53)

2 2
V. v
P2 P g (20— 1)
2 2 —_——
————

Apgr
Apaccell Pgrav

Equation 1.53 is valid for nonuniform viscous flow that
may be laminar or turbulent if the integral is taken along
a streamline [see, for example, Synolakis and Badeer
(1989)].

1.16 Pressure—Volume Work

An important example of work is that done in a biological
system when the volume of a container (such as the lungs
or the heart or a blood vessel) changes while the fluid
within the container is exerting a force on the walls.

To deduce an expression for pressure—volume work,
consider a cylinder of gas fitted with a piston, Fig.
1.30(a). If the piston has area S, the gas exerts a force
F, = pS on the piston. If no other force is exerted on the

£
(@)

K

(b)

FIGURE 1.30. (a) A cylinder containing gas has a piston of
area S at one end. (b) The force exerted on the piston by the
gas is balanced by an external force if the piston is at rest.
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FIGURE 1.31. A plot of p vs V, showing the work done by
the gas as it expands.

piston to restrain it, it will be accelerated to the right
and gain kinetic energy as the gas does work on it:

(work done by gas) = Fydx = pSdx = pdV.  (1.54)

If the piston is prevented from accelerating by an external
force F, equal and opposite to that exerted by the gas
[Fig. 1.28(b)], then the external force does work on the
piston:

(work done by external force) = —F.dx (1.55)
= —pSdx = —pdV,

which is the negative of the work done on the piston by
the expanding gas. The result is that the kinetic energy of
the piston does not change. The gas does work on the sur-
roundings as it expands, increasing the energy of the sur-
roundings; the surroundings, through the external force,
do negative work on the gas; that is, they decrease the
energy of the gas. (The meaning of “energy of the gas”
and “energy of the surroundings” is discussed in Chap-
ter 3.) If the gas is compressed, the situation is reversed:
the surroundings do positive work on the gas and the gas
does negative work on the surroundings.

For a large change in volume from V; to V5, the pressure
may change as the volume changes. In that case the work
done by the gas on the surroundings is

Va
Wby gas — / pdv
Vi
This work is the shaded area in Fig. 1.31. If the gas is
compressed, the change in volume is negative and the
work done by the gas is negative.

Let us apply this model to the heart. Suppose that the
left ventricle of the heart contracts at constant pressure,
so that it changes volume by AV = V5 — V3. (Since Va2 <
V1 the quantity AV is negative. A volume of blood —AV
is ejected into the aorta.) The work done by the heart
wall on the blood is —pAV and is positive, since AV is
negative.

As another example of pressure-volume work, we can
develop a model to estimate the work necessary to
breathe. Consider the model of the lungs and airways
shown in Fig. 1.32. The pressure at the nose is the at-
mospheric pressure p. In the alveoli (air sacs) the pressure

(1.56)
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Py

FIGURE 1.32. A model of the thorax, lungs, and airways that
can be used to understand some features of breathing.

is po. If there is no flow taking place, p, = p. For air to
flow in, p, must be less than p; for it to flow out, p, must
be greater than atmospheric. The work done by the walls
of the alveoli on the gas in them is — fpa dV. The net
value of this integral for a respiratory cycle is positive.
Perhaps the easiest way to see this is to imagine an inspi-
ration, in which the alveolar pressure is p, = p — Ap and
the volume change is AV. The work done on the gas is
—(p— Ap)AV. This is followed by an expiration at pres-
sure p, = p + dp, for which the work is —(p + dp)(AV).
The net work done on the gas is (Ap+9dp)AV. The energy
imparted to the gas shows up as a mixture of heating be-
cause of frictional losses and kinetic energy of the exhaled
air.

There is another mechanism by which work is done
in breathing. Refer again to Fig. 1.32. The pressure in
the chest cavity (thorax) is p;. (The pressure measured
in mid-esophagus is a good estimate of p;.) Because of
contractile forces in the lung tissue, p, > p;. The quantity
Do — Pt is the “elastic recoil pressure” of Fig. 1.22. The
gas in the alveoli and the fluid in the thorax both do work
on the lung tissue. The latter has opposite sign, since a
positive displacement dx of a portion of the alveolar wall
is in the direction of the force exerted by the alveolar gas
but is opposite to the direction of the force exerted by
the thoracic fluid. The elastic recoil pressure, multiplied
by dV, gives the net work done by both forces on the wall
of the lung.

Figure 1.22 shows elastic recoil pressure versus lung
volume. It is redrawn in Fig. 1.33. During inspiration
(curve AB), the elastic recoil pressure p, — p; is greater
than that during expiration (curve BC'). The net work
done on the lung wall during the respiratory cycle goes
into frictional heating of the lung tissue.

1.17 The Human Circulatory System

The human circulatory system is responsible for pump-
ing blood and its life-sustaining nutrients to all parts of
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FIGURE 1.33. A hypothetical plot of the pressure—volume
relationship for inhalation and exhalation.

the body [Vogel (1992)]. The circulatory system has two
parts: the systemic circulation and the pulmonary circu-
lation, as shown in Fig. 1.34. The left heart pumps blood
into the systemic circulation: organs, muscles, etc. The
right heart pumps blood through the lungs. As the heart
beats, the pressure in the blood leaving the heart rises
and falls. The maximum pressure during the cardiac cy-
cle is the systolic pressure. The minimum is the diastolic
pressure. (A blood pressure reading is in the form sys-
tolic/diastolic, measured in torr.) The blood flows from
the aorta to several large arteries, to medium-sized arter-
ies, to small arteries, to arterioles, and finally to the capil-
laries, where exchange with the tissues of oxygen, carbon
dioxide, and nutrients takes place. The blood emerging
from the capillaries is collected by venules, flows into in-
creasingly larger veins, and finally returns to the heart
through the vena cava.

At any given time, blood is flowing in only a fraction
of the capillaries. The state of flow in the capillaries is
continually changing to provide the amount of oxygen
required by each organ. In skeletal muscle, terminal arte-
rioles constrict and dilate to control distribution of blood
to groups of capillaries. In smooth muscle and skin, a
precapillary sphincter muscle controls the flow to each
capillary [Patton et al. (1989), p. 860]. Since the blood is
incompressible and is conserved,!? the total volume flow
i remains the same at all generations of branching in the
vascular tree. Table 1.4 shows average values for the pres-
sure and vessel sizes at different generations of branching.
Most of the pressure drop occurs in the arterioles.

We define the vascular resistance R in a pipe or a seg-
ment of the circulatory system as the ratio of pressure
difference across the pipe or segment to the flow through
it:

R=—.

; (1.57)

The units are Pa m™2 s. Physiologists use the periph-
eral resistance unit (PRU), which is torr ml™' min.
For Poiseuille flow the resistance can be calculated

10This is not strictly true. Some fluid leaves the capillaries and
returns to the heart through the lymphatic system instead of the
venous system. See Chapter 5.
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— capillaries
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Veins, venules, and venous sinuses—64%

FIGURE 1.34. The human circulatory system. The subject
is facing you, so the left chambers of the heart are on the
right in the picture. The left heart pumps oxygenated blood
(gray), and the right heart pumps deoxygenated blood (black).
Reprinted from A.C. Guyton. Textbook of Medical Physiology,
8th ed. p. 151. (© 1991 Elsevier, Inc. Used with permission of
Elsevier.

from Eq. 1.40:
R 8nAzx

T
TR}

(1.58)

The resistance decreases rapidly as the radius of the vessel
increases.

If vessels of different diameters are connected in series
so that the flow 7 is the same through each one and the
total pressure drop is the sum of the drops across each
vessel, then the total resistance is the sum of the resis-
tances of each vessel:

Riot =R1+ Ro+ Rg +--- . (1.59)

If there is branching so that several vessels are in parallel
with the same pressure drop across each one, the total
flow through all the branches equals the flow in the vessel
feeding them. The total resistance is then given by

1 1 1 1

+R72+R73+”.'

= 1.60
Rtot Rl ( )

For the most part, the capillaries are arranged in parallel.
Even though the resistance of an individual capillary is
large because of its small radius (Eq. 1.58), the resistance
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TABLE 1.4. Typical values for the average pressure at the entrance to each generation of the major branches of the cardio-
vascular tree, the average blood volume in certain branches, and typical dimensions of the vessels.

Location Average Blood Diameter® Length® Wall Avg. Reynolds number at
pressure  volume® (mm) (mm) thickness®  velocity” maximum flow ¢
(torr) (ml) (mm) (m s™1)
Systemic circulation
Left atrium 5
Left ventricle 100
Aorta 100 156 20 500 2.00 4.80x1071 9 400
Arteries 95 608 4 500 1.00 4.50x1071 1 300
Arterioles 86 94 0.05 10 0.2 5.00x10~2
Capillaries 30 260 0.008 1 0.001 1.00x1073
Venules 10 470 0.02 2 0.002 2.00x1073
Veins 4 2682 5 25 0.5 1.00x 1072
Vena cava 3 125 30 500 1.5 3.80x1071 3 000
Right atrium 3
Pulmonary Circulation
Right atrium 3
Right ventricle 25
Pulmonary artery 25 52
Arteries 20 91 7 800
Arterioles 15 6
Capillaries 10 104
Veins 5 215 2 200
Left atrium 5

%From R. Plonsey (1995). Physiologic Systems. In J. R. Bronzino, ed. The Biomedical Engineering Handbook, Boca Raton, CRC

Press, pp. 9-10.

bFrom J. N. Mazumdar (1992). Biofluid Mechanics. Singapore, World Scientific, p. 38.
°From W. R. Milnor (1989). Hemodynamics, 2nd. ed. Baltimore, Williams & Wilkins, p. 148.

of the capillaries as a whole is relatively small because
there are so many of them (see Problem 41).

The average flow from the heart is the stroke volume—
the volume of blood ejected in each beat—multiplied
by the number of beats per second. A typical value
might be

i = (60 ml beat™')(80 beat min~') = 4800 ml min~!

=80 x 107 m® st

The total resistance would then be the average pressure
divided by the flow:

(100 torr)(133 Pa torr™ ')
80 x 1076 m3 s—1

R= =1.66 x 10° Pam™2 s.

The pressure in the left ventricle changes during the
cardiac cycle. It can be plotted vs time. It can also be
plotted vs ventricular volume, as in Fig. 1.35. The p-
V relationship moves counterclockwise around the curve
during the cycle. Filling occurs at nearly zero pressure
until the ventricle begins to distend when the volume
exceeds 60 ml. There is then a period of contraction at

nearly constant volume that causes the ventricular pres-
sure to rise until it exceeds the (diastolic) pressure in
the aorta, and the aortic valve opens. The contraction
continues, and the pressure rises further, but the ventric-
ular volume decreases as blood flows into the aorta. The
ventricle then relaxes. The aortic valve closes when the
ventricular pressure drops below that in the aorta. The
work done in one cycle is the area enclosed by the curve.
For the curve shown, it is 6600 torr ml = 0.88 J. At 80
beats per minute the power is 1.2 W. In this drawing the
stroke volume is 100—35 = 65 ml, and the cardiac output
is

i = (65 ml beat ™ ')(80 beats/60 s) = 87 x 10°m3s~1.

1.18 Turbulent Flow and the Reynolds
Number

Many features of the circulation can be modeled by
Poiseuille flow. However, at least four effects—in addition
to those in Eq. 1.42—cause departures from Poiseuille
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FIGURE 1.35. Pressure—volume relationship in the left ven-
tricle. The curve is traversed counterclockwise with increasing
time. The stroke volume is 100 — 35 = 65 ml. Systolic pressure
is 118 torr, and diastolic pressure is 70 torr. The ventricular
pressure drops below diastolic while the pressure in the arter-
ies remains about 70 torr because the aortic valve has closed
and prevents back flow

flow: (1) there may be turbulence; (2) there are depar-
tures from a parabolic velocity profile; (3) the vessel walls
are elastic; and (4) the apparent viscosity depends on the
both fraction of the blood volume occupied by red cells
and on the size of the vessel.

The importance of turbulence (nonlaminar) flow is de-
termined by a dimensionless number characteristic of the
system called the Reynolds number Ng. It is defined by

LVp

NR: )
n

(1.61)

where L is a length characteristic of the problem, V a
velocity characteristic of the problem, p the density, and
1 the viscosity of the fluid. When Np is greater than a
few thousand, turbulence usually occurs.

The Reynolds number arises in the following way. If
we were to write Newton’s second law for a fluid (which
we have not done) in terms of dimensionless primed vari-
ables such as v/ =r/L, v =v/V,and ' = t/(L/V), we
would find that the equations depend on the properties
of the fluid only through the combination Ng [Mazum-
dar (1992), p. 14]. With appropriate scaling of dimen-
sions and times, flows with the same Reynolds number
are identical.

There is ambiguity in defining the characteristic length
and the characteristic velocity. Should one use the ra-
dius or the diameter of a tube? The maximum velocity
or the average velocity? If one is solving the equations
of motion, one knows what values of L and V were used
to transform the equations. They are used to transform
the solution back to “real world” coordinates. However,
if one is making a statement such as “turbulence usually
occurs for values of Ni greater than a few thousand,”
there is ambiguity. On the other hand, the statement is

not very precise. Sometimes an additional subscript is
used to specify how Nk was determined.

When Np is large, inertial effects are important. Ex-
ternal forces accelerate the fluid. This happens when the
mass is large and the viscosity is small. As the viscosity
increases (for fixed L, V, and p) the Reynolds number
decreases. When the Reynolds number is small, viscous
effects are important. The fluid is not accelerated, and
external forces that cause the flow are balanced by vis-
cous forces. Since viscosity is a form of internal friction in
the fluid, work done on the system by the external forces
is transformed into thermal energy. The low-Reynolds-
number regime is so different from our everyday experi-
ence that the effects often seem counterintuitive. They
are nicely described by Purcell (1977).

Here is an example of an estimate expressed in terms of
the Reynolds number. A pressure difference Ap acts on a
segment of fluid of length Az undergoing Poiseuille flow.
The difference between the force exerted on the segment
of fluid by the fluid “upstream” and that exerted by the
fluid “downstream” is WRZA]D. If the average speed of the
fluid is v, then the net work done on the segment by the
fluid upstream and downstream in time At is Wy =
ngApﬁAt. Since the fluid is not accelerated, this work
is converted into thermal energy. We can solve Eq. 1.40
for Ap and use Eq. 1.43 to write

Wiise = WRZ ApvAt = 87)7@2 Ax At.

The kinetic energy of the moving fluid in a cylinder of
length At is

mu? _ pmR2 (VAt)T? _ pmR2T At
2 2 2 ’

E, =
and the ratio of the kinetic energy to the work done is

Ey pTR; 1 puR, 1
- - = —Ng.
Weise  16nAz 16§ n 16&

(The last step was done by writing the Az as {R),.) This
result shows that the ratio of kinetic energy to viscous
work is proportional to the Reynolds number. Another
example is given in the problems.

A large range of values of N occurs in the circulatory
system. Typical values corresponding to the peak flow
are given in Table 1.4. Blood flow is laminar except in
the ascending aorta and main pulmonary artery, where
turbulence may occur during peak flow.

There are two main causes of departures from the par-
abolic velocity profile. First, a red cell is about the same
diameter as a capillary. Red cells in capillaries line up
single file, each nearly blocking the capillary. The plasma
flows in small volumes between each red cell, with a ve-
locity profile that is nearly independent of radius. Second,
the entry region causes deviations from Poiseuille flow in
larger vessels.
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FIGURE 1.36. Velocity profiles in steady laminar flow at the
entrance to a tube, showing the development of the parabolic
velocity profile. The velocity is given as v/v. At the entrance
v/7 = 1. When the Poiseuille flow is fully developed, v/ is 2
at the center of the tube. These curves are calculated from a
graph by Cebeci and Bradshaw (1977) for laminar flow in a
tube of radius 2 mm and a pressure gradient of 20 torr m™ !,
carrying a fluid with a viscosity of 3 x 1072 N s m~2 and
a density of 10> kg m™3. The scales are different along the
axis and radius of the tube; the tube radius is 2 mm and the
entrance region is 240 mm long.

Suppose that blood flowing with a nearly flat velocity
profile enters a vessel, as might happen when blood flow-
ing in a large vessel enters the vessel of interest, which has
a smaller radius. At the wall of the smaller vessel the flow
is zero. Since the blood is incompressible, the average ve-
locity is the same at all values of x, the distance along the
vessel. (We assume the vessel has constant cross-sectional
area.) However, the velocity profile v(r) changes with dis-
tance x along the vessel. At the entrance to the vessel
(z = 0) there is a very abrupt velocity change near the
walls. As x increases a parabolic velocity profile is at-
tained. The transition or entry region, is shown in Fig.
1.36. In the entry region the pressure gradient is differ-
ent from the value for Poiseuille flow. The velocity pro-
file cannot be calculated analytically in the entry region.
Various numerical calculations have been made, and the
results can be expressed in terms of scaled variables [see,
for example, Cebeci and Bradshaw (1977)]. The Reynolds
number used in these calculations was based on the di-
ameter of the pipe, D = 2R,,, and the average velocity.
The length of the entry region is

L =0.05DNgp =0.1R,Ngp =0.2R,Ng g, . (1.62)

Blood pressure is, of course, pulsatile. This means that
the average velocity and v(r) are changing with time and
also departing from the parabolic profile. Also, at the
peak pressure during systole, the aorta and arteries ex-
pand, storing some of the blood and releasing it gradually
during the rest of the cardiac cycle. Pulsatile flow and the
elasticity of vessel walls are discussed extensively by Caro
et al. (1978) and by Milnor (1989).

Blood is not a Newtonian fluid. The viscosity depends
strongly on the fraction of volume occupied by red cells
(the hematocrit). In blood vessels of less than 100 ym ra-
dius, the apparent viscosity decreases with tube radius.

Symbols Used 23

Since a red cell barely fits in a capillary, the velocity
profile in capillaries is not parabolic. Flow in arterioles
and arteries is often modeled as individual particles sur-
rounded by plasma and transported by laminar flow, each
red cell staying at its own distance from the central axis.
However, high-speed motion pictures show that the red
cells often collide with other red cells and with the wall.
[See the articles by Trowbridge (1982, 1983) and Trow-
bridge and Meadowcroft (1983), and also the Caro et al.
and Milnor articles.]

Symbols Used in Chapter 1

Symbol  Use Units First
used on
page

a, a Acceleration m s~ 2 3

a,b Small distances m 13

c Constant of integration 14

g Acceleration due to gravity m s—2 14

h Small distance m 13

i Total volume flux or flow m3 s—! 16

rate or current

Jv Volume fluence rate or lux m s—! 16

density (flow of volume per
unit area per second)

l Length of rod m 12

m Mass kg 3

P Pressure Pa 13

Dt Pressure in thorax Pa 19

Pa Pressure in alveoli Pa 19

Position m 5
Distance from origin m 4
(radius) in polar

coordinates

s Displacement m 11

Sn Normal stress Pa 12

Ss Shear stress Pa 13

s Distance along a streamline m 18

t Time s 10

v, V Velocity ms~1! 10

T,y 2 Coordinates m 4

X,¥,2 Unit vectors along the z, y, 6

and z axes

A Constant of integration 16

dA Small area perpendicular m?2 18

to a streamline

D Pipe diameter m 23

E Young’s modulus Pa 12

Ey, Kinetic energy J 10

FF Force N 3

G Shear modulus Pa 13

L Characteristic length m 23

N,N Force N 7

Ng Reynolds number 22

Ngr,p Reynolds number based on 23

diameter

NR R, Reynolds number based on 23

pipe radius

P Power w 11

R/ R Force N 7
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Symbol  Use Units First
used on
page

Ry Radius of pipe m 16

R Vascular resistance Pam™3s 20

S Cross-sectional area m? 12

1% Volume m3 15

14 Velocity ms~1! 22

W, W Weight N 4

w Work J 19

1) A small distance m 13

€n Normal strain 12

€s Shear strain 13

n Viscosity Pas 15

a,3,0,¢ Angle 5

K Compressibility Pa~! 15

P Mass density kg m~—3 14

T, T Torque N m 4

13 Dimensionless ratio 22

Problems

Section 1.1

Problem 1 FEstimate the number of hemoglobin mole-
cules in a red blood cell. Red blood cells are little more
than bags of hemoglobin, so it is reasonable to assume
that the hemoglobin takes up all the volume of the cell.

Problem 2 Our genetic information or genome is stored
in the parts of the DNA molecule called base pairs. Our
genome contains about 3 billion (3 X 109) base pairs, and
there are two copies in each cell. Along the DNA mole-
cule, there is one base pair every one-third of a nanome-
ter. How long would the DNA helix from one cell be if
it were stretched out in a line? If the entire DNA mole-
cule were wrapped up into a sphere, what would be the
diameter of that sphere?

Problem 3 FEstimate the size of a box containing one air
molecule. (Hint: What is the volume of one mole of gas
at standard temperature and pressure?) Compare the size
of the box to the size of an air molecule (about 0.1 nm).

Problem 4 FEstimate the density of water (HyO) in kg
m~3. Useful information: an oxygen atom contains 8 pro-
tons and 8 neutrons. A hydrogen atom contains 1 proton
and no neutrons. The mass of the electron is negligible.

Section 1.3

Problem 5 A person with mass m = 70 kg has a weight
(mg) of about 700 N. If the person is doing push-ups as
shown, what are the vertical components of the forces ex-
erted by the floor on the hands and feet?

O

+?OON

Problem 6 A person with upper arm vertical and fore-
arm horizontal holds a mass of 4 kg. The mass of the
forearm is 1.5 kg. Consider four forces acting on the fore-
arm: F by the bones and ligaments of the upper arm at
the elbow, T by the biceps, 40 N by the mass, and 15 N
as the weight of the arm. The points of application are
shown in the drawing. Calculate the vertical components
of F and T.

T

)

S Cmm—t—et- O cm w—f—e— 23 cm —>—|

o 40N

Problem 7 When the arm is stretched out horizontally,
it is held by the deltoid muscle. The situation is shown
schematically. Determine T and F.

T
F I7°
15em —>-|
F; 33cm —

175N

Section 1.5

Problem 8 When a person crouches, the geometry of
the heel is as shown. Determine T and F. Assume all the
forces act in the plane of the drawing.

O6cem

Problem 9 A person of weight W is suspended by both
hands from a high bar as shown. The center of mass is
directly below the bar.

(a) Find the horizontal and vertical components F,, and
F,, where F is the force exerted by the bar on each of the
two hands.

(b) Given the additional information about the arm
shown in the second drawing, calculate the components
of R, the force exerted by the humerus on the forearm
through the elbow, and the tension T in the biceps ten-
don. Neglect the weight of the arm, and assume that T



and R are the only forces exerted on the forearm by the
upper arm.

Problem 10 Consider the forces on the spine when lift-
ing. Approximate the spinal column as a stiff bar of length
L that has three forces acting on it. W is the downward
force acting at the top of the spinal column (via the arms
and shoulders), and equals the weight of the object being
lifted. F is the force applied by the erector spinae mus-
cle, which attaches to the spine about one-third of the
way from the top of the column. Assume this muscle acts
at an angle of 12° to the spinal column. R is the force
the pelvis exerts on the spinal column. The weight of the
trunk is neglected. Assume the spinal column makes an
angle 0 with the horizontal.

(a) Determine R and F in terms of W and 6.

(b) The spinal column may be injured if R is too large.
Compare R when 0 is 0° and 90°. This problem explains
why people say to “lift with your legs, not with your back.”

(¢) Compare the angle ¢ when 6 is 0° and 90°. If ¢
is not close to zero, there will be considerable transverse
force at the disks in the lower back, which is not a good
situation.

Problems 25

Section 1.7

Problem 11 Suppose that instead of using a cane, a per-
son holds a suitcase of weight W/4 in one hand, 0.4 m
from the midline. The person is standing on the oppo-
site leg. Calculate the force exerted by the hip abductor
muscles and by the acetabulum on that leg.

Section 1.9

Problem 12 Young’s modulus for a spider’s thread is
about 0.2 x 1010 Pa, and the thread breaks when it under-
goes a strain of about 50% [Kohler and Vollrath (1995)].

(a) Calculate the tensile strength of the thread and com-
pare it to the tensile strength of steel.

(b) Calculate the strain that steel undergoes when it
breaks. (Assume that a linear relationship between stress
and strain holds until it breaks.) Compare the breaking
strain to the spider’s thread.

Problem 13 Assume an object undergoes a mnormal
strain in all three directions: ¢, = Azx/ly, ¢, = Ay/l,,
€. = Az/l,. Relate the three strains to the change in vol-
ume of the object. Assume the strains are small.

Section 1.10

Problem 14 Relate the shear strain to angle 6 in Fig.
1.23. How does this relationship simplify if 0 is small?

Section 1.11

Problem 15 The inspirational pressure difference pin
that the lung can generate is about 86 torr. What would
be the absolute maximum depth at which a person could
breathe through a snorkel device? (A safe depth is only
about half this mazximum, since the lung ventilation be-
comes very small at the mazimum depth. Assume the
lungs are 30 cm below the mouth.)

Problem 16 A person standing erect can in some cases
be modeled by a column of water.

(a) Calculate the hydrostatic pressure difference be-
tween a person’s head and foot in torr.

(b) Explain why blood pressure is measured in the arm
at the same vertical height as the heart.

(¢) Our body has adapted to having a larger hydrostatic
pressure in our feet than in our head. Speculate on why
you feel uncomfortable when you “stand on your head.”

Problem 17 A medication dissolved in a saline solution
is infused into a vein in the patients arm (IV infusion).
The density of saline is the same as water. The pressure
of the blood inside the vein is 5 torr above atmospheric
pressure. How high above the insertion point must the
container be hung so that there is sufficient hydrostatic
pressure to force fluid into the vein?
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Problem 18 The walls of a cylindrical pipe that has an
excess pressure p inside are subject to a tension force per
unit length T'. (Consider only the force per unit length in
the walls of the cylinder, not the force in any end caps
of the pipe.) The force per unit length in the walls can be
calculated by considering a different pipe made up of two
parts as shown in the figure: a semicircular half-cylinder
of radius R and length L attached to a flat plate of width
2R and length L. What is the force that the excess pres-
sure exerts on the flat plate? Show that the tension force
per unit length in the wall of the tube is f = pR. This
is called the Law of Laplace. (Do not worry about any
deformation.)

See if you can obtain the same answer by direct inte-
gration of the horizontal and vertical components of the
force due to the excess pressure.

Sometimes a patient will have an aneurysm in which a
portion of an artery will balloon out and possibly rupture.
Comment on this phenomenon in light of the R depen-
dence of the force per unit length [Hademenos (1995)].

i)

\__
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Problem 19 Find a relationship among the tension per
unit length T across any element of the wall of a soap
bubble, the excess pressure inside the bubble, Ap, and the

radius of the bubble, R. (Hint: Use the same technique as
for the previous problem.)

Section 1.12

Problem 20 Suppose a fish has an average density of
1030 kg m=3, compared to the density of the surround-
ing water, 1000 kg m~3. One way the fish can keep from
slowly sinking is by using an air bladder (the density of
airis 1.2 kg m=3 ). What fraction of the fish’s total volume
must be air in order for the fish to be neutrally buoyant
(the buoyant force is equal and opposite to the weight).
Assume that the volume V' of the fish’s tissue is fized, so
in order to increase the volume U of the air bladder, the
total volume of the fish V 4+ U must increase.

Problem 21 This problem explores the physics of a cen-
trifuge. A cylinder of fluid of density pauia and length L
is rotated at an angular velocity w (rad s=') in a hori-
zontal plane about a vertical axis through one end of the
tube. Neglect gravity. An object moving in a circle with

constant angular velocity has an acceleration a = —rw?

toward the center of the circle. Find the pressure in the
fluid as a function of distance from the axis of rotation,
assuming the pressure is pg at r = 0.

Problem 22 Buoyancy plays an important role in the
centrifuge. Consider a small cubic particle of density p
immersed in a fluid of density payid-

(a) Write Newton’s second law for the particle, consid-
ering only the centripetal acceleration and the pressure
exerted by the fluid (Problem 21). Find an expression for
the “effective weight” of the particle (analogous to Eq.
1.31) in terms of p, pauid, w, 7, and the particle volume
V. Your result is more general than you might expect: it is
true for a particle of any shape [Wick and Tooby (1977)].

(b) Find the ratio of the “effective weight” derived in
(a) to the “effective weight” due to gravity (Eq. 1.531).

(c) If the particle is 10 cm from the axzis of a centrifuge
spinning at 40 000 revolutions per minute, evaluate the
ratio obtained in (b).

(d) The “density gradient” technique uses a sucrose so-
lution of varying concentration to produce a fluid density
that varies with r, pﬂm-d(r). Ezxplain how in this case the
centrifuge can be used to separate particles of different
densities.

Problem 23 For the centrifuge of Problem 22 assume
there is one additional force: a viscous force proportional
to the speed u of the particle relative to the fluid.

(a) Derive an expression for u, the “sedimentation ve-
locity” assuming the particle is not accelerating relative
to the fluid.

(b) The sedimentation velocity per unit acceleration, S,
s a parameter commonly used in centrifuge work. Divide
the expression obtained in (a) by the centripetal accelera-
tion to obtain an expression for S. The common unit for
S is the svedberg (1 Sv=10"13s).

(¢) Consider two particles with S = 50 and 70 Sv. For
the centrifuge of Problem 22(c), how long will it take for
the particles to separate by 8 mm if they were initially at
the same position? How long would this separation take
if gravity were used instead of a centrifuge?

Section 1.15

Problem 24 What is the compressibility of a gas for
which pV =const? Compare the compressibility of water
to that of air at atmospheric pressure. What are the im-
plications of this for the volume of the lungs of a swimmer
diving deep below the water surface?

Problem 25 Figure 1.20, showing a rod subject to a
force along its length, is a simplification. Actually, the
cross-sectional area of the rod shrinks as the rod length-
ens. Let the axial strain and stress be along the z axis.
They are related by Eq. 1.25, s, = Fe,. The lateral
strains €, and €, are related to s, by s, = —(E/v)e, =



—(E/v)ey,where v is called the “Poisson’s ratio” of the
material.

(a) Use the result of Problem 13 to relate E and v to
the fractional change in volume AV/V.

(b) The change in volume caused by hydrostatic pres-
sure is the sum of the volume changes caused by axial
stresses in all three directions. Relate Poisson’s ratio to
the compressibility.

(c) What value of v corresponds to an incompressible
material?

(d) For an isotropic material, —1 < v < 0.5. How
would a material with negative v behave?

Elliott et al. (2002) measured Poisson’s ratio for ar-
ticular (joint) cartilage under tension and found 1 <
v < 2. This large value is possible because cartilage in
anisotropic: its properties depend on direction.

Section 1.14

Problem 26 A sphere of radius R moving with speed v
in laminar flow through a viscous fluid experiences a drag
force Fyisc = 6mnRu. At higher speeds inertial effects (the
acceleration of the fluid displaced by the sphere) become
important, and the drag becomes proportional to v and
to p, the density of the fluid. The force also depends on
the radius of the sphere to some unknown power: Fyyqq =
Kpv?R®, where K is a dimensionless constant.

(a) Make a dimensional analysis to find the power a.

(b) Find the critical velocity at which Fyisc = Firag-

Problem 27 Consider fluid flowing between two slabs as
shown in Fig. 1.26. Since the work done by the external
force on the system in time dt is dW = Fudt, the rate
of doing work is P = dW/dt = Fv, where v is the speed
of the moving plate. Find the power dissipated per unit
volume of the fluid in terms of the velocity gradient.

Problem 28 Consider a fluid that is flowing in the x
direction, but with the velocity v, changing in the y di-
rection.

(a) Start with Newton’s second law. Analyze the forces
on a small cube of fluid and derive the equation

v, dv,  Op 0%v,
Pt Tor  Ox n@yz'
This is a simplified version of the Navier-Stokes equation
that governs fluid flow.

(b) Which term in the equation is nonlinear (that is,
if p and v, are doubled, which term does not double)? A
nonlinear equation is needed to describe complicated flows
such as turbulence.

+ pv

Problem 29 Consider the simplified version of the
Navier-Stokes equation in Problem 28. Assume the fluid
speed is approrimately V and all spatial changes occur
over distances of order L. Take the ratio of the “inertial
term” pv.(0v,/0x) to the “viscous term” n(0%v,/0y?)
and show that you get the Reynolds number, Eq. 1.61.

Problems 27

Section 1.15

Problem 30 Consider laminar flow in a pipe of length
Az and radius Ry,. Find the total viscous drag exerted by
the pipe on the fluid.

Problem 31 The mazimum flow rate from the heart is
500 ml s—1. If the aorta has a diameter of 2.5 cm and the
flow is Poiseuille, what are the average velocity, the maxi-
mum velocity at the center of the vessel, and the pressure
gradient along the vessel? Plot the velocity vs distance
from the center of the vessel. As an approximation to the

viscosity of blood, use n =1073 kg m~! s71.

Problem 32 The glomerular pore described in Eq. 1.41
has a flow i ="7.2 x 1072 m® s71. How many molecules
of water per second flow through it? What is their average
speed?

Problem 33 A parent vessel of radius R, branches into
two daughter vessels of radii Rgy1 and Rgo. Find a re-
lationship between the radii such that the shear stress on
the vessel wall is the same in each vessel. (Hint: Use con-
servation of the volume flow.) This relationship is called
“Murray’s Law”. Organisms may use shear stress to de-
termine the appropriate size of vessels for fluid transport
[LaBarbera (1990)].

Problem 34 Sap flows up a tree at a speed of about 1
mm s~1 through its vascular system (zylem), which con-
sists of cylindrical pores of 20 um radius. Assume the vis-
cosity of sap is the same as the viscosity of water. What
pressure difference between the bottom and top of a 100
m tall tree is needed to generate this flow? How does it
compare to the hydrostatic pressure difference caused by
gravity?

Problem 35 Consider a small cube of incompressible
fluid. Analyze the volume fluence rate for each face of
the cube and show that the divergence of v is zero. (The
divergence is defined in Chapter 4.)

Section 1.16

Problem 36 The accompanying figure shows the neg-
ative pressure (below atmospheric) that must be main-
tained in the thorax during the respiratory cycle by a pa-
tient with airway obstruction in order to breathe. Viscous
effects are included. Estimate the work in joules done by
the body during a breath.
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Section 1.17

Problem 37 The volume of blood in a typical person is
d liters, and the volume current through the aorta is about
5 liter min~1t.

(a) What is the total volume current through all the
systemic capillaries?

(b) What is the total volume current through all the
pulmonary capillaries?

(¢) How long does the blood take to make one complete

circuit through the circulatory system?

Problem 38 Find the conversion factor between PRU

and Pa m™3 s.

Problem 39 Fquation 1.58 relates the resistance of a
vessel to its radius. In the circulatory system, the resis-
tance of an arteriole increases when the smooth muscle
surrounding the arteriole contracts, thereby decreasing its
radius. By what factor does the resistance increase if the
radius decreases by 10%7¢

Problem 40 Derive the equations for resistance in a col-
lection of vessels in series and in parallel. Remember that
when several vessels are in series, the current is constant
and the total pressure change is the sum of the pressure
changes along the length of each vessel. When vessels are
in parallel, each has the same pressure drop, but the cur-
rent before the vessels branch is the sum of the currents
in each branch.

Problem 41 The velocity of the blood in the aorta is
about 0.5 m s~ ', and the velocity of the blood in a capil-
lary is about 0.001 m s~'. We have only one aorta, with a
diameter of 20 mm, but many capillaries in parallel, each
with a diameter of 8§ pm. Estimate how many capillaries
are typically open at any one time.

Problem 42 Suppose a student asked you, “How can
blood be moving more slowly in a capillary than in

the aorta? For an incompressible fluid, when the cross-
sectional area along a pipe decreases, the wvelocity in-
creases, so that the volume current i is the same. The
capillary has a much smaller cross-sectional area than
the aorta. Therefore, the blood should move faster in the
capillary than in the aorta!” How would you respond to
this student?

Problem 43 For Poiseuille flow, find an expression for
the mazimum shear rate in each vessel from Eq. 1.44.
Where in the vessel does it occur? Typical maximum shear
rates are 50 s~ in the aorta, 150 s~' in the femoral
artery, and 400 s~ in an arteriole.

Problem 44 A sphere of radius a moving through a fluid
with speed v is subject to a viscous drag Firqq = 6mnav.
Make an argument similar to that in the text to show that
the ratio of kinetic energy of a sphere of fluid of the same
size moving at the same speed to the viscous work done
to displace the sphere by its own diameter is Nr/18.

Problem 45 Find an expression for the entry length in
terms of the tube size, the pressure gradient, and the prop-
erties of the fluid. Estimate the length of the entry region
in the aorta, in an artery, and in an arteriole of radius
20 pm. Usen =1073 kg m~t s~ 1.

Problem 46 FEstimate the tension per unit length and

the stress in the walls of various blood vessels using the
data in Table 1.4.

Problem 47 Consider laminar viscous flow in the fol-
lowing situation, which models flow in the bronchi or a
network of branching blood vessels. A wvessel of radius R
connects to N smaller vessels, each of radius TR.

(a) What is the relationship between total cross-
sectional area of the smaller vessels and that of the larger
vessel if the pressure gradient is the same in both sets of
vessels?

(b) How do the pressure gradients compare if the total
cross-sectional area is the same in both sets of vessels?
(Neither assumption is realistic.)

Problem 48 Compare the magnitude of the four terms
in Eq. 1.42 in the following two cases. Ignore branching.
Assume the vessels are vertical. Use p = 10% kg m~3 and
n=10"3 Pa s.

(a) The descending aorta. Assume the length is 85 cm,
the radius is 1 c¢cm (independent of distance along the
aorta), the peak acceleration of the blood is 1800 cm s=2,
and the peak velocity (during the cardiac cycle) is 70 ¢cm
51 at the entrance and 60 cm s—' at the exit. (These ve-
locities are different because some of the blood leaves the
aorta in major arteries.)

(b) An arteriole of radius 50 um, length 1 mm, and
constant velocity of 5 mm s~ at both entrance and exit.

Problem 49 The wviscosity of water (and therefore of
blood) is a rapidly decreasing function of temperature.



Water at 5°C is twice as viscous as water at 35°C. Spec-
ulate on the implications of this extreme temperature de-
pendence for the circulatory system of cold-blooded ani-
mals. [For a further discussion see Vogel (1994), pp. 27-
31.]

Section 1.18

Problem 50 FEstimate the Reynolds number for the
following flows. In each case, determine whether the
Reynolds number is high (> 1) or low (< 1).

(a) E. coli bacteria (length 2 microns) swim in water
at speeds of about 0.01 mm s~ 1.

(b) An Olympic swimmer (length 2 m) swims in water
at speeds of up to 2 m s1.

(c) A bald eagle (wingspan =
(density = 1.2 kg m=3, viscosity =
speeds of 20 km hr— 1.

2 m) flies in air
1.8 x 1075 Pa s) at

Problem 51 FEstimate the Reynolds number of blood
flow in a capillary, using the data in Table 1.4. How does
this compare to that in the aorta?
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2

Exponential Growth and Decay

The exponential function is one of the most important
and widely occurring functions in physics and biology. In
biology, it may describe the growth of bacteria or ani-
mal populations, the decrease of the number of bacteria
in response to a sterilization process, the growth of a
tumor, or the absorption or excretion of a drug. (Expo-
nential growth cannot continue forever because of limi-
tations of nutrients, etc.) Knowledge of the exponential
function makes it easier to understand birth and death
rates, even when they are not constant. In physics, the
exponential function describes the decay of radioactive
nuclei, the emission of light by atoms, the absorption of
light as it passes through matter, the change of voltage or
current in some electrical circuits, the variation of tem-
perature with time as a warm object cools, and the rate
of some chemical reactions.

In this book, the exponential function will be needed
to describe certain probability distributions, the concen-
tration ratio of ions across a cell membrane, the flow of
solute particles through membranes, the decay of a sig-
nal traveling along a nerve axon, and the return of some
physiologic variables to their equilibrium values after they
have been disturbed.

Because the exponential function is so important, and
because we have seen many students who did not under-
stand it even after having been exposed to it, the chapter
starts with a gentle introduction to exponential growth
(Sec. 2.1) and decay (Sec. 2.2). Section 2.3 shows how to
analyze exponential data using semilogarithmic graph pa-
per. The next section shows how to use semilogarithmic
graph paper to find instantaneous growth or decay rates
when the rate varies. Some would argue that the avail-
ability of computer programs that automatically produce
logarithmic scales for plots makes these sections unneces-
sary. We feel that intelligent use of semilogarithmic and
logarithmic (log-log) plots requires an understanding of
the basic principles.

Variable rates are described in Sec. 2.4. Clearance, dis-
cussed in Sec. 2.5, is an exponential decay process that is
important in physiology. Sometimes there are competing
paths for exponential removal of a substance: multiple
decay paths are introduced in Sec. 2.6. A very basic and
simple model for many processes is the combination of
input at a fixed rate accompanied by exponential decay,
described in Sec. 2.7. Sometimes a substance exists in two
forms, each with its own decay rate. One then must fit
two or more exponentials to the set of data, as shown in
Sec. 2.8.

Section 2.9 discusses the logistic equation, one possible
model for a situation in which the growth rate decreases
as the amount of substance increases. The chapter closes
with a section on power-law relationships. While not ex-
ponential, they are included because data analysis can
be done with log-log graph paper, a technique similar to
that for semilog paper. If you feel mathematically secure,
you may wish to skim the first four sections, but you will
probably find the rest of the chapter worth reading.

2.1 Exponential Growth

An exponential growth process is one in which the rate
of increase of a quantity is proportional to the present
value of that quantity. The simplest example is a savings
account. If the interest rate is 5% and if the interest is
credited to the account once a year, the account increases
in value by 5% of its present value each year. If the ac-
count starts out with $100, then at the end of the first
year, $5 is credited to the account and the value becomes
$105. At the end of the second year, 5 percent of $105
is credited to the account and the value grows by $5.25
to $110.25. The growth of such an account is shown in
Table 2.1 and Fig. 2.1. These amounts can be calcu-
lated as follows. At the end of the first year, the original
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TABLE 2.1. Growth of a savings account earning 5% interest
compounded annually, when the initial investment is $100.

Year Amount Year Amount Year Amount
1 $105.00 10  $162.88 100  $13,150.13
2 110.25 20 265.33 200 1,729,258.09
3 115.76 30 43219 300 2.27 x 108
4 121.55 40 704.00 400  2.99 x 10%0
5 127.63 50 1146.74 500  3.93 x 102
6 134.01 60 1867.92 600  5.17 x 104
7 140.71 70 3042.64 700  6.80 x 10'6
8 147.75 80 4956.14 800  8.94 x 10'8
9 155.13 90 8073.04 900  1.18 x 102!

amount, yo, has been augmented by (0.05)yo:

y1 = yo(1+0.5).

During the second year, the amount y; increases by 5%,
SO
y2 = y1(1.05) = y(1.05)(1.05) = yo(1.05)?.

After t years, the amount in the account is
ye = yo(1.05)".

In general, if the growth rate is b per compounding period,
the amount after ¢ periods is
ye = yo(1+0)". (2.1)
It is possible to keep the same annual growth (interest)
rate, but to compound more often than once a year. Table
2.2 shows the effect of different compounding intervals
on the amount, when the interest rate is 5%. The last
two columns, for monthly compounding and for “instant

7

900

800

700

600

500
400 —H_,-"'J-
300

200

Value (dollars)

._o-"'-’-'-’-'-’-

100

0

0 10 20 30 40 50
Time (years)

FIGURE 2.1. The amount in a savings account after ¢ years,
when the amount is compounded annually at 5% interest.

TABLE 2.2. Amount of an initial investment of $100 at 5%
annual interest, with different methods of compounding.

Month Annual Semiannual Quarterly Monthly Instant

0 $100.00 $100.00  $100.00 $100.000 $100.000
1 100.00 100.00 100.00 100.417 100.418
2 100.00 100.00 100.00 100.835 100.837
3 100.00 100.00 101.25 101.255 101.258
4 100.00 100.00 101.25 101.677 101.681
5 100.00 100.00 101.25 102.101 102.105
6 100.00 102.50 102.52  102.526 102.532
7 100.00 102.50 102.52 102.953  102.960
8 100.00 102.50 102.52 103.382 103.390
9 100.00 102.50 103.80 103.813 103.821
10 100.00 102.50 103.80 104.246 104.255
11 100.00 102.50 103.80 104.680 104.690
12 105.00 105.06 105.09 105.116  105.127

interest,” are listed to the nearest tenth of a cent to show
the slight difference between them.

The table entries were calculated in the following way.
Suppose that compounding is done N times a year. In ¢
years, the number of compoundings is Nt. If the annual
fractional rate of increase is b, the increase per compound-
ing is b/N. For six months at 5% (b = 0.05) the increase
is 2.5, for three months it is 1.25, etc. The amount after
t units of time (years) is, in analogy with Eq. 2.1,

y=1yo(1+b/N)N. (2.2)
Recall (refer to Appendix C) that (a)*® = (a®)°. The
expression for y can be written as
t
y=yo [1+b/N)N]". (2.3)

Most calculus textbooks show that the quantity
(1+b/N)N — e

as N becomes very large. (Rather than prove this fact
here, we give numerical examples in Table 2.3 for two
different values of b.) Therefore, Eq. 2.3 can be rewritten
as

y = yoe® = yo exp(bt). (2.4)

(The exp notation is used when the argument is compli-
cated.) To calculate the amount for instant interest, it is
necessary only to multiply the fractional growth rate per
unit time b by the length of the time interval and then

TABLE 2.3. Numerical examples of the convergence of
(14 b/N)N to e® as N becomes large.

N b=1 b=0.5
10 2.594 1.0511
100 2.705 1.0513
1000 2.717 1.0513
eb 2.718 1.0513
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FIGURE 2.2. A graph of the exponential function y = e’.

look up the exponential function of this amount in a table
or evaluate it with a computer or calculator. The number
e is approximately equal to 2.71828... and is called the
“base of the natural logarithms.” Like 7 (3.14159...) e
has a long history [Maor (1994)].

The exponential function is plotted in Fig. 2.2. (The
meaning of negative values of ¢ will be considered in
the next section.) This function increases more and more
rapidly as t¢ increases. This is expected, since the rate
of growth is always proportional to the present amount.
This is also reflected in the following property of the ex-
ponential function:

d

dt
This means that the function y = y0e® has the property
that

(ebt) = bebt, (2.5)

dy
dt
Any constant multiple of the exponential function e’ has
the property that its rate of growth is b times the function
itself. Whenever we see the exponential function, we know
that it satisfies Eq. 2.6. Equation 2.6 is an example of a
differential equation. If you learn how to solve only one
differential equation, let it be Eq. 2.6. Whenever we have
a problem in which the growth rate of something is pro-
portional to the present amount, we can expect to have
an exponential solution. Notice that for time intervals ¢
that are not too large, Eq. 2.6 implies that Ay = (bAt)y.
This again says that the increase in y is proportional to
y itself.
The independent variable in this discussion has been
t. It can represent time, in which case b is the fractional

by. (2.6)

2.2 Exponential Decay 33

growth rate per unit time; distance, in which case b is the
fractional growth per unit distance; or something else.
We could, of course, use another symbol such as x for
the independent variable, in which case we would have
dy/dx = by, y = yoe"™.

2.2 Exponential Decay

Figure 2.2 shows the exponential function for negative
values of ¢ as well as positive ones. (Remember that e=t =
1/e'.) To see what this means, consider a bank account
in which no interest is credited, but from which 5% of
what remains is taken each year. If the initial balance
is $100, $5 is removed the first year to leave $95.00. In
the second year, 5% of $95 or $4.75 is removed. In the
third year, 5% of $90.25 or $4.65 is removed. The annual
decrease in y becomes less and less as y becomes less and
less. The equations developed in the preceding section
also describe this situation. It is only necessary to call b
the fractional decay and allow it to have a negative value,
— |b|. Equation 2.1 then has the form y = yo(1 — |b|) and
Eq. 2.4 is

y = yoe "I". (2.7)
Often b is regarded as being intrinsically positive, and Eq.
2.7 is written as

y = yoe . (2.8)
One could equally well write y = yoe®* and regard b as
being negative.

The radioactive isotope %™ Tc (read as technetium-99)
has a fractional decay rate b = 0.1155 h—!. If the number
of atoms at t = 0 is yo, the fraction f = y/yo remaining at
later times decreases as shown in Fig. 2.3. The equation
that describes this curve is

f=L et (2.9)
Yo
where t is the elapsed time in hours and b = 0.1155 h—!.
The product bt must be dimensionless, since it is in the
exponent.
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FIGURE 2.3. A plot of the fraction of nuclei of *™Tc surviv-
ing at time ¢.
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People often talk about the half-life T} /5, which is the
length of time required for f to decrease to one-half. From
inspection of Fig. 2.3, the half-life is 6 h. This can also
be determined from Eq. 2.9:

0.5 = e T2,

From a table of exponentials, one finds that e™® = 0.5
when = = 0.69315. This leads to the very useful relation-
bhlp bT1/2 = 0.693 or

0.693
T1/2 = 0.

; (2.10)

For the case of %9™Tc¢, the halflife is T} 52 =
0.693/0.1155 = 6 h.

One can also speak of a doubling time if the exponent
is positive. In that case 2 = €2, from which

0.693
Ty = —.

; (2.11)

2.3 Semilog Paper

A special kind of graph paper, called semilog paper, makes
the analysis of exponential growth and decay problems
much simpler. If one takes logarithms (to any base) of
Eq. 2.4 one has

logy = logyo + btloge. (2.12)

If the dependent variable is considered to be u = logy,
and since logyo and log e are constants, this equation is
of the form

u=cy + cot. (2.13)

The graph of u vs. t is a straight line with positive slope
if b is positive and negative slope if b is negative.

On semilog paper the vertical axis is marked in a log-
arithmic fashion. The graph can be plotted without hav-
ing to calculate any logarithms. Figure 2.4 shows a plot of
the exponential function of Fig. 2.2, for both positive and
negative values of ¢t. First, note how to read the vertical
axis. A given distance along the axis always corresponds
to the same multiplicative factor. Each cycle represents
a factor of 10. To use the paper, it is necessary first to
mark off the decades with the desired values. In Fig. 2.4
the decades have been marked 0.1, 1, 10, 100. The 6 that
lies between 0.1 and 1 is 0.6; the 6 between 1 and 10 is
6.0; the 6 between 10 and 100 represents 60; and so forth.
The paper can be imagined to go vertically forever in ei-
ther direction; one never reaches zero. Figure 2.4 has two
examples marked on it with dashed lines. The first shows
that for t = —1.0, y = 0.36; the second shows that for
t=+1.5,y=45.

Semilog paper is most useful for plotting data that you
suspect may have an exponential relationship. If the data
plot as a straight line, your suspicions are confirmed.
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FIGURE 2.4. A plot of the exponential function on semilog
paper.

From the straight line, you can determine the value of
b. Figure 2.5 is a plot of the intensity of light that passed
through an absorber in a hypothetical example. The in-
dependent variable is absorber thickness x. The decay is
exponential, except for the last few points, which may
be high because of experimental error. (As the intensity
of the light decreases, it becomes harder to measure ac-
curately.) We wish to determine the decay constant in
y = yoe ’*. One way to do it would be to note (dashed
line A in Fig. 2.5) that the half-distance is 0.145 cm, so
that, from Eq. 2.10,

- 0.693
T 0.145

This technique can be inaccurate because it is difficult to
read the graph accurately. It is more accurate to use a
portion of the curve for which y changes by a factor of
10 or 100. The general relationship is y = yoe®®, where
the value of b can be positive or negative. If two different
values of x are selected, one can write

4.8 cm™ !,

bz
yj — Yoe€ 2 _ eb(mg—Il)
Y1 yoeb™

If yo /y1 = 10, then this equation has the form 10 = ebX1o
where X19 = 2 — 1 when y2/y; = 10. From a table of
exponentials, X7y = 2.303, so that
2.
- 303.
Xi0

(2.14)
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FIGURE 2.5. A semilogarithmic plot of the intensity of light
after it has passed through an absorber of thickness x.

The same procedure can be used to find b using a factor
of 100 change in y:
_4.605

X100
If the curve represents a decaying exponential, then
yg/yl = 10 when zo < xr1, SO that X10 = I9 — I1 IS
negative. Equation 2.14 then gives the negative value
of b.

As an example, consider the exponential decay in Fig.
2.5. Using points B and C, we have 1 = 0.97, y; = 1072,
To = 048, Y2 = 1071, X190 = 0480 — 0.97 = —0.49.
Therefore b = 2.303/(—0.49) = —4.7cm™!, which is a
more accurate determination than the one we made using
the half-life.

b

(2.15)

2.4 Variable Rates

The equation dy/dxz = by (or dy/dt = by) says that y
grows or decays at a rate that is proportional to y. The
constant b is the fractional rate of growth or decay. It is
possible to define the fractional rate of growth or decay
even if it is not constant but is a function of «:

ba) = LY

T yda
Semilogarithmic graph paper can be used to analyze the
curve even if b is not constant. Since d(lny)/dy = 1/y,

(2.16)
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log y

FIGURE 2.6. A semilogarithmic plot of y vs  when the decay
rate is not constant. Each tangent line represents the instan-
taneous decay rate for that value of x.

the chain rule for evaluating derivatives gives

%(lny)— 1@—b

7§dx

This means that b(x) is the slope of a plot of Iny vs. z. A
semilogarithmic plot of y vs x is shown in Fig. 2.6. The
straight line is tangent to the curve and decays with a
constant rate equal to b(x) at the point of tangency. The
value of b for the tangent line can be determined using
the methods in the previous section. A second tangent
line at a larger value of x in Fig. 2.6 has a smaller value
of the decay rate.

If finite changes Ax and Ay have been measured, they
may be used to estimate b(x) directly from Eq. 2.16. For
example, suppose that y = 100,000 people and that in
Axz = 1 year there is a change Ay = —37. In this case
Ay is very small compared to y, so we can say that b =
(1/y)(Ay/Ax) = —37 x 10~°. If the only cause of change
in this population is deaths, the absolute value of b is
called the death rate.

A plot of the number of people surviving in a popula-
tion, all of whom have the same disease, can provide in-
formation about the prognosis for that disease. The death
rate is equivalent to the decay constant. An example of
such a plot is shown in Fig. 2.7. Curve A shows a disease
for which the death rate is constant. Curve B shows a
disease with an initially high death rate which decreases
with time; if the patient survives the initial period, the
prognosis is much better. Curve C shows a disease for
which the death rate increases with time.

Surprisingly, there are a few diseases that have
death rates independent of the duration of the disease
(Zumoff 1966). Any discussion of mortality should be
made in terms of the surviving population, since any fur-
ther deaths must come from that group. Nonetheless, one
often finds results in the literature reported in terms of
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log y B

time

FIGURE 2.7. Semilogarithmic plots of the fraction of a pop-
ulation surviving in three different diseases. The death rates
(decay constants) depend on the duration of the disease.

the cumulative fraction of patients who have died. Figure
2.8 shows the survival of patients with congestive heart
failure for a period of nine years. The data are taken from
the Framingham study [McKee et al. (1971)]; the death
rate is constant during this period. For a more detailed
discussion of various possible survival distributions, see
Clark (1975).

Aslong as b has a constant value, it makes no difference
what time is selected to be ¢ = 0. To see this, suppose that
the value of y decays exponentially with constant rate:
y = yoe . Consider two different time scales, shifted
with respect to each other so that ' =ty +¢. In terms of
the shifted time ', the value of y is

y = yoe—bt _ yoe—b(t’—to) _ (yoebto) e—bt’.
1
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FIGURE 2.8. Survival of patients with congestive heart fail-
ure. Data are from McKee et al. (1971).

This has the same form as the original expression for y(¢).
The value of y is yoe®®, which reflects the fact that ¢ =0
occurs at an earlier time than ¢t = 0, so y, > yo.

If the decay rate is not constant, then the origin of
time becomes quite important. Usually there is something
about the problem that allows t = 0 to be determined.
Figure 2.9 shows survival after a heart attack (myocardial
infarct). The time of the initial infarct defines ¢t = 0; if
the origin had been started two or three years after the
infarct, the large initial death rate would not have been
seen.

As long as the rate of increase can be written as a func-
tion of the independent variable, Eq. 2.16 can be rewrit-
ten as dy/y = b(x)dz. This can be integrated:

Y2 d T2
/ Y _ b(x) dx,
1 Y x1

T2

In(y2/y1) = / b(z) de,

Z1

m:exp(/ b(m)dw).
yl T

If we can integrate the right-hand side analytically, nu-
merically, or graphically, we can determine the ratio

Yo /Y1

(2.17)

2.5 C(Clearance

In some cases in physiology, the amount of a substance
may decay exponentially because the rate of removal
is proportional to the concentration of the substance
(amount per unit volume) instead of to the total amount.
For example, the rate at which the kidneys excrete a sub-
stance may be proportional to the concentration in the

SURVIVAL AFTER INITIAL MYOCARDIAL INFARCTION
10 YEAR FOLLOW -UP (BLAND and WHITE —1941)

PERCENT
SURVIVORS
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T T T T 1
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FIGURE 2.9. The fraction of patients surviving after a my-
ocardial infarction (heart attack) at ¢ = 0. The curve labeled
“Fast Component” plots 10 times the difference between the
survival curve and the extrapolated “Slow Component.” From
B. Zumoff, H. Hart, and L. Hellman (1966). Considerations
of mortality in certain chronic diseases. Ann. Intern. Med.
64: 595-601. Reproduced by permission of Annals of Internal
Medicine. Drawing courtesy of Prof. Zumoff.
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FIGURE 2.10. A case in which the rate of removal of a sub-
stance from the a fluid compartment depends on the concen-
tration, not on the total amount of substance in the com-
partment. Increasing the compartment volume with the same
concentration of the substance would not change the rate of
removal.

blood that passes through the kidneys, while the total
amount depends on the total fluid volume in which the
substance is distributed. This is shown schematically in
Fig. 2.10. The large box on the left represents the total
fluid volume V. It contains a total amount of some sub-
stance, y. If the fluid is well mixed, the concentration is
C = y/V. The removal process takes place only at the
dashed line, at a rate proportional to C'. The equation
describing the change of y is

dy Y

- KO=-K (V) '
The proportionality constant K is called the clearance.
Its units are m® s~!. The equation is the same as Eq. 2.6
if K/V is substituted for b. The solution is

(2.18)

y = yoe KV, (2.19)

The basic concept of clearance is best remembered in
terms of Fig. 2.10. Other definitions are found in the lit-
erature. It sometimes takes considerable thought to show
that the definitions are equivalent. A common definition
in physiology books is “clearance is the volume of plasma
from which y is completely removed per unit time.” To
see that this definition is equivalent, imagine that y is
removed from the body by removing a volume V of the
plasma in which the concentration of y is C. The rate
of loss of y is the concentration times the rate of volume
removal:

dy dv

— =—|—1C. 2.20
dt ‘ dt ( )
(dV/dt is negative for removal.) Comparison with Eq.
2.18 shows that |dV/dt| = K.

As long as the compartment containing the substance
is well mixed, the concentration will decrease uniformly
throughout the compartment as y is removed. The con-
centration also decreases exponentially:

C = Coe KV, (2.21)

An example may help to clarify the distinction between
b and K. Suppose that the substance is distributed in
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a fluid volume V' = 18 1. The substance has an initial
concentration Cyp = 3 mg 1~! and the clearance is K = 2
1 h=!. The total amount is yop = CoV = 3 x 18 = 54
mg. The fractional decay rate is b = K/V = 1/9 h=L.
The equations for C' and y are C = (3 mg 171)e /9,
y = (54 mg)e~*/?. At t = 0 the initial rate of removal is
—dy/dt = 54/9 = 6 mg h~*.

Now double the fluid volume to V' = 36 1 without
adding any more of the substance. The concentration falls
to 1.5 mg 1-! although yo is unchanged. The rate of re-
moval is also cut in half, since it is proportional to K/V
and the clearance is unchanged. The concentration and
amount are now C' = 1.5e~*/18 4 = 54¢~%/1® The initial
rate of removal is dy/dt = 54/18 = 3 mg h™!. It is half
as large as above, because C is now half as large.

If more of the substance were added along with the
additional fluid, the initial concentration would be un-
changed, but yo would be doubled. The fractional decay
rate would still be K/V = 1/18 h™: C = 3.0e7 /%,
y = 108e—t/18. The initial rate of disappearance would
be dy/dt = 108/18 = 6 mg h™!. It is the same as in the
first case, because the initial concentration is the same.

2.6 Multiple Decay Paths

It is possible to have several independent paths by which
y can disappear. For example, there may be several com-
peting ways by which a radioactive nucleus can decay; a
radioactive isotope given to a patient may decay radioac-
tively and be excreted biologically at the same time; a
substance in the body can be excreted in the urine and
metabolized by the liver; or patients may die of several
different diseases.

In such situations the total decay rate b is the sum
of the individual rates for each process, as long as the
processes act independently and the rate of each is pro-
portional to the present amount (or concentration) of y:

dy
dt

—b1y — boy — bgy — - (2.22)

—(b1+b2+b3+---)y:—by.

The equation for the disappearance of y is the same as
before, with the total decay rate being the sum of the
individual rates. The rate of disappearance of y by the
ith process is not dy/dt but is —b;y. Instead of decay
rates, one can use half-lives. Since b = by + by + b3 + - -,
the total half-life T" is given by

0.693  0.693 N 0.693 N 0.693 N
T T Ty Ts

or

(2.23)
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FIGURE 2.11. Sketch of the initial slope a and final value a/b
of y when y(0) = 0.

2.7 Decay Plus Input at a Constant
Rate

Suppose that in addition to the removal of y from the
system at a rate —by, y enters the system at a constant
rate a, independent of y and ¢. The net rate of change of
y is given by
% =a—by.
It is often easier to write down a differential equa-
tion describing a problem than it is to solve it. In this
case the solution to the equation and the techniques for
solving it are well known. However, a good deal can be
learned about the solution by examining the equation it-
self. Suppose that y(0) = 0. Then the equation at ¢t = 0 is
dy/dt = a, and y initially grows at a constant rate a. As
y builds up, the rate of growth decreases from this value
because of the —by term. Finally, when a — by = 0, dy/dt
is zero and y stops growing. This is enough information
to make the sketch in Fig. 2.11.
The equation is solved in Appendix F. The solution is

(2.24)

Z—e. (2.25)

y:g(l

The derivative of y is dy/dt = (%) (=1)(=b)e ™" = ae~"".

You can verify by substitution that Eq. 2.25 satisfies
Eq. 2.24. The solution does have the properties sketched
in Fig. 2.11, as you can see from Fig. 2.12. The initial
value of dy/dt is a, and it decreases exponentially to zero.
When t is large, the exponential term in y vanishes, leav-

ing y = a/b.

2.8 Decay with Multiple Half-Lives
and Fitting Exponentials

Sometimes y is a mixture of two or more quantities, each
decaying at a constant rate. It might represent a mixture
of radioactive isotopes, each decaying at its own rate. A
biological example is the survival of patients after a my-
ocardial infarct (Fig. 2.9). The death rate is not constant,
and many models can be proposed to explain why. One
possible model is that there are two distinct classes of

t
(a)

FIGURE 2.12. (a) Plot of y(t). (b) Plot of dy/dt.

patients immediately after the infarct. Each class has an
associated death rate that is constant. After three years,
virtually none of the subgroup with the higher death rate
remains. Another model is that the death rate is higher
right after the infarct for all patients. This higher death
rate is due to causes associated with the myocardial in-
jury: irritability of the muscle, arrhythmias in the heart-
beat, the weakening of the heart wall at the site of the
infarct, and so forth. After many months, the heart has
healed, scar tissue has replaced the necrotic (dead) mus-
cle, and deaths from these causes no longer occur.

Whatever the cause, it is sometimes useful to fit a set of
experimental data with a sum of exponentials. It should
be clear from the discussion of survival after myocardial
infarction that simply fitting with an exponential or a
sum of exponentials does not prove anything about the
decay mechanism.

If y consists of two quantities, y; and yo, each with its
own decay rate, then

y=uy1+ys = Are 1t 4 Aje 2t (2.26)

Suppose that b; > bs, so that y; decays more rapidly than
yo. After enough time has elapsed, y; will be much less
than yo, and its effect on a semilog plot will be negligible.
A typical plot of y is curve A in Fig. 2.13. Line B can
then be drawn through the data and used to determine
As and by. This line is extrapolated back to earlier times,
so that yo can be subtracted from y to give an estimate
for y;1. For example, at point C (¢t = 4), y = 400, yo =
300, and y; = 100. At t = 0, y; = 1500 — 500 = 1000.
For times greater than 5 s, the curves for y and y, are
close together, and error in reading the graph produces
considerable scatter in y;. When several values of y; have
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been determined, line D is drawn, and parameters A; and
by are estimated.

This technique can be extended to several exponen-
tials. However, it becomes increasingly difficult to extract
meaningful parameters as more exponentials are used, be-
cause the estimated parameters for the short-lived terms
are very sensitive to the initial guess for the parameters of
the longest-lived term. For a discussion of this problem,
see Riggs (1970), pp. 146-163.

2.9 The Logistic Equation

Exponential growth cannot go on forever. [This fact is of-
ten ignored by economists and politicians. Albert Bartlett
has written extensively on this subject. You can find
several references in The American Journal of Physics
and The Physics Teacher. See the summary in Bartlett
(2004).]

Sometimes a growing population will level off at some
constant value. Other times the population will grow and
then crash. One model that exhibits leveling off is the
logistic model, described by the differential equation

dy Y

—=b 1-—=1,

ar " < yoo)
where by and y,, are constants. This equation has con-
stant solutions y = 0 and ¥ = Yoo. If ¥ < Yoo, then the

(2.27)
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FIGURE 2.14. Plot of the solution of the logistic equation
when yo = 0.1, yoo = 1.0, bp = 0.0667. Exponential growth
with the same values of yo and bg is also shown.

equation is approximately dy/dt = bpy and y grows ex-
ponentially. As y becomes larger, the term in parentheses
reduces the rate of increase of y, until y reaches the sat-
uration value yo,. This might happen, for example, as
the population begins to consume a significant fraction
of the food supply, causing the birth rate to decrease or
the mortality rate to increase.

If the initial value of y is yg, the solution of Eq. 2.27 is

1

y(t) =
(I D)
Yoo Yo Yoo

_ YoYoo
Yo + (Yoo — Yo)e 0t
You can easily verify that y(0) = yo and y(00) = Yeo.
A plot of the solution is given in Fig. 2.14, along with
exponential growth with the same value of by.

Another way to think of Eq. 2.27 is that it has the
form dy/dt = b(y)y, where b(y) = bp(1 — y/yoo) is now
a function of the dependent variable y instead of the in-
dependent variable t. As y grows toward the asymptotic
value, the growth rate b(y) decreases linearly to zero. The
logistic model was an early and very important model for
population growth. It provides good fits in a few cases,
but there are now many more sophisticated models in
population biology [Murray (2001)].

(2.28)

2.10 Log-log Plots, Power Laws, and
Scaling

2.10.1 Log-log Plots and Power Laws

This section considers the use of plots in which both
scales are logarithmic: log—log plots. They are useful when
x and y are related by the function

y = Bzx". (2.29)
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FIGURE 2.15. Log-log plots of y = 2" for different values of
n. When £ =1, y = 1 in every case.

Notice the difference between this and the exponential
function: here the independent variable x is raised to a
constant power, while in the exponential case z (or t)
is in the exponent. It also leads to a discussion of scal-
ing, whereby simple physical arguments lead to impor-
tant conclusions about the variations between species in
size, shape, metabolic rate, and the like.
By taking logarithms of both sides of Eq. 2.29, we get
logy = log B + nlog x. (2.30)
This is a linear relationship between u = logy and v =
log x:
(2.31)

u = const + nv.

Therefore a plot of u vs v is a straight line with slope
n. The slope can be positive or negative and need not
be an integer. Figure 2.15 shows plots of y = z, y = 2,
y = x'/2 and y = 2. The slope can be determined from
the graph by taking Au/Awv. The value of B is determined
either by substituting particular values of y and z in Eq.
2.29 after n is known, or by determining the value of y
when x = 1, in which case ™ = 1 for any value of n, so
n need not be known.

Figure 2.16 shows how the curves change when B is
changed while n = 1. The curves are all parallel to one
another. Multiplying by B is equivalent to adding a con-
stant to logy.

If the expression is not of the form y = Bz™ but has an
added term, it will not plot as a straight line on log—log
paper. Figure 2.16 also shows a plot of y = = + 1, which
is not a straight line. (Of course, for very large values of
x, log(z+ 1) becomes nearly indistinguishable from log z,
and the line appears straight.)

When the slope is constant, n can be determined from
the slope Au/Av measured with a ruler on the log—log
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FIGURE 2.16. Log-log plots of y = Bz, showing how the
curves shift on the paper as B changes. Since n = 1 for all
the curves, they all have the same slope. There is also a plot
of y = x 4+ 1, to show that a polynomial does not plot as a
straight line.

paper. When determining the slope in this way one must
be sure that the length of a cycle is the same in each di-
rection on the graph paper. To repeat the warning: it is
easy to get a rough idea of the exponent from inspection
of the slope of the log—log plot in Fig. 2.15 because on
commercial log—log graph paper the distance spanned by
a decade or cycle is the same on both axes. Some maga-
zines routinely show log—log plots in which the distance
spanned by a decade is not the same on both axes. More-
over, commercial graphing software does not impose this
constraint on log—log plots, so it is becoming less and less
likely that you can determine the exponent by glancing
at the plot. Be careful!

When using a spreadsheet or other graphing software,
it is often useful to make an extra column that contains
the calculated variable ycac = Az™ with the values for
A and m stored in two cells of the spreadsheet. If you
plot this column as a line, and your real data as points
without a line, then you can change the parameters while
inspecting the graph to find the values that give the best
fit.

An example of the use of a log—log plot is Poiseuille
flow of fluid through a tube versus tube radius when the
pressure gradient along the tube is constant (Problem
35). It was shown in Chapter 1 that an 7* dependence is
expected.

2.10.2 Food Consumption, Basal Metabolic
Rate, and Scaling

Consider the relation of daily food consumption to body
mass. This will introduce us to simple scaling arguments.
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FIGURE 2.17. Plot of daily food requirement F' and height H
vs mass M for growing children. Data are from Kempe et al.
(1970), p. 90.

As a first model, we might suppose that each kilogram
of tissue has the same metabolic requirement, so that
food consumption should be proportional to body mass.
However, there is a problem with this argument. Most of
the food that we consume is converted to heat. The var-
ious mechanisms to lose heat—radiation, convection and
perspiration—are all roughly proportional to the surface
area of the body rather than its mass. (This statement ne-
glects the fact that considerable evaporation takes place
through the lungs and that the body can control the rate
of heat loss through sweating and shivering.) If all per-
sons were the same shape, then the total surface area
would be proportional to H2, where H is the height. The
total volume and mass would be proportional to H3, so
H would be proportional to M'/3. Therefore the sur-
face area would be proportional to (M*/3)2 or M?/3. (See
Problem 40 for a discussion of other possible dependences
of surface area on mass.) Figure 2.17 plots H and the to-
tal daily food requirement F' vs body mass M for growing
children [Kempe, Silver, and O’Brien (1970), p. 90].

Neither of the models proposed above fits the data very
well. At early ages H is more nearly proportional to /962
than to M'/3. For older children, when the shape of the
body has stopped changing, an M%33 dependence does
fit better. This better fit occurs for masses greater than
23 kg, which correspond to ages over 6 years. The slope
of the F(M) curve is 0.75. This is less than the 1.0 of
the model that food consumption is proportional to the
mass and greater than the 0.67 of the model that food
consumption is proportional to surface area.

This 3/4-power dependence is remarkable because it is
seen across many species, from one-celled organisms to
large mammals. It is called Kleiber’s law. Peters (1983)
quotes work by Hemmingsen (1960) that shows the stan-
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FIGURE 2.18. Plot of resting metabolic rate vs. body mass for
many different organisms. Graph is from R. H. Peters (1983).
The Ecological Implications of Body Size. Cambridge, Cam-
bridge University Press. Modified from A. M. Hemmingsen
(1960). Energy metabolism as related to body size and respi-
ratory surfaces, and its evolution. Reports of the Steno Memo-
rial Hospital and Nordisk Insulin Laboratorium. 9 (Part II):
6-110. Used with permission.

dard metabolic rates for many species can be fitted by the
following. The standard metabolic rate is in watts and
mass in kilograms. (Standard means as close to resting
or basal as possible.) For unicellular organisms at 20°C,

Runicellular = 0-018M0'751 . (232&)

The range of masses extended from 10715 to 107% kg.
For poikilotherms (organisms such as fish whose body
temperature is the same as the surroundings) at 20°C
(masses from 10~% to 10% kg),

Rpoikilothcrm = 0~14M0'751, (232b)

and for homeotherms (animals that can maintain their
body temperature independent of the surroundings) at
39°C (masses from 1072 to 103 kg),

Rhomeotherm = 4~1M0'751 . (2320)

Peters’s graph is shown in Fig. 2.18.

The 3/4-power dependence has been widely accepted,;
however, some recent analyses of the data, such as White
and Seymour (2003), support a 2/3 power dependence.
Even more recent studies affirm a 3/4 power [Savage et
al. (2004)].

A number of models have been proposed to explain a
3/4-power dependence [McMahon (1973); Peters (1983);
West et al. (1999); Banavar et al. (1999)]. West et al.
argue that the 3/4-power dependence is universal: they
derive it from a model that supplies nutrients through
a branching network that reaches all parts of the or-
ganism, minimizes the energy required for distribution,
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and ends in capillaries (or terminal xylem in plants) that
are all the same size. Whether it is universal is still de-
bated [Kozlowski and Konarzewski (2004)]. West and
Brown (2004) review quarter-power scaling in a variety of
circumstances.

We will discuss temperature dependence in Chapter 3.

Symbols Used in Chapter 2

Symbol  Use Units First
used on
page

a Rate of input of a s™1 38

substance

b, bo Rate of growth or decay s™hh™t 31

c1,c2 Constants 34

f Fraction 33

m,n Exponent in power law 39

relationship

t Time s 32

u Logarithm of dependent 34

variable

v Logarithm of independent 40

variable

T General independent 33

variable

Y General dependent 32

variable

Yy Amount of substance in kg, mg 37

plasma

0,90 Initial value of x or y 32

Yoo Saturation value of y 39

A Constant 38

B Constant 39

C Concentration kg m~—3, etc. 37

F Food requirement kcal day ! 41

H Body height m 41

K Clearance m?3 s~ 1 37

M Body mass kg 41

N Number of compoundings 32

per year
R Standard metabolic rate W 41
Ty /2 Half-life s, etc. 34
Ts Doubling time s 34
%4 Volume m? 37
X10 Change in z for a 34
factor-of-10 change in y

X100 Change in x for a 35
factor-of-100 change in y

Problems

Section 2.1

Problem 1 Suppose that you are 20 years old and have
an annual income of $20,000. You plan to work for 40
years. If inflation takes place at a rate of 3% per year,
what income would you need at age 60 to have the same

buying power you have now? Ignore taxes. Make the cal-
culation assuming that (a) inflation is 3% and occurs
once a year and (b) inflation is continuous but at a 3%
annual rate.

Problem 2 The number e is defined by lim, (1 +
1/n)™.

(a) Calculate values of (1+1/n)™ forn =1,2,4,8, and
16.

(b) Use the binomial formula (1 + a)™ = 1+ na +
"(T;?l)az—l— ”(nfg)!("72)a3+~ -+ to obtain a series for e* =
limy, oo (1 4+ x/n)™. [See also Appendiz D, Eq. D.5.]

Problem 3 A child with acute lymphocytic leukemia
(ALL) has approzimately 10'% leukemic cells when the
disease is clinically apparent.

(a) If a cell is about 8 um in diameter, estimate the
total mass of leukemic cells.

(b) Curing the disease requires killing every single cell.
The doubling time for the cells is about 5 days. If all cells
were killed except for one, how long would it take for the
disease to become apparent again?

(¢) Suppose that chemotherapy reduces the number of
cells to 10° and there are no changes of ALL cell prop-
erties (no mutations). How long a remission would you
expect? What if the number were reduced to 10°?

Problem 4 Suppose that tumor cells within the body re-
produce at rate r, so that the number is given by y =
yoet. Each time a chemotherapeutic agent is given it
destroys a fraction f of the cells then existing. Make a
semilog plot showing y as a function of time for several
admianistrations of the drug, separated by time T. What
different cases must you consider for the relation among
f, T, and r?

Problem 5 An exponentially growing culture of bacteria
increases from 108 to 5 x 108 cells in 6 h. What is the
time between successive cell divisions if there is mo cell
mortality?

Problem 6 The following data on railroad tracks were
obtained from R. H. Romer [(1991). The mathematics of
exponential growth—keep it simple, Phys. Teach. 9: 344—

345]:
Year Miles of track
1860 30,626
1870 52,922
1880 93,262
1890 166, 703

(a) What is the doubling time?

(b) Estimate the surface area of the contiguous United
States. Assume that a railroad roadbed is 7T m wide. In
what year would an extrapolation predict that the surface
of the United States would be completely covered with rail-
road track?



Section 2.2

Problem 7 A dose D of drug is given that causes the
plasma concentration to rise from 0 to Cy. The concen-
tration then falls according to C = Coe . At time T,
what dose must be given to raise the concentration to C
again? What will happen if the original dose is adminis-
tered over and over again at intervals of T'?

Problem 8 Consider the atmosphere to be at constant
temperature but to have a pressure p that varies with
height y. A slab between y and y+dy has a different pres-
sure on the top than on the bottom because of the weight
of the air in the slab. (The weight of the air is the num-
ber of molecules N times mg, where m is the mass of a
molecule and g is the gravitational acceleration.) Use the
ideal gas law, pV = NkgT (where kg is the Boltzmann
constant and T, the absolute temperature, is constant),
and the fact that the air is in equilibrium to write a dif-
ferential equation for p as a function of y. The equation
should be familiar. Show that p(y) = Ce~™9y/ksT,

Problem 9 The mean life of a radioactive substance is
defined by the equation

— Jo  t(dy/dt) dt
— 57 (dy/dt)dt
Show that if y = yoe ™", then 7 = 1/b.

Section 2.3

Problem 10 R. Guttman [(1996). J. Gen. Physiol. 49:
1007] measured the temperature dependence of the cur-
rent pulse necessary to excite the squid axon. He found
that for pulses shorter than a certain length T, a fired
amount of electric charge was necessary to make the nerve
fire; for longer pulses the current was fixed. This suggests
that the axon integrates the current for a time T but not
longer. The following data are for the integrating time
7 vs temperature T (°C). Find an empirical exponential
relationship between T and T.

T (°C) T (ms)
5 4.1
10 3.4
15 1.9
20 1.4
25 0.7
30 0.6
35 0.4

Problem 11 A normal rabbit was injected with 1 cm® of
staphylococcus aureus culture containing 108 organisms.
At various later times, 0.2 c¢cm?® of blood was taken from
the rabbit’s ear. The number of organisms per cm® was
calculated by diluting the material, smearing it on cul-
ture plates, and counting the number of colonies formed.

The results are shown below. Plot these data and see if

Problems 43

they can be fitted by a single exponential. Can you also
estimate the blood volume of the rabbit?

t (min) Bacteria (per cm?)
0 5 x 10°
3 2 x 10°
6 5 x 10
10 7 x 103
20 3 x 10?
30 1.7 x 10?
Section 2.4

Problem 12 All members of a certain population are
born at t = 0. The death rate in this population (deaths
per unit population per unit time) is found to increase
linearly with age t: (death rate) = a + bt. Find the pop-
ulation as a function of time if the initial population is
Yo-

Problem 13 The accompanying table gives death rates
(in yr=') as a function of age. Plot these data on linear
graph paper and on semilog paper. Find a region over
which the death rate rises approximately exponentially
with age, and determine parameters to describe that re-

gion.

Age Death Rate Age Death Rate
0 0.000 863 45 0.005 776
5 0.000 421 50 0.008 986
10 0.000 147 55 0.013 748
15 0.001 027 60 0.020 281
20 0.001 341 65 0.030 705
25 0.001 368 70 0.046 031
30 0.001 697 75 0.066 196
35 0.002 467 80 0.101 443
40 0.003 702 85 0.194 197

Problem 14 Suppose that the amount of a resource at
time t is y(t). At t = 0 the amount is yo. The rate at
which it is consumed is v = —dy/dt. Let r = roe®, that
is, the rate of use increases exponentially with time. (For
example, the world use of crude oil has been increasing
about 7% per year since 1890.)

(a) Show that the amount remaining at time t is y(t) =
o — (ro/B)(e¥ — 1),

(b) If the present supply of the resource were used up
at constant rate ro, it would last for a time T,.. Show that
when the rate of consumption grows exponentially at rate
b, the resource lasts a time T, = (1/b) In(1 + bT,).

(¢) An advertisement in Scientific American, Septem-
ber 1978, p. 181, said, “There’s still twice as much gas
underground as we’ve used in the past 50 years—at our
present rate of use, that’s enough to last about 60 years.”
Calculate how long the gas would last if it were used at a
rate that increases 7% per year.

(d) If the supply of gas were doubled, how would the
answer to part (c¢) change?

(e) Repeat parts (c) and (d) if the growth rate is 3%
per year.
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Problem 15 When we are dealing with death or compo-
nent failure, we often write Eq. 2.17 in the form y(t) =
Yo exXPp [— f(f m(t’)dt'} and call m(t) the mortality func-
tion. Various forms for the mortality function can rep-
resent failure of computer components, batteries in pace-
makers, or the death of organisms. (This is not the most
general possible mortality model. For example, it ignores
any interaction between organisms, so it cannot account
for effects such as overcrowding or a limited supply of
nutrients. )

(a) For human populations the mortality function is
often written as m(t) = mye="t + mgy + mzetst. What
sort of processes does each of these terms represent?

(b) Assume that my and mo are zero. Then m(t) is
called the Gompertz mortality function. Obtain an expres-
sion for y(t) with the Gompertz mortality function. Time
tmaz 18 sometimes defined to be the time when y(t) = 1.
It depends on yg. Obtain an expression for taz.

Problem 16 The incidence of a disease is the number
of new cases per unit time per unit population (or per
100,000). The prevalence of the disease is the number of
cases per unit population. For each situation below, the
size of the general population remains fized at the con-
stant value y, and the disease has been present for many
years.

(a) The incidence of the disease is a constant, i cases
per year. Fach person has the disease for a fized time
of T years, after which the person is either cured or dies.
What is the prevalence p? Hint: The number who are sick
at time t is the total number who became sick between t—T
and t.

(b) The patients in part (a) who are sick die with a
constant death rate b. What is the prevalence?

(c) A new epidemic begins at t = 0, and the incidence
increases exponentially with time: i = ige*t. What is the
prevalence if each person has the disease for T years?

Section 2.5

Problem 17 The creatinine clearance test measures a
patient’s kidney function. Creatinine is produced by mus-
cle at a rate p g h~'. The concentration in the blood is C
g I"t. The volume of urine collected in time T (usually
24 h)is V I. The creatinine concentration in the urine is
U g I"'. The clearance is K. The plasma volume is V.
Assume that creatinine is stored only in the plasma.

(a) Draw a block diagram for the process and write a
differential equation for C.

(b) Find an expression for the creatinine clearance K
in terms of p and C' when C' is not changing with time.

(c) If C is constant all creatinine produced in time T
appears in the urine. Find K in terms of C, V, U, and
T.

(d) If p were somehow doubled, what would be the new
steady-state value of C'? What would be the time constant
for change to the new value?

Problem 18 A liquid is injected in muscle and spreads
throughout a spherical volume V' = 4mr3 /3. The volume is
well supplied with blood, so that the liquid is removed at a
rate proportional to the remaining mass per unit volume.
Let the mass be m and assume that r remains fized. Find
a differential equation for m(t) and show that m decays
exponentially.

Problem 19 A liquid is injected as in Problem 18, but
this time a cyst is formed. The rate of removal of mass
18 proportional to both the pressure of liquid within the
cyst, and to the surface area of the cyst, which is 4mr?.
Assume that the cyst shrinks so that the pressure of liquid
within the cyst remains constant. Find a differential equa-
tion for the rate of mass removal and show that dm/dt is
proportional to m?/3.

Problem 20 The following data showing ethanol con-
centration in the blood vs time after ethanol ingestion are
from L. J. Bennison and T. K. Li [(1976). New Engl. J.
Med. 294: 9-13]. Plot the data and discuss the process
by which alcohol is metabolized.

t (min)  Ethanol concentration(mg dl~1)

90 134
120 120
150 106
180 93
210 79
240 65
270 50

Problem 21 Consider the following two-compartment
model. Compartment 1 is damaged myocardium (heart
muscle). Compartment 2 is the blood of volume V. At
t = 0 the patient has a heart attack and compartment 1
is created. It contains q molecules of some chemical which
was released by the dead cells. Over the next several days
the chemical moves from compartment 1 to compartment
2 at a rate i(t), such that ¢ = [ i(t)dt. The amount of
substance in compartment 2 is y(t) and the concentration
is C(t). The only mode of removal from compartment 2
is clearance with clearance constant K.

(a) Write a differential equation for C(t) that may also
involve i(t).

(b) Integrate the equation and show that q can be deter-
mined by numerical integration if C(t) and K are known.

(¢) Show that volume V' need not be known if C(0) =
C(00).

Section 2.6

Problem 22 The radioactive nucleus %* Cu decays inde-
pendently by three different paths. The relative decay rates
of these three modes are in the ratio 2:2:1. The half-life
is 12.8 h. Calculate the total decay rate b, and the three
partial decay rates by, by, and bs.

Problem 23 The following data were taken from Berg et
al. (1982). At t =0, a 70-kg subject was given an intra-



venous injection of 200 mg of phenobarbital. The initial
concentration in the blood was 6 mg I='. The concentra-
tion decayed exponentially with a half-life of 110 h. The
experiment was repeated, but this time the subject was fed
200 g of activated charcoal every 6 h. The concentration of
phenobarbital again fell exponentially, but with a half-life
of 45 h.

(a) What was the volume in which the phenobarbital
was distributed?

(b) What was the clearance in the first experiment?

(c) What was the clearance due to charcoal?

Section 2.7

Problem 24 You are treating a severely ill patient with
an intravenous antibiotic. You give a loading dose D myg,
which distributes immediately through blood volume V to
give a concentration C mg dI=* (1 deciliter = 0.1 liter).
The half-life of this antibiotic in the blood is T h. If you
are giving an intravenous glucose solution at a rate R ml
h~t, what concentration of antibiotic should be in the glu-
cose solution to maintain the concentration in the blood
at the desired value?

Problem 25 The solution to the differential equation
dy/dt = a — by for the initial condition y(0) = 0 is
y = (a/b)(1 — e~ ). Plot the solution for a =15 g min~!
and for b= 0.1, 0.5, and 1.0 min~"'. Discuss why the final
value and the time to reach the final value change as they
do. Also make a plot for b = 0.1 and a = 10 to see how
that changes the situation.

Problem 26 Derive an approximate expression for
(a/b) (1 —e=") which is accurate for small times (t <
1/b). Use the Taylor expansion for an exponential given
in Appendiz D.

Problem 27 We can model the repayment of a mort-
gage with a differential equation. Suppose that y(t) is
the amount still owed on the mortgage at time t, the
rate of repayment per unit time is a, b is the inter-
est rate, and that the initial amount of the mortgage
18 Yo -

(a) Find the differential equation for y(t).

(b) Try a solution of the form y(t) = a/b+ Ce®, where
C is a constant to be determined from the initial condi-
tions. Find C, plot the solution, and determine the time
required to pay off the mortgage.

Problem 28 When an animal of mass m falls in air,
two forces act on it: gravity, mg, and a force due to air
friction. Assume that the frictional force is proportional
to the speed v.

(a) Write a differential equation for v based on New-
ton’s second law, F = m(dv/dt).

(b) Solve this differential equation. (Hint: Compare
your equation to Eq. 2.24.)
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(c) Assume that the animal is spherical, with radius a
and density p. Also, assume that the frictional force is
proportional to the surface area of the animal. Determine
the terminal speed (speed of descent in steady state) as a
function of a.

(d) Use your result in part (c) to interpret the follow-
ing quote by J. B. S. Haldane [1985]: “You can drop a
mouse down a thousand-yard mine shaft; and arriving at
the bottom, it gets a slight shock and walks away. A rat
18 killed, a man is broken, a horse splashes.”

Problem 29 In Problem 28, we assumed that the force
of air friction is proportional to the speed v. For flow at
high Reynolds numbers, a better approximation is that the
force is proportional to v2.

(a) Write the differential equation for v as a function
of t.

(b) This differential equation is nonlinear because of the
v? term and thus difficult to solve analytically. However,
the terminal speed can easily be obtained directly from
the differential equation by setting dv/dt = 0. Find the
terminal speed as a function of a (defined in Problem 28).

Problem 30 A drug is infused into the body through
an intravenous drip at a rate of 100 mg h™t. The to-
tal amount of drug in the body is y. The drug distributes
uniformly and instantaneously throughout the body in a
compartment of volume V = 18 . It is cleared from the
body by a single exponential process. In the steady state
the total amount in the body is 200 mg.

(a) At noon (t = 0) the intravenous line is removed.
What is y(t) fort>0?

(b) What is the clearance of the drug?

Section 2.8
Problem 31 You are given the following data:
x Y x y
0 1.000 5 0.444
1 0800 6 0.400
2 0667 7 0.364
3 0571 8 0.333
4 0500 9 0.308
10 0.286

Plot these data on semilog graph paper. Is this a single
exponential? Is it two exponentials? Plot 1/y vs x. Does
this alter your answer?

Section 2.9

Problem 32 Suppose that the rate of consumption of a
resource increases exponentially. (This might be petro-
leum, or the nutrient in a bacterial culture.) During the
first doubling time the amount used is 1 unit. During the
second doubling time it is 2 units, the next 4, etc. How
does the amount consumed during a doubling time com-
pare to the total amount consumed during all previous
doubling times?
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Problem 33 Suppose that the rate of growth of y is de-
scribed by dy/dt = b(y)y. Expand b(y) in a Taylor’s se-
ries and relate the coefficients to the terms in the logistic
equation.

Problem 34 Consider a classic predator-prey problem.
Let the number of foxes be F and the number of rabbits
be R. The rabbits eat grass, which is plentiful. The fozres
eat only rabbits. The number of foxes and rabbits can be
modelled by the Lotka-Volterra equations

@:abeRF
dt
dF
— = —cF"+ dRF.
7 cF +dR

(a) Describe the physical meaning of each term on the
right-hand side of each equation. What does each of the
constants a, b, c, and d denote?

(b) Solve for the steady-state values of F and R.

These differential equations are difficult to solve be-
cause they are nonlinear (see Chapter 10). Typically, R
and F oscillate about the steady-state solutions found in
part (b). For more information, see Murray (2001).

Section 2.10

Problem 35 Plot the following data for Poiseuille flow
on log-log graph paper. Fit the equation i = CR} to the
data by eye (or by trial and error using a spread sheet),
and determine C and n.

Ry(um) i(um® s7)
5 0.000 10

7 0.000 38
10 0.001 6

15 0.008 1

20 0.026

30 0.13

50 1.0

Problem 36 Below are the molecular weights and radii
of some molecules. Use log-log graph paper to develop an
empirical relationship between them.

Substance M R (nm)
Water 18 0.15
Ozygen 32 0.20
Glucose 180 0.39
Mannitol 180 0.36
Sucrose 390 0.48
Raffinose 580 0.56
Inulin 5,000 1.25
Ribonuclease 13,500 1.8
B-lactoglobin 35,000 2.7
Hemoglobin 68,000 3.1
Albumin 68,000 3.7
Catalase 250,000 5.2

Problem 37 How well does FEq. 2.32¢ explain the data
of Fig. 2.17% Discuss any differences.

Problem 38 Compare the mass and metabolic require-
ments (and hence waste output, including water vapor)
of 180 people each weighing 70 kg with 12,600 chickens
of average mass 1 kg.

Problem 39 Figure 2.17 shows that in young children,
height is more nearly proportional to M°2 than to M'/3.
Find pictures of children and adults and compare ratios
of height to width, to see what the differences are.

Problem 40 Consider three models of an organism. The
first is a sphere of radius R. The second is a cube of length
L. These are crude models for animals. The third is a
broad leaf of surface area A on each side and thickness t.
Assume all have density p. In each case, calculate the sur-
face area S as a function of mass, M. Ignore the surface
area of the edge of the leaf. [For a comparison of scaling
in leaves and animals, see Reich (2001). He shows that
for broad leaves S oc M.}

Problem 41 If food consumption is proportional to
M?3/* across species, how does the food consumption per
unit mass scale with mass? Qualitatively compare the eat-
ing habits of hummingbirds to eagles and mice to ele-
phants. [See Schmidt-Nielsen (1984), pp. 52-64.]

Problem 42 In problem 41, you found how the specific
metabolic rate (food consumption per unit mass) varies
with mass. If all animal heart volumes and blood volumes
are proportional to M, then the only way for the heart to
increase the oxygen delivery to the body is by increasing
the frequency of the heart rate. [Schmidt-Nielsen (1984),
pp. 126-150.]

(a) Using the result from problem 41, if a 70 kg man
has a heart rate of 80 beats min~', determine the heart
rate of a guinea pig (M = 0.5 kg).

(b) To a first approzimation, all hearts beat about
800,000,000 times in a lifetime. A 30 g mouse lives about
3 years. Estimate the life span of a 3000 kg elephant.

(c) Humans live longer than their mass would indicate.
Calculate the life span of a 70 kg human based on scaling,
and compare it to a typical human life span.

Problem 43 Let’s examine how high animals can jump
[Schmidt-Nielsen (1984), pp. 176-179]. Assume that the
energy output of the jumping muscle is proportional to the
body mass, M. The gravitational potential energy gained
upon jumping to a height h is Mgh (g =98 m s72). If a
3 g locust can jump 60 cm, how high can a 70 kg human
Jump? Use scaling arguments.

Problem 44 In problem 43, you should have found that
all animals can jump to about the same height (approxi-
mately 0.6 m), independent of their mass M.

(a) Equate the kinetic energy at the bottom of the jump
(Mv?/2, where v is the “take-off speed”) to the potential
energy M gh at the top of the jump to find how the take-off
speed scales with mass.

(b) Calculate the take-off speed.



(¢) In order to reach this speed, the animal must accel-
erate upward over a distance L. If we assume a constant
acceleration a, then a = v?/(2L). Assume L scales as the
linear size of the animal (and assume all animals are ba-
sically the same shape but different size). How does the
acceleration a scale with mass?

(d) For a 70 kg human, L is about 1/3 m. Calculate
the acceleration (express your answer in terms of g).

(e) Use your result from part (c) to estimate the accel-
eration for a 0.5 mg flea (again, express your answer in
terms of g).

(f) Speculate on the biological significance of the result
in part (e) [See Schmidt-Nielsen (1984), pp. 180-181].
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3
Systems of Many Particles

It is possible to identify all the external forces acting on
a simple system and use Newton’s second law (F = ma)
to calculate how the system moves. (Applying this tech-
nique in a complicated case such as the femur may re-
quire the development of a simplified model, because so
many muscles, other bones, and ligaments apply forces
at so many different points.) In an atomic-size system
consisting of a single atom or molecule, it is possible
to use the quantum-mechanical equivalent of F = ma,
the Schrédinger equation, to do the same thing. (The
Schrédinger equation takes into account the wave prop-
erties that are important in small systems.)

In systems of many particles, such calculations become
impossible. Consider, for example, how many particles
there are in a cubic millimeter of blood. Table 3.1 shows
some of the constituents of such a sample. To calculate
the translational motion in three dimensions, it would
be necessary to write three equations for each particle
using Newton’s second law. Suppose that at time ¢ the
force on a molecule is F. Between t and ¢t + At, the
velocity of the particle changes according to the three
equations

vi(t + At) = vi(t) + F;At/m, (i = z,y, 2).

The three equations for the change of position of the
particle are of the form z(t + At) = x(t) + v, (t)At +
F,(t)(At)?/(2m). If At is small enough the last term can
be neglected. Solving these equations requires at least six
multiplications and six additions for each particle. For
10'° particles, this means about 102° arithmetic opera-
tions per time interval. If a computer can do 10'? op-
erations per second, then the complete calculation for a
single time interval will require 10® seconds or three years!
Another limitation arises in the physics of the processes.
It is now known that relatively simple systems can exhibit
deterministic chaos: a collection of identical systems dif-
fering in their initial conditions by an infinitesimally small

TABLE 3.1. Some constituents of 1 mm? of blood.

Constituent ~ Concentration Number in 1

in customary mm? (= 107?

units m? = 1073 cm?)
Water 1gem™3 3.3 x 10"
Sodium 3.2 mg cm ™3 8.3 x 1016
Albumin 4.5 g dl! 3.9 x 10
Cholesterol 200 mg dl~! 3.1 x 1013
Glucose 100 mg dI~* 3.3 x 10'°
Hemoglobin 15 g dl™! 1.4 x 10%°
Erythrocytes 5x10% mm™3 5 x 106

amount can become completely different in their subse-
quent behavior in a surprisingly short period of time. It is
impossible to trace the behavior of this many molecules
on an individual basis.

Nor is it necessary. We do not care which water mole-
cule is where. The properties of a system that are of in-
terest are averages over many molecules: pressure, con-
centration, average speed, and so forth. These average
macroscopic properties are studied in statistical or ther-
mal physics or statistical mechanics.

Unfortunately, this chapter relies heavily on your abil-
ity to accept delayed gratification. It has only a few bio-
logical examples, but the material developed here is nec-
essary for understanding some topics in most of the later
chapters, especially Chapters 4-9 and 14-18. In addi-
tion to developing a statistical understanding of pressure,
temperature, and concentration, this chapter derives four
quantities or concepts that are used later:

1. The Boltzmann factor, which tells how concentra-
tions of particles vary with potential energy (Sec.
3.7).
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2. The principle of equipartition of energy, which un-
derlies the diffusion process that is so important in
the body (Sec. 3.10).

3. The chemical potential, which describes the condi-
tion for equilibrium of two systems for the exchange
of particles, and how the particles flow when the sys-
tems are not in equilibrium (Secs. 3.12, 3.13, and
3.18).

4. The Gibbs free energy, which tells the direction in
which a chemical reaction proceeds and allows us to

understand how the cells in the body use energy (Sec.
3.17).

The first six sections form the basis for the rest of
the chapter, developing the concepts of microstates, heat
flow, temperature, and entropy. Sections 3.7 and 3.8 de-
velop the Boltzmann factor and its corollary, the Nernst
equation. Section 3.9 applies the Boltzmann factor to the
air molecules in the atmosphere. Section 3.10 discusses
the very important equipartition of energy theorem. Sec-
tion 3.11 discusses heat capacity—the energy required to
increase the temperature of a system.

The transport of particles between two systems is de-
scribed most efficiently using the chemical potential. The
chemical potential is introduced in Sec. 3.12, and an ex-
ample of its use is shown in Sec. 3.13.

Section 3.14 considers systems that can exchange vol-
ume. An idealized example is two systems separated by
a flexible membrane or a movable piston. The next two
sections extend the idea of systems that exchange energy,
particles, or volume to the exchange of other variables
such as electric charge.

The Gibbs free energy, introduced in Sec. 3.17, is used
to describe chemical reactions that take place at con-
stant temperature and pressure. It is closely related to
the chemical potential. The chemical potential of an ideal
solution is derived in Sec. 3.18 and is used extensively in
Chapter 5.

3.1 Gas Molecules in a Box

Statistical physics or statistical mechanics deals with av-
erage quantities such as pressure, temperature, and par-
ticle concentration and with probability distributions of
variables such as velocity. Some of the properties of these
averages can be illustrated by considering a simple exam-
ple: the number of particles in each half of a box contain-
ing a fixed number of gas molecules. (This is a simple ana-
log for the concentration.) We will not be concerned with
the position and velocity of each molecule, since we have
already decided not to use Newtonian mechanics. Nor
will we ask for the velocity distribution at this time. This
simplified example will describe only how many molecules
are in the volume of interest. The number will fluctuate

FIGURE 3.1. An ensemble of boxes, each divided in half by

an imaginary partition.

with time. We will deal with probabilities:! if the number
of particles in the volume is measured repeatedly, what
values are obtained, and with what relative frequency?

If we were willing to use Newtonian mechanics, we
could count periodically how many molecules are in the
volume of interest. [This has actually been done for small
numbers of particles. See Reif (1964), pp. 8-9.] For larger
numbers of particles, it is easier to use statistical argu-
ments to obtain the probabilities. The particles travel
back and forth, colliding with the walls of the box and oc-
casionally with one another. After some time has elapsed,
all memory of the particles’ original positions and veloc-
ities has been lost because of collisions with the walls of
the box, which have microscopic inhomogeneities. There-
fore, the result can be obtained by imagining a whole suc-
cession of completely different boxes, in which the parti-
cles have been placed at random. We can count the num-
ber of molecules in the volume of interest in each box.
Such a collection of similar boxes is called an ensemble.
Ensembles of similar systems will be central to the ideas
of this chapter.

Imagine an ensemble of boxes, each divided in half as
in Fig. 3.1. We want to know how often a certain number
of particles is found in the left half. If one particle is in a
box (N = 1), two cases can be distinguished, depending
on which half the particle is in. Call them L and R. Each
case is equally likely to occur, since nothing distinguishes
one half of a box from the other. If n is the number of
particles in the left half, then case L corresponds ton =1

and case R corresponds to n = 0.
The probability of having a particular value of n is
defined to be

P(n) (number of systems in the ensemble in which n is found)
n) =

(total number of systems)
(3.1)

in the limit as the number of systems becomes very large.

Because there are only two possible values of n, 0 or
1, and because each corresponds to one of the equally
likely configurations, P(0) = 0.5, P(1) = 0.5. The sum
of the probabilities is 1. A histogram of P(n) for N =1
is given in Fig. 3.2(a). To recapitulate: n is the number
of molecules in the left half of the box, and N is the

LA good book on probability is Weaver (1963).
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FIGURE 3.2. Histograms of P (n; N) for different values of N.

total number of molecules in the entire box. Since N will
change in the discussion below, we will call the proba-
bility P(n; N). (The fixed parameters that determine the
probability distribution are located after the semicolon.)

Now let N = 2. Each molecule can be on the left or the
right with equal probability. The possible outcomes are
listed in the following table, along with the corresponding
values of n and P(n;2).

Molecule 1 Molecule 2 n  P(n;2)
R R 0 3
R L 1 )
L R 1 2
L L 2 1

Each of the four outcomes is equally probable. To see this,
note that L or R is equally likely for each molecule. In half
of the boxes in the ensemble, the first molecule is found on
the left. In half of these, the second molecule is also on the
left. Therefore LL occurs in one-fourth of the systems in
the ensemble. (This is not strictly true, because there can
be fluctuations. If we throw a coin six times, we cannot
say that heads will always occur three times. If we repeat
the experiment many times, the average number of heads
will be three.)

If three molecules are placed in each box, there are
two possible locations for the first particle, two for the
second, and two for the third. If the three particles are
all independent, then there are 23 = 8 different ways to
locate the particles in a box. If a box is divided in half,
each of these ways has a probability of 1/8.

Molecule 1  Molecule 2 Molecule 3 n  P(n;3)
R R R 0 3
R R L 1
R L R 1 3
L R R 1
L L R 2
L R L 2 3
R L L 2
L L L 3 3
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The cases of two and three molecules in the box are also
plotted in Fig. 3.2.

In each case, P(n; N) has been determined by listing
all the ways that the N particles can go into a box. This
can become tedious if the number of particles is large.
Furthermore, it does not provide a way to calculate P if
the two volumes of the box are not equal. We will now
introduce a more general technique that can be used for
any number of particles and for any fractional volume of
the box.

Each box is divided into two volumes, v and v, with
total volume V' = v + v’. Call p the probability that a
single particle is in volume v. The probability that the
particle is in the remainder of the box, v/, is ¢:

p+q=1. (3.2)
As long as there is nothing to distinguish one part of a
box from the other, p is the ratio of v to the total volume:

p=

= (3.3)

By the same argument, ¢ = v’'/V. These values satisfy
Eq. 3.2. If N particles are distributed between the two
volumes of the box, the number in v is n and the number
in v is n” = N — n. The probability that n of the N
particles are found in volume v is given by the binomial
probability distribution (Appendix H):

N!
" (L—p

n! (N —n) A

P(n;N) = P(n; N,p) =
(3.4)
Table 3.2 shows the calculation of P(n;10) using this
equation. Histograms for N = 4 and 10 are also plotted in
Fig. 3.2. In each case there is a value of n for which P is a
maximum. When N is even, this value is N/2; when N is
odd, the values on either side of N/2 share the maximum
value. The probability is significantly different from zero
only for a few values of n on either side of the maximum.
A probability distribution, in the form of an expression,
a table of values, or a histogram, usually gives all the in-
formation that is needed about the number of molecules
in v; it is not necessary to ask which molecules are in v.
The number of molecules in v is not fixed but fluctuates
about the number for which P is a maximum. For exam-
ple, if N = 10, and we measure the number of molecules
in the left half many times, we find n = 5 only about 25%
of the time. On the other hand, we find that n =4, 5, or
6 about 65% of the time, while n = 3, 4, 5, 6, or 7 about
90% of the time.

3.2 Microstates and Macrostates

If we know “enough” about the detailed properties
(such as position and momentum) of every particle in a
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TABLE 3.2. Calculation of P(n;10) using the binomial prob-
ability distribution. Note that 0!=1.

P(0:10) = 5 (3)° (9" = ()" =00
P(1:10) = 130 (8)' ()" = 10.(3)' 0010
P210) = 5 (87 (3)° = 45 (3) =00
P10 = 3 (1)’ B) =120))"” = o7
P10 = g (8)' (3)° =210 ()" = 0205
P:10) = 5 (4)° (3)° = 252 ()" = 0210
P(6:10) = g (8)° (3)' =210 ()" = 0205
P(7:10) = 7 (8) (3)° = 120 ()" = o117
P (8:10) = g (3)° (2)° = 45 ()" = 0.004
P©:10) = g (8)° (1) = 10(3)' =010
P0:10) = g (1) ()" = ()7 = 00

system,? then we say that the microstate of the sys-
tem is specified. (The criterion for “enough” will be dis-
cussed shortly.) We may know less than this but know the
macrostate of the system. (In an ideal gas, for example,
the macrostate would be defined by knowing the number
of molecules and volume, and the pressure, temperature,
or total energy.) Usually there are many microstates cor-
responding to each macrostate. The large-scale average
properties (such as pressure and number of particles per
unit volume in the ideal gas) fluctuate slightly about well-
defined mean values.

In the problem of how many molecules are in half of
a box, the macrostate is specified if we know how many
molecules there are, while a microstate would specify the
position and momentum of every molecule. In other cases,
internal motions of the molecule may be important, and
it will be necessary to know more than just the position
and momentum of each particle.

The relation between microstates and macrostates may
be clarified by the following example, which contains the
essential features, although it is oversimplified and some-
what artificial. A room is empty except for some toys on
the floor. Specifying the location of each of the toys on the
floor would specify the microstate of the system. If the
toys are in the shaded corner in Fig. 3.3, the macrostate is
“picked up”. If the toys are any place else in the room, the
macrostate is “mess”. There are many more microstates

2A system is that part of the universe that we choose to examine.
The surroundings are the rest of the universe. The system may or
may not be isolated from the surroundings.

FIGURE 3.3. A room with toys. If all the toys are in the
shaded area, the macrostate is “picked up.” Otherwise, the
macrostate is “mess.”

corresponding to the macrostate “mess” than there are
corresponding to the macrostate “picked up.” We know
from experience that children tend to regard any mi-
crostate as equally satisfactory; the chances of sponta-
neously finding the macrostate “picked up” are relatively
small.

A situation in which P is small is called ordered or
nonrandom. A situation in which P is large is called dis-
ordered or random. Macrostate “mess” is more probable
than macrostate “picked up” and is disordered or ran-
dom.

The same idea can be applied to a box of gas molecules.
Initially, the molecules are all kept in the left half of the
box by a partition. If the partition is suddenly removed, a
large number of additional microstates are suddenly avail-
able to the molecules. The macrostate in which they find
themselves—all in the left half of the box, even though
the partition has been removed—is very improbable or
highly ordered. The molecules soon fill the entire box; it
is quite unlikely that they will all be in the left half again
if the number of molecules is very large. (Suppose that
there are 80 molecules in the box. The probability that
all are in the left half is (%)80 = 1024, If samples were
taken 10° times per second, it would take 10'® seconds to
sample 1024 boxes, one of which, on the average, would
have all of the molecules in the left half. This is greater
than the age of the universe.)

Just after the partition in the box was removed, the sit-
uation was very ordered. The system spontaneously ap-
proached a much more random situation in which nearly
half the molecules were in each half of the box. The ac-
tual number n fluctuates about N/2, but in such a way
that the average (n) (taken, say, over several seconds)
no longer changes with time. Typical fluctuations with a
constant (n) are shown in Fig. 3.4(a). When the average®

3There is a subtlety about the meaning of average that we are
glossing over here. If we take a whole ensemble of identical systems,
which were all prepared the same way, and measure n in each one,
we have the ensemble average m. This is calculated in the way
described in Appendix G. If we watch one system over some long
time interval, as in Fig. 3.4, we can take the time average (n). It is
taken by recording values of n for a large number of discrete times
in some interval. Strictly speaking, an equilibrium state is one in
which the ensemble average is not changing with time.
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FIGURE 3.4. (a) Fluctuations of n about N/2. (b) The ap-
proach of the system to the equilibrium state after the parti-
tion is removed.

of the macroscopic parameters is not changing with time,
we say that the system is in an equilibrium state. Figure
3.4(b) shows the system moving toward the equilibrium
state after the partition is removed.

An equilibrium state is characterized by macroscopic
parameters whose average values remain constant with
time, although the parameters may fluctuate about the
average value. It is also the most random (i.e., most
probable) macrostate possible under the prescribed con-
ditions. It is independent of the past history of the system
and is specified by a few macroscopic parameters.*

The definition of a microstate of a system has so far
been rather vague; we have not said precisely what is re-
quired to specify it. It is actually easier to specify the mi-
crostate of a system when using quantum mechanics than
when using classical mechanics. When the energy of an
individual particle in a system (such as one of the mole-
cules in the box) is measured with sufficient accuracy, it
is found that only certain discrete values of the energy
occur. This is because of the wave nature of the particles.
The allowed values of the energy are called energy levels.
You are probably familiar with the idea of energy levels
from a previous physics or chemistry course; for exam-
ple, the spectral lines of atoms are due to the emission
of light when an atom changes from one energy level to
another. Because the energy levels are well defined, the
energy difference, and hence the frequency or color of the
light, is also well defined (see Chapter 14).

A particle in a box has a whole set of energy levels
at energies determined by the size and shape of the box.
Compared to macroscopic measurements of energy, these
levels are very close together. The particle can be in any
one of these levels; which energy the particle has is spec-
ified by a set of quantum numbers. If the particle moves
in three dimensions, three quantum numbers are needed

4 A more detailed discussion of equilibrium states is found in Reif
(1964).

to specify the energy level. If there are N particles, it will
be necessary to specify three quantum numbers for each
particle or 3N numbers in all. (If there are M molecules,
each made up of a atoms, then N = aM. The number of
quantum numbers is less than 3N because the atoms can-
not all move independently. If the molecules were thought
of as single particles, there would be 3M quantum num-
bers. But the molecules can rotate and vibrate, so that
the number of quantum numbers is greater than 3M and
less than 3N.)

The total number of quantum numbers required to
specify the state of all the particles in the system is called
the number of degrees of freedom of the system, f.

A microstate of a system is specified if all the quantum
numbers for all the particles in the system are specified.

In most of this chapter, it will not be necessary to con-
sider the energy levels in detail. The important fact is
that each particle in a system has discrete energy levels,
and a microstate is specified if the energy level occupied
by each particle is known.

3.3 The Energy of a System: The
First Law of Thermodynamics

Figure 3.5 shows some energy levels in a system occupied
by a few particles. The total energy of the system U is
the sum of the energy of each particle. In making this
drawing, we have assumed that all the particles are the
same and that they do not interact with one another very
much. Then each particle has the same set of energy lev-
els, and the presence of other particles does not change
them. In that case, we can say that there is a certain
set of energy levels in the system and that each level can
be occupied by any number of particles. The energy of
the ith level, occupied or not, will be called u;. For the
example of Fig. 3.5, the total energy is

U = 2us3 + uss + Uog + 3usg.

Suppose that the system is isolated so that it does not
gain or lose energy. It is still possible for particles within

FIGURE 3.5. A few of the energy levels in a system. If a par-
ticle has a particular energy, a dot is drawn on the level. More
than one particle in this system can have the same quantum
numbers.
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the system to exchange energy and move to different en-
ergy levels, as long as the total energy does not change.
(Classically, two particles could collide, so that one gained
and one lost energy.) Therefore the number of particles
occupying each energy level can change, as long as the
total energy remains constant. For a system in equilib-
rium, the average number of particles in each level does
not change with time.

There are two ways in which the total energy of a sys-
tem can change. Work can be done on the system by the
surroundings, or heat can flow from the surroundings to
the system. The meaning of work and heat in terms of
the energy levels of the system is quite specific and is
discussed shortly. First, we define the sign conventions
associated with them.

It is customary to define @) to be the heat flow into
a system. If no work is done, the energy change in the
system is

AU = Q.

It is also customary to call W the work done by the sys-
tem on the surroundings. When W is positive, energy
flows from the system to the surroundings. If there is no
accompanying heat flow, the energy change of the system
is

AU = -W.

The most general way the energy of a system can change
is to have both work done by the system and heat flow
into the system. The statement of the conservation of en-
ergy in that case is called the first law of thermodynamics:

AU=Q-W. (3.5)

The joule is the ST unit for energy, work and heat flow.
The calorie (1cal = 4.184J) is sometimes used. The di-
etary calorie is 1000 cal.

The positions of the energy levels in a system are de-
termined by some macroscopic properties of the system.
For a gas of particles in a box, for example, the positions
of the levels are determined by the size and shape of the
box. For charged particles in an electric field, the posi-
tions of the levels are determined by the electric field.
If the macroscopic parameters that determine the posi-
tions of the energy levels are not changed, the only way
to change the total energy of a system is to change the
average number of particles occupying each energy level,
as in Fig. 3.6. This energy change is called heat flow.

Work is associated with the change in the macroscopic
parameters (such as volume) that determine the posi-
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FIGURE 3.6. No work is done on the system, but heat is
added. The positions of the levels do not change; their average
population does change.

FIGURE 3.7. Work is done on the system, but no heat flows.
Each level has been shifted to a higher energy.

(@) (b) ©

FIGURE 3.8. Symbols used to indicate various types of isola-
tion in a system. (a) This system is completely isolated. (b)
There is no heat flow through the double wall, but work can
be done (symbolized by a piston). (¢) No work can be done,
but there can be heat flow through the single wall.

tions of the energy levels. If the energy levels are shifted
by doing work without an accompanying heat flow, the
change is called adiabatic. An adiabatic change is shown
in Fig. 3.7. In general, there is also a shift of the popu-
lations of the levels in an adiabatic change; the average
occupancy of each level can be calculated using the Boltz-
mann factor, described in Sec. 3.7. There is no heat flow,
but work is done on or by the system, and its energy
changes.

To summarize: Pure heat flow involves a change in the
average number of particles in each level without a change
in the positions of the levels. Work involves a change in
the macroscopic parameters, which changes the positions
of at least some of the energy levels. In general, this means
that there is also a shift in the average population of
each level. The most general energy change of a system
involves both work and heat flow. In that case the total
energy change is the sum of the changes due to work and
to heat flow.

It is customary in drawing systems to use the symbols
in Fig. 3.8 to describe how the system can interact with
the surroundings. A double-walled box means that no
heat flows, and any processes that occur are adiabatic.
This is shown in Fig. 3.8(a). If work can be done on the
system, a piston is shown as in Fig. 3.8(b). If heat can
flow to or from the system, a single wall is used as in
Fig. 3.8(c).

3.4 Ensembles and the Basic
Postulates

In the next few sections we will develop some quite re-
markable results from statistical mechanics. Making the



postulate that when a system is in equilibrium each mi-
crostate is equally probable, and arguing that as the en-
ergy, volume, or number of particles in the system is in-
creased the number of microstates available to the system
increases, we will obtain several well-known results from
thermodynamics: heat flows from one system to another
in thermal contact until their temperatures are the same;
if their volumes can change they adjust themselves un-
til the pressures are the same; and the systems exchange
particles until their chemical potentials are the same. We
will also obtain the concept of entropy; the Boltzmann
factor; the theorem of equipartition of energy; and the
Gibbs free energy, which is useful in chemical reactions
in living systems where the temperature and pressure are
constant.

The initial postulates are deceptively simple. Unfortu-
nately, a fair amount of mathematics is required to get
from them to the final results. We start with the basic
postulates.

The microstate of a system is determined by specify-
ing the quantum numbers of each particle in the system.
The total number of quantum numbers is the number of
degrees of freedom. The macrostate of a system is deter-
mined by specifying two things:

1. All of the external parameters, such as the volume of
a box of gas or any external electric or magnetic field,
on which the positions of the energy levels depend.
(Classically, all the external parameters that affect
the motion of the particles in the system.)

2. The total energy of the system, U.

The external parameters determine a set of energy levels
for the particles in the system; the total energy deter-
mines which energy levels are accessible to the system.

Statistical physics deals with average quantities and
probabilities. We imagine a whole set or ensemble of
“identical” systems, as we did in Eq. 3.1. The systems
are identical in that they all are in the same macrostate.
Different systems within the ensemble will be in differ-
ent microstates. Imagine that at some instant of time
we “freeze” all the systems in the ensemble and examine
which microstate each is in. From this we can determine
the probability that a system in the ensemble is in mi-
crostate 1:

P(of being in microstate )
number of systems in microstate i

~ total number of systems in the ensemble’

Imagine that we now “unfreeze” all the systems in the
ensemble and let the particles move however they want.
At some later time we freeze them again and examine
the probability that a system is in each microstate. These
probabilities may have changed with time. For example,
if the system is a group of particles in a box, and if the
initial “freeze” was done just after a partition confining all
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the particles to the left half of the box had been removed,
we would have found many systems in the ensemble in
microstates for which most of the particles are on the
left-hand side. Later, this would not be true. We would
find microstates corresponding to particles in both halves
of the box.

We will make two basic postulates about the systems
in the ensemble.®

1. If an isolated system (really, an ensemble of isolated
systems) is found with equal probability in each one
of its accessible microstates, it is in equilibrium.®
Conversely, if it is in equilibrium, it is found with
equal probability in each one of its accessible mi-
crostates.

2. If it is not in equilibrium, it tends to change with
time until it is in equilibrium. Therefore the equilib-
rium state is the most random, most probable state.

For the rest of this chapter, we deal with equilibrium
systems. According to our first postulate, each microstate
that is accessible to the system (that is, consistent with
the total energy that the system has) is equally proba-
ble. We will discover that this statement has some far-
reaching consequences.

Suppose that we want to consider some variable z,
which takes on various values. This variable might be the
pressure of a gas, the number of gas molecules in some
volume of the box, or the energy that one of the mole-
cules has. For each value of x, there will be some number
of microstates in which the system could be that are con-
sistent with that value of z. There will also be some total
number of microstates in which the system could be, con-
sistent with its initial preparation. We will use the Greek
letter 2 to denote the number of microstates. The total
number of accessible microstates (for all possible values
of x) is Q ; the number for which x has some particular
value is 2,. It is consistent with the first assumption to
say that the probability that the variable has a value =
when the system is in equilibrium is

Qy
P, = —=.

o (3.6)

We have been considering ensemble averages. For ex-
ample, the variable of interest might be the pressure,
and we could find the ensemble average by calculating

5For a more detailed discussion of these assumptions, see Reif
(1964), Ch. 3.

6In thermodynamics and statistical mechanics, equilibrium and
steady state do not mean the same thing. Steady state means
that some variable is not changing with time. The concentration
of sodium in a salt solution flowing through a pipe could be in
steady state as the solution flowed through, but the system would
not be in equilibrium. Only a few microstates corresponding to bulk
motion of the fluid are occupied. In other areas, such as feedback
systems, the words equilibrium and steady state are used almost
interchangeably.
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FIGURE 3.9. Two systems are in thermal contact with each
other but are isolated from the rest of the universe. They can
exchange energy only by heat flow.

p = > P,p, where P, is the probability of having pres-
sure p. In equilibrium P, is given by Eq. 3.6, and p does
not change with time. We could also consider a single
system, measure p(t) M times, and compute the time av-
erage, (p(t)) = > . p(t;)/M. (The equivalence of the time
average and the ensemble average for systems in equilib-
rium is called the ergodic hypothesis.)

3.5 Thermal Equilibrium

A system that never interacts with its surroundings is an
idealization. The adiabatic walls of Fig. 3.8(a) can never
be completely realized. However, much can be learned by
considering two systems that can exchange heat, work, or
particles, but that, taken together, are isolated from the
rest of the universe. After we have learned how these two
systems interact, the second system can be taken to be
the rest of the universe. Eventually, we will allow all three
exchanges—heat flow, work, and particles—to take place;
for now, it will be convenient to consider only exchanges
of energy by heat flow. Figure 3.9 shows the two systems,
A and A’, isolated from the rest of the universe. The total
system will be called A*. The total number of particles
is N* = N 4+ N’. For now N and N’ are fixed. The total
energy is U* = U + U’. The two systems can exchange
energy by heat flow, so that U and U’ may change, as
long as their sum remains constant.

The number of microstates accessible to the total sys-
tem is 2*. The combined system was originally given a
total energy U™ before it was sealed off from the rest
of the universe. The barrier between A and A’ prevents
exchange of particles or work. The total number of mi-
crostates depends on how much energy is in each system:
when system A has energy U, the total number of mi-
crostates is Q*(U).”

There are many microstates accessible to the system,
with U and U’ having different values, subject always to
U* = U+U’. Let the total number of microstates, includ-
ing all possible values of U, be €2},, . Then, according to
the postulate, the probability of finding system A with

7If Q is a continuous function of U, then Q(U) is actually the
number of states wih energy between U and U + dU.We ignore this
distinction. For a discussion of it, see Chapter 3 of Reif (1964).

TABLE 3.3. An example of two systems that can exchange
heat energy. The total energy is U* = 10u. Each system con-
tains two particles for which the energy levels are u, 2u, 3u,
etc.

System A System A’ System A*
U Q U’ Q Q*
2u 1 8u 7 7
3u 2 Tu 6 12
4du 3 6u ) 15
5u 4 S5u 4 16
6u 5 4du 3 15
Tu 6 3u 2 12
8u 7 2u 1 7
0, =81
energy U is
Q" (U
PU) = i ) =CQ*(U). (3.7)
Qtot

C =1/9Q%,, is a constant (independent of U).

If the meaning of Eq. 3.7 is obscure, consider the fol-
lowing example. Systems A and A’ each consist of two
particles, the energy levels for each particle being at w,
2u, 3u, and so forth. The total energy available to the
combined system is U* = 10u. The smallest possible en-
ergy for system A is U = 2u, both particles having en-
ergy u. If U = 3u, there are two states: in one, the first
particle has energy u and the other 2u; in the second,
the particles are reversed. Label these states (u,2u) and
(2u,u). For U = 4u, there are three possibilities: (u, 3u),
(2u, 2u), and (3u, ). In general, if U = nu, there are n—1
states, corresponding to the first particle having energy
u, 2u, 3u, ..., (n — 1)u. Table 3.3 shows values for U, U’, Q,
and Q.

It is now necessary to consider 2* in more detail. If
there are two microstates available to system A and 6
available to system A*, there are 2 x 6 = 12 states avail-
able to the total system. Q* = Q€ is also given in Table
3.3. In a more general case, the number of microstates
for the total system is the product of the number for each
subsystem:

O (U) = QU) QL (T). (3.8)

For the specific example, there are a total of 84 mi-
crostates accessible to the system when U* = 10u. Equa-
tion 3.7 says that since each microstate is postulated to
be equally probable, the probability that the energy of
system A is 3u is 12/84 = 0.14. The most probable state
of the combined system is that for which A has energy
5u and A’ has energy 5u.

The next question is how Q and Q' depend on energy
in the general case. In the example, €) is proportional to
U. For three particles, one can show that €2 increases as
U? (see Problem 15). In general, the more particles there
are in a system, the more rapidly {2 increases with U.
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FIGURE 3.10. Example of the behavior of Q, @', and
Q*. In this case, the values used are Q(U) = 5U? and
Q(U") = 4(U")2. (These functions give Q = 0 when U = 0,
which is not correct. But they are simple and behave properly
at higher energies.) The total energy is 6, so only values of U
between 0 and 6 are allowed. (a) Plot of Q(U). The dashed
line is /(6 — U). (b) Plot of Q'(U’). (c) Plot of 2* = QQ'.

For a system with a large number of particles, increasing
the energy drastically increases the number of microstates
accessible to the system.

As more energy is given to system A and Q(U) in-
creases, there is less energy available for system A’ and
Q'(U") decreases. The product Q* = QQ’ goes through
a maximum at some value of U, and that value of U is
therefore the most probable. These features are shown
in Fig. 3.10, which assumes that U and ) are contin-
uous variables. The continuous approximation becomes
excellent when we deal with a large number of particles
and very closely spaced energy levels. The solid line in
Fig. 3.10(a) represents Q(U); ©'(U’) is the solid line in
Fig. 3.10(b). The function £’ is also plotted vs U, rather
than U’, as the dashed line in Fig. 3.10(a). As more energy
is given to A, Q increases but €)' decreases. The product,
0* = QQ, shown in Fig. 3.10(c), reaches a maximum at
U=3.

The most probable value of U is that for which P(U)
is a maximum. Since P is proportional to Q*, Q*(U) is
also a maximum. Therefore,

a
U

at the most probable value of U. This derivative can be
evaluated using Eq. 3.8. Since U + U’ = U*, Eq. 3.8 can
be rewritten as

O (U) = QU) Y (U* - U).

@ (U)] =0 (3.9)

(3.10)

The derivative is
daa* a dsy
aw ~ar 't

By the chain rule for taking derivatives,

ey (d'\ (dU’
dU — \dU’ au )
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Since U’ = U* — U, dU’/dU = —1. Therefore

ao* , dQ asy
aw =Y Yar (8:11)
Factoring out 9 Q' gives
aQ* 1dQ 1 d¥Y
— =00 (== - = -—]. 12
du (Q auv dU’> (3.12)

In equilibrium, this must be zero by Eq. 3.9. Since Q* =
Q€ cannot be zero, the most probable state or the equi-
librium state exists when

1 dQ 1 4
It is convenient to define the quantity 7 by
1_14d2
T QdU

for any system. We must remember that this derivative
was taken when the number of particles and the para-
meters that determine the energy levels were held fixed.
These parameters are such things as volume and electric
and magnetic fields. To remind ourselves that everything
but U is being held fixed, it is customary to use the no-
tation for a partial derivative: O instead of d (Appendix
N). Therefore, we write

1_1(02
T 0 ou N,V,etc.

Often we will be careless and just write 02/0U.

The quantity 7 defined by Eq. 3.14 depends only on the
variables of one system, system A. It is therefore a prop-
erty of that system. Thermal equilibrium occurs when
7 = 7'. Since ) is just a number, Eq. 3.14 shows that 7
has the dimensions of energy.

Systems A and A’, which are in thermal contact, will
be in equilibrium (the state of greatest probability) when
7 = 7/. This is reminiscent of something that is familiar
to all of us: if a hot system is placed in contact with a
cold one, the hotter one cools off and the cooler one gets
warmer. The systems come to equilibrium when they are
both at the same temperature. This suggests that 7 is
in some way related to temperature, even though it has
the dimensions of energy. We will not prove it, but many
things work out right if the absolute temperature T is
defined by the relationship

(3.14)

7 =kgT. (3.15)

The proportionality constant is called Boltzmann’s con-
stant. If T is measured in kelvin (K), kg has the value

kp =1.380651 x 10723 J K~ !

=0.861734 x 107* eV K. (3.16)

[The electron volt (eV) is a unit of energy commonly used
when considering atoms or molecules. 1eV = 1.60218 x
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10719 J.] The most convincing evidence in this book that
Eq. 3.15 is reasonable is the derivation of the thermody-
namic identity in Sec. 3.16.

The absolute temperature T is related to the temper-
ature in degrees centigrade or Celsius by

T = (temperature in °C) + 273.15. (3.17)

3.6  Entropy

The preceding section used the idea that the number of
microstates accessible to a system increases as the energy
of the system increases, to develop a condition for ther-
mal equilibrium. There are two features of those argu-
ments that suggest that there are advantages to working
with the natural logarithm of the number of microstates.
First, the total number of microstates is the product of
the number in each subsystem: Q* = Q€. Taking natural
logarithms of this gives

nQ* =InQ+InQ. (3.18)

The other feature is the appearance of (1/9) (92/0U) in
the equilibrium condition. For any non-negative, differ-
entiable function y(z),

d _ldy

Therefore, Eq. 3.14 can be written as

1 0
The entropy S is defined by
S =kplnQ, Q= eS/ks, (3.20)

If both sides of Eq. 3.19 are multiplied by kp, it is seen

that
98 _ks _ 1
ou N,V,etc. A

This is a fundamental property of entropy that may be
familiar to you from other thermodynamics textbooks; if
S0, it forms a justification for defining temperature as we
did.

Another important property of the entropy is that the
entropy of system A* is the sum of the entropy of A and
the entropy of A”:

(3.21)

S*=85+5". (3.22)
This can be proved by multiplying Eq. 3.18 by kp.

A third property of the entropy is that S* is a maxi-
mum when systems A and A’ are in thermal equilibrium.
This result follows from the fact that Q* is a maximum
at equilibrium, since $* = kg InQ* and the logarithm is
a monotonic function.

Finally, the entropy change in the system can be re-
lated to the heat flow into it. Equation 3.21 shows that if
there is an energy change in the system when N and the
parameters that govern the spacing of the energy levels
are fixed, then

a5 = <3S ) aU = (dU> |
ou N,V etc. T N,V etc.

But the energy change when N,V and any other para-
meters are fixed is the heat flow dQ:

_

as T

(3.23)

3.7 The Boltzmann Factor

Section 3.5 considered the equilibrium state of two sys-
tems that were in thermal contact. It is often useful to
consider systems in thermal contact when one of the sys-
tems is a single particle. This leads to an expression for
the total number of microstates as a function of the en-
ergy in the single-particle system, known as the Boltz-
mann factor. The Boltzmann factor is used in many sit-
uations, as is its alternate form, the Nernst equation
(Sec. 3.8).

Let system A be a single particle in thermal contact
with a large system or reservoir A’. Transferring energy
from A’ to A decreases the number of microstates in A’.
The number of microstates in A may change by some
factor G or remain the same. We will discuss G at the
end of this section.

To make this argument quantitative, consider system
A when it has two different energies, U,. and U,. Reservoir
A’ is very large so that its temperature T remains con-
stant, and it has many energy levels almost continuously
distributed. Let ©'(U’) be the number of microstates in
A’ when it has energy U’. The relative probability that
A has energy U, compared to having energy U,. is given
by the ratio of the total number of microstates accessible
to the combined system:
QU =Us)

QU,) Y (U* —U,)
QU,) V(U —U,)

(3.24)

O (U =U,)

This probability is the product of two functions, one de-
pending on system A and one on reservoir A’:

QU,)’
R_Q%ﬁ_m) (3.25)
QU -0,

Ratio R is calculated most easily by using Eq. 3.14,
remembering the definition 7 = kpT'. Since neither the
volume nor number of particles is changed, we use an or-
dinary derivative. We write it in terms of the temperature



of the reservoir:

1 /d 1
O \dU') " kpT"

/
22, _ (kBlT> Q. (3.26)
Since T’ is constant, this is easily integrated:
Q'(U') = const x V' k5T’
Therefore the ratio is
R const x U ~Us)/knT’
~ const x eU"=Ur)/kpT’
= e~ WsmUn/ksT, (3.27)

Although the temperature 7" is a property of the reser-
voir, we drop the prime. This ratio is called the Boltz-
mann factor. It gives the factor by which the number of
microstates in the reservoir decreases when the reservoir
gives up energy Ugs — U, to the system A.

The relative probability of finding system A with en-
ergy U, or U, is then given by

PUs)
P(U,)

G- WU—U kT _ [Q(Us)] o~ (U ~U,) ks T
Q(Uy)
(3.28)
The exponential Boltzmann factor is a property of the
reservoir. The factor G is called the density of states fac-
tor. It is a property of the system. If system A is a single
atom with discrete energy levels and we want to know
the relative probability that the atom has a particular
value of its allowed energy, G may be unity. In other
cases, there may be two or more sets of quantum num-
bers corresponding to the same energy, a situation called
degeneracy. In that case G may be a small number. We
would have to know the details to calculate it.

3.8 The Nernst Equation

The Nernst equation is widely used in physiology to relate
the concentration of ions on either side of a membrane to
the electrical potential difference across the membrane.
It is an example of the Boltzmann factor.

Suppose that certain ions can pass easily through a
membrane. If the membrane has an electrical potential
difference across it, the ions will have different energy on
each side of the membrane. As a result, when equilibrium
exists they will be at different concentrations. The ratio
of the probability of finding an ion on either side of the
membrane is the ratio of the concentrations on the two

sides:
C:  P(2)
C,  PQ)
The total energy of an ion is its kinetic energy plus its
potential energy: U = Ej, + E,. Chapter 6 will show that
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when the electrical potential is v, the potential energy is
E, = zev. In this equation z is the valence of the ion
(+1,—1,42, etc.) and e is the elementary charge (1.6 x
1071 C).

The concentration ratio is given by a Boltzmann factor,
Eq. 3.28:

C =

Cs |:Q(2):| e—(UQ—Ul)/kBT. (329)
Q(1)
We must now evaluate the quantity in square brackets. It
is the ratio of the number of microstates available to the
ion on each side of the membrane. The concentration is
the number of ions per unit volume and is proportional
to the probability that an ion is in volume AzAyAz. We
will state without proof that for a particle which can un-
dergo translational motion in three dimensions, Q(U) is
a AxAyAz, where « is a proportionality constant. There-
fore

Q(2)

Q(1)

_ aAzxAyAz 1
alAzAyAz

The energy difference is
Uy —U; = Ek(Q) — Ek(l) + 26(1)2 — 1)1).

It will be shown in Sec. 3.10 that the average kinetic
energy on both sides of the membrane is the same if the
temperature is the same. Therefore,

G
C

— e—ze(va—v1)/kpT

(3.30)

If the potential difference is v9 — vy then the ions will be
in equilibrium if the concentration ratio is as given by
Eq. 3.30. If the ratio is not as given, then the ions, since
they are free to move through the membrane, will do so
until equilibrium is attained or the potential changes.

If the ions are positively charged and vy > vy, then
the exponent is negative and Cy < (4. If the ions are
negatively charged, then Cy > Cf.

The concentration difference is explained qualitatively
by the electrical force within the membrane that causes
the potential difference. If vo > vy, the force within the
membrane on a positive ion acts from region 2 toward
region 1. It slows positive ions moving from 1 to 2 and
accelerates those moving from 2 to 1. Thus it tends to
increase C7.

The Nernst equation is obtained by taking logarithms
of both sides of Eq. 3.30:

Csy B ze
In <(71> = _kBT (’UQ — U1).

kgT ( 1y >
In{— ).
ze Cy
Multiplying both numerator and denominator of kgT'/ze
by Avogadro’s number Ny = 6.022142 x 1023 molecule

From this,

Vg — VU1 =
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mol~! gives the quantities N4kg and Ne. The former
is the gas constant:

Nakp = R=8.31451 J mol ' K. (3.31)
The latter is the Faraday constant:
Nae=F =96485.31 C mol . (3.32)
The coefficient is therefore
kT  RT
= —. 3.33
ze zF ( )

At body temperature, T = 37°C = 310K, the value of
RT/F is 0.0267 J C~1 = 26.7 mV.

In the form
RT (Cl)
vg—v1 = —In{—|,

.34

the Boltzmann factor is called the Nernst equation.

3.9 The Pressure Variation in the
Atmosphere

That atmospheric pressure decreases with altitude is well
known. This truth has medical significance because of the
effects of lower oxygen at high altitudes. We will derive
an approximate, constant temperature model for the de-
crease using the Boltzmann factor, and then we will do
it again using hydrostatic equilibrium.

The gravitational potential energy of an air molecule
at height y is mgy, where m is the mass of the molecule
and g is the gravitational acceleration. If the atmosphere
has a constant temperature, there will be no change of
kinetic energy with altitude. For a molecule to increase its
potential energy, and therefore its total energy, by mgy,
the energy of all the other molecules (the reservoir) must
decrease, with a corresponding decrease in the number of
accessible microstates. The number of particles per unit
volume is given by a Boltzmann factor:

C(y) = C(0)e~m9v/keT, (3.35)
Since for an ideal gas p = NkgT/V = CkpT, the pres-
sure also decreases exponentially with height.

The same result can be obtained without using statis-
tical physics, by considering a small volume of the at-
mosphere that is in static equilibrium. Let the volume
have thickness dy and horizontal cross-sectional area .S,
as shown in Fig. 3.11. The force exerted upward across
the bottom face of the element is p(y)S. The force down
on the top face is p(y + dy)S. The N molecules in the
volume each experience the downward force of gravity.
The total gravitational force is Nmg. In terms of the
concentration, N = CSdy. Therefore, the condition for

p(y + dy)S
Area S
y+dy[—, . .
. y Nmg
y L]
Imws

FIGURE 3.11. Forces on a small volume element of the at-
mosphere.

equilibrium is p(y)S — p(y + dy)S — CSmgdy = 0. Since
p(y) — p(y + dy) = —(dp/dy) dy, this can be written as

(%) -] 5o

The next step is to use the ideal gas law to write p =
C]CBT:

d
—kgT —C — Cgm = 0.

dy
If this is written in the form
dc mg
—_— = 3.36

it will be recognized as the equation for exponential de-
cay. The solution is Eq. 3.35.

3.10 Equipartition of Energy and
Brownian Motion

A very important application of the Boltzmann factor is
the proof that the average translational kinetic energy
per degree of freedom of a particle in thermal contact
with a reservoir at temperature T is kg7 /2. This result
holds for any term in the total energy that depends on
the square of one of the variables (such as a component
of the position or the momentum).

The proof is done for the kinetic energy resulting from
the x component of momentum. The same procedure can
be used for the other components. When the x compo-
nent of the momentum of a particle is between p, and
Pz + dp,, the kinetic energy is p2 /2m. The relative prob-
ability that the particle has this energy is given by the
Boltzmann factor, e~P2/2mksT VWe assert that the prob-
ability that the particle has momentum in this interval
is also proportional to dp,.® The average kinetic energy
associated with p, is obtained by multiplying the energy

8 A more detailed justification of this is found in earlier editions
of this book, in texts on statistical mechanics, or on the website
associated with this book.



by the Boltzmann factor and integrating over all values
of p,. We normalize the probability by dividing by the
integral of the Boltzmann factor. (See the first equation
in Appendix G.)

()

2m
The integral in the denominator is evaluated in Appendix
K and is (27ka’BT)1/2. The integral in the numerator of

Eq. 3.37 is
1\ /1 1o
— 3 (2mkpT)(2rmkpT)" /.

m

ffooo (pz/Qm)e_P§/2kaT dpx

oo _ 2
f_ooe p2/2mkpT dpx

(3.37)

Combining these gives

r: kpT
<2m> = % (3.38)

The average value of the kinetic energy corresponding
to motion in the x direction is kT /2, independent of
the mass of the particle. The only condition that went
into this derivation was that the energy depended on the
square of the variable. Any term in the total energy that
is a quadratic function of some variable will carry through
the same way, so that the average energy will be kpT'/2
for that variable. This result is called the equipartition of
energy.

The total translational kinetic energy is the sum of
three terms (p2 + p2 + p2)/2m, so the total translational
kinetic energy has average value %kBT.

This result is true for particles of any mass: atoms,
molecules, pollen grains, and so forth. Heavier particles
will have a smaller velocity but the same average kinetic
energy. Even heavy particles are continually moving with
this average kinetic energy. The random motion of pollen
particles in water was first seen by a botanist, Robert
Brown, in 1827. This Brownian motion is an important
topic in the next chapter.

3.11 Heat Capacity

Consider a system into which a small amount of heat AQ
flows. In many cases the temperature of the system rises.
(An exception is when there is a change of state such as
the melting of ice.) The heat capacity C of the system is
defined as

AQ

C= AT

Heat capacity has units of J K~!. It depends on the size

of the object and the substance it is made of. The specific

heat capacity, c, is the heat capacity per unit mass (J K1
kg~1) or the heat capacity per mole (J K~ mol~1).

The heat capacity also depends on any changes in the

macroscopic parameters that take place during the heat

(3.39)
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flow. Recall the first law of thermodynamics, Eq. 3.5:
AU = @Q — W. Only part of the energy transferred to
the system by the heat flow increases the internal energy.
Some also goes to work done by the system. For example,
if the volume changes, there will be pressure-volume work
done by the system (Sec. 1.16).

One special case is the heat capacity at constant vol-
ume, Cy . In that case, no pdV work is done by the system

and AU = AQ, so
oU
o= (5r),

Many processes in the body occur at constant pressure,
and the heat capacity at constant pressure, Cp, is not
equal to Cy . If both the pressure and volume change dur-
ing the process, the heat capacity depends on the details
of the pressure and volume changes.

The simplest example is the heat capacity at constant
volume of a monatomic ideal gas. The average kinetic
energy of a gas molecule at temperature 7" moving in
three dimensions is %kBT, and the total energy of NV
molecules is U = %N kgT. Therefore at constant volume
Cy = %N kp. For one mole of monatomic ideal gas the
heat capacity is %N Ak = %R. Molecules with two or
more atoms can also have rotational and vibrational en-
ergy, and the heat capacity is larger. The heat capacity
can also depend on the temperature.

As a biological example, consider the energy loss from
breathing [Denny (1993)]. In each breath we inhale about
V = 0.51 of air. Our body warms this air from the sur-
rounding temperature to body temperature. (The body
has a much higher heat capacity and does not signifi-
cantly cool. See Problem 43.) The specific heat of air
under these conditions is ¢ ~ 1000 J K—! kg=!, and the
density of air is p = 1.3 kg m—>. Therefore the heat flow
required to raise the air temperature in each breath is

(3.40)

AQ = CpV (Tbody - Tsurroundings) . (341)

For a body temperature of 37°C and surroundings at
20°C, the temperature difference is 17°C = 17 K. From
Eq. 3.41, AQ = 11 J. We breathe about once every 5
seconds, so the average power lost to the air we breathe
is 2.2W. A typical basal metabolic rate is about 100 W,
so this represents 2% of our energy consumption.

3.12  Equilibrium When Particles Can
Be Exchanged: The Chemical
Potential

Section 3.5 considered two systems that could exchange
heat. The most probable or equilibrium state was that
in which energy had been exchanged so that the total
number of microstates or total entropy was a maximum.



62 3. Systems of Many Particles

N =— N
\ \A

U <=—7—— U

FIGURE 3.12. Two systems can exchange energy by heat flow
and paticles. The volume of each system remains fixed.

This occurred when (Eq. 3.13)

L) r(e
Q\U )y V\OU' ) Ny ’

which is equivalent to T' = T”. Since S = kg In{ this is

also equivalent to

a8 (08
oU ) ny  \OU") iy’

This section considers the case in which the systems
can exchange both energy by heat flow and particles; they
are in thermal and diffusive contact (Fig. 3.12). The num-
ber of particles in each system is not fixed, but their sum
is constant:

N+ N’ =N*. (3.42)

Equilibrium will exist for the most probable state, which
means that there is heat flow until the two temperatures
are the same and Eq. 3.13 is satisfied. The most probable
state also requires a maximum in Q* or S* vs N. The
arguments used in the earlier section for heat exchange
can be applied to obtain the equilibrium condition

1 /09 1 /oY
) <8N>UV o <8N’)U, o (3.43)
The condition in terms of entropy is
oS 05’
— = . .44
(%), = (53).... .

For thermal contact, the temperature was defined in
terms of the derivative of S with respect to U, so that
equilibrium occurred when T' = T”. An analogous quan-
tity, the chemical potential, is defined by

oS
w=-T () .
ON u,v

(The reason T is included in the definition will become
clear later.) Both thermal and diffusive equilibrium exist
when

(3.45)

T=1T, w=p. (3.46)

Two systems are in thermal and diffusive equilibrium
when they have the same temperature and the same chem-
ical potential.

The units of the chemical potential are energy (J).
Since the units of S are J K~! and the units of N are
dimensionless,’ Eq. 3.45 shows that the units of ;& are J.

Consider next what happens to the entropy of the to-
tal system if particles are exchanged when the system is
not in equilibrium. Let the number of particles in the un-
primed system increase by AN and the number in the
primed system increase by AN’. The change of total en-
tropy is

. 0S5* oS 05’ ,
35— (25 s = (25) s o (25 s
Using the definition of the chemical potential and the fact
that AN’ = —AN, we can rewrite this as

AS*:(—;)AN>-< M)‘AN.

o

If the two temperatures are the same, this is

(KW —p
AS_< - )AN.

(3.47)

We see again that the entropy change will be zero for a
small transfer of particles from one system to the other
if = p'. Suppose now that particles flow from A’ to A,
so that AN is positive. If y/ > p, that is, the chemical
potential of A’ is greater than that of A, this will cause an
increase in entropy of the combined system. If particles
move from a system of higher chemical potential to one of
lower chemical potential, the entropy of the total system
imcreases.

3.13 Concentration Dependence of the
Chemical Potential

The change in chemical potential of an ideal gas (or
a solute in an ideal solution)!® when the concentration
changes from Cj to C' and there is also a change in its
potential energy has the form

C
Ap=kpT In () + A(potential energy per particle).

Co
(3.48)
We will derive this in Sec. 3.18; for now we show that it
is plausible and consistent with the Boltzmann factor.
We know from experience that particles tend to move
from a region of higher to lower potential energy, thus

9n this book, N represents the number of particles, and the
chemical potential has units of energy per particle. In other books
it may have units of energy per mole.

10 An ideal solution is defined in Sec. 3.18.



increasing their kinetic energy, which can then be trans-
ferred as heat to other particles by collision. We also know
that particles will spread out to reduce their concentra-
tion if they are allowed to. This latter process, called
diffusion, is discussed in Chapter 4. Both processes, de-
creasing the potential energy and decreasing the concen-
tration, cause a decrease in the chemical potential and
therefore an increase in the entropy.

It is the combination of these two factors that
causes the Boltzmann distribution of particles in the at-
mosphere. When the atmosphere is in equilibrium, the
potential energy term increases with height and the con-
centration term decreases with height so that the chemi-
cal potential is the same at all heights.

To see the equivalence between Eq. 3.48 and the Boltz-
mann factor, suppose that particles can move freely from
region 1 to region 2 and that the potential energy dif-
ference between the two regions is AFE,. The particles
will be in equilibrium when g1 = po. From Eq. 3.48 this
means that

kT InCq + Epl =kgT InCy + Epg.

This equation can be rearranged to give

By —Epn

InCy —InC; = — T
B

If exponentials are taken of each side, the result is

Ca _ —am ot
Cy

If the temperature of each region is the same, the aver-
age kinetic energy will be the same in each system, and
AE, = AU. This is then the same as the Boltzmann
factor, Eq. 3.29.

There is still another way to look at the concentra-
tion dependence. In an ideal gas, the pressure, volume,
temperature, and number of particles are related by the
equation of state pV = NkgT. In terms of the parti-
cle concentration C = N/V, this is p = CkgT. The work
necessary to concentrate the gas from volume V; and con-
centration C; to V5 and Cj is (see Eq. 1.56)

Va
Won gas — _/ p(V) dv. (349)

Vi

The concentration work at a constant temperature is
Va d ‘/2

v V

W = —-NkgT .
B "

= —Nk‘BT In
If the final volume is smaller than the initial volume, the
logarithm is negative and the concentration work is pos-
itive. In terms of the particle concentration C' = N/V

or the molar concentration ¢ = n/V, the concentration
work is

W = NkgT 10 22 = nRT In 2.

o - (3.50)
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The last form was written by observing that Nk = nR
where R is the gas constant per mole.

Comparing Eq. 3.50 with Eq. 3.48, we see that the con-
centration work at constant temperature is proportional
to the change in chemical potential with concentration.
It is, in fact, just the number of molecules N times the
change in p: Weone = NAp.

The concentration work or change of chemical potential
can be related to the Boltzmann factor in still another
way. Particles are free to move between two regions of
different potential energy at the same temperature. The
work required to change the concentration is, by Eq. 3.50,

Weone = NAp = NkgT In%.
Ch
The concentration ratio is given by a Boltzmann factor:

Cy/Cy = e*(Epszpl)/kBT7

so that In(Cy/C1) = —(Ep2 — Ep1)/kpT. Therefore, the
concentration work is Weone = —N(Epz — Ep1).

If Cy < C1, W is negative and is equal in magnitude
to the increase in potential energy of the molecules. The
concentration energy lost by the molecules is precisely
that required for them to move to the region of higher
potential energy. If Cy > (4, the loss of potential energy
going from region 1 to region 2 provides the energy nec-
essary to concentrate the gas. Alternatively, one may say
that the sum of the concentration energy and the poten-
tial energy is the same in the two regions. This was, in
fact, the statement about the chemical potential at equi-
librium: pe = p1.

The same form for the chemical potential is obtained
for a dilute solute. (We will present one way of under-
standing why in Sec. 3.18.) Therefore, the concentration
work calculated for an ideal gas is the same as for an ideal
solute. The work required to concentrate 1 mol of sub-
stance by a factor of 10 at 310K is (1 mol)(8.31 J mol~*
K=1)(310 K) In(10) or 5.93 x 10% J. One of the most con-
centrated substances in the human body is HT ion in gas-
tric juice, which has a pH of 1. Since it was concentrated
from plasma with a pH of about 7, the concentration ra-
tio is 10%. The work necessary to concentrate 1 mol is
therefore RT In(10%) = (8.31)(310)(13.82) = 3.56 x 10*
J.

3.14 Systems That Can Exchange
Volume

We have considered two systems that can exchange en-
ergy or particles. Now consider the systems shown in
Fig. 3.13. They are isolated from the rest of the universe.
The vertical line that separates them is a piston that can
move and conduct heat, so that energy and volume can
be exchanged between the two systems. The piston pre-
vents particles from being exchanged. The constraints are
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FIGURE 3.13. Two systems that can exchange volume are
separated by a movable piston. Heat can also flow through
the piston.

V*=V + V' and U* =U + U’ from which dV = —dV",
dU = —dU’. As before, equilibrium exists when the total
number of microstates or the total entropy is a maximum.
The conditions for maximum entropy are

05* 0S*
<6U>N,V =0 <aV>N,U -0

The derivation proceeds as before. For example,
0S* _ (98 n 05’
OV Jyu \OV )y \OV)yy
_(98) (o8
NV o OV o

Equilibrium requires that T = T” so that there is no heat
flow. The piston will stop moving and there will be no
change of volume when

s\ (98
av N,U o BV, N/}UI '

These derivatives can be evaluated in several ways. The
method used here involves some manipulation of deriva-
tives; a more detailed description, consistent with the mi-
croscopic picture of energy levels, is found in Reif (1964,
pp. 267-273).

For a small exchange of heat and work, the first law can
be written as dU = d@Q —dW . In the present case the only
form of work is that related to the change of volume, so
dU = dQ—pdV . It was shown in Eq. 3.23 that d@Q = T'dS.
Therefore dU = T'dS — pdV. This equation can be solved

for dS-:
s = (;) U + (%) av.

The entropy depends on U,V and N: S = S(U,V, N).
If N is not allowed to change, then

dS = <85> au + <85) dv.
oU ) v oV ) yu

Comparison of this with Eq. 3.52 shows that

a8y _1
o )yy T

(3.51)

(3.52)

(3.53)

(&9) =2 (3.54)
ovV)yuv T
The first of these equations was already seen as Eq. 3.21.
The second gives the condition for equilibrium under vol-
ume change. Referring to Eq. 3.51 we see that at equilib-
rium

p_r

T T

Therefore, equilibrium requires both T'=T" and

p=yp. (3.55)

This agrees with common experience. The piston does
not move when the pressure on each side is the same.

3.15 Extensive Variables and

Generalized Forces

The number of microstates and the entropy of a system
depend on the number of particles, the total energy, and
the positions of the energy levels of the system. The posi-
tions of the energy levels depend on the volume and may
also depend on other macroscopic parameters. For exam-
ple, they may depend on the length of a stretched muscle
fiber or a protein molecule. For charged particles in an
electric field, they depend on the charge. For a thin film
such as the fluid lining the alveoli of the lungs, the en-
tropy depends on the surface area of the film. The number
of particles, energy, volume, electric charge, surface area,
and length are all extensive variables: if a homogeneous
system is divided into two parts, the value of the variable
for the total system (volume, charge, etc.) is the sum of
the values for each part. A general extensive variable will
be called =z.

An adiabatic energy change is one in which no heat
flows to or from the system. The energy change is due to
work done on or by the system as a macroscopic parame-
ter changes, shifting at least some of the energy levels. For
each extensive variable z we can define a generalized force
X such that the energy change in an adiabatic process is

dU = —dW = Xdax. (3.56)

(Remember that dU is the increase in energy of the sys-
tem and dW is the work done by the system on the sur-
roundings.) Examples of extensive variables and their as-
sociated forces are given in Table 3.4.

3.16 The General Thermodynamic
Relationship
Suppose that a system has N particles, total energy

U, volume V, and another macroscopic parameter x on
which the positions of the energy levels may depend. The



TABLE 3.4. Examples of extensive variables and the general-
ized force associated with them.

T X dU = —dW
Volume V' —pressure —p —pdV
Length L  Force F FdL

Area a Surface tension ¢ o da
Charge ¢  Potential v vdq

number of microstates, and therefore the entropy, will de-
pend on these four variables: S = S(U, N, V,z). If each
variable is changed by a small amount, there is a change
of entropy

a8 oS
ds = (6’(]) v du + (81\7) v dN (3.57)

oS oS
i () av + () 0z,
ov U,N,z Oz U,N,V

Now consider the change of energy of the system. If
only heat flow takes place, there is an increase of en-
ergy d@Q = TdS. If an adiabatic process with a con-
stant number of particles takes place, the energy change
is —dW = Xdx — pdV. If particles flow into the system
without an accompanying flow of heat or work, the en-
ergy change is dUy. It seems reasonable that this energy
change, due solely to the movement of the particles, is
proportional to dN: dUy = adN. (It will turn out that
the proportionality constant is the chemical potential.)
For the total change of energy resulting from all these
processes, we can write a statement of the conservation
of energy: dU = TdS + Xdx — pdV + adN. This is an
extension of Eq. 3.5 to the additional variables on which
the energy can depend. It can be rearranged as

ds = (;) U — (%) dN + (%) v — (?) dz. (3.58)

Comparison of Egs. 3.57 and 3.58 shows that

a8 1
a8 a
(8]\[)[]%3C =-7 (3.59b)
aS P
(m/) S = T, (359C)
(85) = —K. (3.59d)
ox UN.V T

Comparison of Eq. 3.59b with Eq. 3.45 shows that a = p.
This is why the factor of T' was introduced in Eq. 3.45.
Equation 3.58, with the correct value inserted for a, is

TdS = dU — pdN + pdV — X da. (3.60)

This is known as the thermodynamic identity or the fun-
damental equation of thermodynamics. It is a combina-
tion of the conservation of energy with the relationship
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between entropy change and heat flow in a reversible
process. (A reversible process is one that takes place so
slowly that all parts of the system have the same tem-
perature, pressure, etc.) This equation and derivative re-
lations such as Egs. 3.59 form the basis for the usual
approach to thermodynamics.

Finally, let us consider the addition of a particle to a
system when the volume is fixed. If we do this without
changing the energy, it increases the number of ways the
existing energy can be shared and hence the number of
microstates. Therefore the entropy increases. If we want
to restore the entropy to its original value, we must re-
move some energy. Exactly the same argument can be
made mathematically. We have seen in Eqgs. 3.45 and

3.59b that
_ LS
k= ON Uy‘f

Since adding the particle at constant energy increases
the entropy, (0S/ON)y,y is positive and the chemical
potential is negative. Next, we rearrange Eq. 3.60 as
dU =TdS + pdN — pdV and by inspection see that

(6U>

K=\ 3% .

IN /gy

Therefore adding a particle at constant volume while

keeping the entropy constant requires that energy be re-
moved from the system.

3.17 The Gibbs Free Energy

3.17.1 Gibbs Free Energy

A conventional course in thermodynamics develops sev-
eral functions of the entropy, energy, and macroscopic
parameters that are useful in certain special cases. One
of these is the Gibbs free energy, which is particularly use-
ful in describing changes that occur in a system while the
temperature and pressure remain constant. Most changes
in a biological system occur under such conditions.
Imagine a system A in contact with a much larger reser-
voir as in Fig. 3.14. The reservoir has temperature 7" and

A

AV «f V
U == U

FIGURE 3.14. System A is in contact with reservoir A’. Heat
can flow through the piston, which is also free to move. The
reservoir is large enough to ensure that anything that happens
to system A takes place at constant temperature and pressure.
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pressure p’. A movable piston separates A and A’. (At
equilibrium, T'= T" and p = p’.) The reservoir is large
enough so that a change of energy or volume of system
A does not change T" or p'.

Consider the change of entropy of the total system that
accompanies an exchange of energy or volume between A
and A’. Above, this entropy change was set equal to zero
to obtain the condition for equilibrium. In this case, how-
ever, we will express the total entropy change of system
plus reservoir in terms of the changes in system A alone.
The total entropy is S* = S + S, so the total entropy
change is dS* = dS + dS’.

If reservoir A’ exchanges energy with system A, the
energy change is

dU' =T'dS" —dw' =T"dS" —p dV’.

This can be solved for dS’, and the result can be put in
the expression for the total entropy change:

av’

p/ dV/
T '

dS* = dS + 7

_|_

We are trying to get dS™ in terms of changes in system
A alone. Since A and A’ together constitute an isolated
system, dU = —dU’ and dV = —dV’. Therefore,

_—T"dS +dU +p'dV

ds* = 7

(3.61)

(Note that a minus sign was introduced in front of this
equation.) This expresses the total entropy change in
terms of changes of S, U, and V in system A and the
pressure and temperature of the reservoir.
The Gibbs free energy is defined to be

G=U-T'S+pV. (3.62)
If the reservoir is large enough so that interaction of the
system and reservoir does not change 7" and p’, then the
change of G as system A changes is

dG = dU —T'dS + p'dV. (3.63)
Comparison of Egs. 3.61 and 3.63 shows that
. dG
ds* = T (3.64)

The change in entropy of system plus reservoir is related
to the change of G, which is a property of the system
alone, as long as the pressure and temperature are main-
tained constant by the reservoir.

To see why G is called a free energy, consider the con-
servation of energy in the following form:

(work done by the system) = (energy lost by the system)
+ (heat added to the system),

dW = —dU +T'dS.

Subtracting pdV from both sides of this equation gives
dW —pdV = —dU +TdS — pdV = —dG.

The right-hand side is the decrease of Gibbs free energy
of the system. The work done in any isothermal, isobaric
(constant pressure) reversible process, exclusive of pdV
work, is equal to the decrease of Gibbs free energy of the
system. This non—pdV work is sometimes called useful
work. It may represent contraction of a muscle fiber, the
transfer of particles from one region to another, the move-
ment of charged particles in an electric field, or a change
of concentration of particles. It differs from the change in
energy of the system, dU, for two reasons. The volume of
the system can change, resulting in p dV work, and there
can be heat flow during the process. For example, let the
system be a battery at constant temperature and pressure
which decreases its internal (chemical) energy and sup-
plies electrical energy. From a chemical energy change dU
we subtract T'd.S, the heat flow to the surroundings, and
—pdV, the work done on the atmosphere as the liquid in
the battery changes volume. What is left is the energy
available for electrical work.

3.17.2  An Ezxzample: Chemical Reactions

As an example of how the Gibbs free energy is used, con-
sider a chemical reaction that takes place in the body at
constant temperature and pressure. System A, the region
in the body where the reaction takes place, is in contact
with a reservoir A’ that is large enough to maintain con-
stant temperature and pressure. Suppose that there are
four species of particles that interact. Capital letters rep-
resent the species and small letters represent the number
of atoms or molecules of each that enter in the reaction:

aA +bB «—— cC +dD.

An example is 1 glucose+602 «——6C0O2+6H;0, where
a=1,b=6,c=6,d= 6. The state of the system
depends on U, V, Ny, N, N¢, and Np.

We begin with the definition of G, Eq. 3.62, and we call
the pressure and temperature of the system and reservoir
pand T:

G=U-TS+pV.

Differentiating, we obtain

dG =dU —=TdS — SdT +pdV + V dp.
Generalize Eq. 3.60 for the case of four chemical species:
TdS =dU—puasdNa—pugpdNg—puc dNec—up dNp+pdV.

Insert this in the equation for dG and remember that
since the process takes place at constant temperature and
pressure, d1T' and dp are both zero. The result is

dG = pusdNyg+ ppdNp + po dNe + pup dNp.



In Sec. 3.13 we saw that the concentration dependence
of the chemical potential is given by a logarithmic term.
Equation 3.48 can be used to write

pa = pao+ kT In(Ca/Co),

where p 40 is the chemical potential at a standard con-
centration (usually 1 mol) and depends on temperature,
pH, etc. Note that Cy is the same reference concentration
for all species. As the reaction takes place to the right,
we can write the number of molecules gained or lost as

dN4 = —adN, dNg = —bdN, dN¢g =cdN, dNp =
ddN, so that we have
dG = [pao + kT In(Cx/Co)] (—adN)
+ [upo + kT In(Cp/Ch)] (—bdN)
+ [tco + kBT In(Cc/Co)] (cdN)
+ [,UDO + kT IH(CD/C())] (ddN).

This can be rearranged as (letting C4 = [4], etc.)

dG = [cpco + dppo — aprao — bpso

+kpT In <%) — kgTln <m>] dN.

The two logarithm terms together represent logs of con-
centration ratios. Therefore concentrations [4], [B], [C],
[D], and Cy must all be measured in the same units. The
last term can be made to vanish if the units are such that
Cp is unity (for example, 1 mol per liter). Then

dG = [cpco + dppo — ajpao — bpgo

4 kpT In (mzﬂ N,

Multiplying the expression in square brackets by Avo-
gadro’s number converts the chemical potential per mole-
cule to the standard Gibbs free energy per mole, and kT
to RT. To compensate, the change in number of molecules
dN is changed to moles dn or An:

AG = [(CGCO +dGpo — aG a9 — bGBO)

+ RTIn (w)] An.

(3.65)

The term in small parentheses is the standard free energy
change for this reaction, AG®, which can be found in
tables. At equilibrium AG = 0, so

[C]°[D)?

0:AG0+RT1H<W

) =AG° + RTIn K.

The equilibrium constant K.q is related to the standard
(1 molar) free-energy change by

AG°® = —RT In K,
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Many biochemical processes in the body receive free en-
ergy from the change of adenosine triphosphate (ATP) to
adenosine diphosphate (ADP) plus inorganic phosphate
(P;). This reaction involves a decrease of free energy. The
energy is provided initially by forcing the reaction to go
in the other direction to make an excess of ATP. One
way this is done is through a very complicated series of
chemical reactions known as the respiration of glucose.
The net effect of these reactions is'!

glucose + 605 — 6CO;y + 6H,0, AG° = —680keal,
36ADP + 36P; — 36ATP + 36H,0, AG° = 4263 kcal.

The decrease in free energy of the glucose more than com-
pensates for the increase in free energy of the ATP. The
creation of glucose or other sugars is the reverse of the
respiration process and is called photosynthesis. The free
energy required to run the reaction the other direction is
supplied by light energy.

3.18 The Chemical Potential of a
Solution

We now consider a binary solution of solute and solvent
and how the chemical potential changes as these two
substances are intermixed.'?> This is a very fundamen-
tal process that will lead us to the logarithmic depen-
dence of the chemical potential on solute concentration
that we saw in Sec. 3.13, as well as to an expression for
the chemical potential of the solvent that we will need in
Chapter 5.

To avoid having the subscript s stand for both solute
and solvent, we call the solvent water. The distinction
between solute and water is artificial; the distinction is
usually that the concentration of solute is quite small.
We need the entropy change in a solution when Ny solute
molecules, which initially were segregated, are mixed with
N, water molecules. We make the calculation for an ideal
solution—one in which the total volume of water mole-
cules does not change on mixing and in which there is no
heat evolved or absorbed on mixing. This is equivalent to
saying that the solute and water molecules are the same
size and shape, and that the force between a water mole-
cule and its neighbors is the same as the force between
a solute molecule and its neighbors.'® The resulting en-
tropy change is called the entropy of mizing.

To calculate the entropy of mixing, imagine a system
with N sites, all occupied by particles. The number of
microstates is the number of different ways that particles
can be placed in the sites. The first particle can go in any

HThere are multiple pathways in glucose respiration. The 36 is
approximate.

123ee also Hildebrand and Scott (1964), p. 17, and Chapter 6.

13Extensive work has been done on solutions for which these as-
sumptions are not true. See Hildebrand and Scott (1964); Hilde-
brand et al. (1970).
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FIGURE 3.15. The system on the left contains three water
molecules. Because they are indistinguishable there is only
one way they can be arranged. The system on the right con-
tains two water molecules and one solute molecule. Three dif-
ferent arrangements are possible. In each case the number of
arrangements in given by (Ny + Ni)!/(Nw!Ni!).

site. The second can go in any of N —1 sites, and so forth.
The total number of different ways to arrange the parti-
cles is N! But if the particles are identical, these states
cannot be distinguished, and there is actually only one
microstate. The number of microstates is N!/N!, where
the N! in the numerator gives the number of arrange-
ments and the N!in the denominator divides by the num-
ber of indistinguishable states.!4

Suppose now that we have two different kinds of par-
ticles. The total number is N = N, + N, and the to-
tal number of ways to arrange them is (IV,, + Ns)! The
N,, water molecules are indistinguishable, so this number
must be divided by N,,! Similarly it must be divided by
Ng! Therefore, purely because of the ways of arranging
the particles, the number of microstates {2 in the mix-
ture is (Vo + Ng)!/ (Nyw! Ng!) . An example of counting
microstates is shown in Fig. 3.15.

There could also be dependence on volume and energy;
in fact, the dependence on volume and energy may also
contain factors of N,, and N;. However, our assumption
that the molecules of water and solute have the same size,
shape, and forces of interaction ensures that these de-
pendencies will not change as solute molecules are mixed
with water molecules. The only entropy change will be
the entropy of mixing.

The entropy change of the mixture relative to the en-
tropy of N,, molecules of pure water and N5 molecules of
pure solute is

Qsolu‘nion

(3.66)

Ssolution - Spure water, = k}B In

pure solute qure water,

pure solute
Since with our assumptions 2 is unity for the pure solute
and the pure water, the entropy difference is

Ssolution - Spure water,
pure solute

B (Ny + Ni)!
=kpln ( N, NI

=kp {In[(Ny + Ni)!] — In(N,!) —In(N D}, (3.67)

14The fact that there is only one microstate because of the indis-
tinguishability of the particles is called the Gibbs paradox. For an
illuminating discussion of the Gibbs paradox, see Casper and Freier
(1973).

This is symmetric in water and solute, and it is valid for
any number of molecules.

Since we usually deal with large numbers of molecules
and factorials are difficult to work with, let us use Stir-
ling’s approximation (Appendix I) to write

(3.68)

Ssolution - Spure water,
pure solute

= kp [(No + No)In(Ny + N,) — Ny In N, — Ny In Ny .

The next step is to relate the entropy of mixing to the
chemical potential. This is done by recalling the definition
of the Gibbs free energy, (Eq. 3.62): G=U+pV —TS.
The sum of the first two terms, H = U + pV, is called
the enthalpy. Any change of the enthalpy is the heat of
mixing; in our case it is zero. (The present case is actually
more restrictive: p, V', and U are all constant.) Therefore,
since T' is also constant, the change in Gibbs free energy
is due only to the entropy change:

Ny

N,
v (2]
This is still symmetric with water and solute, but it di-
verges if either N,, or Ny is zero, because of our use of
Stirling’s approximation.

We now need an expression that relates the change in G
to the chemical potential. This can be derived for the gen-
eral case using the following thermodynamic arguments.
We use Eq. 3.62 to write the most general change in G:

dG =dU +pdV +Vdp—-TdS — SdT.

AG =

(3.69)

The fundamental equation of thermodynamics, Eq. 3.60,
generalized to two molecular species, is

TdS = dU — piy ANy — i AN, + pdV,
SO
dG = iy ANy + s ANs + V dp — S dT. (3.70)

This can be used to write down some partial derivatives
by inspection that are valid in general:

oG
Hy = () , (3.71a)
ONw ) N, pr
0G
= ( ) 7 (3.71b)
ONs ) Ny o
V= ((’“)G) , (3.71¢)
op Ny, Ny, T
S=— (5)0) . (3.71d)
T ) N, N

To find the chemical potential, we differentiate our ex-
pression for G, Eq. 3.69, with respect to N,, and Ny to
obtain

tw = kT Inxy,, s = kpT Inxg. (3.72)



These have been written in terms of the mole fractions
or molecular fractions
" N, + N,’

N

L Zs
Each chemical potential is zero when the mole fraction
for that species is one (i.e., the pure substance). The ex-
pressions for u diverge for x,, or x4 close to zero because
of the failure of Stirling’s approximation for small values
of .

The last step is to write the chemical potential in terms
of the more familiar concentrations instead of mole frac-
tions. We can write the change in chemical potential of
the solute as the concentration changes from a value C
to Cy as

Apty = 1s(2) = p1a(1) = kpT In(asfa).

As long as the solute is dilute, Ny, +Ng & Ny, s0 z2/x1 =
Cy/C4 and
A,us = kBT 111(02/01),

which agrees with Eq. 3.48.

The change in chemical potential of the water can be
written in terms of the solute concentration. Since x,, +
s =1, py = kT In(1 — z5). For small values of x4 the
logarithm can be expanded in a Taylor’s series (Appendix
D):

In(l —z5) = -z —1x2—~--
n s) — s 2 s
The final result is

p = —kpT x5 = —kpT Ns/(Ns + Ny)
~ —kpT (NS/V)/(Nw/V)7

or
c,

Cy’
To reiterate, this is the chemical potential of the water
for small solute concentrations. The zero of chemical po-
tential is pure water. The term is negative because the
addition of solute decreases the chemical potential of the
water, due to the entropy of mixing term. For a change of
solute concentration, the chemical potential of the water
changes by

fo = —kpT (3.74a)

kT AC,
Co
We now know the concentration dependence of the
chemical potential. In Chapter 5 we will be concerned
with the movement of solute and water, and we will need
to know the dependence of the chemical potentials on
pressure. To find this, we write

8,uw 8,“/10
At = () Ap+ ( ) AC,.
op T,Ny,Cls 9C; T,p, Ny

The second term is just Eq. 3.74b. To obtain the deriv-
ative in the first term, we use the fact that when the

Apy = — (3.74D)
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partial derivative of a function is taken with respect to
two variables, the result is independent of the order of
differentiation (Appendix N):

3 ) ), = [ (3)
Op \ONw /)1, N, TN, ONw \Op )7 N, N. -

From Egs. 3.71a and 3.71c, we get

(5 ).~ Go52)
op T, N, ONy T,p
For a process at constant temperature, the rate of change
of p,, with p for constant solute concentration is the same
as the rate of change of V' with N,, when p is fixed.

The quantity (0V/ON,, )1 is the rate at which the vol-
ume changes when more molecules are added at constant
temperature and pressure. For an ideal incompressible
liquid it is the molecular volume, V,,. We can repeat this
argument for the solute to obtain

(a”w) =V, (6“5) =V, (3.76)
Ip T,Ny Ip T,N,

In a solution, the total volume is V = N,V,, + NV,
where V,, and V are the average volumes occupied by
one molecule of water and solute. Dividing by V gives
1=CyV + C,V,. If the solution is dilute,

(3.75)

— 1
Vi n o (3.77)

In an ideal solution V,, = V. For an ideal dilute solution,
we then have

— Ap — kT AC,
At = Vo (Ap — kT AC,) ~ %. (3.78)
Aps = kT In(Cs2/Cs1) + V4 Ap
~ kT In(Cy2/Cs1) + Vi Ap. (3.79)

We saw this concentration dependence earlier, in Sec.
3.13. If the concentration difference is small, we can write
Cs2 = Cs1 + ACs and use the expansion In(1 + z) ~ z to

obtain
kT AC,

Ap
Apiy ~ '
'LL CS

. (3.80)

3.19 Transformation of Randomness
to Order

When two systems are in equilibrium, the total entropy is
a maximum. Yet a living creature is a low-entropy, highly
ordered system. Are these two observations in conflict?
The answer is no; the living system is not in equilibrium,
and it is this lack of equilibrium that allows the entropy to
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be low. The conditions under which order can be brought
to a system—its entropy can be reduced—are discussed
briefly in this section.

A car travels with velocity v and has kinetic energy
%mv? In addition to the random thermal motions of the
atoms making up the car, all the atoms have velocity v
in the same direction (except for those in rotating parts,
which have an ordered velocity that is more complicated
to describe). If the brake shoes are brought into contact
with the brake drums, the car loses kinetic energy, and
the shoes and drums become hot. Ordered energy has
been converted into disordered, thermal energy; the en-
tropy has increased. Is it possible to heat the drums and
shoes with a torch, apply the brakes, and have the car
move as the drums and shoes cool off 7 Energetically, this
is possible, but there are only a few microstates in which
all the molecules are moving in a manner that consti-
tutes movement of the car. Their number is vanishingly
small compared to the number of microstates in which
the brake drums are hot. The probability that the car
will begin to move is vanishingly small.

An animal is placed in an insulated, isolated container.
The animal soon dies and decomposes. Energetically, the
animal could form again, but the number of microstates
corresponding to a live animal is extremely small com-
pared to all microstates corresponding to the same total
energy for all the atoms in the animal.

In some cases, thermal energy can be converted into
work. When gas in a cylinder is heated, it expands against
a piston that does work. Energy can be supplied to an or-
ganism and it lives. To what extent can these processes,
which apparently contradict the normal increase of en-
tropy, be made to take place? These questions can be
stated in a more basic form.

1. To what extent is it possible to convert internal en-
ergy distributed randomly over many molecules into
energy that involves a change of a macroscopic para-
meter of the system? (How much work can be cap-
tured from the gas as it expands the piston?)

2. To what extent is it possible to convert a random
mixture of simple molecules into complex and highly
organized macromolecules?

Both these questions can be reformulated: under what
conditions can the entropy of a system be made to de-
crease?

The answer is that the entropy of a system can be made
to decrease if, and only if, it is in contact with one or more
auxiliary systems that experience at least a compensating
increase in entropy. Then the total entropy remains the
same or increases. This is one form of the second law
of thermodynamics. For a fascinating discussion of the
second law, see Atkins (1994).

One device that can accomplish this process is a heat
engine. It operates between two thermal reservoirs at dif-
ferent temperatures, removing heat from the hotter one

and injecting heat into the cooler one. Even though less
heat goes into the cooler reservoir than was removed from
the hotter one (the difference being the mechanical work
done by the engine), the overall entropy of the two reser-
voirs increases. The entropy change of the hot reservoir
is a decrease, —AQ/T, while the entropy change of the
cooler reservoir is an increase, +AQ’/T". Since T' < T,
the entropy increase more than balances the decrease,
even though AQ’ < AQ. The increase in the number
of accessible microstates of the cooler reservoir is greater
than the decrease in the number of accessible microstates
of the hotter reservoir. The coupled chemical reactions
that we saw in Sec. 3.17 are analogous.

Symbols Used in Chapter 3

Symbol Use Units First
used on
page

a Acceleration m s 2 49

a Number of atoms in a 53

molecule

a,b,c,d Number of atoms of 66

species A, B,C, and
D
a Area m? 65
cj Concentration mol m™% 63
(molar) mol 171
Specific heat capacity J K~! kg™! 61
Base of natural loga- 58
rithms

e Elementary charge C 59

f Number of degrees of 53

freedom

g Gravitational m s 2 60

acceleration

ks Boltzmann’s constant J K~* 57

m Mass kg 49

n Number of particles 50

in a volume

P Probability of “suc- 51

cess”

P Pressure Pa 56

Dz, Dy, D= Momentum kgms~! 60

q Probability of 51

“failure”

q Electric charge C 65

t Time S 49

u; Energy of the ith J 53

energy level

v, v’ Volume m? 51

v Electrical potential \% 59

V, Vg, Vy, v,  Velocity ms! 49

T,Y, 2 Position coordinate m 49

T General variable 55

T Extensive variable 64

Ts, Ty Mole fractions of 69

solute and water

y General variable 58
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A,B,C,D
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G

H

Keq

M

M
N,N',N*
Ny, N
Na
Na,Np,
N¢, Np
P

Q

R

R

S
S,9’,8*
T
Uu,U*
\%4

Vo, Vs
w
WCOHC

Use

Height

Valence
Thermodynamic
systems

Chemically reacting
species
Concentration
(particles per
volume)

Heat capacity
Kinetic energy
Potential energy
Force

Force

Faraday constant
Ratio of accessible
microstates in a
small system

Gibbs free energy
Enthalpy
Equilibrium constant
in a chemical
reaction

Number of molecules
in a system
Number of repeated
measurements
Number of particles
Number of solvent
(water) or solute
molecules
Avogadro’s number
Number of molecules
of species A, B, C,
and D consumed or
produced in a
chemical reaction
Probability

Flow of heat to a sys-
tem

Ratio of accessible
states in a reservoir
(Boltzmann factor)
Gas constant

Area

Entropy

Absolute
temperature

Total energy of a sys-
tem

Volume

Volume of water or
solute molecule
Work done by a
system on the
surroundings

Work done on a
system to increase
the concentration

Units

mol ™!

B B
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60

59

56

66
59
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59
59
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65

59
58

66
68
67
53
56
50
67

59
66
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59
60
58
57
53

51
69
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Problems 71

X Generalized force 64
«@ General variable 59
p Density kg m~® 61
o Surface tension Nm! 65
T kT J 57
m Chemical potential J 62
molecule™!
Ly fhs Chemical potential J 68
of water or solute molecule™!
Q,Q,0" Number of accessible 55
microstates
— A bar over any 52
quantity means that
it is averaged over an
ensemble of many
identially prepared
systems
) Angular brackets 52
mean an average
over time
Problems
Section 3.1

Problem 1 Some systems are so small that only a few
molecules of a particular type are present, and statistical
arguments begin to break down. Estimate the number of
hydrogen ions inside an E. coli bacterium with pH = 7.
(When pH = T the concentration of hydrogen ions is
10~"mol 171 )

Problem 2 Use the last column of Table 3.2 to calculate
the average value of n, which is defined bym = > nP(n).
Verify that m = Np in this case.

Problem 3 A loose statement is made that “if we throw
a coin 1 million times, the number of heads will be very
close to half a million.” What is the mean number of
occurrences of heads in 1 million tries? What is the stan-
dard deviation? What does “very close” mean? (You may
need to consult Appendices G and H.)

Problem 4 FEvaluate P(n;4,0.5) using Eq. 3.4. Check
your results against the histogram of Fig. 3.2 and by list-
ing all the possible arrangements of four particles in the
left or right sides of the box.

Problem 5 Write a computer program to simulate mea-
surements of which half of a boxr a gas molecule is in.
Make several measurements with different sets of random
numbers, and plot a histogram of the number of times n
molecules are found in the left half. Try this for N = 1,10,
and 100. In BASIC, use the function RND to obtain the
random number. Since the numbers are not really random
but form a well-defined sequence, a new experiment will
require changing the seed of the sequence. This is done
with the statement RANDOMIZE. Other languages have
similar functions.

Problem 6 Color blindness is a sex-linked defect. The
defective gene is located in the X chromosome. Females
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carry an XX chromosome pair, while males have an XY
pair. The trait is recessive, which means that the patient
ezhibits color blindness only if there is no normal X gene
present. Let Xy be a defective gene. Then for a female,
the possible gene combinations are

XX, XX, X;Xa.
For a male, they are
XY, X,;Y.

In a large population about 8% of the males are color-
blind. What percentage of the females would you expect
to be color-blind?

Problem 7 A patient with heart disease will sometimes
go into ventricular fibrillation, in which different parts of
the heart do not beat together, and the heart cannot pump.
This is cardiac arrest. The following data show the frac-
tion of patients failing to regain normal heart rhythm af-
ter attempts at ventricular defibrillation by electric shock
[W. D. Weaver (1982). New Engl. J. Med. 307: 1101-
1106.]

Number of attempts  Fraction persisting in fibrillation

0 1.00
1 0.37
2 0.15
3 0.07
J 0.02

Assume that the probability p of defibrillation on one at-
tempt is independent of other attempts. Obtain an equa-
tion for the probability that the patient remains in fib-
rillation after N attempts. Compare it to the data and
estimate p.

Problem 8 There are N people in a class (N = 25).
What is the probability that no one in the class has a
birthday on a particular day? Ignore seasonal variations
in birth rate and ignore leap years.

Problem 9 The death rate for 75-year-old people is
0.089 per year (Commissioners 1941 Standard Ordinary
Mortality Table).

(a) What is the probability that an indwvidual aged 75
will die during a 12-hour period? Neglect the fact that
some are sick, some are terminally ill, and so on, and
assume that the probability is the same for everyone.

(b) Suppose that 10,000 people, all aged 75, are given
the flu vaccine at t = 0. What is the probability that none
will die during the next 12 hours? (This underestimates
the probability, since sick people would not be given the
vaccine, but they are included in the death rate.)

Problem 10 This problem is intended to help you un-
derstand some of the nuances of the binomial probability
distribution.

(a) In a macabre “game” of “roulette” the victim places
one bullet in the cylinder of a revolver. (A less hazardous
game could be done with dice.) There is room for siz bul-
lets in the cylinder. The victim spins the cylinder, so there
is a probability of 1/6 that the bullet is in firing position.
The wvictim then places the gun to the head and fires. If
the victim survives, the cylinder is spun again and the
process is repeated. We can look either at the cumulative
probability of “success” (being killed), or the cumulative
probability of “failure” (surviving). Make a table for 1000
victims who keep playing the game over and over. Plot
the number surviving, the number killed on each try, and
the cumulative number killed.

(b) Show that the number surviving can be expressed as
1000e=N | where N is the number of tries, and find b.

(¢) The data in the following table are from Fédération
CECOS, D. Schwartz and M. J. Mayauz (1982). Female
fecundity as a function of age, N. Engl. J. Med. 306(7):
404—-406. They show the cumulative success rates in dif-
ferent age groups for patients being treated for infertil-
ity by artificial insemination from a donor. That is, each
month at the time of ovulation each patient who has not
yet become pregnant is inseminated artificially. Plot these
data. What do they suggest? Make whatever plots can
confirm or rule out what you suspect.

Fraction pregnant,  Fraction pregnant,

Cycle age < 25 age = 35

0 0 0

1 0.11 0.0
2 0.23 0.14
3 0.50 0.20
4 0.39 0.27
5 0.44 0.35
6 0.51 0.35
7 0.55 0.36
8 0.63 0.39
9 0.65 0.48
10 0.67 0.43
11 0.70 0.46
12 0.74 0.54

Section 3.3

Problem 11 A thermally insulated ideal gas of particles
is confined within a container of volume V. The gas is
inatially at absolute temperature T. The volume of the
container is very slowly reduced by moving a piston that
constitutes one wall of the container. Give qualitative an-
swers to the following questions.

(a) What happens to the energy levels of each particle?

(b) Is the work done on the gas as its volume decreases
positive or negative?

(c) What happens to the energy of the gas?
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Problem 12 System A has 10%° microstates, and system
A’ has 10*° microstates. How many microstates does the
combined system have?

Problem 13 Cualculate the Celsius and absolute temper-
atures corresponding to a room temperature of 68 °F, a
normal body temperature of 98.6 °F, and a febrile body
temperature of 104 °F.

Problem 14 Calculate and plot Q, Q', and Q* for
Fig. 3.10, thus reproducing the figure. Write down an an-
alytic expression for Q* and differentiate to find the value
of U for which Q* is a mazimum.

Problem 15 Systems A and A’ each consist of three par-
ticles, whose energy levels are u, 2u, 3u, etc. The total
energy available to the combined system is U* = 12u.

(a) Make a table similar to Table 3.5. (If you have
difficulty, see part (d) of this problem.)

(b) Find the most probable state. To what values of U
and U’ does it correspond?

(¢) Plot Q*vs. U. What is the probability that all three
particles in system A have energy u?

(d) Consider system A. If it has energy U, the maz-
imum energy the first particle can have is U — 2u. How
many microstates are there for which the first particle has
energy U — 2u? U — 3u? Show that the total number of
microstates for system A is given by

U 1| /u\? U
()1 [ )
U 2 U u
This proves the assertion in the text that for 3 particles,
Q increases as U2.

U/u—2

D

i=1

Problem 16 We have seen that in general with volume,
number of particles, and other parameters that determine
the positions of the energy levels held fized,

1d0_ 1

QdU  kgT’
Suppose that U = CT, where C' is the heat capacity of
the system. Find Q(U).

Problem 17 Systems A and A’ are in thermal contact.
Show that if T < T', energy flows from A’ to A to increase
Q*, while if T > T', energy flows from A to A’.

Problem 18 A simple system has only two energy levels
for each single entity in the system. (The system could,
for example, be a collection of “gates” in a cell membrane,
each with two states, open and closed.) One level has en-
ergy uy, the other has energy us. There are N entities
in the system. You can answer the following questions
without doing any calculations.

(a) What is the minimum energy of the system? How
many microstates are there for the minimum energy?
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(b) What is the maximum energy of the system? How
many microstates are there for which the system has max-
imum enerqgy?

(c) Sketch what Q(U) must look like.

(d) Recall the definition of T, Eqs. 3.14 and 3.15. Are
there any values of U for which the temperature is nega-
tive? Where?

Section 3.6

Problem 19 Consider the following arrangements of the
26 capital letters of the English alphabet: (a) TWO, (b)
any three letters, in any order, that are all different, and
(c) any three letters, in any order, which may repeat
themselves. For (b) and (c), consider the same letters in
a different order to be a different arrangement. If each
arrangement is a “microstate,” find  and S in each case.

Problem 20 Ice and water coexist at 273 K. To melt 1
mol of ice at this temperature, 6000J are needed. Calcu-
late the entropy difference and the ratio of the number of
microstates for 1 mol of ice and 1 mol of water at this
temperature. (Do not worry about any volume changes of
the ice and water.)

Problem 21 If a system is maintained at constant vol-
ume, no work is done on it as the energy changes. In that
case dU = C(T)dT, where U is the internal energy, C
is the heat capacity, and T is the temperature. The spe-
cific heat in general depends on the temperature. Suppose
that in some temperature region the specific heat varies
linearly with temperature: C(T) = Cy + DT.

(a) What is the entropy change of the system when it
is heated from temperature Ty to temperature Ty, both of
which are in the region where C(T) = Cy + DT'?

(b) What is the ratio of the number of microstates at
T5 to the number at Ty ¢

Problem 22 A substance melts at constant temperature.
There are 7 times as many microstates accessible to each
molecule of the liquid as there were to each molecule of
the solid. Ignore volume changes.
(a) What is the change in entropy of each molecule?
(b) How much heat is required to melt a mole of the
substance if the melting temperature is 50°C?

Problem 23 The entropy of a monatomic ideal gas
at constant energy depends on the volume as S =
NkgInV+-const. A gas of N molecules undergoes a
process known as a free expansion. Initially it is confined
to a volume V' by a partition. The partition is ruptured
and the gas expands to occupy a volume 2V . No work is
done and no heat flows, so the total energy is unchanged.
Calculate the change of entropy and the ratio of the num-
ber of microstates after the volume change to the number
before.
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Section 3.7

Problem 24 A pore has three configurations with the
energy levels shown. The pore is in thermal equilibrium
with the surroundings at temperature T'. Find the prob-
abilities p1, p2, and p3 of being in each level. Each level
has only one microstate associated with it.

3———2U,
2—— Uo
1—— 0

Problem 25 The DNA molecule consists of two inter-
twined linear chains. Sticking out from each monomer
(link in the chain) is one of four bases: adenine (A),
guanine (G), thymine (T), or cytosine (C). In the double
heliz, each base from one strand bonds to a base in the
other strand. The correct matches, A-T and G-C, are
more tightly bound than are the improper matches. The
chain looks something like this, where the last bond shown
is an “error.”

A (error)

The probability of an error at 300K is about 10~° per
base pair. Assume that this probability is determined by
a Boltzmann factor e=Y/¥8T  where U is the additional
energy required for a mismatch.

(a) Estimate this excess energy.

(b) If such mismatches are the sole cause of mutations
in an organism, what would the mutation rate be if the
temperature were raised 20°C?

Problem 26 In Chapter 18 we will study how the “spin”
magnetic moment of an atomic nucleus interacts with a
magnetic field B, leading to “magnetic resonance imag-
ing.” Assume a nucleus has a “magnetic dipole moment”
W, which can point in only one of two directions: parallel
to B (“spin up”) or antiparallel (“spin down”). The en-
ergy of a nucleus with spin up is —pB; with spin down
it is +uB. Use the Boltzmann factor to determine an ex-
pression for the ratio of the number of particles with spin

up to the number with spin down. Evaluate this ratio for
p=14x10"26J T B=2T, and T = 300K.

Problem 27 The data of Problem 2.10 were used to ob-
tain an empirical relationship between the charge integra-
tion time T and the temperature T. It might be that T
s determined by a chemical reaction whose rate is given
by a Boltzmann factor. Make a new plot based on that
assumption and determine the appropriate constants.

Problem 28 Ozxygen and carbon monozide compete for
binding to hemoglobin. If enough CO binds to hemoglobin,

the ability of the blood to deliver oxygen is impaired,
and carbon monoxide poisoning ensues. Consider the
hemoglobin molecule to be a two-state system: the heme
group is bound either to Oy or to CO. Calculate the prob-
ability of binding to CO. Let the G factor of Eq. 3.25 be
equal to the ratio of the concentrations of CO and Os.
Assume CO is 100 times less abundant than Oy. CO is
more tightly bound than Os to the heme group by about
0.15eV. Let T = 300 K.

Problem 29 The function of many enzymes is to act as
a catalyst: they increase the speed of a chemical reaction.
To get an idea of how a catalyst works, consider the re-
action

enzyme + substrate — enzyme + product.

In order for the reaction to proceed, some energy barrier
AE must be overcome. The probability of the substrate
having an energy AE or greater depends primarily on a
Boltzmann factor, e 2E/k8T  Determine by what factor
this probability increases if the enzyme decreases the acti-
vation energy by (a) 0.1eV, (b) 1eV. Assume T = 310K.

Problem 30 Chemists use Q1o to characterize a chem-
ical reaction. It is defined by

(reaction rate at T + 10)
(reaction rate at T')

Qo =

)

where T is the absolute temperature. If the reaction rate
s proportional to the fraction of reacting atoms that have
an energy exceeding some threshold AU, then to a first
approximation

R« /Oo e U/kBT g,
AU

(This neglects more slowly varying factors such as a Ul/?

which are introduced in more accurate analyses.)
(a) Show that R oc kgTe AU/FsT,

(b) Show that
AU 10
P\ s T(T +10) |

Q10T _
T+ 10

(¢) Estimate AU if Q1o =2 at T = 300K.
(d) To use Q19 to determine reaction rate as a function
of temperature, one usually assumes exponential behavior:

T —T

R(T) = R(Tp) (Quo) ™

Use values Ty = 298K, and AU = 0.6eV, to calcu-
late R(T)/R(Tp) using the Q19 model, the approzimation
R(T)/R(Ty) = (T/Tp) (e=AV/ksT Je=AU/RETO) " and the
approzimation R(T)/R(Ty) = (e AU/keT [e=AU/ksTo),
Temperature corrections for metabolic rate vs. mass have
been used by Gillooly et al. (2001).



Problem 31 The vapor pressure of a substance can be
calculated using the following model. All molecules in the
vapor that strike the surface of the liquid stick. (This
number is proportional to the pressure.) Those molecules
in the liquid that reach the surface and have enough en-
ergy escape. Equilibrium is established when the number
sticking per unit area per unit time is equal to the number
escaping.

(a) The number of molecules with energy U is propor-
tional to e=Y/k8T  What will be the number with energy
greater than the escape energy, Uy ?

(b) Use the result of part (a) and look up values for the
vapor pressure of water as a function of temperature, to
make a plot on semilog paper. From this plot, estimate
the escape energy Uy.

(c) The “heat of vaporization” of water is 540 calories
per gram. Convert the energy per molecule you found in
part (b) to calories per gram and compare it with this
figure.

Problem 32 A macromolecule of density p and mass m
is immersed in an incompressible fluid of density p,, at
temperature T'. The volume v occupied by one macromole-
cule is known. A dilute solution of the macromolecules
is placed in an ultracentrifuge rotating with high angu-
lar velocity w. In the frame of reference rotating with the
centrifuge, a particle at rest is acted on by an outward
force mw?r, where v is the distance of the particle from
the axis.

(a) What is the net force acting on the particle in this
frame? Include the effect of buoyancy of the surrounding
fluid, of density p.,.

(b) Suppose that equilibrium has been reached. Use the
Boltzmann factor to find the number of particles per unit
volume at distance r.

Problem 33 Suppose that particles in water are sub-
jected to an external force F(y) that acts in the y di-
rection. The force is related to the potential energy Ep,(y)
by F = —dE,/dy. Neglect gravity and buoyancy effects.

(a) Apply Newton’s first law to a slice of the fluid in
equilibrium to obtain an expression for p(y).

(b) If the particles have a Boltzmann distribution, show
that p(y) — p(0) = kgT [C(y) — C(0)].

Section 3.8

Problem 34 The concentrations of wvarious ions are
measured on the inside and outside of a nerve cell. The
following values are obtained when the potential inside the
cell is =70 mV with respect to the outside.

Ion  Inside (mmol I=1)  Outside (mmol I71)
Nat 15 145

K+ 150 5

Ccl- 9 125
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Comment on which species have concentrations that are
consistent with being able to pass freely through the cell
wall. Assume T = 300 K.

Problem 35 Calculate the volume of 1 mole of water.
Pour yourself a mole of water and drink it.

Section 3.9

Problem 36 A virus has a mass of 1.7 x 1074 g. If
the virus particles are in thermal equilibrium in the at-
mosphere, their concentration will vary with height as
C(y) = C(0)e~¥/*. Evaluate X. Do you think this answer
is reasonable?

Problem 37 Calculate the length constant A for the ex-
ponential decay (efy/)‘) of atmospheric pressure. Assume
the atmosphere is made up entirely of nitrogen, No. Ni-
trogen has an atomic weight of 14. Use your result to
compare air pressure at sea level to air pressure at the
top of Mt. Everest (8.8km.) Assume the atmosphere is
all at the same temperature; it is not.

Section 3.10

Problem 38 Calculate the average kinetic energy (in J
and eV) of a particle moving in three dimensions at body
temperature, 37°C.

Problem 39 This is our first model for the important
problem of detecting a “signal” in the presence of “noise.”
We will discuss this in detail in Chapters 9 and 11. A
sensitive balance consists of a weak spring hanging ver-
tically in the earth’s gravitational field. The equilibrium
position of the end of the spring is x = 0. When a mass
m is added to the spring, it elongates to an average posi-
tion xo, around which it vibrates because of thermal en-
ergy. In terms of Ax = x — xg, the momentum of the
mass p, and the spring constant K, the force that the
spring ezerts on the mass is Kxg, and the total energy is
U =p?/2m+ K (Az)2

(a) What is zg in terms of m, g, and K ?

(b) Find Ax? = (x — x0)?.

(c) What is the smallest mass that can be measured tak-
ing a single “snapshot” of the system to find the position
of the mass?

Section 3.11

Problem 40 The specific heat capacity of water is 4184 J
K™ kg™! [Denny (1993)]. Convert this to cal g~* °C™.
Historically, the calorie was defined in terms of the spe-
cific heat capacity of water.

Problem 41 The “calorie” we see listed on food labels is
actually 1000 cal or 1 kilocalorie. How many kilocalories

do you expend each day if your average metabolic rate is
100W ¢
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Problem 42 Your body must dissipate energy from
metabolism at a rate of about 100 W by various mech-
anisms to keep the body from overheating. Suppose these
mechanisms stopped working (perhaps you are wrapped in
a very good thermal blanket, so no heat can flow from or
to your body). At what rate will your body temperature
increase? How long will it take for your body temperature
to increase by 5°C? Assume you have a mass of T0kg,
and the specific heat of your body tissue is the same as of
water, 42007 K~ kg™t

Problem 43 A person of mass 70kg and body temper-
ature 37°C breathes in 0.51 of air at a temperature of
20°C. Assume that there are mo other sources of heat
(turn off metabolism for a moment), and the body as
a whole is insulated so no heat is lost to the environ-
ment. Find the equilibrium temperature that the air and
body will ultimately attain. Useful data: pgr = 1.3kg
M3, puater = 1000kgm™3, cq;r = 10007 K=F kg™ !,
Cwater = 4200 J K1 kg_l. Assume that the person’s body
tissue has the same heat capacity and density as water.

Problem 44 Fish are cold-blooded, and “breathe” water
(in other words, they extract dissolved oxygen from the
water around them wusing gills). Could a fish be warm-
blooded and still breathe water? Assume a warm-blooded
fish maintains a body temperature that is 20°C higher
than the surrounding water. Furthermore, assume that
the blood in the gills is cooled to the temperature of the
surrounding water as the fish breathes water. Calculate
the energy required to reheat 11 of blood to the fish’s body
temperature. One liter of blood carries sufficient oxygen
to produce about 4000 J of metabolic energy. Is the energy
needed to reheat 11 of blood to body temperature greater
than or less than the metabolic energy produced by 11
of blood? What does this imply about warm-blooded fish?
Why must a warm-blooded aquatic mammal such as a
dolphin breathe air, not water? Use ¢ = 4200J K~! kg™*
and p = 103 kg m—3 for both the body and the surrounding
water. For more on this topic, see Denny (1993).

Problem 45 Forensic scientists sometimes use “New-
ton’s law of cooling” to determine how long ago a victim
died. Assume that at the time of death (tgean) the body
had a temperature Tyoqy, and after death it cools to the
temperature of the surroundings, Tsy. Assume that the
rate of heat loss by the body is proportional to the sur-
face area of the body, S, and the temperature difference
T — Tsurr- The constant of proportionality is called the
“convection coefficient.” As the corpse cools, the decrease
in temperature is determined by the heat capacity.

(a) Relate the rate of heat loss to the rate of temper-
ature change, and derive a differential equation for the
body temperature T .

(b) Solve this differential equation (if you are having
trouble, see Section 2.7). The solution is Newton’s law of
cooling.

(c) Write an expression for the time constant of cooling
in terms of the specific heat capacity, density, volume,
area, and the convection coefficient.

(d) For two bodies with the same shape but different
sizes, which will cool faster: the large body or the small
one?

Problem 46 Determine whether the specific heat capac-
ity of air, 1000J K~* kg_1 is the same as the molar
specific heat capacity of a monatomic ideal gas, 3R/2. If
not, why not? Assume air is all nitrogen, Ns.

Section 3.12

Problem 47 A small system A is in contact with a
reservoir A’ and can exchange both heat and particles
with the reservoir. The number of microstates available
to system A does not change. Show that the difference in
total entropy when A is in two distinct states is

AS* = —(N; — Ny) (gff)(} — (Uy — Uy) (gi)N,

so that

P(Ny,Uy)  eMNp=Un)/ksT

P(N>,U) e O/t
where T and p are the temperature and chemical potential
of the reservoir. This is called the Gibbs factor, and it
reduces to the Boltzmann factor if Ny = No. Chemists
use the notation A = e*/¥5T  where X is the absolute
activity. Then

P(Ny,Uy) AN e=Ur/keT

P(N,Us) T ANz o—U2 kBT
Problem 48 Specialize the results of the previous prob-
lem to a series of binding sites on a surface, such as a
myoglobin molecule. The two states are
N; =0,
Ny =1,

Uy =0
U =0

No particle bound at the site
One particle bound at the site
(a) Show that the fraction of sites occupied is
N\e—Uo/ksT
f = T et

(b) If the sites are in equilibrium with a gas, then
Hgas = Isites OT Agas = Asites- From the definition p =
—T(0S/ON)y,v and the expression for the entropy of a
monatomic ideal gas,

3 5 5
S(U,V,N) = Nkg <an—|— §an_ §lnN+ 3 + const)

where const= 3 In(m/3nh?), show that f = p/(po + p),
where p is the gas pressure and
(k,BT)S/Q m3/2 er/kBT
po= (22372
This expression fits the data very well. See A. Rossi-

Fanelli and E. Antonini (1958). Archives Biochem. Bio-
phys. T7: 478.




Section 3.13

Problem 49 The entropy of a monatomic ideal gas is

S(U,V,N) = Nkg <an—|— gan — glnN—&— g + const) ,
where const= 3 In(m/3rh?) depends only on the mass
of the molecule. Consider two containers of gas at the
same temperature and pressure that can exchange parti-
cles. Expand the total entropy in a Taylor’s series, keep
terms to second order, and use the result to find the vari-
ance in the fluctuating number of particles in one system.
Assume N < N’. You should obtain the same result ob-
tained from the binomial distribution (0?> = N) if you
take into account that it is the temperature of the gas
in the container, and not its energy, that should be held
fized. (For a monatomic ideal gas U = 3NkpT/2. Use
this result to rewrite the entropy in terms of T,V, and
N.)

Problem 50 Show that the chemical potential of an ideal
gas is proportional to the logarithm of the concentra-
tion, a result that we have now seen several times for
dilute ideal systems. To do so, use the expression for
the entropy of a monatomic ideal gas given in the pre-
vious problems. Rewrite the thermodynamic identity as
dU =TdS + pudN — pdV, from which we can identify the

pm tial d67 Z"Uatl‘ve
Sa

The chemical potential is the increase in energy of the
system if one particle is added while keeping the entropy
and volume fixed. Use the expression for the entropy of
the monatomic ideal gas, for the case of N particles with
total energy U and N +1 particles with total energy U+,
to show that the chemical potential of the ideal gas is

ou

ON

w=kpgT {ln (N

3
V) ~3 In(3kgT/2) — const}

(55)

[A more extensive discussion for other simple systems is
given by Cook and Dickerson (1995).]

or

Vv

N

kaT

Problem 51 Derive the Nernst equation (Eq. 3.34) by
making the chemical potential the same on each side of a
charged membrane. Use Eq. 3.48, with the potential en-
ergy per particle given as zev.

Section 3.15

Problem 52 Consider two systems that can exchange
energy U and surface area a, but not volume V' or number
of particles N. The total energy is U* = U + U’ and the
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total surface area is a* = a + a’. Repeat the analysis of
Sec. 3.5 and show that in equilibrium T =T’ and 0 = o,
where the surface tension is defined as

oc=-T ( ) .
U,V,N

Problem 53 Consider a spherical air bubble in water.

(a) Equate the pressure-volume work to the surface
work, and find a relationship between the pressure and
the radius. This relationship is analogous to the Law of
Laplace (Problem 1.19).

oS

da

(b) Consider a small bubble attached to a large one. Use
the relationship derived in (a) to determine which bubble
has the larger internal pressure. Which bubble tends to
shrink and which tends to expand?

(¢) The bubbles in (b) are a model for two alveoli con-
nected by a bronchiole in our lungs. Explain why a special
fluid called a surfactant is needed to reduce the surface
tension in the water on the surface of the alveolus. For
more on the biological implications of surface tension, see
Denny (1993).

Section 3.16

Problem 54 Use the analysis presented in Sec. 3.16 to
show that the surface tension is
ou

< da > S,V,N '

Therefore, increasing the surface area when the entropy,
volume and number of particles are fixed requires energy.
For water, the surface tension is approximately 0.07J
m~2, which is a large value [Denny (1993)].

Section 3.17

Problem 55 The reaction 1 glucose+60y «—— 6CO2+
6H> O must conserve the number of each type of atom.
Determine the chemical formula of glucose.

Section 3.18

Problem 56 System A consists of N particles that move
from a region where the concentration is Cy to another
where the concentration is Cs, each experiencing a change
in chemical potential Ay = kpT In(Cy/Cy). The process
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occurs at constant temperature and pressure. What is the
ratio of the total number of microstates of system and sur-
roundings after the move to the number before the move?
Assume the concentrations do not change.

Problem 57 If one increases the volume of a liquid at
constant p and T, a portion of the liquid evaporates.
The amount of liquid decreases as V increases until all
the liquid is vaporized. The pressure at which the two
phases coexist is called the vapor pressure. The vapor
pressure depends on the temperature, as shown. When two
phases are in equilibrium, they are in mechanical, ther-
mal, and diffusive equilibrium: Ty = Ty, py = Dg, [ = g-
Thus, at any arbitrary point on the vapor-pressure curve,
tg(To,po) = i(To,po). Consider some nearby point in
the vapor-pressure curve, and expand both chemical po-
tentials in a Taylor’s series to show that

dp _ (91,/OT), — (9 /IT),
dT (9 /9p)r — (Opg/Op)r’
where dp/dT is the slope of the vapor-pressure curve. Use

the fact that G = Nu(p,T), that (0G/IT )N, = —S, and
that (0G/0p)n.1- =V, to show that

dp L

dT TAV’

where L is the latent heat of wvaporization and AV is
the volume change on vaporization. (Since L and V are
both extensive parameters, they can be exrpressed per mole
or per molecule.) This is called the Clausius—Clapeyron
equation.

LIQUID

VAPCR

Problem 58 Use the definition of Gibbs free energy G =
U-TS+pV and the thermodynamic identity T dS =
dU — udN + pdV to find the partial derivatives of G
when N, T, and p are the independent variables. Note
that U, S, and V are all extensive variables so that G is
proportional to N: G = N®. Thereby relate G to the
chemical potential.

Problem 59 (a) Find the change in Gibbs free energy
G=U-TS+pV for an ideal gas that changes pressure

reversibly from py to ps at a constant temperature.
(b) Since AG = NAp, find Ap.

Problem 60 Use the Clausius—Clapeyron equation for
the vapor pressure as a function of temperature (see Prob-
lem 57), dp/dT = L/TAV, and assume an ideal gas so
that AV =V, = NkgT/p to find the vapor pressure p as
a function of temperature.

Problem 61 The argument leading to the change in G
i a chemical reaction can be applied to a single particle
moving from a region where the chemical potential is p1z
to a region where the chemical potential is up by letting
dN = —dN4 = dNg, in which case dG = (up — pa) dN.
We saw in Sec. 3.13 that the chemical potential of a solute
in an ideal solution had the form Ap = kpT In(C/Cp) +
A (potential energy per particle). Sodium ions of charge
+e (e =1.6 x 1071 C) are found on one side of a mem-
brane at concentration 145mmoll~t. The electrical po-
tential is zero. On the other side of the membrane the
concentration is 15mmol1™" and the potential is 90mV.
The change in electrical potential energy is eAv. What
is the change in Gibbs free energy if a single sodium ion
goes from one side to the other? The temperature is 310 K
and the pressure is atmospheric.

Section 3.18

Problem 62 Suppose that a potential energy term as
well as a pressure must be added to the chemical poten-
tial, as was argued in Sec. 3.13. Consider a column of
pure water. What is the difference in chemical potential
between the top of the column and the bottom?

Problem 63 The open circles in the drawing represent
water molecules. The solid circles are solute molecules.
The vertical line represents a membrane that is permeable
to water but not solute. In case (a) there are two water
molecules to the right of the membrane. In (b) there is
one, and in (c) none. What is the total number of mi-
crostates of the combined system in each case?

‘Nelel Y el
‘aelel 1 Joi'®
Clelel X Jole|

Problem 64 If we want to apply Eq. 3.80 when there is
an appreciable difference in concentration, we can define
an average concentration by

Aps = kpT In(Csa/Cs1) = kT (AC,/Cs),
.= AC, _ AC,
T In(Cy/Cs1)  In(14+AC,/Cq)
Use the Taylor’s-series expansion y = x/In(l+z) ~ 1+

x/2 —22/12+ --- to find an approzimate expression for
Cs.

Problem 65 Verify that differentiation of Eq. 3.69 with
respect to N, and Ny gives Fq. 3.72.
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4

Transport in an Infinite Medium

Chapters 4 and 5 are devoted to one of the most funda-
mental problems in physiology: the transport of solvent
(water) and uncharged solute particles. Chapter 4 devel-
ops some general ideas about the movement of solutes in
a solution. Chapter 5 applies these ideas to movement of
water and solute through a membrane.

Section 4.1 defines flux and fluence rate and derives
the continuity equation. Section 4.2 shows how to calcu-
late the solute fluence rate when the solute particles are
drifting with a constant velocity, as when they are being
dragged along by flowing solvent.

The next several sections are devoted to diffusion, the
random motion of solute particles. Sections 4.3-4.5 de-
scribe random motion in a gas and a liquid. Section
4.6 states Fick’s first law, which relates the fluence rate
of diffusing particles to the gradient of their concentra-
tion. Section 4.7 relates the proportionality constant in
Fick’s first law to the viscous drag coefficient of the par-
ticle in the solution. Section 4.8 combines Fick’s first law
and the equation of continuity to give Fick’s second law,
the diffusion equation, that tells how the concentration
C(z,y,z,t) evolves with time. Section 4.9 discusses vari-
ous time-independent (steady-state) solutions to the dif-
fusion equation. Section 4.10 analyzes steady-state diffu-
sion to or from a cell, including both diffusion through
the membrane and in the surrounding medium. Section
4.11 discusses a model of steady-state diffusion of a sub-
stance that is being produced at a constant rate inside a
spherical cell. Section 4.12 develops a steady-state solu-
tion when both drift and diffusion are taking place in one
dimension. One technique for solving the time-dependent
diffusion equation is introduced in Sec. 4.13. Section 4.14
describes a simple random-walk model for diffusion.

4.1 Flux, Fluence, and
Continuity

4.1.1 Definitions

Flow was introduced in Sec. 1.15 of Chapter 1. The flow
rate, volume flux, or volume current i is the total volume
of material transported per unit time and has units of
m? s7'. One can also define the mass flur as the total
mass transported per unit time or the particle flux as the
total number of particles, and so on.

The particle fluence is the number of particles trans-
ported per unit area across an imaginary surface
(m~2). The volume fluence is the total volume trans-
ported across the surface and has units m?® times m~2,
or m.

The fluence rate or flur demsity is the amount of
“something” transported across an imaginary surface per
unit area per unit time. It can be represented by a
vector pointing in the direction the “something” moves
and is denoted by j. It has units of “something” m™2
s~!. Tt is traditional to use a subscript to tell what
is being transported: js is solute particle fluence rate
(m=2 s71), j,, is mass fluence rate (kg m~2 s71), and
ju is volume flux density (m® m=2 s™ or m s7!). In
a flowing fluid j, is the velocity with which the fluid
moves.

Slightly different nomenclature is used in different
fields. The words flur and flur density are often used
interchangeably. Table 4.1 shows some of the names that
are encountered. Do not spend much time studying it;
it is provided to help you when you must deal with the
notation in other books.
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TABLE 4.1. Units and names for j and 55 in various fields.

Jjs
Units Names Units Names

Particles m2s! Particle fluence rate s ! Particle flux
Particle current density Particle current
Particle flux density Particle flux
Particle flux

Electric charge Cm™2s™! or A m™2 Current density CstorA Current

Mass kg m—2 s7! Mass fluence rate kg s~! Mass flux
Mass flux density Mass flow
Mass flux

Energy Jm™2s ' or Wm™2 Energy fluence rate Js ' or W Energy flux
Intensity Power
Energy flux
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FIGURE 4.1. The fluence rates used to derive the continuity
equation in one dimension.

4.1.2  The Continuity FEquation in One
Dimension

As long as we are dealing with a substance that does not
appear or disappear (as in a chemical reaction, radioac-
tive decay, etc.), the number of particles or the mass, or in
the case of an incompressible liquid, the volume, remains
constant or is conserved. This conservation leads to a very
useful equation called the equation of continuity. It will
be derived here in terms of the number of particles.

We will first derive it in one dimension. Let the fluence
rate of some species be j particles per unit area per unit
time, passing a point. All motion takes place in the z
direction along a tube of constant cross-sectional area
S. The value of j may depend on position in the tube
and on the time: j = j(z,t). The number of particles
in the volume shown in Fig. 4.1 between z and = + Az
is N(z,t). At x there may be particles moving both to
the right and to the left; the net number to the right in
At is j(z,t) times the area S times the time At. A flux
density in the +x direction is called positive. The net
number of particles in at x is j(x, t)SAt. Similarly, the net
number out at x+Ax is j(x+ Az, t)SAt. Combining these

gives the net increase in the number of particles in the
volume SAz:

AN = [j(z,t) — j(z + Az, t)] S At. (4.1)
As Az — 0, the quantity involving j is, by definition,
related to the partial derivative of j with respect to =
(Appendix N):

jla,t) — j(z + Az, t) = —%ﬁ;” Az.
Similarly, the increase in N(z,t) is
AN (z,t) = N(x,t + At) — N(z,t) = %—]ZAt.

These two expressions can be substituted in Eq. 4.1 to
give

0 0
— N(z,t) = —(SAzx) — j(z,1).

o Nz, t) = —(SAz) = j(,1)

This equation can be written in terms of the concentra-
tion C(z,t) by dividing both sides by the volume SAx:

o¢ _ _9j
ot Oz’

This is the continuity equation in one dimension.

(4.2)

4.1.3 The Continuity Equation in Three
Dimensions

In three dimensions, j is a vector with components j,,
Jy, and j,. The flux across a surface dS oriented at some
arbitrary direction with the z,y, 2 axes is equal to the
component of j perpendicular to the surface times dS. To
see this, imagine that j lies in the xy plane with compo-
nents j, and j,. If j makes an angle ¢ with the vertical,
then j, = jsin¢, j, = jcos¢.



FIGURE 4.2. Volume element used to relate the fluence rate
across the slant face to the components of the fluence rate
parallel to the x and y axes.

FIGURE 4.3. The total number of particles per second passing
through the closed surface (flux) is the sum of the contribu-
tions j,dS from all elements of the surface.

Consider the small volume shown in Fig. 4.2. If there
is no buildup of particles within the volume, the flux
in across the two faces parallel to the axes is equal to
the flux across dS. The area dS of the slant surface is
drdz, where dz is the thickness of the volume perpendic-
ular to the paper. The number of particles per second
across the face dydz is j, dydz = (jsin¢)(dydz). Since
dy = drsinf, this may be written as jsin ¢ sinfdzdr.
Similarly, the number of particles per second in across
the bottom face is j, dzdz = j cos ¢ cos Odzdr. The sum of
these must be equal to the number leaving across the slant
face: j dzdr(sin ¢ sin 0 + cos ¢ cos 0) = j dzdr cos(¢p — 0) =
j dS cos(¢—0). The number of particles per unit area per
second across the slant face is, therefore, j cos(¢ — 0).
Now ¢ — 6 is the angle between j and the unit vector i
perpendicular to the surface. We can write the flux den-
sity across dS as j, (the component of j parallel to f),
or j- 0 (the dot product of j and the normal). The flow
per second is sometimes written as

(j-h)dS, jndS, or (j-dS). (4.3)

These are all equivalent: vector dS is defined to have mag-
nitude dS and to point along the normal to the surface
that points outward from the enclosed volume. The same
result is obtained (with more algebra) when j is not in
the zy plane.
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4.1.4  The Integral Form of the Continuity
Equation

If we consider a closed volume as shown in Fig. 4.3, the
total number of particles flowing out of the volume can
be obtained by adding up the contribution from each el-
ement dS. It is

(total number of particles out in time At)

_ / / jadS | At.

closed surface

Since the total number of particles in the volume enclosed
by the surface is

/// C(z,y,z,t)dedydz,

enclosed volume

cdv = — / / JndS.  (4.4)

surface enclosing
the volume

we can write!

a

enclosed volume

The outward flux density or fluence rate of the substance
integrated over a closed surface (the net flux through the
surface) is equal to the rate of decrease of the amount of
substance within the volume enclosed by the surface.

How to evaluate the surface integral is best shown by
two examples. First consider a volume defined by a sphere
of radius r. Inside the sphere is a lamp radiating light
uniformly in all directions. The light leaves through the
surface of the sphere. The amount of light energy in the
volume defined by the sphere is not changing, so the rate
of energy production by the lamp P is equal to the energy
flux through the surface of the outer sphere:

p=[[inas

Because of the spherical symmetry, j is perpendicular to
the surface and is the same at all points on the sphere.

Therefore,
P=j, / ds.

Since the integral of dS over the surface of a sphere of
radius r is 4mr?,

(4.5)

. P 16
J=in= 5 (4.6)
The amount of energy per unit area per unit time crossing
the surface of the sphere is the energy fluence rate or the
intensity.

The second example is slightly more complicated. Sup-
pose that j is parallel to the z axis and has the same value

1We can write dV as d3r or dzdydz.
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FIGURE 4.4. The fluence rate is the same everywhere. The
fluxis f jndS over the entire sphere. When the normal compo-
nent of the fluence rate is outward, the contribution is positive.
When it is inward, the contribution is negative.

everywhere. The net flux through any closed surface will
be zero in that case, and we will verify it to show how to
evaluate a surface integral. Consider the situation shown
in Fig. 4.4, where j, is integrated over the surface of the
sphere. At every point in the shaded strip, j, = jcos#.
The strip has width rdf and circumference 27rsin 6, so
its area is 27r? sin § df. Thus

/jndS:/ j cos B 2mr? sin @ d
0

= 27rr2j/ cosf sinfdf = 0.
0

4.1.5 The Differential Form of the Continuity
Equation

The continuity equation can be expressed in terms of
derivatives instead of integrals. To derive this form, con-
sider a small rectangular volume located at (z,y, z) and
having sides (dz, dy, dz) as shown in Fig. 4.5. Apply Eq.
4.4 to each face of the volume. The rate the substance
flows in through the face at = is j,(z)(dydz). At face
x + dz it flows out at a rate j,(z + dx)dydz. There is

FIGURE 4.5. The small volume used to derive the differential
form of the continuity equation.

no contribution to the flow through this face from j, or
4., since they are parallel to the face. The net increase in
particles in the volume is

Oju
I drdydz.

— oz + dz) — jo(2)] dydz = —

Similar terms can be written for the faces perpendicular
to the y and z axes. The total amount of the substance
entering the volume per unit time is the rate of change of
the amount within the volume, which is the rate of change
of concentration times the volume dxdydz. Therefore,

oc _ (%= %5y | 05
5 (dzdydz) = (5‘x + By + P (dzdydz)
o oCc  0j adj adj
_9Y _ 9 9y | Yz
ot Odx Oy Oz (47)

This is the differential form of the continuity equation.
Equation 4.2 was a special case of this when j was parallel
to the x axis.

The combination of derivatives on the right-hand side
of Eq. 4.7 occurs frequently enough to warrant a special
name. It is called the divergence of the vector j:2

07
0z

divj:V'j:% 9y

ox y

The continuity equation is therefore

@ = —div j.

= (4.8)

This differential form of the continuity equation is com-
pletely equivalent to the integral form, Eq. 4.4. It is some-
times more convenient to use Eq. 4.4 and at other times
more convenient to use Eq. 4.8.

The continuity equation says that the rate of decrease
of the amount of a conserved substance in a certain re-
gion expressed as —9C/0t is equal to the rate at which
it leaves the region expressed as the flow through the
surface surrounding the region. The substance may be a
certain kind of molecule, electric charge, heat, or mass.
If it is electric charge, j is the electric current per unit
area and C' is the charge per unit volume. If it is mass, C
is the mass per unit volume or densityp. The continuity
equation is found in many contexts; in each it expresses
the conservation of some quantity.

In the flow of a liquid, the density of the liquid p, the
mass M, and volume V are related by M = pV. If the
liquid is incompressible, a given mass always occupies the
same volume, and the density does not change. Therefore,
dp/0t = 0, and the equation of continuity gives

div j,, = 0. (4.9)

2The divergence is one of the concepts of vector calculus. A good
review of vector calculus is Schey (1997).



4.1.6  The Continuity Equation with a
Chemical Reaction

Our derivation of the continuity equation assumed that
the substance was conserved—mneither created nor de-
stroyed. If a chemical reaction is creating the substance
at a rate @ particles m™3 s~! (which may depend on
position) then the continuity equation becomes

oC -

i Q — div j, (4.10a)
9///0( )V (4.10b)
at T,Y,z .

volume
~ [[[e@yaav - [[ s
volume surface
enclosing

the volume

If particles are being consumed in the chemical reaction,
then @ is negative.

4.2 Drift or Solvent Drag

One simple way that solute particles can move is to drift
with constant velocity. They can do this in a uniform
electric or gravitational field if they are also subject to
viscous drag, or they can be carried along by the solvent,
a process called drift or solvent drag. (The solute particles
are dragged by the solvent.) The solute fluence rate is js,
with units of particles m™2 s~! or just m~2 s~'. The
number of solute particles passing through a surface is
the volume of solution that moves through the surface
times the concentration of solute particles. Therefore,

js =Cju. (4.11)

This effect will be explored in greater detail in Sec. 4.12.

4.3 Brownian Motion

There is also movement of solute molecules when the wa-
ter is at rest. If the solution is dilute, the solute particles
are far apart and hit one another only occasionally. They
are struck by water molecules much more often. The re-
sult is that they are in continual helter-skelter motion.
Each solute molecule is influenced by water molecules,
but not by other solute molecules.

In Chapter 3, it was shown that the relative probabil-
ity for a particle to have energy u when it is in thermal
equilibrium with a reservoir at temperature T is given
by a Boltzmann factor:* P oc e=%*/#8T In Chapter 3, the

3The Boltzmann factor provided Jean Perrin with the first
means to determine Avogadro’s number. The density of particles

4.2 Drift or Solvent Drag 85

TABLE 4.2. Values of the rms velocity for various particles at
body temperature.

Molecular Mass Vrms

Particle weight (kg) (m s™1)
Ho 2 3.4x 10727 1940
H>0O 18 3 x 10726 652
(o3 32 5.4 x 10726 487
Glucose 180 3 x 107 200
Hemoglobin 65 000 1x 10722 11
Bacteriophage 6.2 x 106 1 x 10720 1.1
Tobacco mosaic

virus 40 x 10 6.7x 10720 0.4
E. coli 2 x 10715 0.0025

Boltzmann factor was used to show that if any energy
term depends on the square of some variable, then the av-
erage value of that term is kgT/2. A particle with kinetic
energy of translation m(v2 4+ v; + v7)/2 has an average
energy kpT/2 for each of the three terms, or a total trans-
lational kinetic energy of 3kpT'/2. This is true regardless
of the mass of the particle. Any particle in thermal equi-
librium with a reservoir (which can be the surrounding
fluid) will move with a mean square velocity given by*
—  3kpT

v2 = )

m

(4.12)

The square root of v2 is called the root-mean-square,
or rms, velocity. It decreases with increasing mass of the

particle. Table 4.2 shows values of vy, = mlﬂ for dif-
ferent particles at body temperature.

This movement of microscopic-sized particles, resulting
from bombardment by much smaller invisible atoms, was
first observed by the English botanist Robert Brown in
1827 and is called Brownian motion. Solute particles are
also subject to this random motion. If the concentration
of particles is not uniform, there will be more particles
wandering from a region of high concentration to one of
low concentration than vice versa. This motion is called
diffusion.

In the next several sections, we study random motion
and diffusion, first for a gas and then for a liquid.

4.4 Motion in a Gas: Mean Free Path
and Collision Time

It is possible to define a mean free path, which is the
average distance a particle travels between successive

in the atmosphere is proportional to exp(—mgy/kgT), where mgy
is the gravitational potential energy of the particles. Using particles
for which m was known, Perrin was able to determine kg for the
first time. Since the gas constant R was already known, Avogadro’s
number was determined from the relationship R = Nakp.

4The average velocity is 7, = 0, since a particle with a given
speed moves with equal probability to the left or right.
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collisions, and a collision time, the average length of time
between collisions. Consider a collection of Ny molecules.
The number that have moved distance x without suffering
a collision is N (z). For short distances dz, the probability
that a molecule collides with another molecule is propor-
tional to dz: call it (1/A)dz. Then, on the average, the
number of molecules having their first collision between
x and x +dz is dN = —N(x)(1/X)dx. This is the familiar
equation for exponential decay. The number of molecules
surviving without any collision is N (z) = Noe~%/*.

To compute the average distance traveled by a molecule
between collisions, we multiply each possible value of x
by the number of molecules that suffer their first collision
between z and z+dx. Since N () is the number surviving
at distance z, and dxz/)\ is the probability that one of
those will have a collision between x and x + dz, the
mean value of z is

T = Nio/o xN(x)%dx.

With the substitutions s = /) and N(z) = Nge™*, this
can be written as

f:)\/ e °sds
0

e (s+ 1)];0 =\

(4.13)

Thus A is the mean free path.

A similar argument can be made for the length of time
that each molecule survives before being hit. The prob-
ability that a molecule is hit during a short time dt is
proportional to dt: call it (1/¢.)dt. The number of mole-
cules surviving a time ¢ is given by N = Nye~ %/t and the
mean time between collisions can be calculated as above.
It is ., which is called the collision time. The number of
collisions per second is the collision frequency, 1/t..

It is possible to estimate the mean free path and the
collision frequency. Consider a particle of radius a; mov-
ing through a dilute gas of other particles of radius ay. For
convenience, imagine that particle 1 is moving and that
all the other particles are fixed in position. The path of
the first particle is shown in Fig. 4.6. If the center of one of
these other molecules lies within a distance aj + as of the

No collision

2 Collision

FIGURE 4.6. A particle of radius a; moves through a gas
of particles of radius az2. A collision will occur if the center of
another particle lies within a distance a; + a2 of the trajectory
of the particle under consideration.

moving molecule, there will be a collision. The effect is
the same as if the moving particle had radius a; + as and
all the other particles were points. In moving a distance
x, the particle sweeps out a volume V (x) = 7(a; + az)?x.
On average, when the particle has traveled a mean free
path there is one collision. The average number of gas
particles in the volume V' ()\) = m(a; + a2)?\ is therefore
1. The average number of particles per unit volume is C.
Thus, 1 = Cr(a; + az)?\, or

1

. S
m(a1 + az)2C

(4.14)

The quantity 7(a; +as)? is the area of a circle. It is called
the cross section for the collision of these particles. The
concept of cross section is used extensively in Chapter 15.

This estimation is somewhat crude in its assumption
that only one molecule is moving. If all the molecules are
of the same kind, then the factor 1 in the numerator is
replaced by 271/2 = 0.707 [Reif (1965, p. 471)].

For a gas at standard temperature and pressure, the
volume of 1 mol is 22.4 liter = 22.4 x 1073 m?, so C =
2.7 x 10%° m~3. If a; = a9 = 0.15 nm, then Eq. 4.14 can
be used to calculate the mean free path:

1
(3.14)(.3 x 1079)2m?2(2.7 x 102> m—3)
=0.13 pm.

A:

For a gas at standard temperature and pressure, the mean
free path is about 1000 times the molecular diameter, and
the assumption of infrequent collisions is justified.

The collision time can be estimated by saying that

where T is the average speed of the molecules. Using the
rms velocity for 7, we can use Eq. 4.12 to write

m 1/2

The important feature of this is the dependence on m
and on . For air at room temperature, t, = 2 x 10705,

(4.15)

1/2

4.5 Motion in a Liquid

The assumptions of the previous section do not hold in
a liquid, in which the particle is being continually bom-
barded by neighbors. Blindly applying Eq. 4.14 to water,
we can use the fact that 1 mol is 18 g and occupies 18
cm?, to obtain A = 0.1 nm, so that a/\ ~ 1, and the as-
sumptions behind the derivation break down. Estimating
the collision time with Eq. 4.15 gives a value that is a
factor of 1000 less than for the gas, or 10713 s.
Although these estimates of the mean free path and
the collision time are undoubtedly wrong, the concepts



appear to be valid. Computer simulations of molecular
collisions show that the distribution of free paths is expo-
nential even though the mean free path is only a fraction
of a molecular diameter. In Sec. 4.12 we will regard diffu-
sion as a random walk of the diffusing particles and relate
the diffusion constant to the mean free path and collision
time. Equations 4.14 and 4.15 can then be used to show
that the diffusion constant should be inversely propor-
tional to the square of the particle radius. This has been
verified experimentally for the diffusion of certain liquids.
Evidence for the validity of this random-walk model for
diffusion in liquids has been summarized by Hildebrand
et al. (1970, pp. 36-39).

A particle in a liquid is subject to a fluctuating force
F(t), which is random in magnitude and direction. The
particle begins to move in response to this force. However,
after it has begun to move, it suffers more collisions in
front than behind, so the force slows it down. Because the
particle can neither stay at rest nor continue to move in
the same direction, it undergoes a random, zig-zag motion
with average translational kinetic energy 3kpT/2. The
mean square velocity is not zero, but the mean vector
velocity is zero.

For each particle, Newton’s second law is m(dv/dt) =
F(t). This is not very useful as it stands. To make it
more tractable, consider a particle with average velocity
v. (The average means that an ensemble of identically
prepared particles is examined.) The particle has more
collisions on the front that slow it down. We therefore
break up F(t) into two parts: an average drag force, which
will be the same for all the particles in the ensemble, and
a rapidly fluctuating part g(¢), which will vary with time
and from particle to particle. Newton’s second law is then
m(dv/dt) = (drag force) + g(t), where g(t) is random in
direction. The drag force will be zero when VvV is zero.
For average velocities that are not too large it can be
approximated by a linear term:

(drag force) = -3 V.

With this approximation, Newton’s second law is known
as the Langevin equation:
dv

(If the liquid is moving, the drag force will be zero when
the particle has the same average velocity as the liquid.
So ¥ can be interpreted as the relative velocity of the
particle with respect to the liquid.) This equation often
has another term in it, which does not average to zero
and which represents some external force such as gravity
that acts on all the particles. This approximate equation
can be solved in some cases, though with difficulty, and
has formed the basis for some treatments of the motion
of large particles in fluids. With suitable interpretation,
it can describe motion of the fluid molecules themselves.®

(4.16)

5See, for example, Pryde (1966, p. 161).
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In particular, when dealing with molecular motion it is
necessary to consider the fact that the molecules do not
move independently of one another.

For a Newtonian fluid (Eq. 1.33) with viscosity 7, one
can show (although it requires some detailed calculation®)
that the drag force on a spherical particle of radius a is
given by

Farag = — 0V = —67nav. (4.17)

This equation is valid when the sphere is so large that
there are many collisions of fluid molecules with it and
when the velocity is low enough so that there is no tur-
bulence. This result is called Stokes’ law.

If the sphere is not moving in an infinite medium but
is confined within a cylinder, then a correction must be
applied.” In that case the viscous drag depends on the
velocity of the spherical particle through the fluid, the
average velocity of the fluid through the cylinder, and the
distance of the particle from the axis of the cylinder.®

4.6 Diffusion: Fick’s First Law

Diffusion is the random movement of particles from a
region of higher concentration to a region of lower con-
centration. The diffusing particles move independently of
one another; they may collide frequently with the mole-
cules of the fluid in which they are immersed, but they
rarely collide with one another. The surrounding fluid
may be at rest, in which case diffusion is the only mech-
anism for transport of the solute, or it may be flowing,
in which case it carries the solute along with it (solvent
drag). Both effects can occur together.

We first consider diffusion from a macroscopic point of
view and write down an approximate differential equa-
tion to describe it. We then obtain a second equation
describing diffusion by combining this with the conti-
nuity equation. After discussing some solutions to these

6This is an approximate equation. See Barr (1931, p. 171).

7An early correction for particles on the axis of a cylinder is
found in Barr (1931), p. 183. More recent work is by Levitt (1975),
Bean (1972), and Paine and Scherr (1975).

8Stokes’ law is valid for a particle in a gas if the mean free path
is much less than the particle radius a, so that many collisions with
neighboring molecules occur. At the other extreme, a mean free
path much greater than the particle radius, the drag force turns
out to be Fyag = ana(a/A)v. Although this will not be directly
useful to us in considering biological systems, it is mentioned here
to show how important it is to understand the conditions under
which an equation is valid. Although the dimensions of this new
equation are unchanged (we have introduced a factor a/A, which
is dimensionless), the drag force depends on a? instead of on a.
The reason for the difference is that collisions are now infrequent
and that the probability of a collision that imparts some average
momentum change is proportional to the projected cross-sectional
area of the sphere, ma2. In the regime of interest to us, in which
there are many collisions, we would not expect the force to depend
on A\. We hope that this will convince you of the danger in using
someone else’s equation without understanding it.
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FIGURE 4.7. An example of diffusion. Each molecule at A
or B can wander with equal probability to the left or right.
There are more molecules at A to wander to the right than
there are at B to wander to the left. There is a net flow of
molecules from A to B.

equations, we look at the problem from a microscopic
point of view, considering the random motion of the par-
ticles, and show that we get the same results.

Suppose that the surrounding solvent does not move.
If the solute concentration is completely uniform, there
is no net flow. As many particles wander to the left as to
the right, and the concentration remains the same. There
will be local fluctuations in concentration, analogous to
those we saw in the preceding chapter for fluctuations in
the concentration of a gas, but that is all.

However, if the concentration is higher in region A than
in region B to the right of it, there are more particles to
wander to the right from A to B than there are to wander
to the left from B to A (Fig. 4.7). If the problem is one-
dimensional, there is no net flow if 9C/dx = 0, but there
is flow if 0C/0x # 0. If the concentration difference is
small, then the flux density j is linearly proportional to
the concentration gradient OC/dx. The equation is

) oC

Constant D is called the diffusion constant. The units of
D are m? s~!, as may be seen by noting that the units of
j are (something) m~2 s~! and the units of C/dx are
(something) m~*. This relationship is called Fick’s first
law of diffusion, after Adolf Fick, a German physiologist
in the last half of the nineteenth century. The minus sign
shows that the flow is in the direction from higher con-
centration to lower concentration: if 9C/dx is positive,
the flow is in the —z direction.

If the actual process is not linear, this can be thought of
as the first term of a Taylor’s series expansion (Appendix
D).

Fick’s first law is one of many forms of the transport
equation. Other forms are shown in Table 4.3. The units
of the constant are different for the last three entries in
the table because the quantity that appears on the right
has different units than the quantity on the left. In each
case, however, a fluence rate or flux density (of particles,
mass, energy, electric charge, or momentum) is related

(4.18a)

TABLE 4.3. Various forms of the transport equation.

Substance Units of
flowing Equation Units of j the constant
oC
Particles Jjs=—D — m—2 g1 m? s~ !
oz
oC
Mass jm=—-D— kgm2s1 m?2s!
oz
oT
Heat JH = —K — Jm~2s1 JK1m-1s1
oz
or kg s73
; . ov -2 -1 -1 =1 y—1
Electric charge je = —0 B2 Cm™~°s Cm sV
T
or Q=1 m—1
Viscosity
(y component
of momentum
transported
in the =
F ov
direction) —=—n— NmZ2or kg m~1 s71
S ox
kgm~!s™2 orPas

to a rate of change of some other quantity with position.
This rate of change is called the gradient of the quantity.
The gradient is often called the driving force. The con-
centration gradient or driving force causes the diffusion
of particles; the temperature gradient “causes” the heat
flow; the electric voltage gradient “causes” the current
flow; the velocity gradient “causes” the momentum flow.

The diffusive fluence rate can be related to the gradient
of the chemical potential of the solute. With the notation
Cy = Cs and Cy — C; = AC, equation 3.48 can be

rewritten as

A/,(,S = kBTln(Cg/Cl) = kBTln(l + ACS/CS)
~ kBTACS/CS7

from which ACs =~ CsAus/kpgT, so

9C, _ C. o,
dr  kpT Oz

and
DCy O

Jsz = T On (4.18b)
The solute flux density is proportional to the diffusion
constant, the solute concentration, and the gradient in
the chemical potential per solute particle.

In three dimensions, the flow of particles can point in
any direction and have components j., jy, and j.. An
equation can be written for each component that is anal-
ogous to Eq. 4.18a or 4.18b. We can write one vector
equation instead of three equations for the three compo-
nents by defining X, ¥, and Z to be unit vectors along the
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axes. Then
JaX + Jy¥ + J22

N Ox 6yy 0z )’

We have created a vector that depends on C(x,y, z,t) by
performing the indicated differentiations on C' and mul-
tiplying the results by the appropriate unit vectors. This
vector function is the gradient of C' in three dimensions:

oc . oC oC
= = ——X+—V+ —2. 4.1
gradC = VC o X+ 8yy—|— 5, 2 (4.19)
Fick’s first law with this notation is
j=-Dgrad C=-DVC. (4.20)

Remember that this is simply shorthand for three equa-
tions like Eq. 4.18a. If you feel a need to review vector
calculus, which deals with the divergence and gradient,
an excellent text is the one by Schey (1997).

4.7 The Einstein Relationship
Between Diffusion and Viscosity

Before we can apply Fick’s first law to real problems, we
must determine the value of the diffusion constant D. The
experimental determination of D is often based on Fick’s
second law of diffusion, which combines the first law with
the equation of continuity and is discussed in the next
section. It is closely related to the viscosity, as was first
pointed out by Albert Einstein. This is not surprising,
since diffusion is caused by the random motion of the
particles under the bombardment of neighboring atoms,
and viscous drag is also caused by the bombardment by
neighboring atoms. What is remarkable is that a general
relationship between them can be deduced quite easily by
imagining just the right sort of experiment.

Consider a collection of particles uniformly suspended
in a fluid at rest. Imagine that each particle is suddenly
subjected to an external force Foy (such as gravity) that
acts in the —y direction, as shown in Fig. 4.8. The par-
ticles will all begin to drift downward, speeding up until
the upward viscous force on them balances the external
force: Foyxy — 8V = 0. In terms of magnitudes, Fext = [v.

¥ forall
l particles

FIGURE 4.8. Particles drifting under the influence of a down-
ward force Feoxt.

FIGURE 4.9. Calculating the fluence rate of particles drifting
downward.

Because these particles are all moving downward, there
is a downward flux density. With reference to Fig. 4.9,
the number of particles crossing area S in time At will
be those within the cylinder of height vAt. That number
is the concentration times the volume (STAt). Dividing
by S and At gives

Jarite = —0C(y)¥.

As the particles move down, they deplete the upper
region of the fluid and cause a concentration gradient.
This concentration gradient causes an upward diffusion
of particles, with a flux density given by

Equilibrium will be established when these two flux
densities are equal in magnitude:|jaries| = |jaisel,

BC(y)] = \Dac .

5 (4.21)

But equilibrium means that the particles have a Boltz-
mann distribution in y, because their potential energy
increases with y (work is required to lift them in opposi-
tion to Fext). For a constant Fey independent of y, the
energy is u(y) = Fexty, where Fioy is the magnitude of
the force. The concentration is

C(y) = CO)e /Mo,
Therefore 50 r
S —-2c).
8y kBT
Inserting this in Eq. 4.21 gives v = DFu/kgT or D =
UkpT [ Foxt. In equilibrium the magnitude of Fiy is equal

to the magnitude of the viscous force f. Therefore D =
kpTw/f. Since the viscous force is proportional to the

velocity, |f] = |37,

kT
5

The derivation of this equation required only that the
velocities be small enough so that the linear approxima-
tions for Fick’s first law and the viscous force are valid.

D (4.22)
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FIGURE 4.10. Viscosity of water at various temperatures.
Data are from the Handbook of Chemistry and Physics. (1972),
53rd ed., Cleveland, Chemical Rubber, p. F-36.

It is independent of the nature of the particle or its size.
If in addition the diffusing particles are large enough so
that Stokes’ law is valid, then 3 = 67na and®
kT
D=-52—.
6mna

(4.23)

The diffusion constant is inversely proportional to the
fluid viscosity and the radius of the particle.

Combining Eqs. 4.18b and 4.22 shows that in terms of
the chemical potential,

_ G Ops

B Ox
Sometimes minus the gradient of the chemical potential is
called the driving force. To see why, note that for solvent
drag, js = CsU, so U0 = —0us/Ox is the driving force.

The viscosity of water varies rapidly with temperature,
as shown in Fig. 4.10. These values of viscosity and Eq.
4.23 have been used to calculate the solid lines for D
vs a shown in Fig. 4.11. Various experimental values are
also shown. The diffusion constant increases rapidly with
temperature, so that care must be taken to specify the
temperature at which the data are obtained. Since not all
the molecules are spherical, there is some uncertainty in
the value of the particle radius a.

jsm =

9For self-diffusion (such as radioactively tagged water in water),
a hydrodynamic calculation shows that 8 = 47na [R. B. Bird, W.
E. Stewart, and E. N. Lightfoot (1960). Transport Phenomena, New
York, Wiley, p. 514ff].
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FIGURE 4.11. Diffusion constant versus sphere radius a for
diffusion in water at three different temperatures. Experimen-
tal data at 20 °C (293 K) are from Benedek and Villars (2000),
Vol. 2, p. 122. Data at 25°C (298 K) are from Handbook of
Chemistry and Physics, (1972), 53rd ed., Cleveland, Chemical
Rubber, p. F-47.

Figure 4.12 is a plot of D for particles diffusing in water
at 20°C (293 K) vs. molecular weight M. Although the
solid line provides a rough estimate of D if M is known,
scatter is considerable because of varying particle shape.
DNA lies a factor of 10 below the curve, presumably be-
cause it is partially uncoiled and presents a larger size
than other molecules of comparable molecular weight.

It is possible to measure the self-diffusion of water in
water by using a few water molecules in which one hydro-
gen atom is radioactive and measuring how they diffuse.
Water has an unusually large self-diffusion constant.

If all of the molecules shown had the same density, then
their radius would depend on M'/3 and the line would
have a slope of f%. The slope is steeper than this, sug-
gesting that the molecules are larger for large M than
constant density would predict. This increase in size may
be partially attributable to water of hydration. The pre-
cise values of diffusion constants depend on many details
of the particle structure; however, the lines in Fig. 4.12
provide an order-of-magnitude estimate.

The assumption that the flux depends linearly on the
concentration gradient was an approximation. The diffu-
sion constant is found, as a result, to be somewhat con-
centration dependent.
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FIGURE 4.12. Diffusion constant versus molecular weight in
daltons. (One dalton is the mass of one hydrogen atom.) Data
at 293 K are from Benedek and Villars (2000), Vol. 2, p. 122.
The 293-K solid line was drawn by eye through the data; the
line at 310 K was drawn parallel to it using the temperature
change in Eq. 4.23. Data scatter around the line by about
30%, with occasional larger departures.

4.8 Fick’s Second Law of Diffusion

Fick’s first law of diffusion, Eq. 4.18a, is the observa-
tion that for small concentration gradients, the diffusive
flux density is proportional to the concentration gradi-
ent: j, = —D JC/0x. If this is differentiated, one obtains
0jy/0x = —D 0*C/0x?. Similar equations hold for the y
and z directions. The equation of continuity, Eq. 4.2, is

_9C _9ja
ot Ox

07
0z

9y
dy

If we combine these two equations, we get Fick’s second
law of diffusion, also known as the diffusion equation:

2 2 2
M:D(ac o°C ac>. (4.24)

1 922 T o2 T o2

The first law relates the flux of particles to the concen-
tration gradient. The second law tells how the concentra-
tion at a point changes with time. It combines the first
law and the equation of continuity. The function on the
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right-hand side of Eq. 4.24,

o*C  9*C n 0*C
ox2 = Oy? 022’

is called the Laplacian of C. It is often abbreviated as
V2C (read “del squared C”) in American textbooks or
AC in European books. It is given in other coordinate
systems in Appendix L.

In principle, if C(x, y, z) is known at ¢t = 0, Eq. 4.24 can
be solved for C(x,y, z,t) at all later times. (We develop
a general, and sometimes useful, equation for doing this
below.) We may also look at this equation as a local equa-
tion, telling how C' changes with time at some point if we
know how the concentration changes with position in the
neighborhood of that point. The change of concentration
with position determines the flux j. The changes in flux
with position determine how the concentration changes
with time.

There is extensive literature on how to solve the dif-
fusion equation (or the heat-flow equation, which is the
same thing).! Instead of discussing a large number of
techniques, we show by substitution that a Gaussian or
normal distribution function, spreading in a certain way
with time, is one solution to Eq. 4.24. In Sec. 4.14 we inde-
pendently derive the same solution from a random-walk
model of diffusion. An important feature of the Gaussian
solution is that the center of the distribution of concen-
tration does not move.

For simplicity, consider the one-dimensional case. Take
the distribution to be centered at the origin and find those
conditions under which!!

C(z,t) = N e=a /2% (1)

oD (4.25)

We can view the one-dimensional case in either of two
ways. If it represents diffusion along a pipe, then C(z, )
is the number of particles per unit length in a slice be-
tween x and x+dx, and N is the total number of particles.
If it represents a three-dimensional problem with concen-
tration changing only in the z direction, then C(x,t) is
the number of particles per unit volume and N is the
number of particles per unit area.

Equation 4.25 is a solution to the one-dimensional ver-
sion of Eq. 4.24:

oC 02C

10See, for example, Crank (1975) or Carslaw and Jaeger (1959).
HThe properties of the Gaussian function, Eq. 4.25, are discussed
in Appendix I.
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To do this, we will need various derivatives of Eq. 4.25.
They can be evaluated using the chain rule:

6C’ N ]_ 7332/202 1’2 7$2/202 do’
— = —-=e + —e —,
ot Vor o ot dt
oC N _ 2, 2T

I _ e~ /20"

ox Vor o3’

B 7$2/202 x

820 N 1 7$2/202 X
— =—— | ——=e + —e — .
0z2 Vor o3 o3 o2

When these are substituted in Eq. 4.26, the result is

N _£2/202 1‘2 dO’
. -1+ =) =
V2ro? o dt

N 2 2 Z‘Q
=D e /%0 (—l—i—).
V2ro3 o?

We can divide both sides of this equation by

2]V 26—12/202
V &2TTo

because this factor is never zero. The result is

x? do D [a?
o) (8 ).
(02 >dt a<02 >

We can divide by (2?/0% — 1) for all values of = except
x = Fo0. These values of x are where the second deriv-
ative of C vanishes; at these points, 9C/dt = 0 for any
value of 0. At all other points, the solution will satisfy
the equation only if

do
2 —p.
Tt

This can be integrated to give

/adU:/Ddt

1
502 (t) = Dt + const.

Multiply through by 2 and observe that o2(0) = 2 const,
so that

or

o?(t) = 2Dt + o*(0). (4.27)

If the concentration is initially Gaussian with variance
02(0), after time ¢ it will still be Gaussian, centered on
the same point, with a larger variance given by Eq. 4.27.
Figure 4.13 shows this spreading in a typical case. At
still earlier times the concentration would have been even
more narrowly peaked. In the limit when o(¢) is zero, all
the particles are at the origin, giving an infinite concen-
tration. This is, of course, impossible. However, all the
particles could be very close to the origin, giving a very
tall, narrow curve for C(z).

The width of the curve, determined by o, increases as
the square root of the time. A square root increase is

0.5 T T T T T
2
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= 62(1) =6%(0) + 2 x 1
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FIGURE 4.13. Spreading of particles by diffusion assuming
D=1.

less rapid than a linear increase, reflecting the fact that
as the particles spread out the concentration does not
change as rapidly with distance, so that the flux and the
rate of spread decrease.

Note that the rate of change of concentration with
time depends on the second derivative of the concentra-
tion with distance. This is because the rate of buildup
is the flux into a region at some surface minus the flux
out through a nearby surface; each flux is proportional
to the gradient of the concentration, so the buildup is
proportional to the difference in gradients or the second
derivative.

In the Problems at the end of this chapter you will dis-
cover that diffusion of small particles through water for a
distance of 1 um takes about 1 ms, and diffusion through
100 pm takes 1002 times as long, or 10 s. The times are
even longer for larger particles. Thus, diffusion is an ef-
fective mode of transport for distances comparable to the
size of a cell, but it is too slow for larger distances. This
is why multicelled organisms evolve circulatory systems.

4.9 Time-Independent Solutions

In this section we develop general solutions for diffu-
sion and solvent drag when particles are conserved and
the concentration and fluence rate are not changing with
time. The system is in the steady state. The continuity
equation, Eq. 4.8, then becomes div j = 0. We consider
the solutions for C' and j in one, two, and three dimensions
when the symmetry is such that j depends on only one
position coordinate, x or r. These solutions are sometimes
appropriate models for limited regions of space. There is
always some other region of space, serving as a source or
sink for the particles that are diffusing, where the model
does not apply.

The behavior of j can be deduced from the continuity
equation. In one dimension, such as flow in a pipe or
between two infinite planes, the continuity equation is

djx
T 4.2
dx 0, (4.28)



which has a solution j, = by where b; is a constant. (The
subscript denotes the constant for the one-dimensional
case.) The total flux or current 7 is constant, so

jo =g (4.29)
where S is the area perpendicular to the flow.

In two dimensions, we consider a problem with cylindri-
cal symmetry and consider only flow radially away from
or towards the z axis. In that case, the equation in Table
L.1 for the divergence becomes

1d
i) =0, 4.30
r dr( rir) ( )
from which J
—(ry,) = 0. 4.31
T v (4.31)
This means that (rj,.) is constant, or
. b
=2 4.32
Jr= (4.32)

This is valid everywhere except along the z axis, where
there is a source of particles and the divergence is not
zero. The total current ¢ leaving a region of length L
parallel to the z axis is also constant,

7
2w Lr’

In three dimensions with spherical symmetry, the ra-
dial component of the divergence is

1 d
r2 dr a7 =0,
from which J
2 .
5 r) — 0, 434
=) (434)
so that b
. 3
Jr = 772 (4.35)
or .
= — (4.36)
ATk '

This is valid everywhere except at the origin, where there
is a source of particles.

These results depend only on continuity, time indepen-
dence, and the assumed symmetry. They are true for dif-
fusion, solvent drag, or any other process. Note the pro-
gression in going to higher dimensions: in n dimensions
r"~14, is constant.

Now consider how the concentration varies in the two
limiting cases of pure solvent drag and pure diffusion.
(Section 4.12 discusses what happens when both trans-
port modes are important.)

For solvent drag, the velocity of the solvent is the vol-
ume flux density j, which also satisfies the continuity
equation. In one dimension j, = i,/S. In two dimensions
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ju = iy/2wLr, and in three dimensions j, = i, /47r?. In
each case
(4.37)

Jv Ly
Since C is constant, there is no diffusion.
For the case of diffusion, j = —DVC'. In one dimension
this becomes
ac i
de  SD’
which is integrated to give
i
SD
where by is the constant of integration. The concentration
varies linearly in the one-dimensional case. If i is positive
(flow in the 4z direction), C' decreases as x increases.
Often the concentration is known at x1 and xo, and one
wants to know the current. We can write

C:* I+b1,

7
C = *Slil + by,
Cy = —SfDJCz + by,
and solve for i: C o
L 249p. (4.38a)
To — I

In two dimensions
dC 7 1
dr = 2nLD7r’

and the solution is

C(r)=-— In7 + bs.

27TLD
We can again solve for the current when the concentra-
tions are known at two different radii:
2nLD(C; — C 2nLD(Cy — C
i= (€1-Cs) _ (G2 =), (4.38D)
In(ry/r1) In(ry/re)
Diffusion in two dimensions with cylindrical symmetry
has been used to model the concentration of substances
in the region between two capillaries.
In three dimensions, the diffusion equation is

ac i
dr  4wDr?’
which has a solution
C(r) = ! bs.
4w Dr

The current in terms of the concentration is
_AnD[C(r1) — C(ro)]
1/7"1 — 1/7’2 ’
The three-dimensional case is worth further discussion,

because it can help us to understand the diffusion of nutri-
ents to a single spherical cell or the diffusion of metabolic

(4.38¢)
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waste products away from the cell. Consider the case in
which the cell has radius vy = R, the concentration at
the cell surface is Cp, and the concentration at infinity is
zero. Then

i =47D CyR, (4.39a)

C(r) = C‘;R, (4.39b)
CoDR

=" (4.39¢)

The particle current depends on the radius of the cell,
R, not on R2. This very important result is not what we
might naively expect. Diffusion-limited flow of solute in
or out of the cell is proportional not to the cell surface
area, but to the cell radius. The reason is that the particle
movement is limited by diffusion in the region around the
cell, and as the cell radius increases, the concentration
gradient decreases. (It is possible for the rate of particle
migration into the cell to be proportional to the surface
area of the cell if some other process, such as transport
through the cell membrane, is the rate-limiting step.)

If diffusion is toward the cell, the concentration is Cj
infinitely far away. At the cell surface, every diffusing
molecule that arrives is assumed to be captured, and the
concentration is zero. The solutions are then

i = —47rDCy R, (4.40a)
C(r)y=Co(1—=R/r), (4.40Db)
Jr(r) = _CO:Q)R- (4.40c)

4.10 Example: Steady-State Diffusion
to a Spherical Cell and End
Effects

In the preceding section we considered diffusion from infi-
nitely far away to the surface of a spherical cell where the
concentration was zero. We now add the effect of steady-
state diffusion through a series of pores or channels in
the cell membrane. This will lead to a very important re-
sult: it does not require very many pores per unit area in
the cell membrane to “keep up with” the rate of diffusion
of chemicals toward or away from the cell. The result is
important for understanding how cells acquire nutrients,
how bacteria move in response to chemical stimulation
(chemotaxis), and how the leaves of plants function.

To develop the model we need one more result: the
current due to diffusion from a disk of radius a where
the concentration is C; to a plane far away where the
concentration is Cy. The disk is embedded in the surface
of an impervious plane as shown in Fig 4.14, so particles
cannot cross to the region behind the disk. The current
is (Eq. 6.98)

Impervious
Infinite
Plane

FIGURE 4.14. The diffusion flux from the disk of radius a and
concentration C; to the infinite sheet where the concentration
is Cy is given by i = 4Da(C1 — Cs).

03 C4

FIGURE 4.15. End effects in diffusion through a pore.

It is proportional to the radius of the disk, not its surface
area. [Obtaining this result requires solving the diffusion
equation in three dimensions. See Carslaw and Jaeger
(1959), p. 215.]

Consider diffusion through a pore of radius R, which
pierces a membrane of thickness AZ, including diffusion
in the medium on either side of the membrane (Fig. 4.15).
If the material on either side were well stirred, there
would be a uniform concentration C on the left and C4
on the right. Because it is not stirred, there is diffusion in
the exterior fluid. Let Cy and C4 be measured far away,
and call the concentrations at the ends of the pore C5 on
the left and C5 on the right.

Equation 4.38a gives the diffusion flux within the pore

WRZQ)D (02 — 03)

i= A7 (4.42)
Diffusion from C; to C5 is given by Eq. 4.41. It is

i =4D R,(Cy — Cy), (4.43)
while from C3 to Cy, it is

i =4D R,(C3 — Cy). (4.44)

In the steady state, there is no buildup of particles and
i is the same in each region. We can solve Eqgs. 4.42-4.44
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Cs

FIGURE 4.16. Diffusive end effects for a spherical cell pierced
by pores.

simultaneously to relate ¢ to concentrations C and Cjy:

7TR§ D

'T AZ+t27R, /4

(C1 — Cy). (4.45)
This has the same form as Eq. 4.42, except that the mem-
brane thickness has been replaced by an effective thick-

ness
AZ' = AZ + zﬁf”.

An extra length 7R,/4 has been added at each end to
correct for diffusion in the unstirred layer on each side
of the pore. This correction is important when the pore
length is less than two or three times the pore radius.

Now consider diffusion in or out of the spherical cell
shown in Fig. 4.16. The radius of the cell is B. The mem-
brane has thickness AZ and is pierced by a total of N
pores, each of radius R,. Within the cell we do not know
the details of the concentration distribution, since they
depend on what sort of chemical reactions are taking
place and where. But we will assume that at the radius
where diffusion to the pores becomes important, the con-
centration is C7. At the inner face of each pore it is Cs, at
the outer face it is C's, and over an approximately spheri-
cal surface of radius B’ it is Cy. Far away, the concentra-
tion is C5. As a result, there are four separate regions in
which we must consider diffusion. The first is from C7 to
the opening of each pore; the second is through the pore;
third, there is diffusion from the outer face of each pore
to Cy; and, finally, there is diffusion from the spherical
object of radius B’ to the surrounding medium.

(4.46)

4.10.1  Diffusion Through a Collection of
Pores, Corrected

The first three processes are taken into account by ap-
plying the end correction to each end of the pores. The
flow through one pore is using Eq. 4.45

TR2 D
=—L_(C1 - Cy),

NS (4.47)

Tpore
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where AZ’ is given by Eq. 4.46. Since there are N pores
in all, the total flow through the cell wall is

N7R?D
"2 0y - C).

leell = Nipore =
The diffusion from C} to infinity is given by Eq. 4.38c.

icell =4rD B/(C4 - 05), (449)
where B’ is the effective radius for diffusion to the sur-
rounding medium. It is slightly larger than B. If we
equate Eqgs. 4.48 and 4.49, solve for C4 and substitute
this result back in Eq. 4.49, we get

) 4w DB’ NR?,
loell = W(Cl —Cs). (4.50)
This can be rewritten as
Teell = ]\ZZRiD(Cl —Cs), (4.51)
where
AZg=AZ + 27TTRP + Nﬁ/' (4.52)

The first term in AZ.g is the membrane thickness. The
second term corrects for diffusion from the end of each
pore to the surrounding fluid; the last corrects for dif-
fusion away from the cell into the surrounding medium.
The third term can be expressed as

NR? B
P _ R
4B' B’B f
where
N=nR2
=g (4.53)

is the fraction of the cell surface occupied by pores.

We now assume that B = B’. (Problem 28 shows that
the difference is usually very small.) The effective pore
length is then

AZEH:AZ+2(7TRP> + BY.

0 (4.54)

Equations 4.51-4.54 treat the problem as diffusion
through a collection of N pores, corrected for diffusion
outside the pore by increasing the length of the pore.

4.10.2  Diffusion from a Sphere, Corrected

It is also useful to write these results as the equation
for diffusion to or from a sphere, Egs. 4.39, corrected
for the diffusion through the cell wall. Writing it in this
form gives us insight into how much of the cell wall must
be occupied by pores for efficient particle transfer. Solve
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Eq. 4.53 for NRIQ7 and substitute the result in Eq. 4.50.
The result is
47D B/B2 f (Cl - C5)
B2f + B'AZ'

B’ f
=47BD (C; — C5) (B) f+(B'/B)(AZ'/B)"
(4.55)

leell =

This has the form of diffusion to the sphere multiplied by
a correction factor. With B’/B again approximated by
unity, the correction factor is

.
F+AZ' /B

The correction factor is zero when f is zero and becomes
nearly unity when the entire cell surface is covered by
pores.

4.10.3 How Many Pores Are Needed?

We now ask what fraction of the cell’s surface area
must be occupied by pores. The cell will receive half
the maximum possible diffusive flow when the fraction
f = AZ'/B. For a typical cell with B = 5 pm and
AZ =5nm, f =0.001. This is a surprisingly small num-
ber, but it means that there is plenty of room on the cell
surface for different kinds of pores. There are two ways
to understand why this number is so small. First, we can
regard the ratio of concentration difference to flow as a
resistance, analogous to electrical resistance. The total
resistance from the inside of the cell to infinity is made
up of the resistance from the outside of the cell to infin-
ity plus the resistance of the parallel combination of N
pores.

When the resistance of this parallel combination is
equal to the resistance from the cell to infinity, adding
more pores in parallel does not change the overall resis-
tance very much. The second way to look at it is in terms
of the random walks of the diffusing solute molecules.
When a solute molecule has diffused into the neighbor-
hood of the cell, it undergoes many random walks. When
it strikes the cell wall, it wanders away again, to return
shortly and strike the cell wall someplace else. If the first
contact is not at a pore, there are more opportunities to
strike a pore on a subsequent contact with the surface.

4.10.4  Other Applications of the Model

The same sort of analysis that we have made here can be
applied to a plane surface area, such as the underside of a
leaf [Meidner and Mansfield (1968)] and to a cylindrical
geometry, such as a capillary wall.

The analysis can also be applied to the problem of bac-
terial chemotaxis—the movement of bacteria along con-
centration gradients. This problem has been discussed in

detail by Berg and Purcell (1977).12 The cell detects a
chemical through some sort of chemical reaction between
the chemical and the cell. Suppose that the reaction takes
place between the chemical and a binding site of radius
R, on the surface of the cell. We want to know what
fraction of the surface area of the cell must be covered by
binding sites. This is similar to the diffusion problem of
Eq. 4.55, except that if the binding site is on the surface
of the cell, there is no diffusion through a pore of length
AZ. The effective pore length AZ’ is just the end correc-
tion for one end of the pore, 7R, /4. Half of the maximum
possible flow to the binding site occurs when

f=mR,/4B.

A typical bacterium might have a radius B = 1 pum; the
binding site might have a radius of a few atoms or 1 nm.
With these values f = 7.9 x 104, The number of sites
would be f4wB?/mR2 = nB/R, = 3000. There is plenty
of room on the cell surface for many different binding
sites, each specific for a particular chemical.

An Escherichia coli cell typically travels 10-20 body
lengths per second. It detects concentration gradients as
changes with time. Because of this, Berg and Purcell con-
cluded that a uniform distribution of chemoreceptors over
the surface of the cell would be optimum. It would give
the highest probability of capture of a chemical molecule
that wandered near the cell. However, recent studies of E.
coli have shown that the receptors are located near the
poles of the cell [Maddock and Shapiro (1993); see also the
comment by Parkinson and Blair (1993), who point out
that the reduced efficiency of sensors could make sense
if “eating” or transport into the cell is more important
than “smelling.”]

The Berg—Purcell model has been extended to provide
a time-dependent solution and allow the receptors not to
be perfectly absorbing [Zwanzig and Szabo (1991)] and
also to have a process in which the molecules attach to
the membrane and then diffuse in the two-dimensional
membrane surface [Wanget al. (1992); Axelrod and Wang
(1994).]

4.11 Example: A Spherical Cell
Producing a Substance

Here is a simple model that extends the arguments of Sec.
4.9 to develop a steady-state solution for a spherical cell
excreting metabolic products. The cell has radius R. The
concentration of some substance inside the cell is C(r),
independent of time ¢ and the spherical coordinate angles
6 and ¢. (Spherical coordinates are described in Appendix
L.) The substance is produced at a constant rate ) par-
ticles per unit volume per second throughout the cell and

12See also Berg (1975, 1983) and Purcell (1977).



leaves through the walls of the cell at a constant fluence
rate j(R), independent of ¢, 8, and ¢. Assume that all
transport is by pure diffusion and the diffusion constant
for this substance is D everywhere inside and outside the
cell. The material inside the cell is not well stirred. (For
this model we assume that the cell membrane does not af-
fect the transport process. We could make the model more
complicated by introducing the features described in Sec.
4.10.) With these assumptions, the cell can be modeled as
an infinite homogeneous medium with diffusion constant
D that contains a spherical region producing material at
rate ( per unit volume per second.

We first find the concentration C(r) inside and outside
the cell by using a technique that only works because of
the spherical symmetry. We use the continuity equation
in the form Eq. 4.10b. Because the concentration is not
changing with time, the total amount of material flowing
through a spherical surface of radius r is equal to the
amount produced within that sphere. For r < R

4rr?j(r) = 4mr3Q/3,

j(r) = @Qr/3.
Forr > R
4rr?j(r) = 4TR3Q/3,
j(r) = QR?/3r*.
Using the fact that j(r) = —DdC/dr, we obtain for r < R
w_ 9,
dr— 3D’
_ e
C(T) = 6D -+ bl,

where by is the constant of integration. For r > R,

ac _ _ QR®
dr —  3Dr?’
QRg
C(r)= 3D + bo.

The fact that the concentration must be zero far from the
cell means that b, = 0. Matching the two expressions at
r = R gives

~QR?/6D + b, = QR?/3D,
b1 = QR?*/2D,
so that
Q apo
— <
D —~(BR*—-7r?), r<R
C(r)= QRS o R
3Dr’ -

The other method is more general and can be extended
to problems that do not have spherical symmetry. We
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find solutions to Fick’s second law, modified to include
the production term ) and with the concentration not
changing with time:

aC )
209
VO = D

In spherical coordinates [Appendix L; Schey (1997)] this
is

L0 (L,00\, 1 (. oc
2o \" ar ) T rzsma a0 \"0 %0
1 02C Q
T g \oe2 ) T D
r2sin® @ \ 0¢ D

Since there is no angular dependence, we have separate
equations for each domain:

1d [ 2dC) _
r2 dr Tdr o

It is necessary to solve each equation in its domain, and
then at the boundary require that C' be continuous and
also that j and therefore dC'/dr be continuous. For r < R
we get the following (b; and be are constants of integra-
tion):

—%, r<R

0, r> R.

ac Qr
2
— by,
"ar T 3D "
ac __Qr
dr 3D r2’
_ QT b1
C(T‘) = 6D + b2
Since the concentration is finite at the origin, b; = 0:
L,
C('f') = b2 67D, r<R.

For r > R we can use the general solution with Q = 0
and different constants:

b/

C(r)=—— ot by.

Far away the concentration is zero, so b, = 0. Matching
dC'/dr at the boundary gives

R_B oy R
3D R¥ '
Matching C(r) at the boundary gives
QR? b}
- b
6D 2T R

Putting all of this together gives the same expression
for the concentration we had earlier. This technique is
a bit more cumbersome, but there are many mathemati-
cal tools to extend this technique to cases where there is
not spherical symmetry and where @ is a function of po-
sition. These advanced techniques can also be used when
C' is changing with time.
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4.12 Drift and Diffusion in One
Dimension

The particle fluence rate due to diffusion in one dimension
is jaix = —D (0C/0x). That of particles drifting with
velocity v is jariet = vC. The total flux density or fluence
rate is the sum of both terms:

oC

jo=—D = 1 0C.

o (4.56)

The homogeneous (js = 0) solution was discussed in
Sec. 4.7, where cancellation of these two terms in equi-
librium was used to derive the relationship between the
diffusion constant and viscosity. Using the techniques of
Appendix F, we can write the homogeneous solution as

C(x) = AeV/P)z, (4.57)
This can be used to solve the problem of j, = const when
the concentration is Cy at x = 0 and C}j at © = z1. C(z)
must vary in such a way that the total flux density, the
sum of the diffusive and drift terms, is constant. Suppose
that both terms give flow from left to right. If the concen-
tration is high, then the drift flux density is large and the
concentration gradient must be small. If the concentra-
tion is small, the diffusive flux, and hence the gradient,
must be large. To develop a formal solution, write Eq.
4.56 as

c 1 s

where A = D /v has the dimensions of length and can be
interpreted as the distance over which diffusion is impor-
tant. If the velocity is zero, diffusion is important every-
where and A = oo. If the velocity is very large, A — 0.
Since v can be either positive or negative, so can A. A
particular solution to Eq. 4.58 is

:A‘jS:‘ji'5

C(z) o) .

The general solution is the sum of the particular solution
and the homogeneous solution, Eq. 4.57:
C(z) = Ae™* + j, /v. (4.59)

The situation is slightly different than what we encoun-
tered in Chap. 2. We must determine two constants, A

and js, given the two concentrations Cy and Cjj. Writing
Eq. 4.59 for x = 0 and for = = x1, we obtain

C\(0 =A + &7
v (4.60)
Ch = Ae®1/A 4 Js
v
Subtracting these gives
Ch—Co=A(e™/* — 1),

A= (Ch - Co)/(em/* 1),

This can be combined with either of Eqs. 4.60 to give

_— C()ewl//\ — C(I)
= —F

jae= "y (4.62)

We can also substitute Egs. 4.61 and 4.62 in 4.59 to
obtain an expression for C'(z). The result is

C«O(eml/A _ egc/A) + C{)(em/)‘ _ 1)

C =
(2) A

(4.63)

We will discuss the implications of this equation below.

Let us first determine the average concentration be-
tween x = 0 and x = x;. The average concentration is
defined by

1 (™
C_E/o C(z)dx. (4.64)

While one could integrate this directly, it is much easier
to integrate Eq. 4.56 from 0 to x1:

—D/ (dC) dx—!—v/ C’(:c)d:z::—i—js/ dx.
0 dx 0 0

The first term is —D(C{, — Cp). The second is vz;C. The
third is jsx1. The equation can therefore be rewritten as

D (Cy — Co)
T

vC = + Js- (4.65)

Substituting Eq. 4.62 for j, gives the average concentra-
tion
Coe™/* —Cy A

— —(Co = Cp).

¢= er1/A —1 T

(4.66)
The exponentials can be expanded to give an approxi-
mate expression for small values of z1 /A3

(Co+C) a1 1

C=0T20) L (o - ).

—— 4.
2 A 12 (4.67)

For larger values of x1 /A, the mean can be written

= Co + O(l) , T
C==0"4(Co-Cp) @ (7) : (4.68)
The correction factor G(x1/\) = G(£), given by
lef4+1 1
G = 261 & (4.69)

is plotted in Fig. 4.17. The function is odd, and only
values for £ > 0 are shown. For £ = 0 (A = oo, pure
diffusion), the average concentration is (Cy + C{)/2.
Figure 4.18 shows the concentration profile calculated
from Eq. 4.63. The concentration is 5 times larger on
the left, so diffusion is from left to right. When x;/\ =

13See Levitt (1975, p. 537). For z1/\ = 1.5, this approximation
is within 1%. For =1 /X = 2.5, the error is about 6%.
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FIGURE 4.17. The correction factor G(§) used in Eq. 4.68.
The dashed line is the approximation G(§) = £/12, which is
valid for small ¢ and is used in Eq. 4.67.
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FIGURE 4.18. Concentration profile for combined drift and
diffusion. The concentration is 1.0 on the left and 0.2 on the
right. For z1/A = z1v/D = 0.8, drift and diffusion are both
to the right. As the concentration falls, the magnitude of the
gradient increases. For z1/\ = z1v/D = —0.8 drift opposes
diffusion. As the concentration falls, so does the magnitude of
the gradient.

x1v/D = 0.8, drift is also from left to right. As the con-
centration falls, the magnitude of the gradient rises, so
that the sum of the diffusive and drift fluxes remains the
same. When /A = —0.8, drift is opposite to diffusion.
Therefore, both the concentration and the magnitude of
the gradient must rise and fall together to keep total flux
density constant.
Equation 4.65 can be rewritten as

. —D(C - Co)

Js +C. (4.70)

T

This can be interpreted as meaning that the fluence rate
is given by the sum of a diffusion term with the average
concentration gradient and a drift term with the aver-
age concentration. However, the discussion in the preced-
ing paragraph showed that there is actually a continuous
change of the relative size of the diffusion and drift terms
for different values of x.

C(£,0)d¢ Probability that any one of these
particles is later in {x,dx)=P(£,0;x,t}dx
initially
(x-¢) -
[ | [ -
1 T I -
3 £+d¢ X X+dx

FIGURE 4.19. Diffusion from & to .

4.13 A General Solution for the
Particle Concentration as a
Function of Time

If C(z,0) is known for t = 0, it is possible to use the result
of Sec. 4.8 to determine C'(x,t) at any later time. The key
to doing this is that if C(z,t) dz is the number of parti-
cles in the region between = and x + dx at time ¢, it may
be be interpreted as the probability of finding a particle
in the interval (z,dz) multiplied by the total number of
particles. (Recall the discussion on p. 91 about the inter-
pretation of C'(z,t).) The spreading Gaussian then repre-
sents the spread of probability that a particle is between
x and = + dx.

If a particle is definitely at * = & at t = 0, then
02(0) = 0. The particle cannot remain there because of
equipartition of energy: collisions cause it to acquire a
mean square velocity 3kgT'/m and move. At some later
time

o(t) = (2Dt)'/2. (4.71)

Define P(&,0;z,t) dz to be the probability that a par-
ticle has diffused to a location between x and = + dx at
time t, if it was at * = £ when ¢ = 0. This probability is
given by Eq. 4.25, except that the distance it has diffused
is now x — ¢ instead of x. The variance o2(t) is given by
Eq. 4.71. The result is

—(z—€)* /4Dt
\/me dx.
The number of particles initially between x = & and = =
&+4d¢ is the concentration per unit length times the length
of the interval N = C(¢,0)d¢, as shown in Fig. 4.19.

The particles can diffuse in either direction. At a later
time ¢, the average number between x and x + dz that
came originally from between z = £ and x = £+ d€ is the
original number in (£, d€) times the probability that each
one got from there to x. This number is a differential of a
differential, d[C(z,t)dx], because it is only that portion
of the particles in dx that came from the interval d¢:

P(£,0;x,t)de = (4.72)

d[C(x,t)dx] = C(£,0) dg\/ﬁe—(m—@?/wt .

To get C(z,t)dx, it is necessary to integrate over all pos-
sible values of &:

1
Var Dt

C(x,t)dr = [/ C(€,0)e~@=0%/4Dt ge | oy

(4.73)
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FIGURE 4.20. The initial concentration is constant to the left
of the origin and zero to the right of the origin.
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FIGURE 4.21. Plot of the error function erf(z).

This equation can be used to find C'(x, t) at any time, pro-
vided that C(x,t) was known at some earlier time. The
factor that multiplies C(&,0) in the integrand is called
the influence function or Green’s function for the diffu-
sion problem; it gives the relative weighting of C'(£,0) in
contributing to the later value C(z,t).

As an example of using this integral, consider a situ-
ation in which the initial concentration has a constant
value Cy from £ = —oo to € = 0 and zero for all positive
£, as shown in Fig. 4.20. At ¢ = 0 the diffusion starts.
The concentration at later times is given by

Co /0 o)
Clz,t) = —— e~ (@=8)7/4Dt ge.
(%) Var Dt J :
Such integrals are most easily evaluated by using the er-

ror function that is tabulated in many mathematical ta-
bles. It is defined by

erf(z) = %/0 e~ dt.

The error function is plotted in Fig. 4.21. One must be
careful in using tables, for other functions tabulated are
related to the error function but differ in normalization
constants and in the limits of integration.

To use the error function in evaluating the integral in
Eq. 4.73, make the substitution s = (z — &)/(4Dt)/2.

(4.74)

FIGURE 4.22. The spread of an initially sharp boundary due
to diffusion.

The integral becomes

—C z/VADt R
C(z,t) = \/ﬁ/ e ® VADtds.

Since [} f(x)dx JZ fa)de + [4 fla)de =
fOB f(z)dx — fOA f(x)dx, this can be written as
—Co

©/VaDt ©
\/7?(/0 efsds—/o e ds)
= % {1 - erf(x/\/éﬁ)] .

The plot in Fig. 4.22 shows how the initially sharp con-
centration step becomes more diffuse with passing time.
Quantitative measurements of the concentration can be
used to determine D. Benedek and Villars (2000, pp. 126
136) discuss some experiments to verify the solution we
have obtained above and to determine D.

Many other solutions to the diffusion equation and
techniques for solving it are known. See Crank (1975)
or Carslaw and Jaeger (1959).

C(z,t) =

(4.75)

4.14 Diffusion as a Random Walk

The spreading solution to the one-dimensional diffusion
equation that we verified can also be obtained by treat-
ing the motion of a molecule as a series of independent
steps either to the right or to the left along the z axis.
(The same treatment can be extended to three dimen-
sions, but we will not do so.) The derivation gives us a
somewhat simplified molecular picture of diffusion. The
derivation also provides an opportunity to see how the
Gaussian distribution approximates the binomial distrib-
ution. This section is not necessary to understand the rest
of Chapters 4 and 5, and you should tackle it only if you
are familiar with the binomial and Gaussian probability
distributions (Appendices H and I). The model is more re-
strictive than the diffusion equation derived above, since
the latter is the linear approximation to the transport
problem.



We use a simplified model in which the diffusing par-
ticle always moves in steps of length A (the mean free
path), either in the +x or —z direction. Let the total
number of steps taken by the particle be N, of which n
are to the right and n’ are to the left: N = n +n’. Also
let m = n—n’. The particle’s net displacement in the +z
direction is then

nA —n'A=m.

Since the steps are independent and a step to the left or
right is equally likely (p = 1/2), the probability of having
a displacement mA\ is given by the binomial probability

P(n; N):
v (5) (5)

Since this problem is analogous to throwing a coin, and
we know that on the average we get the same number
of heads (steps to the left) as tails (steps to the right),
we know that the distribution is centered at n = n’ or
m = 0. We also know [Eq. G.4] that the variance in n is
given by n? —n? = Npq = N/4. Since i = N/2, this says
that n? = N/4 + N?/4. However, we need the variance
in m, m2 — m2. To obtain it, we write m = 2n — N and
m? = 4n? + N2 — 4nN. Therefore,

P(n; N) = (4.76)

m2 =4n2 + N? —4N7m = N.

The variance of the distribution of displacement x is
equal to the step length A times the variance in the num-
ber of steps:

0% =122 = N?m2 = \’N.
The number of steps is the elapsed time divided by the
collision time N = t/t.. Therefore,
5 A

o = .
te

Comparing this with Eq. 4.70, we identify D = A\?/2t,,
so that

o? =2Dt. (4.77)

We have shown that this simple model gives a distri-
bution with fixed mean which spreads with a variance
proportional to t. We now must show that the shape is
Gaussian. Appendix I shows that the Gaussian is an ap-
proximation to the binomial distribution in the limit of
large N. Since 02 = N/4 and n = N/2, Eq. G.4 can be
used to write

27N —1/2
P(n) = (2) o—(n=N/2)2/(2N/4)

This can be rewritten in terms of the net number of steps
to the right, since m =n —n' = 2n — N:

9 \1/2 .
P(m) = (77]\7) e /2N.
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FIGURE 4.23. Relationship between the values of x and the
allowed values of m. Every other value of m is missing.

Note that only every other value of m is allowed. Since
m = 2n — N, m goes in steps of 2 from —N to N as n
goes from 0 to N.

To write the probability distribution in terms of x and
t, refer to Fig. 4.23. The spacing between each allowed
value of x is 2, so that the number of allowed values of
m in interval (x,x + dz) is da/2A. Therefore, P(z) dx =
P(m)(dxz/2)),

2 —m2/2N.

Pla) =\ N

With the substitutions m = z/\ and N = t/t., this be-

comes
te 2 2
P 1) = < —x%(tc/2X t).
(@,7) V 2Nt

With the substitutions D = \?/2t. and C(w,t) =
C(0)P(x,t), we obtain Eq. 4.25.

The result of Eq. 4.71 is easily extended to two di-
mensions. Imagine that a total of N steps are taken,
half in the z direction and half in the y direction. Then
o) =0, = XN(N/2). 1t r? = 2> +y°, 0} = 02+ 0, = A°N.
We still define D in any direction as A\?/2t., where ¢, is
the time between steps in that direction. After a total
time t, N steps have been taken, but only half of them
were in, say, the = direction. Therefore ¢, = 2¢/N. There-
fore

2

o’ =02+ 05 = 4Dt (two dimensions). (4.78)

A similar argument in three dimensions gives

0} =05+ 0, +0.=6Dt (three dimensions). (4.79)

Figure 4.24 shows the result of a computer simulation
of a two-dimensional random walk. A random number is
selected to determine whether to step one pixel to the
left, up, right, or down—each with the same probability.
The trail for 4000 steps is shown in Fig. 4.24(a). The
results of continuing for 40,000 steps are shown in Fig.
4.24(b). Note how the particle wanders around one region
of space and then takes a number of steps in the same
direction to move someplace else. The particle trajectory
is “thready.” It does not cover space uniformly. A uniform
coverage would be very nonrandom. It is only when many
particles are considered that a Gaussian distribution of
particle concentration results.
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FIGURE 4.24. (a) Trail of a particle for 4000 steps. (b) Trail
for additional steps to total 40,000.

Both results in Fig. 4.24 were for the same sequence of
random numbers. A computer simulation with 328 runs
of 10,000 steps each gave T = —3.3, 02 = 5142, 7 = 8.2,
o2 = 4773, and x2 + y2 = 10,027. The expected values
are, respectively, 0, 5000, 0, 5000, and 10,000.

Symbols Used in Chapter 4

Symbol Use Units First
used on
page

a,ay,a2 Particle radius m 86

b1, b2,bs Constants 93

f Fraction of cell surface area 95

g Gravitational acceleration m s 2 85

g Force N 87

i Particle current st 81

J,dsJs Solute fluence rate m~2 st 81

Jdrift Solute fluence rate due to drift m-2 st 89

Jdiff velocity, diffusion

im Mass fluence rate kg m~2 st 81

In Component of j normal to a sur- m~2 st 83

face

Jo Volume fluence rate ms™?! 81

JjzsJy,J- Components of j m~2s! 83

kn Boltzmann’s constant JK! 85

l Linear separation of pores on m 106

cell surface

m Mass kg 85

m n—n' 101

n Unit vector normal to a surface 83

n,n’ Number of steps to right, left 101

D, q Probabilities 101

T Distance, radius m 83

s Dummy variable 86

t Time s 81

te Collision time s 86

u Energy of a particle J 85

v,V Velocity ms~?! 85

T,Y, 2z Cartesian coordinates m 81

A Constant 98

B, B’ Cell radius m 95

C, Cq Concentration m~3 81

D Diffusion constant m? s71 88

F,F,Fqx Force N 87

G Correction factor for average 98

concentration

L Length m 93

M Mass kg 84
M Molecular weight 90
N, No Number of molecules 82
N Number of pores on cell surface 95
N Number of steps in a random 101
walk
P Rate of energy production W 83
(power)
P Probability 85
Q Rate of creating a substance per m~ 2 s} 85
unit volume
R Gas constant JK! 98
mol~?!
R Radius of a sphere m 94
R, Radius of a pore m 94
S Surface area m? 82
ds Vector surface element pointing m? 83
in the direction of the normal
T Absolute temperature K 85
\% Volume m? 84
AZ Cell membrane thickness m 94
« Proportionality constant 87
B Proportionality constant Nsm™?! 87
between force and velocity
K Thermal conductivity JK 'm™! 88
o1
A Mean free path m 86
A Ratio of D/v m 98
0, Angles 82
n Coefficient of viscosity Pas 88
o Standard deviation 91
o Electrical conductivity Q tm! 88
I3 Position m 99
& Dimensionless variable 98
p Mass density kg m~3 84
Us Chemical potential of solute J 88
molecule ™!
Problems
Section 4.1

Problem 1 A cylindrical pipe with a cross-sectional area
S =1 em? and length 0.1 cm has j5(0)S = 200 s~ and
j5(0.1)S = 150 s~L.

(a) What is the total rate of buildup of particles in the
pipe?

(b) What is the average rate of change of concentration
in the section of pipe?

Problem 2 Write the continuity equation in cylindrical
coordinates if j = 0 but j, and j, can be nonzero.

Problem 3 Consider two concentric spheres of radii r
and r+dr. If the particle fluence rate points radially and
depends only on r, and the number of particles between r
and r + dr is not changing, show that d(r?j)/dr = 0.

Section 4.2

Problem 4 Suppose that the total blood flow through a
region is F (m® s7'). A chemically inert substance is
carried into the region in the blood. The total number of
molecules of the substance in the region is N. The amount
of blood in the region is not changing. Show that dN/dt =
(Ca—Cv)F, where Cy and Cy are the concentrations of
substance in the arterial and venous blood. This is known



as the Fick principle or the Fick tracer method. It is often
used with radioactive tracers.

Section 4.3

Problem 5 R. D. Allen et al. [(1982). Science 218:
1127-1129] report seeing regular movement of particles in
the azoplasm of a squid azon. At a temperature of 21°C,
the following mean drift speeds were observed:

Particle size (um)  Typical speed (um s=t)
0.8—-5.0 0.8
0.2—-0.6 2

How do these values compare to thermal speeds? (Make a
reasonable assumption about the density of particles and
assume that they are spherical.)

Section 4.4

Problem 6 (a) Use the ideal gas law, pV = NkgT =
nRT to compute the volume of 1 mole of gas at T = 30°C
and p = latm. Express your answer in liters. Show that
this is equivalent to a concentration of 2.4 x 10%° molecule
m=3.

(b) Find the concentration of liquid water molecules at
room temperature.

Problem 7 Using the information on the mean free path
in the atmosphere and assuming that all molecules have a
molecular weight of 30, find the height at which the mean
free path is 1 ¢cm. Assume the atmosphere has a constant
temperature.

Section 4.6

Problem 8 Suppose C(z,t) =

Find an expression for js(x,t).

(N/\/m)e#/wt.

Section 4.7

Problem 9 If all macromolecules have the same density,
derive the expression for D wversus the molecular weight
that was used to draw the line in Fig. 4.12.

Problem 10 For diagnostic studies of the lung, it would
be convenient to have radioactive particles that tag the
air and that are small enough to penetrate all the way to
the alveoli. It is possible to make the isotope °°™ Tc into
a “pseudogas” by burning a flammable aerosol contain-
ing it. The resulting particles have a radius of about 60
nm [W. M. Burch, I. J. Tetley, and J. L. Gras (1984).
Clin. Phys. Physiol. Meas 5: 79-85]. Estimate the mean
free path for these particles. If it is small compared to the
molecular diameter, then Stokes’ law applies, and you can
use Eq. 4.23 to obtain the diffusion constant. (The vis-
cosity of air at body temperature is about 1.8x107° Pa

s.)
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Problem 11 Figure 4.12 shows that D for Os in water
at 298 K is 1.2 x 1072 m? s~ and that the molecular
radius of Oy is 0.2 nm. The diffusion constant of a dilute
gas (where the mean free path is larger than the molecular
diameter) is D = \? /2t.., where the collision time is given
by Eq. 4.15.

(a) Find a numeric value for the diffusion constant for
Os in Oy at 1 atm and 298 K and its ratio to D for Os
in water. The molecular weight of oxygen is 32.

(b) Assuming that this equation for a dilute gas is valid
in water, estimate the mean free path of an oxygen mole-
cule in water.

Section 4.8

Problem 12 (a) The three-dimensional normalized ana-
log of Eq. 4.25 is

2 2 2
Clary,nt) = _W)

N (
2ro2t 2T 202(1)

Find the three-dimensional analog of Eq. 4.27.
(b) Show that 0? = 22 + y2 + 22 = 6Dt.

Problem 13 A crude approximation to the Gaussian
probability distribution is a rectangle of height Py and
width 2L. It gives a constant probability for a distance
L either side of the mean.

(a) Determine the value of Py and L so that the distri-
bution has the same value of o as a Gaussian.

(b) Plot P(x,t) if o is given by Eq. 4.27 and the mean
remains centered at the origin for times of 1, 5, 50, 100,
and 500 ms. Use D for oxygen diffusing in water at body
temperature.

(¢) How long does it take for the oxygen to have a rea-
sonable probability of diffusing a distance of 8 um, the
diameter of a capillary?

(d) For t = 100 ms, plot both the accurate Gaussian
and the rectangular approxrimation.

Problem 14 Write an equation for Fick’s second law in
three-dimensional Cartesian coordinates when the diffu-
sion constant depends on position: D = D(x,y, z).

Problem 15 The heat flow equation in one dimension

18
(T
JH = Oz )

where k is the thermal conductivity in W m~! K=!. One
often finds an equation for the “diffusion” of energy by
heat flow: ,

7 (25),
ot Ox?
The units of jg are J m™2 s~1. The internal energy per
unit volume is given by u = pCT, where C is the heat ca-
pacity per unit mass and p is the density of the material.
Derive the second equation from the first and show how
Dy depends on k, C, and p.
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Problem 16 The dimensionless “Lewis number” is de-
fined as the ratio of the diffusion constant for molecules
and the diffusion constant for heat flow (see Problem 15.)
If the Lewis number is large, molecular diffusion occurs
much more rapidly than the diffusion of energy by heat
flow. If the Lewis number is small, energy diffuses more
rapidly than molecules. Use the following parameters:

Air Water
D (m? s71) 2x107% 2x107°
K (Wm™t K1) 0.03 0.6
C (Jkg7' K1) 1000 4000
p (kg m=3) 1.2 1000.

(a) Calculate the Lewis number for oxygen in air and
m water.

(b) Is it possible using either air or water to design a
system in which oxygen is transported by diffusion with
almost no transfer of heat?

Problem 17 A sheet of labeled water molecules starts at
the origin in a one-dimensional problem and diffuses in
the x direction.

(a) Plot o vs t for diffusion of water in water.

(b) Deduce a “velocity” versus time.

(¢) How long does it take for the water to have a rea-
sonable chance of traveling 1 pm? 10 uym? 100 pm? 1
mm? 1 cm? 10 em?

Problem 18 In three dimensions the root-mean-square
diffusion distance is o = v/6Dt, where t is the diffusion
time. Consider the diffusion of oxygen from air to the
blood in the lungs. The terminal air sacs in the lungs,
the alveoli, have a radius of about 100 um. The radius
of a capillary is about 4 um. Estimate the time for an
oxygen molecule to diffuse from the center to the edge of
an alveolus, and the time to diffuse from the edge to the
center of a capillary. Which is greater? From the data in
Table 1.4 estimate how long blood remains in a capillary.
Is it long enough for diffusion of oxygen to occur? Assume
the diffusion constant of oxygen in air is 2x 1072 m? s~!
and in water is 2 x 1072 m? s~ L.

Problem 19 Why breathe? Estimate the time required
for oxygen to diffuse from our nose to our lungs. Assume
the diffusion constant of oxygen in air is 2x 1075 m? s~ L.

Problem 20 At a mnerve-muscle junction, the signal
from the nerve is transmitted to the muscle by a chemical
Junction or synapse. In order to activate a muscle, mole-
cules of acetylcholine (ACh) must diffuse from the end
of the nerve cell across an extracellular gap about 20 nm
wide to the muscle cell. Assuming one-dimensional diffu-
ston, estimate the signal delay caused by the time needed
for ACh to diffuse. The delay of the signal at the nerve-
muscle junction is about 0.5 ms. How does this compare to
the diffusion time? Use a diffusion constant of 5 x 10710

m? s L.

Problem 21 A substance has diffusion constant D, and
its concentration is distributed in space according to
C(z,t) = A(t)sin(2mz/L), where L is the wavelength
and A(t) is the amplitude of the distribution. Use the
one-dimensional diffusion equation, Eq. 4.26, to show
that the concentration decays exponentially with time,
A(t) o et/ Determine an expression for the time con-
stant T in terms of L and D. Which decays faster: a long-
wavelength (diffuse) distribution, or a short-wavelength
(localized) distribution? This result can be used with the
Fourier methods developed in Chapter 11 to derive very
general solutions to the diffusion equation.

Problem 22 Some tissues, such as skeletal muscle, are
anisotropic: the rate of diffusion depends on direction. In
these tissues, Fick’s first law in two dimensions has the

form
()~ 528
Jy Dyz Dy oC/ 0y
The 2 x 2 matriz is called the “diffusion tensor.” It is
always symmetric, s0 Dyy = Dyy.

(a) Derive the two-dimensional diffusion equation for
anisotropic tissue. Assume the diffusion tensor depends
on direction but not on position.

(b) If the coordinate system is rotated from (z,y) to

(=',y') by
'\ [ cosf sin@\ [z
y' )  \—sinf cosh) \y)’

the diffusion tensor changes by

(DM/ Dz/y/>

-D:E’y/ Dy/y/

[ cosf sinf Dyw Dy cosf) —sinf

~ \—sinf® cosf) \ Dy Dy, sinf cosf '

Find the angle 8 such that the tensor is diagonal (Dys,y =
0). Typically, this direction is parallel to a special direc-
tion in the tissue, such as the direction of fibers in a mus-
cle.

(c¢) Show that the trace of the diffusion tensor (the sum
of the diagonal terms) is the same in any coordinate sys-
tem (Dyy + Dyy = Dyrgr + Doy for any 6). Basser et al.
(1994) invented a way to measure the diffusion tensor us-
ing magnetic resonance imaging (Chapter 18). From the
diffusion tensor they can image the direction of the fiber
tracts. When they want images that are independent of
the fiber direction, they use the trace.

Problem 23 Calcium ions diffuse inside cells. Their
concentration is also controlled by a buffer:

Ca + B < C(CuB.

The concentrations of free calcium, unbound buffer, and
bound buffer ([Cal, [B], and [CaB]) are governed, assum-



ing the buffer is immobile, by the differential equations

a[acta] — DV2[Cd] — k*[Cd|[B] + k~[CaB,
B _ -
5 —kT[Cd|[B] + k~[CaB),
0[CaB] _
S = k*[Cal[B) - k[ CaB).

(a) What are the dimensions (units) of k™ and k= if
the concentrations are measured in mole I=1 and time in
s?

(b) Derive differential equations governing the total cal-
cium and buffer concentrations, [Ca); = [Ca]+[CaB| and
(Bl = [B] + [CaB]. Show that [B], is independent of
time.

(c) Assume the calcium and buffer interact so rapidly
that they are always in equilibrium:

[Cd][B]

[CaB]

where K = k= [k . Write [Ca]; in terms of [Ca], (B,
and K (eliminate [B] and [CaB]).

(d) Differentiate your expression in (c) with respect to
time and use it in the differential equation for [Cal, found
in (b). Show that [Ca] obeys a diffusion equation with an
“effective” diffusion constant that depends on [Cal:

D

K[B]y
(K+[Ca])?

(e) If [Ca] < K and [Bl; = 100K (typical for the
endoplasmic reticulum), determine Dqg/D.

For more about diffusion with buffers, see Wagner and
Keizer (1994).

Deg =
14

Problem 24 Inside cells, calcium is stored in compart-
ments, such as the sarcoplasmic reticulum. In some cells,
a rise in calcium concentration, C, triggers the release
of this stored calcium. A model of such “calcium-induced
calcium release” is

dC k
P —0*30(40 — Co) (C = o) (1)

(a) Plot the rate of calcium release (the right-hand side
of Eq. 1) vs. C. Identify points for which the calcium re-
lease is zero (steady-state solutions to Eq. 1). By qualita-
tive reasoning, determine which of these points are stable
and which are unstable. (Will a small change in C from
the steady-state value cause C' to return to the steady-
state value or move farther away from it?)

(b) If C < Cy/4, what does Eq. 1 become, and what is
its solution?

(c) Eq. 1 is difficult to solve analytically. To find a
numerical solution, approximate it as
Ct+ At)—C(t k

= - -G cw - ailcw - a.

(2)
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Write a computer program to determine C(t) at times
t=nAt,n=12,3,...,100, using At =0.1s, k=151,
Co =1 uM, and C(t = 0) = C’. Find the threshold value
of C', below which C(t) goes to zero, and above which
C(t) goes to Cy.

(d) If we include diffusion of calcium in one dimension,
Eq. 1 becomes

ac  _9*C k

— =D— — —C(4C — Cy) (C - Cy). 3
This is a type of “reaction-diffusion” equation. To solve
Eq. 3 numerically, divide the distance along the cell into
discrete points, t = mAx, m = 0,1,2,..., M. Approxi-
mate Eq. 3 as

C(z,t+ At) — C(x,t)

(4)

At
_ DC’(x + Ax,t) — 2C(z,t) + C(x — Az, t)
- (Ax)?
- %C(x, 1) (4C (2, 1) — Co) (C(a, ) — Co)
0

Assume the ends of the cell are sealed, so C(0,t) =
C(Ax,t) at one end and C(MAx,t) = C((M — 1)Ax,t)
at the other. Start with the cell at C(x,0) = 0 for all
points except at one end, where C(0,0) = Cy. Calculate
C(x,t) using Az = 5pm, At = 0.1s, D = 200 yum? s~
and Cy =1 pM. You should get a wave of calcium prop-
agating down the cell. What is its speed?

Calcium waves play an important role in many cells.
This simple model does not include a mechanism to return
the calcium concentration to its originally low value after
the wave has passed (a process called recovery). For a
more realistic model, see Tang and Othmer (1994). For
more information about numerical methods, see Press et
al. (1992).

Section 4.9

Problem 25 Consider steady-state diffusion through
two plane substances as shown in the figure. Show that
the diffusion is the same as through a single membrane
of thickness Ax1 + Axs, with diffusion constant

DDy
D= A.Tl A.IQ
Az + Azs Axy + Axs
cu I Cb
j——
I«— Am-—-—l«— sz-‘»-{
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Problem 26 A fluid on the right of a membrane has
different properties than the fluid on the left. Let the dif-
fusion constants on left and right be D1 and D, respec-
tively, and let the pores in the membrane be filled by the
fluid on the right a distance xL, where L is the thickness
of the membrane.

(a) Use the results of Problem 25 to determine the ef-
fective diffusion constant D for a membrane of thickness
L when Dy = yDq, Azy = (1 — x)L, and Azy = zL.
Neglect end effects.

(b) In the case that oxygen is diffusing in air and water
at 310 K, the diffusion constants are D; = 2.2 x 107° m?
571, Dy =1.6 x 107 m? s~1. Plot D/D; vs .

Section 4.10

Problem 27 (a) Derive Eq. 4.45.
(b) Derive Eqs. 4.51 and 4.52 from Eqs. 4.48 and 4.49.

Problem 28 We can estimate B/B’ of Eqs. 4.49-4.55
by noting that B’ must be larger than B because of two
effects. First, it is larger by wR,/4 because of end ef-
fects. Second, the concentration varies near the pores and
smooths out further away, so B’ must also be larger by an
amount roughly equal to [, the spacing of the pores. There
are N/4mB? pores per m?, sol ~ R,(r/f)'/?. Use the ex-
ample in the text: B =5 uym, AZ =5 nm, f = 0.001,
to estimate these two corrections. Assume that the pore
radius, Ry, is smaller than AZ. Are these corrections im-
portant?

Problem 29 Consider an impervious plane at z = 0
containing a circular disk of radius a having a concen-
tration Cy. The concentration at large z goes to zero.
Carslaw and Jaeger (1959) show that the steady-state so-
lution to the diffusion equation is
C(r,z) = 2G sin~! 2a
m \/(r—a)2+z2+\/(r+a)2+z2

(a) (optional) Verify that C(r,z) satisfies V2C = 0.
The calculation is quite involved, and you may wish to
use a computer algebra program such as Mathematica or
Maple.

(b) Show that for z =0, C = Cy if r < a.

(¢) Show that for z =0, dC/dz =0 if r > a.

(d) Integrate j, over the disk (z =0, 0 < r < a) and
show that i = 4DaCy.

Section 4.11

Problem 30 The processes of heat conduction and diffu-
sion are similar: the concentration C' and temperature T
both obey the diffusion equation (Problem 15). Consider a
spherical cow of radius R having a specific metabolic rate
Q W kg='. Assume the temperature of the outer surface
of the cow is the same as the surroundings, Tsy,. Assume
that heat transfer within the cow is by heat conduction.

(a) Calculate the steady-state temperature distribution
inside the animal and find the core temperature at the
center of the sphere.

(b) Consider a smaller (but still spherical) animal such
as a rabbit. What is its core temperature?

(¢) Calculate the temperature distribution and core
temperature in a rabbit covered with fur of thickness d.

Assume the bodies of the cow and rabbit have the ther-
mal properties of water and that the fur has the thermal
properties of air. Let d = 0.03 m and Ty, = 20°C.

Water Air
k (Wm™t K1) 0.6 0.03
C (Jkgt K1) 4000 1000
p (kg m=3) 1000 1.2
Cow Rabbit
R (m) 0.3 0.05
Q (Wkgt 0.6 1.6

Problem 31 The goal of this problem is to estimate how
large a cell living in an oxygenated medium can be before
it is limited by oxygen transport. Assume the extracellular
space is well-stirred with uniform oxzygen concentration
Cy- The cell is a sphere of radius R. Inside the cell oxygen
is consumed at a rate Q molecule m™3 s~1.The diffusion
constant for oxygen in the cell is D.

(a) Calculate the concentration of oxygen in the cell in
the steady state.

(b) Assume that if the cell is to survive the oxygen con-
centration at the center of the cell cannot become nega-
tive. Use this constraint to estimate the maximum size of
the cell.

(¢) Calculate the mazimum size of a cell for Cy = 8 mol
m=3,D=2x10""m? s, Q =0.1 mol m=3 s~ 1. (This
value of Q is typical of protozoa; the value of Cy is for
air and is roughly the same as the oxygen concentration

in blood.)

Problem 32 A diffusing substance is being consumed by

- a chemical reaction at a rate Q) per unit volume per sec-

ond. The reaction rate is limited by the concentration of
some enzyme, so Q is independent of the concentration of
the diffusing substance. For a slab of tissue of thickness b
with concentration Cy at both x =0 and x = b, solve the
equation to find C(x) in the steady state. This is known as
the Warburg equation [Biochem Z. 142: 317-850 (1923)].
It is a one-dimensional model for the consumption of oxy-
gen in tissue: points x = 0 and x = b correspond to the
walls of two capillaries side by side.



Problem 33 Suppose that a diffusing substance disap-
pears in a chemical reaction and that the rate at which
it disappears is proportional to the concentration —kC.
Write down the Fick’s second law in this case. Show
what the equation becomes if one makes the substitution
C(z,y,2,t) = C'(z,y,2,t)e .

Problem 34 A spherical cell has radius R. The flux den-
sity through the surface is given by j, = —D gradC. Sup-
pose that the substance in question has concentration C (t)
instde the cell and zero outside. The material outside is
removed fast enough so that the concentration remains
zero. Using spherical coordinates, find a differential equa-
tion for C(t) inside the cell. The thickness of the cell wall
is Ar < R.

Problem 35 The cornea of the eye must be transparent,
so it can contain no blood vessels. (Blood absorbs light.)
Ozygen needed by the cornea must diffuse from the surface
into the corneal tissue. Model the cornea as a plane sheet
of thickness L = 500 ym . The oxygen concentration, C,
is governed by a one-dimensional steady-state diffusion
equation
d*C
D pri Q.

Assume the cornea is consuming oxygen at a rate Q =
4 x 10?2 molecule m™2 s~' and has a diffusion constant
D =3x10"2m?s~!. The rear surface of the cornea is in
contact with the aqueous humor, which has a uniform oxy-
gen concentration Co = 1.8 x 10%* molecule m=3. Consider
three cases for the front surface:

(a) Solve the diffusion equation for C(x) when the front
surface is in contact with air, which has an oxygen con-
centration C; = 5 x 10%* m=3.

(b) The eye is closed, but a layer of tears maintains the
concentration at the front surface that is the same as the
aqueous humor: C; = 1.8 x 10** m=3. Plot C(z).

(¢) The eye is covered by an oxygen-impermeable con-
tact lens, so that at the front surface dC/dx = 0. Solve
the diffusion equation and plot C(z).

Supplying oxygen to the cornea is a magjor concern for
people who wear contact lenses. Often a tear layer between
the contact and cornea, replenished by blinking, is suffi-
cient to keep the cornea oxygenated. If you sleep wearing
a contact, this tear layer may not be replenished, and the
cornea will be deprived of oxygen. For a similar but some-
what more realistic model, see Fatt and Bieber (1968).

Problem 36 The distance L that oxzygen can diffuse in
the steady state is approximately L = \/CD/Q,where C
is the oxygen concentration, D is the diffusion constant,
and Q) 1is the rate per unit volume that oxygen is used for
metabolism.

(a) Show that L has dimensions of length.

(b) The diffusion of oxygen in air is about 10,000
times larger than the diffusion of oxygen in water [Denny
(1993)]. By how much will the diffusion distance L
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change if oxygen diffuses through air instead of water,
all other things being equal?

Insects deliver oxygen to their flight muscles by dif-
fusion down air-filled tubes instead of by blood wvessels,
thereby taking advantage of the large diffusion constant
of oxygen in air [Weiss-Fogh (1964)].

Section /.12

Problem 37 Dimensionless numbers, like the Reynolds
number of Chapter 1, are often useful for understanding
physical phenomena. The “Sherwood number” is the ra-
tio of transport by drift to transport by diffusion. When
the Sherwood number is large, drift dominates. The solute
fluence rate from drift is Cv, where C is the concentra-
tion and v the solvent speed. The solute fluence rate from
diffusion is D times the concentration gradient (roughly
C/L, where L is some characteristic distance over which
the concentration varies).

(a) Determine an expression for the Sherwood number
in terms of C, L, v, and D.

(b) Verify that the Sherwood number is dimensionless.

(¢) Which parameter in Section 4.12 is equivalent to
the Sherwood number?

(d) FEstimate the Sherwood number for oxygen for a
person walking.

(e) Estimate the Sherwood number for a swimming bac-
terium. [For more about the Sherwood number, see Denny
(1993) and Purcell (1977).]

Problem 38 FEuxtend Fick’s second law in one dimension
9C /0t = D (0°C/0x?) to include solvent drag.

Problem 39 Use Egs. 4.63 and 4.64 to derive Eq. 4.66.

Problem 40 Ezpand e* = 1+xz+x2/2!+23/3! to derive
Eq. 4.67 from Eq. 4.66.

Problem 41 Use a Taylor’s series expansion to show
that G(&)in Eq. 4.69 is equal to £/12 for small €.

Problem 42 Consider Eq. 4.63 with Cy = 0 and
Ci=1.

(a) If v > 0, write an equation for C(z). Plot C(x)
for 0 < z/x1 < 1 for two cases: v1 < X and x1 > .
Interpret these results physically.

(b) Repeat the analysis for v < 0.

Section 4.1/

Problem 43 We can use the microscopic model of a
random walk to derive important information about dif-
fusion without ever using the binomial probability distri-
bution. Let x;(n) be the position of the ith particle after
n steps of a random walk. Then
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where half the time you take the + sign and half the time
the — sign. Then T(n), the value of x averaged over N
particles, is

1 N
(n) = + > xi(n).
i=1

(a) Show that T(n) = T(n — 1) so that on average the
particles go nowhere. o

(b) Show that x2(n) = x2(n — 1) + A2. Use this result
to show that x2(n) = nA2.

For a detailed discussion of this approach, see Denny
(1993).

Problem 44 We can write the diffusion constant, D,
and the thermal speed v.ms in terms of the step size, X,
and the collision time, t. as

2
D = L7
2t.
A
Urms = -
te

Solve for X\ and t. in terms of D and vyps.

Problem 45 Using the definitions in Problem 44, write
the diffusion constant in terms of A and vVyms. By how
much do you expect the diffusion constant for “heavy wa-
ter” (water in which the two hydrogen atoms are deu-
terium, 2H) to differ from the diffusion constant for wa-
ter? Assume the mean free path is independent of mass.

Problem 46 Write a computer program to model a two-
dimensional random walk. Make several repetitions of a
random walk of 3600 steps and plot histograms of the dis-
placements in the x and y directions and mean square
displacement.

Problem 47 Write a program to display the motion of
100 particles in two dimensions.

Problem 48 Particles are released from a point between
two perfectly absorbing plates located at © =0 and x = 1.
The particles random walk in one dimension until they
strike a plate. Find the probability of being captured by the
right-hand plate as a function of the position of release,
x. (Hint: The probability is related to the diffusive fluence
rate to the right-hand plate if the concentration is Cy at
x andis 0 atx =0 and x =1.)

Problem 49 The text considered a one-dimensional
random-walk problem. Suppose that in two dimensions the
walk can occur with equal probability along +x, +y, —,
or —y. The total number of steps is N = Nz + N,, where
the number of steps along each axis is not always equal
to N/2.

(a) What is the probability that N, of the N steps are
parallel to the x axis?

(b) What is the probability that the net displacement
along the x axis is mz\?

(c) Show that the probability of a particle being at
(mgA, myA) after N steps is

P'(mgy,my) =

N!

> (o) (5) o % o, -0,

T

where P(m, N) on the right-hand side of this equation is
given by FEq. 4.76.

(d) The factor N'/N, (N — N,)! is proportional to a
binomial probability. What probability? Where does this
factor peak when N is large?

(e) Using the above result, show that P'(mgz,my) =
P(mg, N/2) P(my, N/2).

(f) Write a Gaussian approximation for two-
dimensional diffusion.
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Transport Through Neutral Membranes

The last chapter discussed some of the general features
of solute movement in an infinite medium. Solute par-
ticles can be carried along with the flowing solution or
they can diffuse. This chapter considers the movement
of solute and solvent through membranes, ignoring any
electrical forces on the particles.

The movement of electrically neutral particles through
aqueous pores in membranes has many applications in
physiology. They range from flow of nutrients through
capillary walls, to regulation of the amount of fluid in
the interstitial space between cells, to the initial stages of
the operation of the kidney.

Sections 5.1 through 5.4 are a qualitative introduction
to the flow of water through membranes as a result of
hydrostatic pressure differences or osmotic pressure dif-
ferences. The reader who is not interested in the more
advanced material can read just this part of the chapter,
culminating in the clinical examples of Sec. 5.4.

Sections 5.5 and 5.6 present phenomenological trans-
port equations that are simple linear relationships be-
tween the flow of water and solute particles and the pres-
sure and concentration differences that cause the flows.
These relationships are valid for any type of membrane
as long as a linear relationship adequately describes the
flow and the proportionality constants are regarded as ex-
perimentally determined quantities. These equations are
applied to the artificial kidney in Sec. 5.7.

Section 5.8 presents a simple model for countercurrent
transport, which is important in artificial organs, the kid-
ney, and in conserving heat loss from the extremities.

The last section, Sec. 5.9, provides a more advanced
treatment of one particular membrane model: a mem-
brane pierced by pores in which electrical forces can be
neglected and in which Poiseuille flow takes place. The
model leads to expressions for the phenomenological co-
efficients that can be compared to experimental data,
though that is not done here. The last part of the section

uses this model to calculate the forces on a membrane
when there are osmotic effects.

5.1 Membranes

All cells are surrounded by a membrane 7-10 nm thick.
Furthermore, virtually all the physical substructures
within the cell are also bounded by membranes. Mem-
branes separate two regions of space; they allow some
substances to pass through but not others. The mem-
brane is said to be permeable to a substance that can
pass through it; it is semipermeable when only certain
substances can get through. A substance that can pass
through is said to be permeant.

The simplest model that one can conceive for a semi-
permeable membrane is shown in Fig. 5.1(a). A number
of pores pierce the membrane. The pores could follow
a longer path, as in Fig. 5.1(b). Another simple model
is shown in 5.1(c): there are no pores, but small mole-
cules actually “dissolve” in the membrane and diffuse
through. Each example in Fig. 5.1 shows water molecules
(open circles), solute molecules (small solid circles), and
a large protein molecule that cannot pass through the
membrane.

In Figs. 5.1(a) and 5.1(b) the motion of the water mole-
cules is quite different from that of the small solute mole-
cules. Each water molecule is in contact with neighboring
water molecules so that when the water molecules move,
they flow together. The result is the familiar bulk flow
that occurs in a pipe. The solute molecules, on the other
hand, are so dilute that they seldom collide with one an-
other. Each one undergoes a random walk independent of
other solute molecules due to collisions with water mole-
cules.

The motion of each solute molecule is not independent
of the motion of the surrounding water molecules. If the
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FIGURE 5.1. Simple models for a semipermeable membrane.
(a) A straight pore. (b) A pore following a tortuous path. (c)
Small molecules dissolve in the membrane and diffuse through.

water is at rest, the movement of the solute molecules is
diffusion; if the water is moving, this diffusion is superim-
posed on a flow of the solute molecules with the moving
fluid.

In Fig. 5.1(c), the water and solute molecules are very
dilute within the membrane, so that both kinds of mole-
cules diffuse. The water molecules are not in contact with
each other, but are in some sort of interstices within the
membrane structure, walking randomly in response to
thermal agitation of the membrane.

5.2  Osmotic Pressure in an Ideal Gas

The selective permeability of a membrane gives rise to
some striking effects. The flow of water that occurs be-
cause solutes are present that cannot get through the
membrane is called osmosis. Although the phenomena
seem strange when they are first encountered, they can
be explained quite simply. They are important in a va-
riety of clinical problems that are described in Sec. 5.4.
We begin by finding the conditions under which no flow
takes place and the direction of flow when it does occur.

P Vi T NI*

FIGURE 5.2. An ideal gas fills a box of volume V™.

Later, in Sec. 5.5, we consider the rate of flow in response
to a given pressure difference.

It is easiest to understand osmotic pressure by consid-
ering the special case of two ideal gases and a membrane
that is permeable to one but not the other. This case is
simple because the gas molecules do not interact with one
another. Then, in Sec. 5.3, we will examine the phenom-
enon when the substances are liquids.

Suppose a box with total volume V* contains N7 mole-
cules of gas species 1. If the box is at temperature T, the
ideal-gas law relates the pressure, temperature, and the
number of molecules:

p1V* = N{kpT. (5.1)
This has been written the way physicists like to write it,
in terms of the number of molecules N{. Chemists write
it in terms of the number of moles nj:

p1V* =niRT.

The only difference is that R is per mole instead of per
molecule. Since 1 mole contains N4 molecules, where N4
is Avogadro’s number, Nf = Ngnj and R = Nskp. Nu-
merical values are
N4 = 6.022 x 10?3 mol™*,
kg = 1.3807 x 10723 J K1,
R =28.3145 J mol ' K},
R =0.08206 1 atm mol ™" K~
The concentration is the number of molecules or moles

per unit volume. We denote molecular concentration by
capital letter C' and molar concentration by lowercase c:

N _
C = V}‘ m~3 or molecules m ™3,
*
n _ _
1 = —+ m~3 or mol m 3,
V*

If we were to imagine volume V* divided into two sub-
volumes of volume V and V', the average number of mole-
cules in each subvolume would remain unchanged. The
pressure in each subvolume would still be p;, and the
temperature would be T. We can write

p1V:N1kBT, p1V’:N{kBT.
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FIGURE 5.3. The introduction of a semipermeable membrane
does not change the pressure or concentration of the gas.

Dividing both sides of each equation by the appropriate
volume gives

pP1 = OlkBT, P1 = p/l = C{kBT (52)
Now place a membrane along the surface separating the
subvolumes, which has small holes so that the molecules
can pass through, as shown in Fig. 5.3. This does noth-
ing to change the fact that at equilibrium p; = p}. When
the pressure is the same on both sides of the membrane,
no molecules pass through on average. If the pressure
is greater on one side than the other, molecules pass
through to bring the pressures into equilibrium, as we
saw in Chap. 3. Equations 5.2 say nothing about how
frequently a molecule that strikes the membrane passes
through. It could take hours or days for equilibrium to
be attained if we started away from equilibrium and the
molecules do not pass through very often.
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FIGURE 5.4. Species 2, which cannot pass through the mem-
brane, has been introduced in V. The pressure in V is higher
than in V' by the partial pressure pa.
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Now, keeping V fixed, introduce species 2 on the left as
in Fig. 5.4. Suppose that species 2 cannot pass through
the membrane. Bombardment of the membrane by the
new molecules causes an additional force on the left side
of the membrane. The total pressure in volume V' is now
the sum of the partial pressures p; due to species 1 and
po due to the second species:

D =p1 + p2,
p1V = NikpT, (5.3)
ng = NQkBT.

The ideal-gas law is still obeyed in terms of the total
number of molecules in V, N = Ny + No: pV = p1V +
pQV = leBT + NQ]CBT = (Nl + NQ)kBT = Nk?BT

In an ideal gas the presence of the second species does
not change the partial pressure p;. The total pressure on
the walls and the membrane is increased by ps so the
membrane is bowed towards the right, but the total pres-
sure is simply the sum of the two partial pressures. The
ratio p;/p is the fraction of the pressure due to collisions
of molecules of the first kind with the wall.

Suppose now that the pressure in V' is raised, either
by compressing the gas or by introducing more molecules
of type 1, so that instead of pj = p1, we have pj| = p. The
partial pressure of species 1 is higher in V' than in V.
Since these molecules can pass through the membrane,
they will flow from V' to V. An identical flow could have
been caused without having species 2, simply by raising
the pressure in V’. Not every molecule striking the mem-
brane will pass through, but some fraction of all collisions
with the wall will result in a molecule passing through.
The fraction will depend on the details of the membrane
structure. The number going through will be proportional
to the number of collisions on one side minus the number
of collisions on the other and hence to the difference of
partial pressures. If p; > p}, species 1 will flow from V
to V'. If p; < pf, the flow will be in the other direction.
The details of the membrane will determine how rapid
this flow is. The flow of any species of gas molecule that
can pass through the membrane will be from the region of
higher partial pressure to lower partial pressure.

Suppose we start out with only species 1 on each side
of the membrane and equal pressure on both sides so
that p = py = p’ = p). There are three ways to make
p1 less than p}, thereby causing flow from right to left.
One is simply to let the gas on the left expand into a
larger volume, which lowers p = p;. (Or we could have
compressed the gas on the right, raising p’ = p}.) The
other two ways involve introducing on the left a species 2
that cannot pass through the membrane. The second way
would be to keep the total pressure and volume on the
left the same, but remove one molecule of species 1 for
every molecule of species 2 that is introduced. The third
way would be to increase the volume on the left as each
molecule of species 2 is introduced, so that p = p; + ps
remains the same.
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The total partial pressure of all species that cannot
pass through the membrane is called the osmotic pressure
in region V and is usually denoted by . If the subscript
2 denotes all impermeant species,

T = CQk‘BT. (54)
The flow through the membrane because of an increase in
the osmotic pressure or a decrease in the total pressure
is identical. In each case the flow is determined by the
difference across the membrane of p;, the total partial
pressure of all the species that can pass through.

The description in the previous paragraphs of partial
pressure is easy to visualize, and for the case given it is
correct. It is more general, however, to express the con-
dition for equilibrium in terms of the chemical potential.
Recall that in Chapter 3 we derived the pressure in terms
of volume changes of a system and the chemical potential
in terms of the number of particles in the system.

Suppose that the membrane separating the two sides
is actually a semipermeable piston that is free to move.
Equality of the total pressure on both sides of the piston
means that the piston will not move and the two systems
will not exchange volume. Equality of the chemical po-
tential of a species that can get through the membrane
means that the two systems will not exchange particles.
It is better, therefore, to say the flow of any species that
can pass through the membrane will be from the region of
higher chemical potential to the region of lower chemical
potential for that species. If the chemical potentials are
the same, there will be no flow.

The mixture of two ideal gases is a special case of the
ideal solution that was described in Sec. 3.18. The chemi-
cal potential of species 1 that can pass through the mem-
brane is given by Eq. 3.78:

A/Ll = Vl (Ap - kBTACQ),
pr—py =Vilp—p — kT (Cy —0)],
w1 — iy = Vi(p1 +pa — p) — kgTCo).

Since py = kpT'Cy, the chemical potential is the same on
both sides of the membrane when p; = p}.

5.3 Osmotic Pressure in a Liquid

Imagine now that the two volumes are filled with a sol-
vent, which we will call water. If the pressure of the wa-
ter is the same in both regions there is no flow of water
through the membrane, nor is there exchange of volume
if the membrane piston is free to move. Increasing the
pressure on one side of the fixed membrane causes water
to flow through the membrane from the side with higher
pressure to the side with lower pressure. The chemical
potential contains a term proportional to the pressure. It

was shown in Sec. 3.18 that for an ideal solution!
_ Ap—kpTAC;
= c .

If there is a solute in the water that can pass freely
through the membrane along with the water, the situa-
tion is unchanged.

Now let us add some solute on the left that cannot
pass through the membrane. We will keep the volume on
the left fixed. To add the solute in such a way that the
pressure does not change, we must remove some water
molecules as we add it.

We saw in Chapter 3 that replacing some water mole-
cules with solute increases the entropy of the solution.?
This means that the Gibbs free energy and the chemical
potential are decreased. Water flows from the region on
the right, where the chemical potential is higher, to the
region on the left, where it is lower. The chemical poten-
tial of the water on the left can be increased by increasing
the total pressure on the left. The osmotic pressure is the
excess pressure that we must apply on the left to prevent
the flow of water through the membrane. There is no flow
of water when p = p’ + 7. It is more convenient to write
all the unprimed quantities on the left: p — w = p’. The
quantity p—m will occur so often in what follows that it is
worth a special name. We will define the driving pressure

AT

Pg=p—T. (5.5)

As far as we know, it has not been used by other authors.
It is a monotonic function of the chemical potential. In
an ideal solution it is Cypy,. Except in an ideal gas, it
is not the same as the partial pressure (a concept that
is not normally used in a liquid). On the right there is
no solute and p); = p’. There is no flow when the driving
pressure is the same on both sides,

Pd = Dy, (5.6a)

or the chemical potential of the water is the same on both
sides,

[l = Ly (5.6b)
The water passes through the membrane in the direction
from higher pq to lower pq (or from higher chemical po-
tential to lower chemical potential). Fither the total pres-
sure or the osmotic pressure can be manipulated to change

1An ideal solution can be defined in several equivalent ways.
One is that it is a solution that obeys Eq. 3.78. Another is that
when the separated components are mixed, there is no change of
total volume and no heat is evolved or absorbed. See Hildebrand
and Scott (1964), Chapter 2.

2This, recall, is because the water molecules are indistinguish-
able. A simple model shows why this happens. Suppose that four
water molecules occupy four identical energy levels, and that these
are the only four levels available. Because the molecules are indis-
tinguishable, there is only one microstate and the entropy is zero. If
one molecule is removed, there are then four separate microstates,
corresponding to the empty level being any one of the four. The
entropy is kp In(4).



pa (and p). An increase of total pressure has the same
effect as a decrease of osmotic pressure.

Increasing the concentration of the solute increases the
osmotic pressure. The fact that p; = p—7 = Cy 1,y means
that for ideal solutions obeying Eq. 3.78,

7= CkpT = cRT. (5.7)

In many cases this is confirmed by experiment, particu-
larly in dilute solutions. This is known as the van’t Hoff
law for osmotic pressure.

An osmole is the equivalent of a mole of solute par-
ticles. The term osmolality is used to refer to the num-
ber of osmoles per kilogram of solvent, while osmolarity
refers to the number of osmoles per liter of solution. The
reason for introducing the osmole is that not all imper-
meant solutes are ideal; their osmotic effects are slightly
less than C'kgT. The osmole takes this correction into
account.

5.4 Some Clinical Examples

As blood flows through capillaries, oxygen and nutrients
leave the blood and get to the cells. Waste products leave
the cells and enter the blood. Diffusion is the main process
that accomplishes this transfer. The capillaries are about
the diameter of a red cell; the red cells therefore squeeze
through the capillary in single file. They move in plasma,
which consists of water, electrolytes, small molecules such
as glucose and dissolved oxygen or carbon dioxide, and
large protein molecules. All but the large protein mole-
cules can pass through the capillary wall.

Outside the capillaries is the interstitial fluid, which
bathes the cells. The concentration of protein molecules
in the interstitial fluid is much less than it is in the cap-
illaries. Osmosis is an important factor determining the
pressure in the interstitial fluid and therefore its volume.
The following values (in units® of torr) are typical for the
osmotic pressure inside and outside the capillary:*

Inside capillary m; = 28 torr

Outside capillary, interstitial fluid T, = b torr

Measurements of the total pressure in the interstitial fluid
are difficult, but the value seems to be about —6 torr. It is
maintained below atmospheric pressure (taken here to be
0 torr) by the rigidity of the tissues. The driving pressure
of water and small molecules outside is therefore

Pwo = Po — To = —6 — 5 = —11 torr.

The total pressure within the capillary drops from the ar-
terial end to the venous end, causing blood to flow along

31 torr = 1 mm Hg = 133.3 Pa = 0.019 34 1b in.~2.

4A short account of the pressures used here is found in Guyton
(1991, Chapter 16). A more detailed discussion is in Guyton et al.
(1975).
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FIGURE 5.5. Pressures inside and outside the capillary. (a)
Inside. (b) Outside. (¢) Comparison of the water driving pres-
sure inside and outside.

the capillary. A typical value at the arterial end is 25
torr; at the venous end, it is 10 torr. If the drop is linear
along the capillary, the total pressures versus position
is as plotted in Fig. 5.5(a).> Subtracting from this the
osmotic pressure of the large molecules gives the curve
for the driving pressure inside, py;, which is also plotted
in Fig. 5.5(a). Figure 5.5(b) shows the total and driving
pressures in the interstitial fluid. Figure 5.5(c) compares
the driving pressure inside and outside. The driving pres-
sure is larger inside in the first half of the capillary and
larger outside in the second half of the capillary. The re-
sult is an outward flow of plasma through the capillary

5This simple discussion uses pressures that compensate for the
fact that the surface area of the capillary is larger at the venous
end than at the arterial end.
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wall in the first half and an inward flow in the second
half. There is a very slight excess of outward flow. This
fluid returns to the circulation via the lymphatic system.
There are three ways that the balance of Fig. 5.5 can
be disturbed, each of which can give rise to edema, a
collection of fluid in the tissue. The first is a higher av-
erage pressure along the capillary. The second is a re-
duction in osmotic pressure because of a lower protein
concentration in the blood (hypoproteinemia). The third
is an increased permeability of the capillary wall to large
molecules, which effectively reduces the osmotic pressure.
Each is discussed below.

5.4.1 FEdema Due to Heart Failure

A patient in right heart failure exhibits an abnormal col-
lection of interstitial fluid in the lower part of the body
(the legs for a walking patient; the back and buttocks for
a patient in bed). This can be understood in terms of
the mechanism discussed above. The right heart pumps
blood from the veins through the lungs. If it can no longer
handle this load, the venous blood is not removed rapidly
enough, and the pressure in the veins and the venous end
of the capillaries rises. There is a corresponding rise in py
along the capillary. More fluid flows from the capillary to
the interstitial space. The interstitial pressure rises until
the net flow is again zero. When the interstitial pressure
becomes positive, edema results.

The same process can occur in left heart failure in
which the pressure in the pulmonary veins builds up.
The patient then has pulmonary edema and may liter-
ally drown.

5.4.2  Nephrotic Syndrome, Liver Disease, and
Ascites

Patients can develop an abnormally low amount of pro-
tein in the blood serum, hypoproteinemia, which reduces
the osmotic pressure of the blood. This can happen, for
example, in nephrotic syndrome. The nephrons (the ba-
sic functioning units in the kidney) become permeable to
protein, which is then lost in the urine. The lowering of
the osmotic pressure in the blood means that the py rises.
Therefore, there is a net movement of water into the in-
terstitial fluid. Edema can result from hypoproteinemia
from other causes, such as liver disease and malnutrition.

A patient with liver disease may suffer a collection of
fluid in the abdomen. The veins of the abdomen flow
through the liver before returning to the heart. This al-
lows nutrients absorbed from the gut to be processed im-
mediately and efficiently by the liver. Liver disease may
not only decrease the plasma protein concentration, but
the vessels going through the liver may become blocked,
thereby raising the capillary pressure throughout the ab-
domen and especially in the liver. A migration of fluid out
of the capillaries results. The surface of the liver “weeps”

fluid into the abdomen. The excess abdominal fluid is
called ascites.

5.4.3 FEdema of Inflammatory Reaction

Whenever tissue is injured, whether it is a burn, an infec-
tion, an insect bite, or a laceration, a common sequence
of events initially occurs that cause edema. They include
the following.

1. Vasodilation. Capillaries and small blood vessels di-
late, and the rate of blood flow is increased. This is
responsible for the redness and warmth associated
with the inflammatory process.

2. Fluid erudation. Plasma, including plasma proteins,
leaks from the capillaries because of increased per-
meability of the capillary wall.

3. Cellular migration. The capillary walls become
porous enough so that white cells move out of the
capillaries at the site of injury.

5.4.4 Headaches in Renal Dialysis

Dialysis is used to remove urea from the plasma of pa-
tients whose kidneys do not function. Urea is in the inter-
stitial brain fluid and the cerebrospinal fluid in the same
concentration as in the plasma; however, the permeability
of the capillary—brain membrane is low, so equilibration
takes several hours. Water, oxygen, and nutrients cross
from the capillary to the brain at a much faster rate than
urea. As the plasma urea concentration drops, there is a
temporary osmotic pressure difference resulting from the
urea within the brain. The driving pressure of water is
higher in the plasma, and water flows to the brain in-
terstitial fluid. Cerebral edema results, which can cause
severe headaches.

The converse of this effect is to inject into the blood
urea or mannitol, another molecule that does not read-
ily cross the blood—brain barrier. This lowers the driving
pressure of water within the blood, and water flows from
the brain into the blood. Although the effects do not last
long, this technique is sometimes used as an emergency
treatment for cerebral edema.”

5.4.5  Osmotic Diuresis

The functional unit of the kidney is the nephron. Water
and many solutes pass into the nephron from the blood
at the glomerulus. As the urine flows through the rest of
the nephron, a series of complicated processes cause a net
reabsorption of most of the water and varying amounts
of the solutes. Some medium-weight molecules such as

6Patton et al. (1989), Chapter 64.
"Fishman (1975); White and Likavek (1992).
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mannitol are not reabsorbed at all. If they are present
in the nephron, for example, from intravenous adminis-
tration, the driving pressure of water is lowered and less
water is reabsorbed than would be normally. The result
is an increase in urine volume and a dehydration of the
patient called osmotic diuresis.® Similar diuretic action
takes place in a diabetic patient who “spills” glucose into
the urine.

5.4.6  Osmotic Fragility of Red Cells

Red cells (erythrocytes) are normally disk-shaped, with
the center thinner than the rim. In the disease called
hereditary spherocytosis the red cells are more rounded. If
a red cell is placed in a solution that has a higher driving
pressure than that inside the cell, water moves in and
the cell swells until it bursts. Since cell membranes (as
distinct from the lining of capillaries) are nearly imper-
meable to sodium, sodium is osmotically active for this
purpose.

The osmotic fragility test consists of placing red cells
in solutions with different sodium concentrations and de-
termining what fraction of the cells burst. A typical plot
of fraction vs. sodium concentration is shown in Fig. 5.6.
Sodium concentration decreases and py increases to the
right along the axis.

The patient with hereditary spherocytosis has cells
that will be destroyed at a lower external p; (higher
sodium concentration) than normal, because the mem-
brane is more permeable to the sodium.

If the red cells are incubated at body temperature in a
sodium solution with the osmolality of plasma for 24 h,
the fragility of hereditary spherocytosis cells is markedly
increased. During this incubation period the concentra-
tion of sodium within the cell increases; the sodium can-

8Gennari and Kassirer (1974); Guyton (1991).
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not escape rapidly when the external concentration is re-
duced, the driving pressure within the cell is lower than
before incubation, and water flows into the cell even more
rapidly.

5.5 Volume Transport Through a
Membrane

In this section and the next we develop phenomenolog-
ical equations to describe the flow of fluid and the flow
of solute through a membrane. These are linear approxi-
mations to the dependence of the flows on pressure and
solute concentration differences. Three parameters are in-
troduced that are widely used in physiology: the filtration
coefficient (or hydraulic permeability), the solute perme-
ability, and the solute reflection coefficient.

The volume fluence rate or volume flow per unit area
per second through a membrane is J,.

) i

( total volume per second
=—ms

through membrane area S
v =
S

(5.8)
Consider pure water. The fluence rate depends on the
pressure difference across the membrane. When the pres-
sure difference is zero, there is no flow. The direction of
flow, and therefore the sign of the fluence rate, depends
on which side of the membrane has the higher pressure.
The simplest relationship that has this property is a lin-
ear one:’

Jy = LpAp. (5.9)

The proportionality constant is called the filtration coef-
ficient or hydraulic permeability. It depends on the de-
tails of the membrane structure, such as the properties
of the pores. The SI units for L, are m s~! Pa~!, m?
N—!s7!, or m? s kg~ !. Often in the literature, however,
values of L, are reported in units of (cm/s)/atm. Since
latm = 1.01 x 10° Pa, the conversion is

lems atm™ ' =099 x 107" ms~! Pa!

(5.10)

If a solute is present to which the membrane is com-
pletely impermeable, only water will flow, and the flow
will depend on Apy:

Api=pi—pyj=p—m—({p —7)
=p—p —(r—7)
=Ap—Ar

SO

Jy = Ly(Ap — Ar). (5.11)

9The traditional sign convention has been followed here. There
would be a minus sign in the equation if Ap were defined to be
p(z 4+ Az) — p(z). However, it is usually defined as p — p’. The flow
is from the region of higher pressure to the region of lower pressure.
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FIGURE 5.7. Different flow possibilities for a completely im-
permeant solute. (a) Apg = 0, so there is no flow even though
p > p’. (b) Flow to the right even though p = p’. (c) Flow to
the left even though p = p'.

Figure 5.7 shows the pressure relations on each side of the
membrane for no flow and for flow in either direction.

When the solute is partially permeant, the volume flu-
ence rate in the linear approximation still depends on
both Ap and Aw, but the proportionality constants may
be different. Since the solute does not reduce the flow
as much as in Eq. 5.11, it is customary to write the two
constants as Ly, and oL,:

Jy = Ly(Ap — oAm). (5.12)

Parameter L, is determined by measuring J, and Ap
when A7 = 0, while ¢ is determined from measurements
of Ap and Am when J, = 0.

Parameter o is called the reflection coefficient. It has
different values for different solutes. When ¢ = 0 there
is no reflection, and the solute particles pass through like
water. When o = 1 all the solute particles are reflected
and Eq. 5.12 is the same as Eq. 5.11.

Impermeant {

(b}

FIGURE 5.8. Pressure relationships on each side of the mem-
brane when o = 2. (a) There is no bulk flow. (b) There is flow
to the right.

We can imagine that part of the solute moves freely
with the water and part is reflected. (Later, we will con-
sider a model for partial reflection in which a solute par-
ticle of radius a < R, can enter the pore, but its center
cannot be closer to the wall than its radius.) We can write

p=patom, (5.13)

and we can further break this down to a driving pressure
for the water pg,, and one for the permeant solute:

osmotic pressure
of all solute molecules

= e +(1—o0)m +om
P= Pdw (1-o0) (5.14)
——
driving pressure osmotic pressure
for permeant of impermeant
molecules molecules
With this substitution the flow equation becomes
Jo = Ly [Apaw + (1 — 0)Ax]. (5.15)

Figure 5.8 shows the pressure relationships across the
membrane.

In the approximation that van’t Hoff’s law holds, 7 =
kpTC = RTc and Eq. 5.12 can be written as

Jy = Ly(Ap — ckpT AC),
Jy = Lp(Ap — oRT Ac).

(5.16)
(5.17)

In Eq. 5.16 the concentration is in molecules m~2; in Eq.
5.17 it is mol m~3. In both cases the units of kgT AC
and RT Ac are pascals.
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FIGURE 5.9. Apparatus used to treat fluid overload by ultra-
filtration. Connection A is used for a patient connected to an
artificial kidney. Connection B is used when the ultrafilter is
used by itself. Pressure is monitored at P; on the input side
and P, on the output side. The three numbered rectangles
are (1) the anticoagulant infusion site, (2) the site for mea-
suring clotting time in the filter, and (3) the site for measur-
ing patient clotting time. From M. E. Silverstein, C. A. Ford,
M. J. Lysaght, and L. W. Henderson. Treatment of severe
fluid overload by ultrafiltration. Reproduced, by permission,
from the N. Engl. J. Med. 291: 747-751. Copyright (©) 1974
Massachusetts Medical Society. All rights reserved. Drawing
courtesy of Prof. Henderson.

As an example of volume flow, consider ultrafiltration.
Ultrafiltration is the process whereby water and small
molecules are forced through a membrane by a hydrosta-
tic pressure difference while larger constituents are left
behind. An interesting clinical application of ultrafiltra-
tion has been proposed. A severely edematous patient
(for any of the reasons mentioned in the previous sec-
tion) must have the extra water removed from the body.
This is usually accomplished with diuretics, drugs that
increase the renal excretion of water. Some patients may
not respond to these drugs, and in other cases, partic-
ularly pulmonary edema, the response may not be fast
enough. In the latter case, phlebotomy (bloodletting) is
sometimes used to reduce the body water rapidly. This
has obvious disadvantages, for example, the removal of
blood cells. Silverstein et al. (1974) have used ultrafiltra-
tion to remove water and sodium from the plasma while
leaving the other constituents behind. The apparatus is
shown in Fig. 5.9. The ultrafilter consists of a total area
S = 0.2 m? of membrane, the permeability of which is 1
ml min~' m~2 torr—!. The pores are permeable to mole-
cules of molecular weight less than 50,000. The filtration
rate is set by clamping the ultrafiltrate line (P in Fig.
5.9), thereby increasing the pressure on the outside of
the ultrafilter and decreasing the pressure drop across
the membrane. The pressure was adjusted to give i, of
32 ml min~! or less, which is equal to that found in a
normal kidney.
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FIGURE 5.10. Filtration rate (flow) 4., vs transmembrane
pressure for a fixed blood flow of 200 ml min~! through the
apparatus in Fig. 5.9. The solid straight line shows a value
of L, of 1 ml min™" m™2 torr™" as reported by Silverstein et
al. Modified, by permission, from the N. Engl. J. Med. 291:
747-751. Copyright © 1974 Massachusetts Medical Society.
All rights reserved.

Figure 5.10 shows the flow vs Ap. The initial slope
of this curve determines L,S and hence L,. The curve is
not linear but saturates at about 32 ml min~* of filtration
flow, possibly because of poor mixing within the blood.

Ultrafiltration is sometimes called reverse osmosis. The
name is unfortunate, because it suggests some mysterious
process unrelated to the principles of this section. Ultra-
filtration is often used by campers for purifying water and
has been suggested for desalinization of sea water.

5.6 Solute Transport Through a
Membrane

Solute can pass through the membrane in two ways: it
can be carried along with flowing water (solvent drag),
and it can diffuse.

If there is no reflection (¢ = 0) and the solute con-
centration is the same on both sides of the membrane
so there is no diffusion, the flux density or fluence rate
is caused by solvent drag and is simply the solute con-
centration (particles per unit volume) times the volume
fluence rate (Sec. 4.2):

Js = Cody.

If the solute particles are completely reflected (o = 1)
then J; = 0.
In the intermediate case with coefficient o,

Js = (1 —0)CsJ,.

This is consistent with the idea expressed by Eq. 5.14
that a fraction (1 — o) of the solute particles can enter
the membrane. In that case, Cy is the solute concentra-
tion outside the membrane on both sides, and Cs(1—0) is
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the solute concentration inside the membrane. We will de-
velop a detailed model for transport in a right-cylindrical
pore in Sec. 5.9. We anticipate that discussion and present
a simple justification of the factor 1 — o. In bulk solution
the concentration C is obtained by imagining a certain
volume of solution, counting the number of solute par-
ticles whose centers lie within the volume, and taking
the ratio. In a cylindrical pore of radius R, and length
AZ, the volume of fluid is ’/TRIQ)AZ. The centers of solute
particles of radius a cannot be within distance a of the
pore wall. The number of solute particles within the pore
is therefore Cym (R, — a)® AZ. The concentration in the
pore is the number of particles divided by the pore vol-
ume:

Com (R, —a)> AZ

Cs, inside = WR%AZ
a 2
- c, (1—) —C,(1-0).
Rp

This correction is called the steric factor. Solvent flow
within a distance a of the walls contributes to J,, but not
to solvent drag. This model will be extended to a volume
flow with a parabolic velocity profile in Sec. 5.9.4.

If J, = 0 there will be no solvent drag but there will
be diffusion. The solute flux will be proportional to the
concentration gradient and therefore to the concentra-
tion difference across the membrane: Jgy o< AC,. The pro-
portionality constant depends on properties of the mem-
brane. If the membrane is pierced by pores, for example,
it depends on pore size, membrane thickness, number of
pores per unit area, and the diffusion constant. The de-
pendence will be derived later in this chapter. It is cus-
tomary to write the proportionality constant as wRT":
Js = WRTAC. The factor w is called the membrane per-
meability or solute permeability.

In the linear approximation the fluence rate resulting
from both processes is the sum of these two terms:

Jy = (1—0)CyJy, + wRT AC,. (5.18)

Here an average value C' has been written for the solvent
drag term, because the concentration on each side of the
membrane is not necessarily the same. The way that this
average is taken will become clearer in the discussion of
the pore model described in Section 5.9.

The solute equation has been written for both fluence
rate and concentration in terms of particles. In terms of
molar fluence rate and concentration, it is exactly the
same:

Js(molar) = (1 — 0)¢sJy + wRT Acs. (5.19)

Either way, the diffusion proportionality constant is wRT'.
It does not change because C; and J;(particles) are both
written in terms of particles, and ¢, and Jg(molar) are
both written in terms of moles. Referring to Eq. 5.18,
the solvent drag term has units of (particles m~3) (m

s~1) = particles m~2 s~!. Therefore the factor wRT has
units of m s~!. Since the units of RT are joules or N m
(per mole), the units of w are

mol m s~ !

N m

Further interpretation of w will be made for specific mod-
els.

We have used the same o in both the solvent drag term
and in the preceding section. Although this was made
plausible by saying that 1 — o is the fraction of solute
molecules that gets through the membrane, its rigorous
proof is more subtle. It has been proved in general us-
ing thermodynamic arguments, which can be found in
Katchalsky and Curran (1965). It can be proved in detail
for specific membrane models.

=mol N~ ! gL, (5.20)

5.7 Example: The Artificial Kidney

The artificial kidney provides an example of the use of
the transport equations to solve an engineering problem.
The problem has been extensively considered by chemical
engineers, and we will give only a simple description here.
Those interested in pursuing the problem further can be-
gin with reviews by Galletti et al. (2000) or Lysaght and
Moran (2000). The reader should also be aware that this
“high-technology” solution to the problem of chronic re-
nal disease is not an entirely satisfactory one. It is expen-
sive and uncomfortable and leads to degenerative changes
in the skeleton and severe atherosclerosis [Lindner et al.
(1974)].

The alternative treatment, a transplant, has its own
problems, related primarily to the immunosuppressive
therapy. Anyone who is going to be involved in biomedical
engineering or in the treatment of patients with chronic
disease should read the account by Calland (1972), a
physician with chronic renal failure who had both chronic
dialysis and several transplants. The distinction between
a high-technology treatment and a real conquest of a dis-
ease has been underscored by Thomas (1974, pp. 31-36).

The simplest model of dialysis is shown in Fig. 5.11.
Two compartments, the body fluid and the dialysis fluid,
are separated by a membrane that is porous to the

Bedy fluid E Dialysis
(including blood) 1 fluid
v _L,_‘_Js V'
c ! c'

Membrane
]

FIGURE 5.11. The simplest model of dialysis. All the body
fluid is treated as one compartment; transport across the
membrane is assumed to take longer than transport from var-
ious body compartments to the blood.



small molecules to be removed and impermeable to larger
molecules. If such a configuration is maintained long
enough, then the concentration of any solute that can
pass through the membrane will become the same on both
sides. The dialysis fluid is prepared with the desired com-
position of such small molecules as sodium, potassium,
and glucose. Volume V’ must be larger than V for effec-
tive dialysis to take place; otherwise, the concentration
of solutes in the dialysis fluid builds up from the initially
prepared values. In early work, V/ was up to 100 1 (since
V is about 40 1). Although the fluid was replaced every 2
hours or so, it was an excellent medium in which to grow
bacteria. Although the bacteria could not get through the
membrane, they released exotoxins (or, if they died, endo-
toxins) which diffused back into the patient and caused
fever. Now a continuous flow system has been used in
which the solutes are continually metered into flowing
dialysis fluid that is then discarded. Because of this, we
will assume that there is no buildup of concentration in
the dialysis fluid. (Effectively volume V’ is infinite.) We
will assume that Ap = 0. (Actually, proteins cause some
osmotic pressure difference, which we will ignore.)

Without solvent drag, the solute transport is by diffu-
sion, J; = wRT(C — C’), where C' is the concentration
of solute in the blood and C' is the concentration in the
dialysis fluid. If the surface area of the membrane is .5,
then the rate of change of the number of solute molecules
N is IN

!
prai SwRT(C — C").

If the solute is well mixed in the body fluid compartment,
then N = C'V, and this equation can be written as

dC  SwRT
dt %
This is the equation for exponential decay. The steady-

state solution is C' = C’. The complete solution is (Ap-
pendix F)

(C—c).

Ct)=[C(0)—Ce ¥+, (5.21)
where the time constant is
v
= . 22
T SwRT (5-22)

The only variables that are adjustable in this equation are
the membrane area S and its permeability w. The size of
pores in the membrane is dictated by what solutes are to
be retained in the blood. The number of pores per unit
area and the thickness of the membrane can be controlled.
Typical cellophane membranes have wRT =5 x 107% m
s~! (with a thickness of 500 um). The area may be 2 m?.
With a fluid volume V' = 40 1, this gives a time constant

40 x 1073 m3

=4x10°s=1.1h.
2m2)(Bx100m sy 00

T =

Typically, dialysis requires several hours. This longer pe-
riod is for two reasons. Some of the larger molecules

5.8 Countercurrent Transport 121
have smaller permeabilities and therefore longer time con-
stants, and rapid dialysis causes cerebral edema and se-
vere headaches.

The actual apparatus is quite complicated. First, it
must be sterile, which requires a sterilized, disposable
dialysis membrane. Second, the apparatus causes clots,
so the blood must be treated with heparin as it enters
the machine, and the heparin must be neutralized with
protamine as it returns to the patient.

5.8 Countercurrent Transport

This section considers a problem that demonstrates the
principle of countercurrent transport. An apparatus (per-
haps a dialysis machine or an oxygenator) transports
a single solute across a thin membrane of permeability
wRT. On one side of the membrane (the “inside”) is a
thin layer of solvent that flows along the membrane in
the +z direction as shown in Fig. 5.12. On the “outside”
is another thin layer of solvent that may be at rest or
may flow in either the +z or the —x direction. When it
flows in the opposite direction of the fluid inside we have
the countercurrent situation.

Suppose that the concentration of solute in the two lay-
ers is Ciy(z) inside and Coyi(x) outside. Solute is trans-
ported in the x direction in each fluid layer by pure sol-
vent drag. It diffuses through the membrane from the side
with higher concentration to the other. We develop the
model below and show that the steady-state concentra-
tion profiles are quite different depending on whether the
solvent flows are in the same or opposite directions. The
results are shown in Fig. 5.13 for the situation in which
the value of Cj, is 1 and the value of Cy,t is 0 where each
solvent starts to flow across the membrane. In Fig. 5.13(a)
both layers flow to the right; in Fig. 5.13(b) they flow in
opposite directions. The countercurrent case is more ef-
fective in reducing Cj,. The final value of Cj, is 0.5 in the
first case and 0.33 in the second.

To develop the model, we make the following assump-
tions. The concentration of solute in each fluid layer is
independent of y, z, and t. The thickness of the fluid
layer inside is h;,. The fluid velocity j, i, is everywhere
constant. The only important mechanism for solute trans-
port within the fluid is solvent drag. Let the length of

Jvin
e

M

N Fluid
- ] Membrane
Fluid
-
Jv out

FIGURE 5.12. Layers of fluid containing a solute flow parallel
to the z axis on either side of a membrane.
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FIGURE 5.13. Solute concentration profiles for two different
situations where solvent flows parallel to the membrane sur-
face and solute moves through the membrane from inside to
outside. (a) Both fluid layers flow to the right. The concen-
trations rise and falls exponentially, eventually becoming the
same on both sides of the membrane. (b) The countercurrent
case, in which the solvent flows are in opposite directions. The
solvent outside flows from right to left. The concentrations
vary linearly.

the slab in the y direction be Y. Inside, the number of
particles per second in through the face of the rectan-
gle of area Y hi, at x is Cin(2)Jy inY hin. The number out
through the face at = + dz is Cin(z + dz)jy inY hin. The
number through the membrane into the exterior volume

is [Cin(z) — Cout(z)] wRTY dx. Combining these we get
dCin o wRT
. [Cin(x) — Coug ()] - (5.23)

A similar expression can be derived for the exterior:

dCout
dx

_ wRT (Cin(z) —

jv out hout

Cout ()] - (5.24)

Our notation allows j, to have a different direction (sign).
Defining a = wRT/j,h we have the coupled differential
equations

dC;

di = *ain(cin - Oout)a
dOm (5.25)
ot _ 'Hlout(cin - Cout)~

dzx

We restrict ourselves to the case in which |a;,| =
|aout| = a. Changing the direction of j, changes the sign
of a. Assume a is the same on both sides. The equations
show that the slope of Cj, (x) is minus the slope of Cyt ()
if both currents are in the same direction, and the two
slopes are the same if the currents are in opposite direc-
tions. This can be seen in the solutions in Fig. 5.13.

You can verify that Egs. 5.26 represent a solution of
Eqgs. 5.25:

Cin(x) — ﬂ (1 + e—2aw) + cj (1 _ e—2aw) ,
2 2 (5.26)
Cout(1) = 5 (1= e72%7) + 2 (L e727)

were ¢, and ¢y are the values of C;, and Coy at z = 0.
Figure 5.13(a) shows the concentrations for ¢; = 1 and
ce = 0 with a = 1 and 0 < = < 2. If the sign of a
is changed in the second differential equation, then the
fluid outside is flowing in the opposite direction to the
fluid inside. Again you can verify that the most general
solution is

Cin(z) = ¢1 + (c2 — ¢1)ax,

Cout(l') =2+ (CQ — Cl)al’. (527)

Figure 5.13(b) is a plot with the constants set so that the
concentration inside on the left is 1 and on the outside on
the right is zero (¢; = 1,2 =2/3,a=1,0 < z < 2). This
configuration is called countercurrent flow. We can see
from the figure that the transport through the membrane
is increased because the concentration difference across
the membrane is, on average, greater.

The countercurrent principle is found in the renal
tubules [Guyton (1991), p. 309; Patton et al. (1989), p.
1081], in the villi of the small intestine [Patton et al.
(1989), p. 915], and in the lamellae of fish gills [Schmidt-
Nielsen (1972), p. 45]. The principle is also used to con-
serve heat in the extremities—such as a person’s arms
and legs, whale flippers, or the leg of a duck. If a vein
returning from an extremity runs closely parallel to the
artery feeding the extremity, the blood in the artery will
be cooled and the blood in the vein warmed. As a result,
the temperature of the extremity will be lower and the
heat loss to the surroundings will be reduced.

5.9 A Continuum Model for Volume
and Solute Transport in a Pore

In this section we develop a model to predict the values
of the phenomenological coefficients of Secs. 5.5 and 5.6.
The success of the model depends on its ability to pre-
dict behavior, particularly as the size of solute particles is
varied. This was an important problem in physiology in
the 1960s and 1970s. Instead of comparing the model to
experiment, we conclude the section by showing what the
forces are on the membrane. This is important because
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TABLE 5.1. Symbols used for porous membrane.

Quantity On left In pore On right
Total pressure P '

Solute concentra-  Cj C(z) C!

tion

Osmotic pressure 7 = kgTCs 7w =kgTC!

Effectively imper- om on’

meant part of os-
motic pressure
Effectively per-
meant part of
osmotic pressure
plus water driving
pressure

(1—=0)m +Ppagw palz) (A —o)r" +pl,

there has been a fair amount of confusion in the liter-
ature about the forces on a semipermeable membrane.
This section is fairly long. It stands alone; you can skip
it if you wish.

The model assumes that the membrane has a particu-
larly simple structure.

1. The membrane is pierced by n circular pores per
unit area, all having radius R, and all being right
cylinders. The membrane thickness is AZ.

2. The pore and the fluid are electrically neutral. No
electrical forces are considered.

3. There is complete mixing on both sides of the pore,
so that flow within the liquid on either side can be
neglected.

4. The system is in the steady state. There is no vari-
ation in flux density (fluence rate) or concentration
as a function of time.

5. The pores are large enough so that the bulk flow can
be calculated by continuum hydrodynamics.

The quantities considered in this section are summa-
rized in Table 5.1.

5.9.1

The results of Chap. 1 can be used when the pore is filled
with pure water or water and a solute for which o = 0.
From Eq. 1.40 the flux through a single pore is

Volume Transport

TR} Ap
8n Ax’

iy (single pore) = (5.28)
The fluence rate through the membrane is obtained by
multiplying i,, by n, the number of pores per unit area.
The result is
B nﬂ'Rﬁ Ap
Y 8y AZ

so that
erﬁ

L,= .
P8nAZ

(5.29)
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While L, can be measured fairly easily using Eq. 5.12, it is
much more difficult to measure the microscopic quantities
needed to test Eq. 5.29. We will not compare the model
to experiment here;'® we will simply give an example of
how calculations are done.

In discussing ultrafiltration we considered a filter
(Fig. 5.10) for which L, ~ 1 ml min™' m~2 torr~!. Since
760 torr = 1 x 10° Pa, the hydraulic permeability in SI
units is

1 ml 1 min 107 m3 760 torr

1 torr min m? 60s 1ml 1x10° Pa
=127x1071%m st Pa™l.

L,=

The manufacturer’s literature!! can be used to estimate

R, ~ 4.5 nm,
AZ ~ 10 pm.1?
The viscosity of water is 0.9 x 1073 Pa s at 25°C. This

gives us enough information to estimate n and the frac-
tion of the filter surface that is pores. From Eq. 5.29

- 8nAZ L, _ (8)(0.9 x 1072 Pa s)(10 x 1076 m)
TR} 7 (4.5 x 10-9)* m?
x (1.27 x 10719 m s7! Pa™)
=7.1x10" m™2,

Since the area of one pore is 7TR127 = 6.36 x 10~17 m?, the
total pore area in 1 m? is 0.45 m?, a number that is not
unreasonable.

Next consider the volume flow when the reflection co-
efficient is not zero. The position within the pore is speci-
fied by cylindrical coordinates (r, ¢, z). The position along
the axis of the pore is given by z. The position in a plane
perpendicular to the axis of the pore is specified by po-
lar coordinates r and ¢. Flow of the fluid is described by
the vector volume fluence rate j,(r, ¢, z). (We use J for
fluence rate for the membrane as a whole and j for the
fluence rate in bulk solution inside a pore.) It is possible
to show rigorously that as long as the pore is a right cir-
cular cylinder, j, points only along z and is independent
of ¢ (the fluid does not flow in a spiral and does not flow
into or out of the walls):

jU(T,¢,Z) = jU(T7 Z)i (530)

The solution is in a steady state and the flow is not chang-
ing with time. Therefore, the flux density into a volume
at z must be the same as the flux density out at z + dz:

9Jv
0z

=0 (5.31)

10See earlier editions or, for example, Bean (1969, 1972).

1 Amicon XM-50.

12This value nay not be consistent with the value of L, quoted.
The pore length AZ is not well known, and L, is variable, depend-
ing on experimental conditions.
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FIGURE 5.14. Pressure within a pore and at the boundaries
in the steady state.

so that j, is constant along the z axis (although it can
be a function of r). This is just what we saw in Chap. 1
for Poiseuille flow; the variation of j, with r corresponds
to the parabolic velocity profile. A value of j,(r) that is
constant in the z direction requires a constant value of
Op/0z inside the pore.

In the pore, the driving pressure is pg(z). A typical
pressure profile is shown in Fig. 5.14. The symbols are
defined in Table 5.1. The pressure in the pore has been
drawn with constant slope, since 9py/0z is constant. Us-
ing Egs. 5.16 and 5.29, we can write

Jy = Ly(Ap — okpT AC), (5.32)

where L,, is given by Eq. 5.29. The value of o is derived
in the next section.

The average value of j, (r) within the pore will be called
Jo- It is the total flux density through the pore divided
by TR2:

- i(single pore) 1 /R” )
_ _ L (r) 277 d
7o = e o [ty 2
, R?
_ o T (5.33)
nmR2 8n 0z

5.9.2

We now consider solute transport in our model pore. The
arguments here are very similar to those for combined
diffusion and solvent drag that were developed in Sec.
4.12. Those arguments are extended by averaging over
the cross section of the pore.

Within the pore, the local solute flux is js(r, ¢, z). Ar-
guments similar to those in the preceding section can be
offered to show that js points along the z axis and is
independent of ¢:

Solute Transport

Js(r, 9, 2) = js(r, 2)2. (5.34)

The solute concentration does not depend on ¢, or else
there would be diffusion in the ¢ direction and js would
have a ¢ component. So C' = C(r, z). The r dependence
must be kept because the center of a solute molecule of
radius a cannot be within a distance a of the wall. (Recall
the discussion of the steric correction on p. 120.) Thus
C(r,z) =0if r > R, — a. We write!3

_ 0, R,—a<r
C(T’Z)_{ C(z), 0<r<R,—a.

The solute flux due to solvent drag is Cyj,. For dif-
fusion in one dimension the solute flux along the z axis
is —D(0C/dz). For the cylindrical pore we can combine
these and write

(5.35)

oC(r, z)
0z
The diffusion constant has been written as a function of
r, a, and R, because in the pore, as distinct from an
infinite medium, the constant depends on how close the
particle is to the walls. (Remember the relation of D to
the viscous drag and the fact that Stokes’ law requires
modification when the fluid is confined in a tube.)

The preceding section showed that for the steady state
jv is independent of z. A similar argument can be made
using the continuity equation for solute particles, imply-
ing that js is independent of z. Therefore, Eq. 5.36 sim-
plifies to

Js(r,2) = C(r,2)ju(r, z) — D(r,a, R,) (5.36)

oC(r, z . .
Dir.a. 1) 2D 1) 2) = (o).
The easiest way to write C(r, z) in accordance with Eq.

5.35 is

(5.37)
C(r,z) = C(2)I'(r),

0,
{ 1, 0<r<R,—a
With this substitution Eq. 5.37 becomes
dC(z)
dz

This equation can be multiplied by 27r dr and integrated
from r = 0 to r = R,,. The result is

where
R,—a<r
I(r) =

L(r)D(r,a, Ry,) —C(2)T(r)ju(r) = —js(r). (5.38)

(/RP I'(r)D(r,a, Ry)2mr dr) dCd(z)
0 z

Ry Ry
- </0 I(r) gy 27r dr) C(z) = —/0 Js(r)2mr dr.

(5.39)

The physical meaning of this integration can be under-
stood with the aid of Fig. 5.15, which shows a slab of fluid

13Tt can be argued that this is the only possible form for C(r, 2).
See Levitt (1975, p. 535fL.).
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FIGURE 5.15. A slab of fluid in a pore between z and z 4 dz,
showing how the integration over r is done.

in the pore between z and z + dz. Solute does not cross
a surface of constant r but moves parallel to the z axis.
Diffusion and solvent drag are considered in each shaded
area 27mr dr. The integration of Eq. 5.38 establishes an
average solute fluence rate, since the right-hand side of
the equation is the total flux or current of solute particles
per second passing through the pore:

RP
is :/ Js(r)2mr dr.
0

As with the volume fluence rate, it is convenient to call
the average solute fluence rate j,:

- is I
Js = ’/TR% = T-RZQ) o jS(T)QTrT d’l“.

The first term of Eq. 5.38 is the diffusive flux at z aver-
aged over the entire cross section of the pore. Define an
effective diffusion constant

(5.40)

1 (B

Deg = —
2
mRy Jo

L(r)D(r,a, Ry)2mr dr. (5.41)

The second term on the left of Eq. 5.38 is the solvent
drag flux averaged over the entire cross section of the
pore. The integral is

R, Ry—a
/ Jo(r)T(r)2mr dr = / Ju(r)2mrdr.  (5.42)
0 0

This integral can be evaluated because we know the ve-
locity profile, j,(r), Eq. 1.39:14

. 1 Ap
Jo(r) = I A (R2—1?). (5.43)

We have already defined the average volume fluence rate

to be
— 1

v = ——=5 j» ()27 dr.
Fo= g ) a)mrar

14This ignores the fact that since the walls affect the force on the
solute particles, the solute must distort the velocity profile slightly.
This point is discussed below.
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The desired quantity differs only in the limits of integra-
tion. To calculate it, write

Ry—a
/ Jo(r)2mr dr
0

R, :
/ Jo(r)2mr dr
0

Ry—a -~
/0 Jo(r)2mr dr = WRf,jv

The integrals are easily evaluated (see Problems). The
result is

RP
/0 Jo(r)D(r)2wr dr = WR; Ju f(a/Ry), (5.44a)

where the function f is

F&) =1-4 + 48 — ¢t

When Eqgs. 5.40, 5.41, and 5.44a are substituted into Eq.
5.38 and each term is divided by mR?, the result is

(5.44D)

pre. _
Degt <dz> oS (1%,) C(z) = -7, (5.45a)
or
dC  jof(a/R,) 7
= 2L 0(z) = Do (5.45b)

This is a differential equation for C(z). The right-hand
side is the total solute fluence rate, which is constant. On
the left-hand side, C' varies along the pore so that the
diffusive and solvent-drag fluence rates add up to this
constant value. If the constant in front of C'(2) is written
as

1 Juf(a/Rp)

=" 4
R et (5.46)

this is recognized as Eq. 4.58 for drift plus solvent drag
in an infinite medium. The results of Sec. 4.13 can be
applied here. It is only necessary to determine values for
Cy and C{. Recall that in the pore C(r,z) = C(2)T'(r).
The function I'(r) takes into account the reflection that
occurs because solute particles cannot be closer to the
pore wall than their radius. It was also assumed that the
solution on either side of the membrane is well stirred.
Therefore, Cy = C; and C{) = C'.. Equation 4.70 becomes

c,—C"

7.): - 75 D
Js fjvc + eff AZ

(5.47)
This is an expression for j, the average solute fluence rate
in the pore. To get solute fluence rate in the membrane,
it must be multiplied by 71'R]2J and the number of pores
per unit area. Since .J, = nwR? j,, we have

n 7TR127 D.g

Js:szJv+ A7

AC,. (5.48)

Comparing this with the general phenomenological equa-
tion for solute flow, Eq. 5.18,

Js=(1-0)C4J, + wRT AC;
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we see that

1_0:f7
’I’L7TR2Deﬁ‘
— 4
WRT = —— ==, (5.49)
Dyt wRT(AZ)
CG(l-0)  L(l-0)’

The average solute concentration C' is obtained from
Eq. 4.66 with the substitution of AZ for the pore length:

C’Se -Cl 1
—1

- !
C, = - (G- 0.

This can be rearranged as

e* +1 1
et —1 x’
where © = AZ/)\. This is the same function we saw in
Fig. 4.17.

The solute concentration away from the sides of the
pore is

(5.50a)

with

(5.50b)

C«s(eAZ/A _ ez/)\) + C;(ez/)‘ _ 1)

Clz) = AZIN

(5.51)

While the concentration profile is not usually measured
experimentally, it is useful to plot it to help us visualize
the interrelation of diffusion and solvent drag. Call ¢ =
C!/Cs. Equation 5.51 can be rearranged as
e/ — 1
eAZ/X\ _ 1) '
We can see several things from this equation. First, if
the concentration is the same at each end of the pore,
¢ = 1, the second term in large parentheses vanishes,
and the concentration is uniform throughout the pore. If
¢ # 1, then the concentration is that at z = 0, plus a
factor which may be positive or negative, depending on
whether ¢ is less than or greater than 1. The ratio of
exponentials occurring in that factor is plotted in Fig.
5.16 for different values of AZ/\, the ratio of the pore
length to the effective diffusion distance.

These curves determine the shape of the concentra-
tion profile along the pore. If the flow is zero, A =
Det/j,(1 — o) is infinite and AZ/X is zero. We then
have pure diffusion, and the concentration changes uni-
formly along the pore, corresponding to the straight line
in Fig. 5.16. The plots in Fig. 5.17 show what the concen-
tration profiles are like for diffusion to the left and to the
right when the flow is to the right. Compare the shape
of the concentration profile on the left in Fig. 5.17 with
the curve for AZ/A =1 in Fig. 5.16. When the concen-
tration is higher on the left, we have to take the mirror

C(2) = C(0) <1 —(1-¢) (5.52)

1.0

|
AZ/\ =-10

0.8

AZ/N = -1

AznZo
: AZ/A =1
S
0.2
%zm =10
——+ 1

0.6 0.8

0.2 0.4

z/AZ

1.0

FIGURE 5.16. Plot of the factor (e*/* —
appears in Eq. 5.52.

1)/(e2%/* —1), which
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FIGURE 5.17. A possible set of values for p, p4, and C along
a pore for diffusion to the left and diffusion to the right. The
fluid on each side of the pore is well stirred and of sufficient
volume so that concentrations do not change with time.

image of Fig. 5.16; the curve for AZ/\ = —1 gives the
concentration profile in Fig. 5.17 on the right.

As the pore becomes very long compared to the dif-
fusion length (for example, |[AZ/A| = 10 or more), the
concentration along the pore is nearly that carried into
the pore by bulk flow from the left until we get to the
far end, where diffusion back up the pore gives a smooth
transition to the final concentration on the right.
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We can think of the pressure in the pore as being made
up of driving pressures due to water and to the solute
within the pore:

Pa(2) = paw(2) + pas(2)-

Since the effective driving pressure for impermeant solute
in the J, equation is kgTAC, it would be nice to be able
to write

pd(2) = paw(2) + (1 = 0)kpT C(2).

This is consistent with the solvent drag flux at position
z in the pore, which was given in Eq. 5.45a by

JoF C(2) =4,(1 = 0)C(2).

The “effective” concentration for solvent drag is (1 —

o)C(2).

5.9.8  Summary

To summarize, the combination of solvent and a solute
with reflection coefficient has a volume flux

Jo = Lp(Ap — o kT ACY) (5.53)
and a solute flux
Js = (1-0)CsJ, +wRT AC,. (5.54)
The hydraulic permeability is
nTR}
L, = L 5.55
The solute permeability is
n 71'R2 Deﬂ‘
_ P
wRT = N (5.56)
The characteristic length for diffusion is
D, AZwRT
A= oot 2SR (5.57)
]v(lig) Jv(l—O')
The average concentration is
C,= %(C’S + Cl) + G(x) ACs, (5.58)

where G(z) is given by Eq. 5.50b. The parameter z is

Jo(l—0) AZ

wRT A (5.59)

Notice that the solvent drag term as well as the diffusion
term depends on ACj, through the factor Cl.
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FIGURE 5.18. Calculated values of the reflection coefficient
are indicated by the lines. Calculations are shown for the sim-
ple steric factor, the steric factor weighted by a parabolic ve-
locity profile, Eq. 5.60, and a more detailed calculation, which
takes account of the distortion of the velocity profile by the
solute particles. The data points are from Durbin (1960) as
reinterpreted by Bean (1972).

5.9.4  Reflection Coefficient

We have referred previously to the fact that the centers
of solute particles can occupy only a fraction of the pore
volume. A solute particle’s center cannot be further from
the pore axis than R, — a. The simplest correction is the
steric factor, seen on p. 120. The ratio of effective area to
total area approximates 1 — . If { = a/R,,, then

_ 2 2 2

1_0%7T(Rp 2a) :1_761_’_%7

TR2 R, R
o=2¢— €%

A better calculation was seen in the preceding subsec-
tion. Accept the fact (quoted from thermodynamic re-
sults) that the same o occurs in the equations for J,, and
Js. We saw that the edges of the pore have less bulk flow
than the center, so that the steric effect overestimates
how many particles are reflected. From Eq. 5.44b,

o=1—f=4€6> — 48 + ¢t

These two approximations to o are plotted in Fig. 5.18.

It was mentioned in a footnote that the calculation
which resulted in Eq. 5.44a neglected the change in ve-
locity profile caused by the solute particles. More rigorous
calculations have been done by Levitt (1975) and by Bean
(1972, pp. 29-35). Levitt’s result is

(5.60)

1 2
o= 3652 - §O§3 + gﬁ +0.35°. (5.61)

This is valid for £ < 0.6. The three equations for o are
plotted in Fig. 5.18, along with some experimental data
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FIGURE 5.19. Plot of w/wp for experimental data by Beck
and Schultz (1970) and a calculation by Bean (1972).

from Durbin (1960) using the pore radius assigned by
Bean.

5.9.5 The Effect of Pore Walls on Diffusion
The solute permeability is given by

nﬂ'R;Dcﬁ'

AZ
The effective diffusion coefficient takes into account the
steric factor as well as the drag on the solute particles by

the pore walls. If the pore had an infinitely large diameter,
the unrestricted permeability would be

wRT =

erf)D
AZ
where D is the diffusion coefficient for an infinite medium.
Figure 5.19 shows some data from Beck and Schultz
(1970) and a curve for w/wy calculated by Bean (1972).15
In Europe, filtration rather than dialysis is used to
treat kidney patients. There is evidence that some as
yet unidentified toxin of medium molecular weight ac-
cumulates in the blood. Comparison of 1 — ¢ from Fig.
5.18 with w/wy from Fig. 5.19 shows that solvent drag re-
moves medium-sized molecules more effectively. The fluid
and electrolytes lost by the patient must be replaced.

woRT =

5.9.6 Net Force on the Membrane

We conclude the section by calculating the force of the
fluid on the membrane. The results give some insight into
the nature of osmotic pressure.

15The steric factor, which Bean includes separately, is built into
Deg through the function I'(r).

I:1 1’
. "
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=

FIGURE 5.20. The forces on a membrane with pores. The
fluid on the left exerts force F1 due to the hydrostatic pressure
p. A similar force F} is exerted on the right. Solute molecules
like A are reflected at the pore edge and exert force F2. Solute
molecule B enters the pore. It contributes to the viscous force
of the flowing fluid on the cylindrical walls of the pore, F's.
F'3 is to the right if the fluid flows from left to right through
the pore.

A membrane of total area S is pierced by n pores per
unit area of radius R,. The pressures in the fluid on each
side of the membrane are p and p’. A solute with reflection
coefficient ¢ has concentration C on the left and C’ on
the right. We want to calculate the total force exerted by
the fluid on the membrane. There are three contributions
to this force. These can be understood by referring to
Fig. 5.20.

Forces F} and F| are the forces exerted by the fluid
on the walls of the membrane on each side. They are
obtained by multiplying the total pressure on each side
by the area of the membrane that is not occupied by
pores. In a total area S there are n.S pores, each of area
TR

F=pS (1 — erIZ))
F=p'S(1—-n7R)).
The net force to the right is

Fi—F=S(p-p)(l-nrR)). (5.62)

Forces Fy and F} are exerted by solute molecules re-
flected from the pore region, such as molecule A in
Fig. 5.20. These are the ones that contribute to the os-
motic pressure. The net force to the right is therefore the
total pore area Snﬂ'Rf, times the impermeant part of the

osmotic pressure difference:
Fy — Fy = SnaR> (om — on'). (5.63)

Force F3 is the viscous drag exerted on the walls of the
pores by the water and permeant solute molecules flowing



through them. To calculate it we recall that the viscous
force per unit area is — n (Jv/9dr) . The velocity is v = j,,.
Differentiating Eq. 5.43,we obtain

jo _

1 A(p—onm)
or 4y

.
N

The total force is n times this quantity evaluated at r =
R,, times total area of the cylindrical walls of all the
pores, which is (Sn) (2rR,AZ) :

o\ _ /
Fy = Sn2wR,AZn (4177(73 r) A;(W U )QRP)

= Serf, (p—p)—o(x—7")].

(5.64)

The net force on the membrane is the sum of these
forces:

Fl—F{+F2—F2/+F3:S(p—p/). (565)

We see that the net force on the membrane is the total
pressure difference times the total area of the membrane,
regardless of the differences in osmotic pressure on each
side. Both solute and solvent exert a force on the non-
pore area of the membrane. The solute molecules at the
membrane surface whose centers are within the area of a
pore may be reflected or may enter the pore. If they are
reflected, they contribute to the force when they strike the
membrane at the edge of a pore. If they are not reflected,
they enter the pore and contribute to the viscous drag on
the membrane due to flow through the pore.

Symbols Used in Chapter 5

Symbols Used 129
T AZ/X 127
z Distance along pore m 123
Z Unit vector in z direction 123
C,Cs, Particle concentration of (particle) 112
etc. the species indicated by m~3
the subscript
D, Degr Diffusion constant m? s~ 124
F Force N 128
G Factor relating solvent 126
drag and diffusion
Js Solute fluence rate m—2 s ! 119
through membrane
Ju Volume fluence rate m s~} 117
through membrane
L, Hydraulic permeability ms~! Pa~! 117
N1 etc. Number of molecules 112
Ny Avogadro’s number 112
R Gas constant Jmol~1 K-1 112
Ry Pore radius m 120
S Surface area m? 117
T Absolute temperature K 112
v,V ,v* Volume m?3 112
X, Y Distance m 121
AZ Pore length m 120
n Viscosity Pas 123
A Effective diffusion m 125
distance
o Chemical potential J molecule~?! 114
13 a/Rp 127
T Osmotic pressure Pa 114
o Reflection coefficient 118
T Time constant S 121
w Solute permeability mol N—1s=1 120
wo Solute permeability in an mol N—1 s~1 128
infinite medium
10} Angle in cylindrical 123
coordinates
o} Ct/Cs 126
T Radial dependence of 124
solute concentration
Problems
Section 5.3

Symbol Use Units First
used on
page

a Solute particle radius m 120

a, ain, Gout Parameters m—1 122

c1,c¢2,¢;,ch Solute concentration (mole) m—3 112

f Temporary function 125

h Thickness of fluid layer m 121

% Solute current through s™1 131

membrane

is Solute flow g1 125

i Volume flow m3 s~ ! 117

Jss s Solute fluence rate in m—2 g1 124

pore

Jusdu Volume fluence rate in ms— ! 123

pore

kp Boltzmann’s constant JK-1 112

n Number of moles 112

n Number of pores per unit m~—? 120

area

p1, etc. Pressure Pa 112

Pd “Driving pressure” Pa 114

p Total pressure Pa 114

Pdw “Driving pressure” of Pa 114

water

T Radius in cylindrical m 123

coordinates

T, Y,z Position m 121

Problem 1 The protein concentration in serum is made
up of two main components: albumin (molecular weight
75,000) 4.5 g per 100 ml and globulin (molecular weight
170,000) 2.0 g per 100 ml. Calculate the osmotic pressure
due to each constituent. (These results are inaccurate be-
cause of electrical effects.)

Problem 2 If the osmotic pressure in human blood is 7.7
atm at 37°C, what is the solute concentration assuming
that o = 12 What would be the osmotic pressure at 4°C?

Problem 3 Sometimes after trauma the brain becomes
very swollen and distended with fluid, a condition known
as cerebral edema. To reduce swelling, mannitol may be
injected into the bloodstream. This reduces the driving
force of water in the blood, and fluid flows from the brain
into the blood. If 0.01 mol I=' of mannitol is used, what
will be the approximate osmotic pressure?



130 5. Transport Through Neutral Membranes

Section 5.4

Problem 4 When a person is given an intravenous
fluid, the solute concentration in the fluid must be
matched to the solute concentration in the blood to avoid
problems arising from a change in the blood’s osmotic
pressure. One such fluid, called “isotonic saline,” can be
made by adding salt (NaCl) to distilled water. The osmo-
larity of the blood is about 0.3 osmole.

(a) How many grams of NaCl must be added to a liter
of water to make isotonic saline? What fraction of the
solution’s mass is NaCl? (Hint: Recall that NaCl dissolves
into Nat and Cl~, and both contribute to the osmotic
pressure.)

(b) Repeat for dextrose, CgHiaOg, which does not dis-
sociate.

Problem 5 An understanding of osmotic pressure is im-
portant in medicine. Consider the case reported by Stein-
muller (1998) in the New England Journal of Medicine.
A 5% solution of albumin was needed to infuse into a
patient with kidney disease (renal insufficiency). No 5%
solution was available, so the hospital pharmacy used 25%
albumin diluted 1:4 with pure water. Injection of the so-
lution into the patient caused renal failure. The albumin
in a 25% albumin solution has an osmolarity of about 36
mosmol. Typically, such a solution also contains about
300 mosmol of other ions (see Problem 4).

(a) Calculate the osmolarity of the solution injected
into the patient.

(b) Calculate the osmolarity of the solution if the phar-
macy had properly used isotonic saline instead of pure
water to perform the 1:4 dilution.

Problem 6 Articular cartilage covers the ends of bones
in joints and allows the bones to move smoothly against
each other. It contains a network of collagen fibers that
can exert a mechanical tensile stress to resist tissue
swelling, resulting in a pressure P, within the cartilage.
The collagen fibers do mot withstand compression. The
cartilage also contains proteoglycan molecules that cause
tissue swelling because of their osmotic pressure, Tpq.
One can determine P, by placing the cartilage in a poly-
ethylene glycol solution with osmotic pressure Tpgag, mea-
suring Tpg and Tpra, and using the relationship P, =
TpG — TPEG-

collagen

Typical data are

Tprc (atm) 7wpg (atm)
0.0 4.0
2.5 5.5
5.0 7.0
7.5 8.5
10.0 10.0

(a) What is the excess pressure P, exerted by the col-
lagen matriz under normal conditions (tppg =0)?

(b) At what value of mpgg does the collagen matriz
exert no tensile stress (become “limp”)?¢

(¢) Plot P. vs. mprg. Find a linear equation that fits
the data.

(d) Osteoarthritis is thought to occur when the collagen
matriz is weakened. If the collagen in an arthritic joint
can only exert a pressure of 2atm when wppg = 0, by
how much will the tissue swell (by what percent will its
volume change?)

In (b) and (d), assume that only the proteoglycans
cause osmotic pressure and that their number does not
change, but the tissue volume increases as the tissue
swells with water. This problem is based on the work of
Basser et al. (1998), but the data have been modified.

Section 5.5

Problem 7 Suppose that L, is expressed in m> N~1 s
or m s~ Pa~'. Find conversion factors to express it in
(a) ml min~* !

—1

em™2 torr~1.
(b) ml s~ em™2 (in. water) .
(c) ml s~ em™2 (Ib in.72)7 L.

Problem 8 An ideal semipermeable membrane is set up
as shown. The membrane surface area is S; the cross-
sectional area of the manometer tube is s. Att = 0, the
height of fluid in the manometer is zero. The density of
fluid is p. Show that the fluid height rises to a final value
with an exponential behavior. Find the final value and the
time constant. Ignore dilution of the solute.

S —I=

7

Problem 9 Consider the design of a lecture demonstra-
tion apparatus to show osmotic pressure that uses a com-
mercially available filter as shown in the drawing. As-
suming well-stirred fluid on both sides of the membrane



and neglecting the change of solute concentration in the
manometer tube as water flows in, one finds that height
z increases to the equilibrium value exponentially, with
a time constant obtained in the previous problem. What
would be the time constant if one used the membrane de-
scribed in Fig. 5.107 For that membrane L, =1 ml min~!
m~2 torr~—t, and the total membrane area is S = 0.2 m?.
Suppose that the inner radius of the manometer tube is 1
mm. (One could not use sucrose as a solute, because this
particular membrane is permeable to molecules of molec-
ular weight less than 50,000.)

Cross section s

pure water

in out

Problem 10 A cell has variable volume V' and fixed sur-
face area S. The total hydrostatic pressure p is the same
inside and outside the cell, and there is complete and in-
stantaneous mixing. Initially the interior and exterior are
both pure water. The initial volume of the cell is V. At
t = 0, the exterior is bathed in a solution containing an
impermeant solute of concentration Cy.

(a) Does the cell shrink to zero volume or expand to its
mazximum volume, which is a sphere of surface area S?

(b) Derive a differential equation for the volume change
and integrate it to find how long it takes for the cell to
reach zero or mazimum volume.

Problem 11 A cell has variable volume V and fixed sur-
face area S. The total hydrostatic pressure p is always the
same both inside and outside the cell. There is complete
and instantaneous mizring both inside and out. An imper-
meant solute has an initial concentration C(0) both inside
and outside. The initial cell volume is Vy. At t = 0 the
exterior solute is removed.

(a) Does the cell shrink to zero volume or expand to its
mazximum volume, which is a sphere of surface area S?

(b) Derive a differential equation for V(t) and find
how long it takes for the cell to reach zero or mazimum
volume.

Section 5.6

Problem 12 Two membranes have permeabilities wi RT
and wa RT. Find the permeability of a two-layered mem-
brane in terms of w1 and ws.

Problem 13 Solute is carried through a pipe by solvent
drag. The radius of the pipe is b. The average flow along
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the pipe is j, (independent of v because it has been aver-
aged over r). Assume that within the pipe the concentra-
tion of solute is independent of radius and can be writ-
ten as C(z). The solute is carried along purely by solvent
drag. Solute concentration outside the pipe is zero. Solute
diffuses through the wall of the pipe, which has solute
permeability wRT. In terms of j,, b, and wRT, obtain
a differential equation for C(z) and show that C decays
exponentially along the pipe. Find the decay constant.

Section 5.7

Problem 14 A kidney machine has a membrane perme-
ability wRT = 0.5 x 1073 c¢m s~1. If the membrane area
is 1 m?, the volume of body fluid is 40 1, and the vol-
ume of dialysant is effectively infinite, what is the time
constant? How long will it take to reduce the BUN (blood
urea nitrogen) concentration from 120 mg per 100 ml to
20 mg per 100 ml?

Problem 15 Find the pair of coupled differential equa-
tions for C' and C' for a dialysis machine in which V' is
not infinite.

Section 5.8

Problem 16 In the countercurrent model (Eq. 5.25) the
total current i through the membrane when its length is
X is
b's
i= wRTY/ [Cin(z) = Cour(x)] da.
0

Solve this integral for the two cases given by Fqs. 5.26
and 5.27. Show that the current ratio in these two cases
18 1.36 when a =1 and X = 2.

Problem 17 The countercurrent model applies to the
transport of heat as well as particles, with temperature
taking the place of concentration. Consider a counter-
current heat exchanger, which represents the arrangement
of blood vessels in the flipper of a whale [Schmidt-Nielsen
(1972)].

artery
Ta(x) ——
D
v -—
x=0 vein x=L

The temperatures of the arterial and venous blood are gov-
erned by equations similar to Eqs. 5.27:

T,

Ty = ca + (c2 — c1)ax.

=c1 + (¢ — c1)ax,

Assume that the arterial blood at x = 0 is at the warm
temperature of the whale’s body, T,,. The arterial blood at
x = L enters the capillaries at temperature To(L) and is
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cooled to the temperature of the surrounding ocean water,
T., by the time it enters the vein at x = L.

(a) Determine ¢y and co in terms of Ty, Te, a, and L.

(b) Plot T,(x) and T,(x) for T, = 37°C, T, = 7°C,
a=1mm™, and L = 3mm.

(c) The loss of heat from the body to the surroundings
is proportional to AT = T,(L) — T,. Find an expression
for AT. What does AT reduce to if al < 1?2 if al > 1%
Interpret these results physically. To minimize heat loss
to the ocean should aL be large or small?

(d) The energy the body must supply to heat the return-
ing venous blood is proportional to AT' = T, — T,(0).
Find an expression for AT'.

Section 5.9
Problem 18 Derive Egs. 5.44a and 5.440.

Problem 19 Show that Eq. 5.51 gives C(z) = const
when A =0 (pure solvent drag) and gives dC/dz = const
when A — oo (pure diffusion).

Problem 20 Obtain expressions for Js when A =0 and
A — 00.

Problem 21 Show that for very large pores when o =0
the parameter x = AZ/X = J,/wRT depends only on
pore radius, solute particle radius, pressure difference and
temperature, and not on viscosity, the number of pores per
unit area, or the membrane thickness.

Problem 22 When Cl =0, what are the limiting values
of Cs as x — 0%as x — oo ?

Problem 23 (a) Write Js in terms of Cs, C%, J, and x.
(b) Specialize to the case Cl = 0.

Problem 24 (a) Find the ratio (1—0)CysJ,/[wRT(Cs —
Ch)] in terms of x, Cs, and C?.

(b) Specialize to the case C = 0 and discuss limiting
values for small and large x.

Problem 25 (a) Show that

J,=wRT (0,25 o =
e —1 e® —1

where © = J,(1 — o) /wRT.

(b) Discuss the special case Cl, =0 in the limits © — 0
and z— 0.

(c) From the data shown, estimate L, and wRT. The
data are for the transport of radioactive water with a con-
centration of 10'° molecules m™3 on one side of the mem-
brane and zero on the other.

g (m2sh

o) 2 4 6
Ap {units of 10% Pa)

Problem 26 Consider the following cases for transport
of water through a membrane.

(a) Water flows by bulk flow through the membrane
with Ap = 0. There is an impermeant solute (¢ = 1) on
the right with concentration Chyiy and zero concentration
on the left. Find the particle fluence rate of water in terms

of Ly.
(b) There is no volume flow through the membrane
(Jy = 0). Some of the water molecules on the left are

tagged with radioactive hydrogen (tritium). The concen-
tration of tagged water molecules is Cs on the left and 0
on the right. Find the particle fluence rate of tagged water
in terms of L, and wRT.

(c¢) There is volume flow, as in case (a), and there are
also tagged water molecules on the left. Find the particle
fluence rate of tagged water in terms of L, and wRT.

(d) Restate the answers in terms of the parameters of a
collection of n pores per unit area of radius R, and length
AZ.

(e) Estimate the value of = for part (c) if R, = 1078
m and cpig = ¢s =0.1 mol -1

Problem 27 Construct diagrams analogous to Fig. 5.17
(a) when the total pressure is the same on both sides and
7" =0 and (b) when (p —om) < p' and 7’ = 0.

Problem 28 Consider the case of water permeability
shown in Fig. 5.1(c). Water and solute molecules move
through the membrane in the same way. They “dissolve”
from solution into the membrane. Assume that the con-
centration of water molecules just inside the membrane
is proportional to the pressure just outside: C' = ap. The
membrane has thickness AZ and the diffusion constant
for water in the membrane material is D. Under steady-
state conditions, derive an expression for L,,.

Problem 29 Consider the case in which solute moves
along a tube by a combination of diffusion and solvent
drag. Ignore radial diffusion within the tube, but assume
that solute is moving out through the walls so that js
18 changing with position in the tube. In particular, the
number of solute particles passing out through the wall
in length dz in time dt is CA2w R, dzdt, where A is re-
lated to the permeability of the wall. Consider a case in



which C does not change with time, but depends only on
position along the tube.
(a) Write down the conservation equation for an ele-
ment of the tube and show that
9j

2AC
0z =0

Ry

(b) Combine the results of part (a) with Eq. 5.45a and
show that C(z) must satisfy the differential equation

o0
0z2

D 0z

Show that this equation will be satisfied if the concen-
tration decreases exponentially along the tube as C(z) =
Coe™ %, where

T
2D

-1+ (1 ==
RP]UfZ

Problem 30 The volume of a water molecule is V,, and
the volume of a solute molecule is V. Define a new quan-
tity J,, that is the number of water molecules per unit area
per second passing through the membrane. What is Jy, in
terms of J, and Jg?
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6

Impulses in Nerve and Muscle Cells

A nerve cell conducts an electrochemical impulse be-
cause of changes that take place in the cell membrane.
These changes allow movement of ions through the mem-
brane, setting up currents that flow through the mem-
brane and along the cell. Similar impulses travel along
muscle cells before they contract. This chapter reviews
the basic properties of electric fields and currents that
are needed to understand the propagation of the nerve-
or muscle-cell impulse.

Section 6.1 introduces the physiology of nerve conduc-
tion. The next eight sections develop the electrostatics
and the physics of current flow needed to understand how
the action potential propagates along the cell.

The next sections deal with the charge distribution on
a resting cell membrane (Sec. 6.10) and the cable model
of the axon (Sec. 6.11). If the membrane properties do
not change as the voltage across the membrane changes,
this leads to electrotonus or passive spread (Sec. 6.12). If
the membrane properties do change, a signal can prop-
agate without change of shape. Section 6.13 tells how
Hodgkin and Huxley developed equations to describe the
membrane changes, and Secs. 6.14 and 6.15 apply their
results to the propagation of a nerve impulse. The chap-
ter to this point forms an integrated story of conduction
in an unmyelinated axon.

Section 6.16 considers saltatory conduction: the “jump-
ing” of an impulse from node to node in a myelinated
fiber. Section 6.17 examines the capacitance of a bilayer
membrane that has layers with different properties. Sec-
tion 6.18 shows how minor alterations in the membrane
properties can transform the Hodgkin—-Huxley model to
one that displays repetitive electrical activity.

Section 6.19 shows how tabulated solutions to the elec-
trical capacitance of conductors in different geometries
can be used to solve diffusion problems with similar geo-
metric configurations.

6.1 Physiology of Nerve and Muscle
Cells

A nerve! consists of many parallel, independent signal

paths, each of which is a nerve cell or fiber. Each cell
transmits signals in only one direction; separate cells
carry signals to or from the brain. Each cell has an input
end (dendrites), a cell body, a long conducting portion
or azon, and an output end. It is the ends that give the
cell its unidirectional character. The input end may be a
transducer (stretch receptor, temperature receptor, etc.)
or a junction (synapse) with another cell. A threshold
mechanism is built into the input end; when an input
signal exceeding a certain level is received, the nerve fires
and an impulse or action potential of fixed size and dura-
tion travels down the axon. There may be several inputs
that can either aid or inhibit each other, depending on
the nature of the synapses.

Muscle cells are also long and cylindrical. An electrical
impulse travels along a muscle cell to initiate its contrac-
tion. This chapter concentrates on the propagation of the
action potential in a nerve cell, but the discussion can be
regarded as a model for what happens in muscle cells as
well.

The axon transmits the impulse without change of
shape. The axon can be more than a meter in length,
extending from the brain to a synapse low in the spinal
cord or from the spinal cord to a finger or toe. Bundles
of axons constitute a nerve. The output end branches out
in fine nerve endings, which appear to be separated by a
gap from the next nerve or muscle cell that they drive.

LA good discussion of the properties of nerves and the Hodgkin—
Huxley experiments is found in Katz (1966). More modern descrip-
tions of nerves and nerve conduction are found in many books, such
as Patton et al. (1989).
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60—

vimy)

FIGURE 6.1. A typical nerve impulse or action potential, plot-
ted as a function of time.

The long cylindrical axon has properties that are in
some ways similar to those of an electric cable. Its diam-
eter may range from less than one micrometer (1 pm) to
as much as 1 mm for the giant axon of a squid; in hu-
mans the upper limit is about 20 pm. Pulses travel along
it with speeds ranging from 0.6 to 100 m s~ !, depending,
among other things, on the diameter of the axon. The
axon core may be surrounded by either a membrane (for
an unmyelinated fiber) or a much thicker sheath of fatty
material (myelin) that is wound on like tape. A myeli-
nated fiber has its sheath interrupted at intervals and
replaced by a short segment of membrane similar to that
on an unmyelinated fiber. These interruptions are called
nodes of Ranvier. A typical human nerve might contain
twice as many unmyelinated fibers as myelinated. We will
see in Sec. 6.16 that the myelin gives a faster impulse con-
duction speed for a given axon radius. Myelinated fibers
conduct motor information; unmyelinated fibers conduct
information such as temperature, for which speed is not
important. A typical unmyelinated axon might have a ra-
dius of 0.7 pm with a membrane thickness of 5-10 nm.
Myelinated fibers have a radius of up to 10 pm, with
nodes spaced every 1-2 mm. We will find later that the
spacing of the nodes is about 140 times the inner radius of
the fiber, a fact that is quite important in the relationship
between conduction speed and fiber radius.

A microelectrode inserted inside a resting axon shows
an electrical potential that is about 70 mV less than out-
side the cell. (We will define electrical potential difference
in Sec. 6.4.) A typical nerve impulse or action potential
or spike in an unmyelinated axon is shown as a function
of time in Fig. 6.1. As the impulse passes by the elec-
trode, the potential rises in a millisecond or less to about
+40 mV. The potential then falls to about —90 mV and
then recovers slowly to its resting value of —70 mV. The
membrane is said to depolarize and then repolarize.

The history of recording the action potential has been
described by Geddes (2000). The action potential was
first measured by Helmholtz around 1850. The measure-
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FIGURE 6.2. The response of a mechanical receptor in the
cornea to an applied force. (a) The impulses recorded on
the surface of the nerve bundle. (b) The applied force. Im-
pulses occur while the force is applied. From B. J. Kane,
C. W. Storment, S. W. Crowder, D. L. Tanelian, and G.
T. A. Kovacs. Force-sensing microprobe for precise stimula-
tion of mechanoreceptive tissues. IEEE Trans. Biomed. Eng.
42(8):745-750. © 1995 IEEE. Reprinted by permission.

ment technology steadily improved, culminating in the
use of a microelectrode inserted by Hodgkin and Huxley
(1939) into the cut end of the giant axon of the squid, to
record the action potential directly.

The information sent along a nerve fiber is coded in the
repetition rate of these pulses, all of which are the same
shape. Figure 6.2 shows the response of a low-threshold
mechanoreceptor in the cornea to a mechanical stimulus.
The heavy curve in the bottom panel shows the applied
force, and the upper panel shows the impulses.

Comparison of the intracellular fluid or axoplasm with
the extracellular fluid surrounding each axon shows an
excess of potassium and a deficit of sodium and chlo-
ride ions within the cell, as shown in Fig. 6.3. The re-
generative action that produces the sudden changes of
membrane potential is caused by changing permeability
of the membrane to ions—primarily sodium and potas-
sium. These changes are discussed in Secs. 6.13 and 6.14.

The axon can be removed from the rest of the cell and
it will still conduct nerve impulses. The speed and shape
of the action potential depend on the membrane and the
concentration of ions inside and outside the cell. The ax-
oplasm has been squeezed out of squid giant axons and
replaced by an electrolyte solution without altering ap-
preciably the propagation of the impulses—for a while,
until the ion concentrations change appreciably. The ax-
oplasm does contain chemicals essential to the long-term
metabolic requirements of the cell and to maintaining the
ion concentrations.

At the end of a nerve cell the signal passes to another
nerve cell or to a muscle cell across a synapse or junc-
tion. A few synapses in mammals are electrical; most are
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inside of axon Extracellular fluid
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FIGURE 6.3. Ion concentrations in a typical mammalian
nerve and in the extracellular fluid surrounding the nerve.
Concentrations are in mmol 17%; ¢,/c; is the concentration
ratio. The membrane thickness is b.

chemical [Nolte (2002), p. 193, Guyton and Hall (2000,
Chapter 45)]. In electrical synapses, channels connect the
interior of one cell with the next. In the chemical case a
neurotransmitter chemical is secreted by the first cell. It
crosses the synaptic cleft (about 50nm) and enters the
next cell.

At the neuromuscular junction the transmitter is
acetylcholine (ACh). ACh increases the permeability of
nearby muscle to sodium, which then enters and depo-
larizes the muscle membrane. The process is quantized.?
Packets of acetylcholine of definite size are liberated [Katz
(1966, Chapter 9); Patton et al. (1989, Chapter 6)].

There are a number of neurotransmitters in the central
nervous system. Glutamate is a common excitatory neu-
rotransmitter in the central nervous system. It increases
the membrane permeability to sodium ions, which en-
hances depolarization. Glycine, on the other hand, is an
inhibitory neurotransmitter. It causes the interior poten-
tial becomes more negative (hyperpolarized) and firing is
inhibited. A number of other chemical mediators such as
norepinephrine, epinephrine, dopamine, serotonin, hista-
mine, aspartate, and gamma-aminobutyric acid, are also
found in the nervous system [Guyton and Hall (2000,
Chapter 45)].

If the potential becomes high enough (that is, more
positive or less negative), the regenerative action of the
membrane takes over, and the cell initiates an impulse. If
the input end of the cell acts as a transducer, the interior
potential rises when the cell is stimulated. If the input is
from another nerve, the signal may cause the potential to
increase by a subthreshold amount so that two or more
stimuli must be received simultaneously to cause firing,
or it may decrease the potential and inhibit stimulation
by another nerve at the synapse. This makes possible the
logic network that comprises the central nervous system.

2See Problem 3 in Appendix J.
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FIGURE 6.4. Force F is exerted by charge g1 on charge go.
It points along a line between them. An equal and opposite
force —F is exerted by g2 on ¢i.

6.2 Coulomb’s Law, Superposition,
and the Electric Field

Coulomb’s law relates the electrical force between two
objects to their electrical charge and separation. For our
purpose, Coulomb’s law is a summary of many experi-
ments. If two objects have electrical charge ¢; and g3, re-
spectively, and are separated by a distance 7, then there
is a force between them, the magnitude of which is given

by
1
F| =
¥l <47T60>

When the charge is measured in coulombs (C), F in new-
tons (N), and r in meters (m), the constant has the value

q1492
r2

(6.1)

~9x10° Nm? ¢ 2

Tres (6.2)
to an accuracy of 0.1%.% The direction of the force is
along the line between the two charges as shown in Fig.
6.4. If the charges are both positive or both negative, the
force is repulsive, which is consistent with assigning a pos-
itive sign to F. If one is positive and the other negative,
then the force is attractive, and F has a negative value.
Force F is exerted by charge ¢; on charge ¢». The force
exerted by ¢2 on ¢ has the same magnitude but points in
the opposite direction. The forces on both charges act to
separate them if they have the same sign and to attract
them if the signs are opposite.

If two or more charges exert a force on the particu-
lar charge being considered, the total force is found by
applying Coulomb’s law to each charge (paired with the
one on which we want to find the force) and adding the
vector forces that are so calculated. An example of this is
shown in Fig. 6.5. Charges q;, g2, and g3 are +1.0 x 1076,
—2.0 x 1075, and +3.0 x 107 C, respectively. The mag-
nitude of the force that ¢; exerts on g¢3 is

(9 x 109)(1 x 107%)(3 x 107°)
(2 x 10-2)2

F10n3: =67.5 N.

3The quantity 1/4mep has been assigned the ezact value
8.9875517873681764 x 10°. This is because in 1983 the velocity
of light, ¢, was defined to be exactly 299,792,458 m s—! and
1/4mep = 10772,
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FIGURE 6.5. An example of applying Coulomb’s law and
adding forces on g3 due to charges ¢1 and g2. (a) The arrange-
ment of charges. (b) The forces on gs.

Similarly, the force exerted by ¢ on g3 is

(9 x 109)(—2 x 1076)(3 x 10~°)

=15 N.
(6 x 10-2)2

F2on3:

The minus sign means that the force is attractive, that is,
toward gs. The two forces are shown in Fig. 6.5b, along
with their vector sum. The sum can be found by compo-
nents as in Chap. 1. The result is 78.8 N at an angle of
7.7° clockwise from the direction of Fq on 3.

If a collection of charges causes a force to act on
some other charge (a “test charge”) located somewhere
in space, we say that the collection of charges produces
an electric field at that point in space. One can think, for
example, of charge g; producing an electric field vector,

of magnitude
I @

47eq r?

|E1] = (6.3)
pointing radially away from ¢; (if ¢; is positive) or radi-
ally toward ¢; (if g1 is negative). The force on test charge
g2 placed at the observing point is then

F = q2E1. (64)

6.3 Gauss’s Law

It is possible to derive a theorem about the electric
field from a collection of charges, known as Gauss’s law.
Rather than derive it from Coulomb’s law, we will state
it and show that Coulomb’s law can be derived from it.
Then we will consider some examples of its use.

Divide up any closed surface into elements of surface
area, such as AS in Fig. 6.6. For each element AS, cal-
culate the component of E normal to the surface, F,,

FIGURE 6.6. Calculating the integral of the normal compo-
nent of E through a surface.

and multiply it by the magnitude of the surface area AS.
Add these quantities for the entire closed surface, calling
them positive if the normal component of E points out-
ward and negative if E points inward. Gauss’s law says
that the resulting sum is equal to the total charge inside
the surface, divided by €. In symbols,*

//Endszi: Amq
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This surface integral is exactly the same as the flux of
the continuity equation, Eq. 4.4. It is in fact called the
electric field flux.?

While Gauss’s law is always true, it is not always useful.
It is helpful only in cases where E is constant over the
entire surface of integration, or when the surface can be
divided into smaller surfaces, on each of which FE, can
be argued to be constant or zero. One of the few cases in
which Gauss’s law is useful to calculate E is the case of a
point charge, and another is related to the cell membrane.
In each case, the symmetry of the problem allows the
surface of integration to be specified so that FE,, is either
constant or zero.

The first example is a point charge in empty space.
Since such a charge has no preferred orientation (it is a
point), and since there is nothing else around to specify a
preferred direction in space, the electric field must point
radially toward or away from the charge and must depend
only on distance from the charge. Therefore, if the surface
of integration is a sphere centered on the charge, E,, is the
same everywhere on the sphere. It can be taken outside
the integral in Eq. 6.5 to give

//EndS:E//dS.